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Abstract

Transmission lines are heavy assets of power systems. Therefore, the rapid and accurate identification

of fault locations is important for power grids’ safe and stable operation. Traditional methods based on

impedances or traveling waves are facing increasing challenges like uncertain power generation and

unknown power electronic device characteristics when modern power systems are transitioning to deeply

renewable energy source (RES) penetrated grids. In order to solve the above problems, this paper proposes

a high-dimensional time-frequency feature extraction method that does not require expert knowledge of

physical features. This paper proposes a fault location framework for learning picturized and time-

series data (FltLoc-FPTD) with renewables. The developed loss function is suitable for the classification

of faulty lines, considering the challenges of distinguishing faults in adjacent lines. Furthermore, we

design an enhanced convolutional neural networks (CNN) subsampling layer with blur kernels to replace

the traditional subsampling layer to eliminate the influence of high-frequency noise and improve the

robustness against noise. The effectiveness of the method is verified by simulation under two benchmark

systems. The average fault location errors with and without environment noises are 0.0189 and 0.0124.

Index Terms
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I . I N T RO D U C T I O N

The modern power system has been involving the integration of heavy assets due to the advancement of

smart grid technologies. Therefore, to avoid the damage to heavy assets of utilities, it is becoming

increasingly important to identify power system faults before further security issues arise. The State

Grid of China’s 2022 annual work conference pointed out that the planned investment in power grid

construction in 2022 exceeded CNY  500 billion (USD 78.8 billion) for the first time. New energy

construction and power grid investment will be the focus in the future [1]. Traditional generators are

geographically separated and usually far from the load side. However, the adaptation of RES  technologies is

changing the geographical tradition. In addition, these technologies are accompanied with uncertain
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power generation, unknown power electronics device behaviors, etc., which bring up adverse protection

issues especially on fault location, threatening the security of bulk systems.

The purpose of fault location methods is to find the fault occurrence point accurately and speedily on the

lines. Traditional fault location methods generally include impedance-based [2]–[5], traveling wave-based

[6], [7], and traditional machine learning-based methods [8], [9]. Specifically, impedance-based methods

play a significant role in traditional power grids. They usually measure single or multi-terminal voltage and

current, calculate line impedance, and then determine the location of the fault according to the distribution

parameters of the line. However, in practical operation, due to a series of factors such as the unbalance of

power grids, the fluctuation of the load, and the sensitivity to the line parameters, impedance-based

methods could result in relatively large errors [10], [11]. Besides, for traditional impedance methods, it is

usually assumed that the phase of the faulty branch current is the same as that of the current measured by the

relay. Since RESs are connected to the grid relying on many inverter devices, the above assumptions can

be invalid [12].

Furthermore, the traveling wave method has the advantages of high accuracy and fast speed. When a

fault occurs, the generated traveling wave propagates between the fault point and the measuring device,

then the propagation time and wave speed are utilized to calculate the location of the fault point [13]. In

[14], the author uses the exact time when the first wave head signal of the traveling wave of the fault point

arrives at both ends to accurately locate the fault point. However, this method has high requirements on the

accuracy of the measurement devices. In addition, for a traveling wave measurement and positioning at two

terminals, time synchronization and communication channels are required [15]. Since the traveling wave

method is affected by the branch of the line, and its application is subject to certain restrictions on topology,

this leads to another limitation when applying this method.

To resolve the shortcomings of the above traditional impedance and traveling wave methods, many

researchers have combined signal processing techniques and artificial intelligence in the application of

fault location. In [16]–[19], the authors employ wavelet transform to extract features, and then adopt a

series of machine learning methods (such as SVM, S V R  or artificial neural network) to classify and

accurately locate faults. The application of traditional signal processing and artificial intelligence methods in

fault location requires expert knowledge and mathematical skills for methods like wavelet transform or

Fourier transform to construct feature engineering. However, when introducing expert knowledge and using

the existing mathematical skills to construct feature engineering, the capability of capturing the voltage

or current characteristics in large-scale power systems is limited by engineering perception and

mathematical frameworks. These kinds of feature engineering are either heuristic or experimental, lacking

“the last-mile” improvement on feature exploration.
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To bridge the above gap, this paper investigates deep learning methods to design an intelligent fault

detection method for grid-connected transmission systems with RESs. It does not require many features to

extract the timing characteristics of voltage or current for fault location. With the rapid development of

computer hardware capabilities in smart meters, technical support based on data-driven methods is given.

Many articles use CNN [20]–[22] to extract features of voltage and current waveforms. The articles abandon

the traditional feature extraction method and show better performance in the case of high network complexity.

In [20], the authors propose a joint PMU placement algorithm that defines eigenvectors according to

substitution theory in the case of limited measurement availability, and transmits them to a CNN network

for faulty line identification. However, the article ignores the feature information on the time series and

only focuses on the identification of faulty lines, and does not analyze the problem of fault location. In

[21] the author proposes multi-task learning, combining two-way LSTM in the time domain and CNN

in the frequency domain for simultaneous detection. The large number of parameters of LSTM

undoubtedly increases the training burden of the model. In [22], the author image-processes the collected

voltage and current signals and transmits them to the CNN network for fault location, which performs

well in lightweight power systems. However, the authors imaged the sampled data in the form of a

heatmap. When the data difference is small or the RESs are added to the power grid to generate a lot of

noise, it is easy to lose some feature information during the image conversion process, resulting in increased

errors. In this paper, in order to improve the robustness against noise and the accuracy of fault location, we

improve the pooling structure of CNN for feature extraction of picturized data. To avoid the loss of time

series information, we use BiGRU for feature extraction of time series data. When the extracted features

are passed into the deep neural network for fault line identification, a loss function that is more suitable for

fault line identification is adopted. The method relies on voltage and current signals at multiple

measurement locations and requires no expertise. Furthermore, it uses deep learning models to extract

high-dimensional features. The main contributions of this paper are as follows:

• The design of a novel deep learning framework that extracts high-dimensional fault signals. The

framework uses a multi-channel CNN to extract signals features of picturized data and uses BiGRU to

strengthen the internal connections of each channel and extract timing signal features.

• A  loss function more suitable for fault line identification is designed. By reducing the intra-class

distance within a line and increasing the inter-class distance between different lines, the accuracy of

fault line identification is further improved.

• According to the principle that the objective function is usually fitted from low frequency to

high frequency during training, the fuzzy kernel function is integrated into the subsampling of
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traditional convolutional networks. Anti-aliasing is performed on high-frequency noise through blur

subsampling, and the translation invariance of CNN is kept as much as possible during subsampling to

prevent the model from over-fitting.

The organizational structure of this article is as follows. Section II  introduces the specific framework of

high-dimensional feature extraction and the application of blur subsampling. In Section III, the fault line

identification and fault point location for high-dimensional features are introduced in detail. Section IV

establishes a simulation model in PSCAD to evaluate the performance of the method under various

conditions. Finally, conclusions are given in Section V.

I I . E X T R A C T I O N  O F F E AT U R E  VA L U E S  B A S E D  ON I M P ROV E D CNN A N D B I GRU

In this section, we introduce in detail the detection framework of the proposed fault location method.

The framework includes three parts: 1) preprocessing of sampled signals, 2) feature extraction of picturized

data , and 3) feature extraction of time series data. This framework uses the improved CNN network to

extract features of picturized data, and then uses the BiGRU network for serialization learning to obtain the

characteristics of the voltage and current time series and strengthen the connection between the CNN

pooling layers. The attention mechanism is added to the processing of CNN and BiGRU to calculate the

weighted hidden state to complete effective feature screening. The proposed method framework is shown in

1, where (a) is a conceptual diagram and (b) is a flow chart. First, the original signal is acquired and

assembled into a numerical matrix, N@w�v. The numerical matrix is then learned through an improved

CNN network to extract features and the BiGRU network is used for sequential learning. The learned

features are fed into the fully connected neural network, then use an improved softmax loss function (Im-

softmaxloss) to identify fault lines, and the mean square error loss function is used to determine fault

points.

A. Data Processing from Sampled Signal to Numerical Matrix

Three-phase voltage and current signals directly reflect the state information of the grid before and

after faults. Traditional feature engineering relies on expert knowledge to analyze voltage and current

signals. However, with the integration of renewable energies, it is difficult for traditional methods to

effectively extract voltage and current features for accurate fault location. Inspired by computer vision

processing, a method from sampling signal to numerical matrix processing is proposed. The signal is

converted from the time domain signal to the high-dimensional domain, providing an analyzable data

structure for subsequent feature extraction. The specific steps are as follows:

i) Collect three-phase voltage and current signals from the selected bus terminal;
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Fig. 1. Functional diagram of the proposed method. (a) The detailed conceptual diagram of the proposed

method with specific details, (b) The flowchart of the proposed method.

ii) Perform Z-score standardization processing on the data; n̄ =  n−µ , where µ and σ are the mean and

variance of the sampled data, n is the original sampled data, and n̄ is the standardized data.

iii) The sampling signals of n measuring devices are constructed into a numerical matrix of n@6�l,

where n is the number of measuring devices on different buses, 6 represents the six channels of three-

phase voltage and current, and l is the number of sampling points on the time series. The sampled raw

signals are viewed as pictures and sent to the CNN.

B. Extract Features of Signals Picturized Data Based on Improved CNN

With the continuous development of the computer field, CNN has achieved good results in computer

vision [23] and natural language processing [24]. The constructed numerical matrix utilizes a CNN for

feature extraction of picturized data.

1) Traditional Convolutional Neural Network: CNN is a kind of feedforward neural network with

deep structures including convolution calculation, as shown in Fig.2, which has powerful characterization

ability. In the convolution process as shown in the Fig.2, the constructed numerical matrix is input to the

next hidden layer of the neuron through the convolution of the local receptive field. By moving the local

receptive field, all units of the constructed multi-channel numerical matrix are convolved to the next layer.

Each hidden layer neuron has a bias and a local perceptual weight connected to it. All  neurons in
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this layer use the same weight and bias. Therefore, the output of the convolution of each layer on the

signal s is: � �

Oi =  σ �∑  ∑  wi j �si j−k + b�, (1)
k=1 i, j�R

where σ is the activation function, b is the shared bias, and wi j is the array of shared weights. In most

cases, the input is multi-channel (n). After the input of the k-th channel passes the global scan of the

kernel function wi j, the activation function (σ ) is processed after the sum of the channels of each layer.

Fig. 2. CNN structure diagram.

After the features of the numerical matrix are obtained through convolution, if the features are directly

passed to the next layer of network for training, the dimension is too high, the calculation amount is too

large, and it is easy to lead to overfitting. The introduction of the pooling layer reduces the occurrence of

over-fitting by reducing the dimensionality of features. To reduce the input dimension of the next layer, a

pooling operation is performed Oi: P =  Pooling(Oi). The pooling layer is generally used after the

convolutional layer, primarily to prevent overfitting caused by the dimensionality of the output of the

convolutional layer which is too large. Each unit of the pooling layer summarizes a small area of the

previous layer. A  commonly used method is maximum pooling, and the maximum value in the small area of

the previous layer is taken as the value of the corresponding pooling layer. After multiple convolution and

pooling operations, the final feature vector is obtained.

2) Channel Attention Mechanism Between Different Measuring Devices: Traditional convolution

operation basically defaults to fusing all channels of the input feature map, ignoring the relationship

within the channel. For the power system, the characteristics of the faults on different lines shown on the

measuring device are affected by the line distance and the line structure. We want to focus on the

characteristics of the measurement device which is relatively close to the point of failure. Therefore, we

introduce an attention mechanism in the channel, and the model can automatically learn the importance of

different channel features and assign weight values to different channels, as shown in Fig.3. Only a small

amount of data is required to increase, which greatly improves the accuracy of line recognition.

The method mainly consists of three parts:
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Fig. 3. SEnet structure diagram.

(i) Global pooling: encode the entire feature in the channel as a global feature, which adopts the

method of combining global pooling and maximum pooling;

γa =
1  

∑  ∑ u( i , j) , γm =  max( u( i , j) ) , γ =  γa + γm , (2)
i=1  j=1

where u(i, j) is the original eigenvalue, ha is the eigenvalue of global average pooling, hm is the eigenvalue

of global maximum pooling, and h is the final global eigenvalue.

(ii) Weight learning: The neural network is used to learn the nonlinear relationship between the

numerical matrix channels, and the sigmoid function is used as the activation function to compress

the weight value to between 0 � 1.
wm =  σ (g(h,W )) =  Sigmoid

 
W2 Re LU (W1γ ). (3)

(iii) F (·): Conduct a dot product operation on the learned weight value and the feature of picturized

data of each corresponding numerical matrix to obtain a new channel feature space.

u(i, j) =  wm · u(i, j), (4)

where u(i, j) is the spatial eigenvalue after learning the nonlinear relationship in each channel. After

learning, a new numerical matrix is obtained which is assigned according to the degree of feature.

3) Blur subsampling Improves Noise Robustness: Generally, the signal collected from the measuring

device will have a certain amount of noise. As the model is trained, the fitting of the noise will be quite

high. When the signal of the faulty line is collected and the noise with a signal-to-noise ratio of 40 is

added to the signal, the model misjudges that the fault occurs on the line of the adjacent bus. Therefore, in

order to improve the robustness of noise, we use blur subsampling in the convolution process to reduce the

influence of noise on model prediction. In Fig.2, we use a certain step of the convolution operation, and

the activation function adopts the tanh function, so a convolution operation is:

Ox =  ∑  tanh ( wi j �xi j + b) . (5)
i, j�R
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The Fourier transform of tanh (wi j �xi j + b )  is:
!

tanh(k) =  
2π i 

exp
ibk         1

. (6)
i j i j exp − 2wi j        

− exp 2wi j

In model training, the general weight value wi j is very small, assuming  πk  >  0, then:
! !

tanh(k) ≈  −  
2π i 

exp
ibk

exp −  
πk

, (7)
i j                       i j                                  i j

! !

O = −  
2π i 

exp
ibk

exp −  
πk

. (8)
i, j�R             i j                       i j                                  i j

For the difference between the output frequency domain of this convolution and the target frequency

domain, we can define the loss function L  in the frequency domain:
Z

L  = (Lk )2dk
Z Z (9)

=  
2

(O(k) −  f (k))2dk =  
2

A(k)eiφ (k) dk,

where f (k) is the Fourier change of the objective function. According to Parseval’s theorem:
Z

L  =  
2

(O(x) −  f (x))2dx. (10)

The partial derivative of Lk to wi j is:
∂ L(k)

 ≈  A(k) exp − π k/2w  , (11)
i j

where A(k) =  |o(k) − f (k)|. It can be seen from the above formula that if A(k) >  0 at this time, the

gradient does not converge, and the low-frequency signal will be exponentially larger than the high-

frequency signal. Currently, the low-frequency signal is dominant, and the direction of the gradient

decline is in the direction of low-frequency convergence.

Therefore, in the model training, the signal sampled by the measuring device has high frequency noise. As

the training level of the model deepens, the impact of high-frequency noise will be exacerbated, leading to the

overfitting of the model. Generally, the signal collected from the measuring device will have a certain

amount of noise. Therefore, to improve the robustness of noise, we use blur subsampling in the

convolution process to reduce the influence of noise on the model prediction. The purpose is to anti-alias

high-frequency noise and reduce the impact of high-frequency noise. To achieve this goal, we design a

two-step max subsampling approach. First, the Gaussian kernel is used for convolution operation for anti-

aliasing processing, and then maxpooling is performed to reduce the dimensionality of training.
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C. BiGRU Based on Attention Mechanism to Extract Features of Time Series Data

To avoid the loss of features of time series signals, recurrent neural grids are often used as feature

extraction tools. Long and short-term memory neural network (LSTM) effectively solves the problem of

gradient burst or gradient disappearance in recurrent neural network (RNN) and is widely used in the

field of speech recognition [25]. However, LSTM contains many parameters, which greatly increases the

requirements for model training. The GRU network as an improved version of LSTM as shown in Fig.4.

The forget gate and input gate in the original LSTM are replaced with update gates, and the model

parameters are greatly reduced. Among them, update gate zt and reset gate rt, the output of which are

respectively:

Fig. 4. The structure of GRU.

zt =  σ 
 

Wz · [ht−1, xt ], rt =  σ 
 

Wr · [ht−1, xt ], (12)

ht =  tanh
 

W · [rt �ht−1, xt ], ht =  (1 − zt ) �ht−1 + zt  �ht, (13)

where Wz, Wr, W are the weight coefficients of each gate control unit in the network.

In the classic recurrent neural network, the state transmission is generally one-way. However, for some

extracted features of picturized data, we hope to obtain more complete information about the current

state based on the state before and after the time. Therefore, the two-way GRU can solve this problem and

its structure is shown in Fig.5. The output of the BiGRU model at time t is not only related to time

t − 1,  but also related to time t + 1.  Then the output at time t is:

h t =  GRU xt , h t −1     , h t =  GRU xt , h t −1     , (14)

ht = W  � h t + V  � h t + bt , (15)
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Fig. 5. The structure of BiGRU.

where h t is the forward GRU output at time t, on the contrary, h t is the reverse GRU output at time

t, W and V are the weight matrix, and bt is the bias vector.

After learning the features of picturized data, the high-dimensional features of the fault signal are

obtained. When the waveform changes within a period of time after a failure, we tend to focus more on

the useful information. Therefore, we combine the attention mechanism with the high-dimensional

features of the output of BiGRU to select features that are more critical to the current state from the

many features. The attention mechanism is essentially acquainted with the visual information processing

mechanism of the human brain. When people observe specific things, they tend to focus on observing

useful information and suppress other useless information. The formula is expressed as:

αi j =  tanh
 

hi−1, h j, ci j =  
∑i

exp
x
αi 

αi j
, hi =  

j=1
ci jh j , (16)

where h j is the output of CNN-BiGRU, αi j and ci j are calculated by the tanh activation function and

so f tmax function respectively, and hi is the variable of extracted features.

I I I . HI GH-D I M E N S I O NA L FA U LT  L I N E  C L A S S I F I C AT I O N A N D FA U LT  L O C AT I O N I D E N T I FI C AT I O N

There are two steps in this section. First, the neural network classification mechanism is used to find

the faulty lines. Second, the regression mechanism is used to locate the fault.

A. Classification of Fault Lines Using Improved Loss Function

In the previous section, the improved CNN and BiGRU are utilized to deeply extract the voltage and

current signals. With a time domain and high-dimension nature, the voltage and current signals are sent to

a fully connected neural network. For traditional multi-classification problems, a softmax function is
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widely used in the most primitive cross-entropy loss function. The traditional cross entropy loss function

is as follows:
N W T x + b

L1 =  − log
W T x + b  

, (17)
j=1

where W and b are the weight and bias of the model, respectively. At this time, the decision boundary for

the classification problem is (W1 − W2 )x + b1 − b2  =  0. However, for power systems, the difference of

voltage and current at adjacent downstream or upstream lines is relatively small when a fault occurs; the

voltage and current difference at both ends of one line and for different types of faults is relatively large

when a fault occurs. The traditional cross-entropy loss function can easily lead to a decrease in

classification accuracy, therefore, a feature scaling function is introduced to the cross-entropy loss

function to improve the accuracy of classification by compressing the intra-class distance and increasing the

accumulated distance. So we adopt Im-softmaxloss loss function, the loss function is now:

N s(cos(θ i +m))
L2 =  − log 

s cos(θ + m )
, (18)

j=1, j=yi

where θi =  �xi� � � i�
. At this time, the decision boundary for the classification problem becomes

s cos (θ1 + m) − cos θ2     =  0, where s(.) is the feature scaling function. The new loss function fully

considers the coupling of different lines within the system and expands the model’s decision boundary

for different faulty lines, thereby greatly increasing the accuracy of model classification.

B. Identify the Fault Point of The Fault Line

After the fault line is located, the voltage and current signals with high-dimensional features are

transmitted to the fully-connected neural network. The fault location point ŷ is calculated by the regression

mechanism of the neural network:
ŷ =  σ 

 
σ (w1 �x)�w2, (19)

where w1 and w2 are the weights of the fully connected network, x is the high-dimensional feature, ŷ is

the fault location point, and σ is the activation function.

The mean square error loss function is often used in the regression problem of neural networks to train

the weight values of neural networks:

LM SE = y(i) − ŷ ( i ) , (20)
i=1

where y(i) is the true value of the sample, and ŷ(i) is the predicted value of the sample during training.
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Fig. 6. IEEE  39-bus system with PMU locations and current measurement branches.

I V. N U M E R I C A L  V E R I F I C AT I O N

Simulations are conducted in PSCAD to verify the proposed fault detection, identification, and location

method. Several IEEE  benchmark systems are tested. In the IEEE  39-bus system, to be realistic and to

show that the proposed framework is functioning without full observability of the whole system, it is

assumed that PMUs are only equipped on buses 2, 3, 5, 14, 16, and 22, as shown in Fig.6. The RES  adopts the

doubly-fed induction machine model. The rated capacity of a single wind turbine is 1.5 MW and the rated

voltage is 690 V; it is connected to the 220 kV transmission grid through a step-up transformer [26].

We have set up four types of faults: single-phase to ground fault (a-g), two-phase short-circuit fault (a-b),

two-phase short-circuit ground fault (ab-g), and three-phase short-circuit fault (abc-g). The fault type, fault

resistance, and fault location parameters are presented in Table I. Seven different fault resistances are

tested for each fault type. Therefore, there are 28 situations at each failure point. Besides, each line takes

21 fault points and increases in a step of 5%, so there are 34 × 28 × 21 =  19992 sampled data in total.
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Table I: Setting of fault parameters

Settings

Fault Line

Fault Type

Fault Resistance

Fault Location

Parameter

1�34 lines

a-g, a-b, ab-g, abc-g

0.001, 0.1, 1, 5, 15, 25, 50

0%-100% (step=5%)

The performance is evaluated through three aspects:

• Line identification accuracy. The accuracy rate η1 is used as the evaluation index for the accurate

identification of the line. The calculation formula of η1 is as follows: η1 =  T
 
P + F N  , where TP and F N

are the number of correct classifications and the number of misclassifications in the predicted

value, respectively.

• Identification accuracy of adjacent lines. When the electrical distance between adjacent lines is small,

misclassification may occur when a fault occurs. In order to better analyze the misclassification

situation, we set a new accuracy rate. The classification accuracy rate of adjacent lines is η2: η2 =

T P +F N1  
, where TP is the sum of the number of the predicted line is a faulty line or the predicted

line is not a faulty line but is adjacent to the faulty line, F N1 is the number of predicted lines that

are not faulty lines and that the predicted line and the faulty line are not adjacent lines.

• Fault location. Mean square error (MSE) and mean absolute error (MAE) are commonly used

evaluation indicators for regression problems. For multiple lines, it is needed to calculate the

average value of multiple lines. The calculation formulas of MSE and MAE are as follows: MSE =

m ∑ j = 1  N ∑ i = 1      y(i) − ŷ ( i )  
2
, MAE =  m ∑ i = 1  N ∑ i = 1      y(i) − y( i )  , where m is the total number of lines,

and N is the number of samples.

A. Comparison of FltLoc-FPTD and Traditional Impedance Method

In the IEEE-39 node system shown in Fig.6, we select a line between bus 8 and 30 to compare the

performance between the traditional impedance-based fault location method and the data-driven one. The

impedance method adopts a single-ended positioning method [27], and an impedance relay is installed on

bus 30. To verify the impact of RESs on the traditional method, we replaced the thermal power unit on the

original No. 39 bus with a large wind farm in the system. The wind farm consists of 10 wind turbines. The

stator winding of the generator is directly connected to the grid, and the rotor winding is connected to the

grid side through a back-to-back converter. The rotor-side converter controls the rotor current to
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realize the decoupling control of active and reactive power. A  thyristor-controlled voltage regulator is

installed on the low-voltage side of the wind farm to control the voltage.

The AAE value is deployed to evaluated through the average accumulative error under different fault

simulations: A A E  =  N ∑ i = 1  total line length , where M is the measured value of fault location, A is the actual

value of fault occurrence. The results are shown in Table II. For the impedance method, the existence of

RESs do affect its location accuracy. The average errors with RESs are all higher than the ones without

RESs. However, for the proposed method, the location error does not increase due to the integration of

RESs. Through comparison, the proposed method has much lower location error than the impedance

method. For example, when there is no RESs, the proposed method’s errors reduces more than a half than

the impedance method; when there are RESs, the proposed method has errors of almost one third of the

impedance method’s errors.

Table II: Comparison of traditional impedance method and FltLoc-FPTD on fault location with and

without RESs

Error (%)
Method Fault Type

No Including

RESs RESs

a − g

Impedance a − b

Method ab − g

abc − g

a − g

a − b
FltLoc-FPTD

ab − g

abc − g

0.253 0.356

0.237 0.412

0.312 0.374

0.264 0.362

0.142 0.132

0.113 0.122

0.086 0.115

0.146 0.143

The following analysis of the increase of the error of the traditional impedance method caused by the

integration of RESs into the grid. As shown in Fig.7, when the line between the bus bars fails, the

single-ended positioning method is used, and the fundamental frequency component is extracted by
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Fourier transform. The fault positioning result is:

Z =  
VG1 =  

ZL1IG1 + mZL2 (IG1 + IG 2 ) + R F  (IG1 + IG 2  + IG3 )
,

G1 G1

Z =  Z + mZ +  
mZL2IG2 +  

RF (IG1 + IG 2  + IG3 )
, (21)

G1 G1

(Z − ZL1 ) IG1

ZL2 (IG1 + IG2 )

where Z is the calculated impedance of the impedance method, m is the location coefficient of the fault in

percent, ZL1 and ZL2 are the line impedance values, IG1, IG2, IG3 are the RESs branch currents, RF is the

fault resistance. Table III  compares the difference between the actual fault distance and the calculated fault

location (m) between the data-driven method and the traditional impedance method. Two scenarios are

considered: with and without RESs. The maximum error of the FltLoc-FPTD is only 0.13%, the

minimum error is 0.08%, and the error fluctuation is small. Due to the integration of a large number of

power electronic devices and the impact of their different control strategies, the output current of RESs has

random fluctuations, which undoubtedly increases the error of the impedance method. When there is no

RESs connected to the grid, the error between the actual fault distance and the calculated fault distance is

up to 0.26%. However, when renewables are plugged into the power system, the average error ranges from

0.32% to 0.38%. This is due to the randomness and uncertainty of RESs and the integration of a large

number of inverters, which greatly increases the error of traditional fault location methods.

Fig. 7. Permanent fault in the line between bus 30 and bus 8.

B. Performance of Different Deep Neural Networks on Fault Location

We train the sampled data under different deep learning frameworks and use 20% of the aforementioned

data as testing in the benchmark system. The data required for training in different frameworks are

processed by the numerical matrix in this paper. The line recognition accuracy η , the mean square

error (MSE) and the mean absolute error (MAE) of fault point identification are compared in different
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Table III: Comparison of fault location error between impedance method and FltLoc-FPTD with and

without RESs

Without RESs With RESs
Fault location as a

Method Measured Measured the Error Measured Measured the Error
percentage of line length

Impedance (p.u) fault location (%)     Impedance (p.u) fault location (%)

0

25%

Impedance Method 50%

75%

100%

0

25%

FltLoc-FPTD 50%

75%

100%

0.008 0.0024 0.24 0.012

0.149 0.2478 0.22 0.137

0.322. 0.5020 0.20 0.334

0.495 0.7526 0.26 0.506

0.642 0.9977 0.23 0.633

- 0.0012 0.12 -

- 0.2487 0.13 -

- 0.5489 0.11 -

- 0.7491 0.09 -

- 0.9988 0.12 -

0.0035 0.35

0.2464 0.36

0.5038 0.38

0.7532 0.32

0.9965 0.35

0.0009 0.09

0.2512 0.12

0.5492 0.08

0.7488 0.12

0.9989 0.11

frameworks to analyze the performance of each method. The results are shown in Table IV. In the test

results of CNN and GRU frameworks, the classification accuracy (η1) and positioning error (MAE) are

0.9520, 0.9556 and 2.42, 2.03, respectively. The detection framework proposed in this paper improves the

classification accuracy (η1) by a maximum of 3%, and reduces the fault location error (MAE) by a

maximum of 1.66%. The FltLoc-FPTD proposed in this paper has a line classification accuracy of

0.9815, and its recognition accuracy at the same bus is 1.0. Therefore, even if the faulty line is wrongly

judged for the first time, the fault point can be picked up by the next adjacent line. The fault location error

is 0.76, which is superior to traditional CNN and GRU in performance.

Table IV: Performance comparison under different frameworks.

Framework

CNN

GRU

BiGRU

CNN-BiGRU

FltLoc-FPTD

η1 η2 MSE(%) MAE (%)

0.9520 0.9812 0.155 2.420

0.9556 0.9872 0.092 2.030

0.9635 0.9970 0.068 1.690

0.9658 0.9983 0.045 1.456

0.9815 1.0000 0.012 0.760
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Fig. 8. Two-dimensional visualization of softmax loss on the train set (a) and test set (b).

C. Loss Function More Suitable for Fault Line Classification

In the case of a large number of lines, the coupling of features in space is prevented, and the

classification accuracy is further improved. Therefore, we introduce a loss function that is more suitable for

high dimensional decoupling. The fault data is extracted into a high-dimensional feature space, and the

data in the high-dimensional space is compressed by the introduced large interval cross-entropy loss

function. As shown in Fig.8, in the trained model, we select eight different lines to visualize the

distinguishability. The two subgraphs in the upper part of the Fig. 8 are the classification results of the

training and test sets using the traditional softmax loss. Obviously, the coverage of line 3 and line 6 is

loose, and the space utilization rate is greatly reduced. If a new line is added in the space, a coupling

relationship will inevitably occur, thereby reducing the accuracy of classification. The two subplots at the

bottom of the Fig.8 show the classification results with a large margin cross-entropy loss function. It can be

seen the spatial distance within the same line is greatly compressed, and the classification decision

boundary between different lines is clearly visible.

D. The Influence of the Introduction of the Attention Mechanism on the Positioning Accuracy

In the 39-node benchmark system, only 6 PMUs are installed for demonstration purposes. For faults

at different lines, the distance between the fault point and the measuring device affects the measurement
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results. For example, when a fault occurs on line 1-2, the voltage values measured on bus 22 differ from that

of bus 2. Since bus 22 is far away from the location of the fault, the voltage fluctuation is almost zero. In

addition, the data in time domain contains signals at steady state and the fault period, and the model should

pay more attention to the information that is more useful for fault location. As shown in Fig.9, the

visualization of the numerical matrix after convolution shows that each channel has a different function in

its feature representation. We can see that channels (a) and (d) focus on the waveform characteristics

before and after a fault occurs, and channels (b), (c), (e) aim to extract the features at the time of the fault.

Therefore, we introduce the attention mechanism into each channel of CNN, corresponding to each

measuring device, and the time sequence of the corresponding signal in the sequence output of BiGRU.

Through the distribution of weight values, we hope that the model will focus the characteristics of the

state change sequence and the characteristics of the failure duration, which reduces the characteristics of the

steady state.

Fig. 9. The visualization result of the numerical matrix after convolution. Channels (a) and (d): waveform

characteristics before and after a fault occurs, channels (b), (c) and (e): waveform characteristics when the

fault occurred, channel (f): waveform characteristics before and after the fault occurs and when the fault

occurs.

As shown in Table V, we compare the classification accuracy (η1 and η2) and fault localization errors

(MSE and MAE) of three models: 1) CNN BiGRU: twin Deep Neural Networks for Extracting Features of

Picturized Data and Features of Time Series Data via CNN and BiGRU. 2) Multi-att CNN BiGRU:
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on top of 1), a multi-channel attention mechanism is introduced into CNN to strengthen the connections

within each channel. 3) Multi-att CNN BiGRU-att: on top of 2), the attention mechanism is introduced

into BiGRU to strengthen the processing of time series features.

In the detection framework using the combination of multi-channel convolution and attention mecha-

nism proposed in this paper, its accuracy η and MSE, MAE have a certain improvement in performance.

After the attention mechanism is introduced, the accuracy rate of line classification is higher than 0.99, and

the MSE and MAE of fault location are 0.0124 and 0.76 respectively, which are better than the model

without attention mechanism. We compare the visualization of the trained models in Table V  and the results

are shown in Fig. 10. The abscissa is the actual location of the fault point, and the ordinate is the predicted

location of the fault point. The visualization results present that, with the introduction of the attention

mechanism, the more concentrated the two-dimensional scatter plot is on the diagonal line, the closer the

predicted value is to the true value.

Table V: Comparison of the results of introducing the attention mechanism into the model

Model η1

CNN BiGRU 0.9832

Multi-att CNN BiGRU 0.9931

Multi-att CNN BiGRU-att 0.9976

η2 MSE(%) MAE(%)

0.9983 0.0456 1.542

1.0000 0.0156 0.970

1.0000 0.0124 0.760

E. High Robustness Resulting From Blur Subsampling

Generally, the signals collected from various measuring devices will contain a certain amount of noise.

For traditional deep learning models, when fitting data according to the principle of low frequency

dominance in the frequency principle, the performance of the model will be greatly reduced if the high

frequency components in the signal are dominant. When the noise contains high-frequency signals, there is

often a risk of overfitting. The IEEE  standard C37.118 [28] does not specify the signal-to-noise ratio

(SNR) measured by the PMU and the signal-to-noise ratio of the PMU, as it is different in various

regions. We chose Gaussian noise with a signal-to-noise ratio from 40 dB to 100 dB to be added to the data

to compare the difference of before and after adding blur subsampling to the model [29]. As shown in

Fig.11, the maximum MSE and average MSE of different signal-to-noise ratios on the test set are

compared between normal and blur subsampling. It can be seen from Fig. 11 that when blur subsampling is

not used, the maximum error of the model is greatly affected by noise, and the error value of fault

location fluctuates more obviously. However, after adding the blur subsampling model, the fluctuation



20

Fig. 10. Visualization of the influence on fault location after adding the attention mechanism.

of the fault location error is significantly reduced. With the increase of signal-to-noise ratio, the average

error of fault location of blur subsampling model is lower than that of traditional subsampling. Therefore, we

introduce blur subsampling into the model to perform anti-aliasing on high-frequency signals, and the

translation invariance of CNN can be maintained as much as possible during blur subsampling to prevent

the model from overfitting.

F. Experimental Comparison Under Different Methods

To prove the performance of this method, four machine learning models are selected: Back Propagation

Neural Network (BPNN), Support Vector Regression (SVR), Decision Tree (DT), and Random Forest

(RF). The same data set is deployed in training and testing. The evaluation indicators are still η1, η2,

MSE and MAE. The results are shown in Table VI. The method proposed in this paper has the highest
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Fig. 11. MSE of blur subsampling under different signal-to-noise ratios.

classification accuracy eta1 of faulty lines under different signal-to-noise ratios, and the lowest is 0.9868.

The MAE loss value of fault location is as low as 0.76 and as high as 0.92. Traditional machine learning

models cannot achieve such high accuracy. And as the noise of the test data increases, the localization

accuracy of the traditional machine learning model fluctuates greatly with the disturbance of the noise.

This is due to the complex coupling between lines, and traditional models cannot obtain high-dimensional

features. The method proposed in this paper outperforms traditional models in performance and has strong

robustness under noise interference. This method can obtain high-dimensional features of fault signals, so

it has high fault location accuracy.

G. The Influence of PMU Coverage on Fault Location

In this section, the influence of PMU coverage on the positioning accuracy in the system is discussed.

PMU coverage is the ratio of the number of buses with PMU to the total number of buses in the system. The

coverage rate of the PMU directly affects the number of channels of the numerical matrix in data

preprocessing. Furthermore, a configuration with a high ratio of PMU will get more information about the

fault characteristics. As shown in Fig.12, we compare the location performance with different noise levels

at a ratio of 15%-30%. The results show that as the proportion of PMU configuration increases,
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Table VI: Experimental comparison among different methods.

Method

BPNN

S V R

DT

RF

FltLoc-FPTD

SNR η1 η2 MSE(%) MAE(%)

0 0.9566 0.9946 0.5230 1.213

40 0.9446 0.9653 0.8670 1.645

60 0.9396 0.9787 0.7350 1.455

80 0.9466 0.9827 0.6480 1.366

0 0.9433 0.9868 0.6780 1.787

40 0.9217 0.9655 0.8320 2.122

60 0.9316 0.9688 0.7890 2.013

80 0.9423 0.9799 0.7530 1.859

0 0.9215 0.9855 1.0220 2.020

40 0.9112 0.9732 1.3560 2.350

60 0.9136 0.9813 1.2440 2.250

80 0.9215 0.9825 1.1330 2.130

0 0.9326 0.9912 0.9630 1.430

40 0.9125 0.9789 1.6820 2.120

60 0.9256 0.9815 1.5730 1.890

80 0.9306 0.9856 1.2600 1.680

0 0.9976 1.0000 0.0124 0.760

40 0.9868 0.9988 0.0189 0.920

60 0.9931 1.0000 0.0178 0.850

80 0.9942 1.0000 0.0160 0.810

the MSE of the model presents a downward trend as a whole. However, as the coverage ratio increases,

its investment and operating costs will also increase accordingly.

V. D I S C U S S I O N S

A. Comparison with other works

The proposed method is compared with other ones in the literature. The results are shown in Table VII.

All  methods are tested under IEEE  39-bus and IEEE  68-bus benchmark systems. We compare whether

the method requires expert knowledge to construct a large amount of feature engineering (feature

construction), the difficulty of implementing the method (implementability), the average error with the
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Fig. 12. The average MSE under 15% � 30% PMU coverage against different signal-to-noise ratios.

cases of without and with noises. In order to consider the effectiveness of the method, we further compare the

impact of the selection and placement of the PMUs among the proposed method and another two

methods in [30] and [31].

In [20], [27], the measured voltage and current signals are artificially processed, while data fusion and

data-driven algorithms are utilized to achieve accurate fault location. Although both methods have

achieved good results in terms of error, a large number of feature structures undoubtedly increases the

difficulty of model implementation. In [29], the author transmits the measured signal value to the BiGRU

network without manual participation. The method in [29] is simple to implement, but the error of 0.176%

under 40 signal-to-noise ratio is much larger than the method in this paper and the literature [20], [27]. The

fault location error in the proposed method is 0.016% in the case of no noise, which is slightly lower

than that of the method in [27], however, its implementation difficulty is much lower than that of [27].

Under the premise of referring to the placement of the PMU, the methods in this paper and the compared

literature are slightly reduced. It has to be pointed out that this paper does not focus on PMU placement,

therefore, the relationship between optimal PMU placement and the accuracy of fault location is not

demonstrated here. To sum up, the method proposed has the following advantages: it requires no expert

knowledge to construct feature engineering, achieves comparatively simple implementation, and maintains

high performance in the error of fault location.
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Table VII:  Fault location performance comparison.

Fault location error (%)

System Method Feature construction Implementability PMU placement in this paper PMU placement in [30]

With noise Without noise With noise Without noise

In [20] Required Difficulty 0.020 0.032 0.018 0.029

In [27]
IEEE  39-bus

In [29]

Required

Not required

Difficulty 0.014 0.022

Easy 0.087 0.176

0.013 0.021

0.069 0.163

FltLoc-FPTD

In [20]

Not required

Required

Medium 0.015 0.018

Difficulty 0.023 0.035

0.015 0.019

0.021 0.030

In [27]
IEEE  68-bus

In [29]

Required

Not required

Difficulty 0.019 0.026

Easy 0.121 0.193

0.017 0.024

0.105 0.170

FltLoc-FPTD Not required Medium 0.018 0.021 0.016 0.020

B. Shunt faults and series faults

Power system faults are generally divided into shunt faults and series faults. For traditional transmission

line fault location, researchers and engineers usually refer to shunt fault. Shunt faults include line-to-

ground faults, line-to-line faults, double-line-to-ground faults, and triple line-to-ground fault. However,

series faults, also known as open circuit faults, occur due to the failure of one or more conductors in an

electrical system. Series faults generally occur at the terminals of electrical equipment. The most common

cause is the faulty connectors on cables and overhead lines [32]. In this paper, a novel deep learning

framework is designed to extract high-dimensional features via picturized and time-series learning of

sampled data, and a loss function more suitable for power systems is designed to further improve the

accuracy. Since this paper relies on a data-driven approach, no additional expert knowledge is required to

construct feature engineering. For series faults, the method proposed in this paper can still obtain good

accuracy by extracting high-dimensional features of fault signals. However, it depends on two cases.

First, series arc faults usually occur at broken conductors, and the arc impedance is so small that the

power supply continues to supply power to the load without triggering any relays. Besides, the change of

fault current is small. Therefore, the extraction of features will cause great difficulties, and the model is

prone to underfitting. Second, for other series faults, by adjusting the configuration and parameters of the

model and then preprocessing the series fault signal, the proposed model can have a high accuracy
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by uniformly scaling the signal values during the fault to produce large differences. Therefore, the fault

location method proposed in this paper improves the fitting capability by adjusting the parameters of the

model, making the extraction and preprocessing of fault signals suitable for series faults.

V I .  C O N C L U S I O N S

In this paper, we design a novel deep learning framework, which utilizes a multi-channel attention

mechanism CNN to extract features from picturized data and a BiGRU structure to extract features from

time-series data. It overcomes the need to rely on a large amount of expert knowledge to construct features for

fault detection and location. For the high-dimensional coupling within the power line, a loss function that

is more suitable for fault line identification is established, and the decision boundary is expanded for

different fault lines to effectively identify the fault line. The fuzzy kernel function is introduced into the

down-sampling of the convolutional network to anti-alias the signal in the noise, prevent the over-fitting

caused by the noise, and improve the robustness of the noise. Simulation experiments show that this

method is superior to traditional impedance-based method and other machine learning methods.
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