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Abstract—Monolithic 3D (M3D) integration is a promising
technology for achieving high performance and low power con-
sumption. However, the limitations of current M3D fabrication
flows lead to performance degradation of devices in the top tier
and unreliable interconnects between tiers. Fault localization at
the tier level is therefore necessary to enhance yield learning,
For example, tier-level localization can enable targeted diagnosis
and process optimization efforts. In this paper, we develop a
graph neural network-based diagnosis framework to efficiently
localize faults to a device tier. The proposed framework can be
used to provide rapid feedback to the foundry and help enhance
the quality of diagnosis reports generated by commercial tools.
Results for four M3D benchmarks, with and without response
compaction, show that the proposed solution achieves up to
32.86% improvement in diagnostic resolution with less than 1%
loss of accuracy, compared to results from commercial tools. The
proposed framework has also been demonstrated to be trans-
ferable to perform diagnosis on various design configurations
without performance degradation.

Index Terms—Monolithic 3D integration, Graph neural net-
work, Diagnosis

I. INTRODUCTION

S Moore’s law reaches physical limits, three-dimensional

(3D) integration is now being adopted for integrated
circuits (ICs). In today’s 3D technology, die/wafer bonding
with through-silicon vias (TSVs) is being used due to its
minimal impact on current fabrication flows. However, keep-
out-zones around TSVs (necessary to prevent wire damage
due to tensile stress) can create routing blockages and increase
the chip footprint and total wirelength. Monolithic 3D (M3D)
integration has emerged as a promising technology to achieve
higher performance and lower power consumption compared
to 2D and die/wafer bonded 3D ICs [1]. M3D leverages fine-
grained monolithic inter-tier vias (MIVs) to achieve high-
precision alignment and extremely thin device layers [2]. The
size of MIVs is of the same order of magnitude as conventional
back-end-of-line (BEOL) vias. As a result, a large number of
MIVs can be used in M3D designs, leading to a significant
reduction in wirelength.

Despite these advantages, M3D introduces several chal-
lenges that must be addressed before this technology can be
widely adopted. Temperature management during fabrication
is one of the major concerns. Typically, thermal budgets of
transistor manufacturing processes exceed 1000°C (e.g., for
dopant activation) [3]. However, in M3D designs, the fabri-
cation of upper-tier transistors in M3D designs with typical
thermal budgets causes damage to wires and cells under-
neath [4]. While advanced processes have been developed
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to fabricate transistors at a low temperature, they can cause
up to 20% performance mismatch between the devices in
different tiers [5]. The reliability of interconnects is another
concern for M3D ICs. Standard copper/low-k BEOL cannot
be used between tiers because the fabrication steps in the
upper tiers pose contamination risks, while low-k dielectrics
are thermally unstable after annealing processes [6]. As an
alternative, tungsten has good thermal stability, but its intrinsic
resistance is six times larger than copper, leading to an increase
in RC delay in the lower tiers [7]. Moreover, MIVs in M3D
designs are prone to defects as they penetrate through the
inter-tier dielectric. Surface roughness can produce voids in
the dielectric [8], which may lead to voids in MIVs during
etching, resulting in delay defects and degradation of circuit
performance [9]. These defects due to immature manufacturing
processes tend to be manifested as systematic delay faults
that are located in the same tier. It is necessary to prevent
such fabrication-related defects before M3D can become ready
for commercial exploitation. Delay-fault diagnosis is therefore
important in order to provide early feedback to the foundry and
facilitate yield learning.

In contrast to die/wafer bonding in stacked 3D integration,
tiers in M3D designs are fabricated in situ, which makes
it hard to ensure a known-good tier before assembly. Post-
assembly methods such as [10] are not applicable to M3D
due to the large area overhead for wrapper cells around MIVs.
In addition, delay-fault diagnosis catered to M3D designs is
especially important as tiers in M3D ICs suffer from different
systematic defects due to immature manufacturing processes.
Such tier-specific fabrication-related defects do not exist in 2D
designs; therefore, they are overlooked by previous work. [11]
leverages unsupervised learning to extract good candidates
in diagnosis reports. However, the extracted candidates can
be located in different tiers in M3D designs, which is not
sufficient to provide the high level of resolution (i.e., fault
localization) needed at the tier level. [12] proposed a built-
in-self-test (BIST) solution for MIV testing and diagnosis.
However, the BIST structure does not localize faults to a spe-
cific tier and requires dedicated test tiers between each pair of
device tiers, which increases the manufacturing cost. In [13],
an observation-point insertion algorithm was developed for
tier-level fault localization, but the impact of this solution on
fault diagnosis was not studied and the area overhead becomes
prohibitive for the likely scenario of a large number of MIVs.
To make M3D integration feasible, there is a need for a diagno-
sis framework that can efficiently localize faults to a tier. Such
a diagnosis framework should provide early feedback to the
foundry before the time-consuming physical failure analysis
(PFA). For example, an immature manufacturing process can



result in a large number of chips failing on the tester with
defects located in the same tier. Tier-level fault localization
makes it possible for the foundry to review its processes for
the predicted faulty tier without waiting for further analysis;
therefore, yield learning is accelerated. An effective diagnosis
method should also be compatible with existing diagnosis
flows provided by commercial tools to improve the quality
of diagnosis.

In this paper, we propose a novel machine learning-based
(ML-based) diagnosis framework for M3D ICs to locate faults
at the tier level. We focus on at-speed transition delay fault
(TDF) diagnosis because the M3D-specific defects discussed
above tend to be manifested in the form of delay faults that
impact circuit timing. Our method is able to localize faults
based on the circuit netlist and failure log files from the tester.
The key contributions of this paper are as follows:

e We develop two models, Tier-predictor and MIV-
pinpointer, based on graph neural networks (GNNs) to
locate faults at the tier level and in MIVs.

+ We develop a GNN-based policy to improve the quality
of diagnosis reports.

o We ensure the compatibility of the proposed method with
conventional scan-based designs and commercial tools,
both with and without test compression.

o« We show that the proposed framework is transferable
such that diagnosis can be carried out for designs with
various design configurations.

o« We demonstrate that the proposed framework can be
synergistically combined with previous work to provide
the high level of resolution at the tier level.

o The proposed framework simply utilizes the circuit netlist
and failure log files from the tester for making predic-
tions; therefore, test cost is minimized as no additional
test time is needed to generate diagnostic data.

The rest of the paper is organized as follows. Section II
provides an overview of M3D integration, logic diagnosis, and
GNN. Section III presents the proposed diagnosis framework.
In Section IV, we conduct transferability analysis and provide
our solutions to improve the transferability of the GNN-based
framework. Section V presents the proposed candidate pruning
and reordering algorithm. We compare the effectiveness of
our framework with a commercial fault-diagnosis tool in
Section VI. In Section VII, we discuss the transferability of our
framework between designs and provide guidance on choosing
appropriate models for diagnosis. Finally, Section VIII con-
cludes the paper.

II. BACKGROUND
A. Monolithic 3D Integration

M3D integration processes active device tiers sequentially
on a single wafer. M3D integration has the potential to
enable a wide variety of applications. M3D NAND flash
memory has been commercially produced in recent years due
to better performance and lower cost compared to 2D planar
NAND Flash [14]. In [15], an M3D nonvolatile random-access
memory (NVRAM) was proposed for Al accelerators. The
3D-integrated interface helped in the alleviation of memory-

bounded problems, both during training and inference. In [16],
heterogeneous M3D systems, i.e., multiple technology nodes
for different tiers, were predicted to be promising solutions
for next-generation wireless communication.

Research efforts are also being devoted to M3D testing and
diagnosis. [13] developed an observation-point insertion algo-
rithm for tier-level fault localization. A test pattern reshaping
algorithm was proposed in [17] to reduce PSN-induced voltage
droop during M3D delay testing. However, fault diagnosis for
M3D-specific defects has not been addressed in prior work.
This is critical because tiers in an M3D design suffer from
different fabrication-related limitations and process variations.
For example, defects arising from the relatively immature low-
temperature processes and the bonding interface of inter-layer
dielectric and upper tier’s active layer typically influence tran-
sistors in the upper tiers, while delay faults due to unreliable
interconnects between tiers affect the timing in the bottom
tiers [5] [6]. Tier-level diagnosis is thus important to localize
faults to a tier, enabling efficient PFA and technology bringup.

B. Logic diagnosis

Logic diagnosis is used to identify potential defect locations
when a chip fails on the tester. A diagnosis process aims
to provide an accurate guide to the subsequent PFA step.
Three important measures are used to evaluate the quality of
a diagnosis algorithm: (i) diagnostic resolution, (ii) accuracy,
and (iii) first-hit index (FHI) [18]. Diagnostic resolution is
defined as the number of fault candidates in a diagnosis report;
accuracy is determined by whether one of the candidates
pinpoints the ground-truth defect location. Ideally, the diag-
nostic resolution should be 1, but it is hard to ensure that the
only identified candidate is the ground-truth defect location.
An efficient diagnosis methodology needs to find a trade-off
between resolution and accuracy. A diagnosis report is ranked
with the most probable candidate listed at the top. FHI refers
to the index of the first candidate that is actually a ground-truth
defect location. Smaller the FHI, better the diagnosis process.

Test compression is widely used in modern IC designs
to achieve a significant reduction in test time and data vol-
ume; however, the test-compression environment increases
the difficulty of identifying the ground-truth defect locations
during diagnosis. In the proposed framework, we aim at
improving diagnostic resolution for M3D designs, both with
and without response compaction. Our tier-level predictions
are used to enhance the quality of diagnosis reports generated
by an automatic test pattern generation (ATPG) tool. This is
a key benefit of the proposed solution—it is synergistic and
compatible with commercial tools. In addition, ML-aided MIV
diagnosis can help in the early characterization of defective
MIVs.

C. Graph Neural Network (GNN)

GNN is an ML method that processes data on graphs.
In the field of IC design, GNN has attracted special at-
tention because it can carry out computations directly in
non-Euclidean domains. ML models such as recurrent neural
networks and convolutional neural networks are not effective
for graph-structured data because they operate on Euclidean
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Fig. 1: GNN-based fault diagnosis flow.

data such as images and text sequences. However, different
graphs have different numbers of nodes/edges and irregular
node connections. A pre-processing phase is therefore required
to map graph structures to simplified representations, due to
which topological dependency of each node may be lost during
pre-processing [19].

GNNs have been applied to solve different types of IC
design problems in recent years. In [20], a GNN-based model
for distributed circuit designs is developed. The proposed
model is able to replace the time-consuming eletromigration
simulators to accurately predict the electromigration proper-
ties. [21] leverages the graph attention network to help esti-
mate individual net length within a circuit before placement.
Furthermore, ML is well suited to IC diagnosis because a
large volume of data is collected throughout the production
and product lifetime [22]. This advantage and the effectiveness
of GNN motivate us to design a GNN-based framework for
tier-level diagnosis. For our diagnosis problem, GNN models
can learn the complex, non-linear relationship between a fault
location (root-cause) and the failure response (effect). The
trained models can then be used to directly predict the faulty
tier and MIVs by providing only the failure log from the
tester as input. This is significantly faster than running fault
simulation for each candidate fault and matching the failure
response with what we got from the tester. Therefore, the
proposed solution can provide feedback to the foundry and
improve ATPG diagnosis reports without runtime overhead.

The transferability of ML is an important property that
enables pre-trained models to be applicable to new data
without retraining [23]. Transfer learning has been shown to
be effective on graph-structured data and GNNs [24] [25]. In
the field of IC diagnosis, the circuit under diagnosis (CUD)
can be synthesized with different configurations. Furthermore,
various partitioning methods have been developed for M3D
designs to partition standard cell gates into device tiers [26]
[27]. Collecting data and training new models for each CUD
require additional runtime and computational efforts, which
negates the benefits of leveraging ML models in the diagnosis
process. This motivates us to develop a transferable framework
that can be directly applied to new circuits without retraining.
An efficient framework should accurately localize faults to a
device tier and help improve the quality of diagnosis reports
for CUDs with different design configurations.

III. PROPOSED FAULT LOCALIZATION FRAMEWORK

In this section, we describe our GNN-based framework
for tier-level fault diagnosis in M3D ICs. Fig. 1 presents a

TABLE I: Features in a heterogeneous graph.

[ Symbol | Granularity [ Object | Description

Ny; Circuit-level Node Number of fan-in edges

Ny, Circuit-level Node Number of fan-out edges
Tpat Circuit-level Node Transitions with TDF patterns
Ntop Circuit-level Node Number of fan-in Topedges

Loc Circuit-level Node Tier-level location

Lvl Circuit-level Node Level in topological order

Out Circuit-level Node Whether it is a gate output
MIV Circuit-level Node Whether it connects to an MIV
Diop Top-level Edge Shortest distance between both ends
Nyrrv Top-level Edge Number of MIVs passed through

flowchart for the proposed diagnosis method. The first step is
to convert the CUD into a graph object. Next, given a failure
log file from the tester, we simultaneously generate our GNN-
based predictions and launch the ATPG diagnosis process.
Finally, we utilize the prediction results to reorder and prune
candidates from the ATPG diagnosis report to generate the
final candidate list. Our framework is implemented in PyTorch
with the Deep Graph Library (DGL) package [28].

A. Heterogeneous Graph Structure

The first step in our framework is to transfer a CUD into
a heterogeneous graph, which incorporates different types of
nodes and links in the graph structure. There are two levels
in the heterogeneous graph. At the circuit level, the CUD is
converted to a graph, where each fault site (i.e., every pin of
a gate) forms a node, while edges are composed of input-
pin-to-output-pin and net-stem-to-net-branch connections. In
addition to fault sites, we also represent each MIV as a node in
the graph. This is important because MIVs are prone to delay
defects in M3D designs (see Section I). However, conventional
TDF testing does not provide such fine-grained resolution. A
post-processing step is required in conventional TDF testing to
evaluate whether there is an MIV between a top-tier gate and
a bottom-tier gate and whether such an MIV is faulty. Given a
CUD with n gates, the time complexity of this step is O(n?).
By adding MIV nodes in the proposed graph structure, each
MIV can be pinpointed in constant time.

Next, we construct nodes and edges at the top level of
the CUD, denoted as Topnodes and Topedges, respectively,
to complete the heterogeneous graph structure. A Topnode
corresponds to an observation point (i.e., the input of a scan
flop) during scan testing. Each Topnode is connected to all
the nodes in its fan-in cone by Topedges. Fig. 2 illustrates the
construction of our graph structure from a CUD. After graph
construction, we apply ATPG patterns and conduct simulation
with multiple logic values [29] to memorize transitions (i.e.,
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Input: Heterogeneous graph G, failure log file f from the tester
Output: sub-graph G’ € G

1 V' = FaultSites(G)

2 foreach erroneous test output response r in f do

3 p <+ FailedPattern(r), T < FailedTopnode(r), N := ()
4 foreach Topnode n in T do

5 foreach fault site s in Successors(n) do

6 if s has a transition state with p then

7 | N:=NuUs

8 end

9 end

10 end

11 V' =V'NN
12 end

13 G’ := CreateSubgraph(G, V')
14 return G';

Fig. 3: Pseudo-code for the back-tracing algorithm.

whether a node switches from 0(1) to 1(0)). We also find the
shortest path between both ends of a Topedge. The number of
nodes and the number of MIVs in such a shortest path establish
the Topedge features. Details of features in a heterogeneous
graph are shown in Table I. Note that to convert a CUD to a
graph and memorize transitions with TDF patterns, every gate
and net is explored, so the time complexity is O(|V| + |E|),
where |V| is the number of nodes at the circuit-level, and
|E| is the number of edges at the circuit-level. Moreover, we
leverage breadth-first search (BFS) to collect the fan-in cone of
each Topnode during the top-level graph construction. Because
our circuit-level graph is unweighted, paths found by BFS
between the source node and traverse nodes are guaranteed
to be the shortest. Hence, Topedge features can be calculated
simultaneously during the graph construction, where the time
complexity is O(|V] + |E|) [30]. Other features listed in
Table I are built in constant time. Therefore, the overall
time complexity for the heterogeneous graph construction is
oV + |EI).

The top-level graph strengthens the relationships between
observation points and their fan-in nodes; this is important
for logic diagnosis because only the fan-in nodes can be
the candidate fault locations when observation points capture
erroneous responses. Although the generation of Topnodes and
Topedges requires additional runtime and memory, it needs
to be run only once for each benchmark and can be reused
for every failure log file; therefore, the runtime and memory
overhead are not concerns and the cost is easily amortized.

TABLE II: Initial node features in a sub-graph. Length of a Topedge
is the shortest distance between its source and destination nodes.

e Significance
Description Type score
Number of fan-in edges in the circuit Numerical 0.4959
Number of fanout edges in the circuit Numerical 0.4916
Number of Topedges connected Numerical 0.4995
Tier-level location Binary 0.4957
Level in topological order Numerical 0.4996
Whether it is a gate output Binary 0.4919
‘Whether it connects to an MIV Binary 0.4904
Number of fan-in edges in the sub-graph | Numerical 0.4958
Number of fanout edges in the sub-graph | Numerical 0.4991
Mean length of Topedges connected Numerical 0.4926
Stanfiard deviation of length Numerical 04923
of Topedges connected

Mean number of MIVs passed .
through by Topedges connected Numerical 0.4959

Standard deviation of number of MIVs .
passed through by Topedges connected Numerical 0.4887

B. Back-tracing

Fig. 3 sketches the steps involved in back-tracing. Lines
2-12 iterate through every erroneous output response. Line
3 finds the pattern p with which the current response is
observed on the tester and collects a set T' of Topnodes that
connect to the test output where the response is captured.
Lines 4-10 iterate through all the nodes in the input cones
of Topnodes in 7'. Note that only nodes whose signal values
switch during scan capture when p is applied are capable of
activating delay faults and producing an erroneous response.
Therefore, Line 7 collects the union of such nodes to form a
suspect list corresponding to the current response. In Line 11,
the intersection of suspect lists for every erroneous response
becomes the final candidate list for the input failure log file.
Finally, Line 13 extracts all nodes in the candidate list to
generate a sub-graph for the subsequent GNN models. Note
that the top level in the proposed heterogeneous graph is
solely used to accelerate the back-tracing process. After back-
tracing, only nodes at the circuit level are extracted to create
a homogeneous sub-graph. The topological dependency at the
top level is encoded as numerical features of the extracted
sub-graph.

The time complexity of the above back-tracing procedure
can be analyzed as follows. Given a failure log file with n,
erroneous responses, Lines 2-12 are executed n,. times to find
the candidate list. Let the number of gates in the graph G be
ng. During the evaluation in Lines 4-10, each node in the fan-
in cone is analyzed at most |T'| times, where |T'| is a constant
referred to as the number of Topnodes connected to an output
channel; hence the time complexity is O(n¢g). In Line 13, the
time complexity of finding the intersection of two subsets of
G is O(ng). The other steps are completed in constant time.
Therefore, the overall time complexity is O(n,ng).

C. Proposed GNN Models

We utilize the graph convolutional network (GCN) [31] to
train our Tier-predictor and MIV-pinpointer. Sub-graphs gen-
erated after the back-tracing step are fed into the GCN models,
with the initial node features listed in Table II. Features at the
circuit level are extracted based on the topological dependency



in the CUD, which has been shown to be effective in solving
EDA problems using GNNs [21]. Moreover, we encode the
connections at the top level (e.g., the length of Topedges
and the number of MIVs passed through by Topedges) as
numerical features to represent the relationships between each
node and scan outputs. To demonstrate the importance of
the selected features, we leverage the GNNExplainer [32] to
identify the significance of each feature to the classification
labels. Significance scores are shown in Table II. A feature
is more important for the classification task if its significance
score is closer to 1. Clearly, features at the top level are of
the same importance as features at the circuit level. This is
because the length of Topedges and the number of MIVs
passed through by Topedges demonstrate how difficult each
fault effect can be captured by scan outputs and whether the
propagation paths are prone to MIV defects, respectively. Such
features are key factors that affect the testing and diagnosis
processes, where failure logs are generated. As both features
at the circuit level and features at the top level contribute to
the classification task, we utilize all the selected features to
train our GCN models.

To gather information and learn from neighbors of a node n,
GCN layers are added to aggregate its features as follows [31]:

hEl)W(l)

i n 1
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where hSP is node features of n at the [P layer, o is an
activation function, A (n) is the set of neighbors of node
n, |[N(n)| is the number of neighbors of node n, b is the
learnable bias at the [t" layer, and WO is the learnable weight
at the I*" layer.

After learning is completed, node features at the final GCN
layer are used for prediction. A graph pooling layer [33]
is inserted at the end of the structure of Tier-predictor to
create the graph representation. This representation is a two-
dimensional vector, denoted as [piop, Pbottom ], and it provides
the probabilities of defects being in the top tier and bottom
tier, respectively. Note that the proposed Tier-predictor can
perform diagnosis on M3D designs with more than two
tiers by extending the dimension of the graph representation
vector to be the number of tiers in the CUDs. Without loss
of generality, we demonstrate our framework with two-tier
designs in this work. For the MIV-pinpointer, local information
near the candidate MIVs is much more important than global
features. Hence, node classification is used to pinpoint the set
of defective MIVs. The learned node features {h} € R? are
directly used to calculate the probability that an MIV has a
defect. Note that the proposed GNN models are not restricted
to M3D designs. If 2D circuits are partitioned into distinct
regions, Tier-predictor can be utilized to perform region-
level fault localization; MIV-pinpointer can pinpoint faulty
interconnects between regions. As no change is needed for
feature extraction and model construction, the proposed GNN
models are expected to achieve similar results when applied
to conventional 2D ICs.

TABLE III: Design matrix of M3D benchmarks. N, (N¢p): number
of scan chains (channels); Ng: gate count; FC: fault coverage.

. ) Nse Chain ]

Design Ny #MIVs (N.p) length #Patterns FC
AES 98K 71K 100 (5) 123 767 98.3%
Tate 187K 143K | 200 (10) 171 432 98.6%

netcard | 220K 173K | 400 (20) 182 40438 97.3%

leon3mp | 338K | 250K | 400 (20) 285 18737 99.1%
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Fig. 4: Data generation flow for the proposed diagnosis framework

IV. TRANSFERABILITY OF THE PROPOSED GNN-BASED
DIAGNOSIS FRAMEWORK

In an M3D IC design flow, design configurations such as
clock frequency, area, and design-for-testability (DfT) struc-
tures can result in different M3D netlists. Such differences do
not change the functionality of the design; however, the way
how each fault is detected might be affected during testing,
leading to different failure output responses for diagnosis.
Transferability on the same benchmark with different design
configurations is therefore necessary for the proposed frame-
work to be applicable to real-world scenarios. In this section,
we carry out the transferability analysis on the proposed tier-
level fault localization framework. We evaluate the proposed
GNN-based framework on four two-tier M3D benchmarks,
namely Advanced Encryption Standard (AES) and Tate Bilin-
ear Pairing (Tate) from OpenCores, and netcard and leon3mp
from the ISPD 2012 benchmark suite. We also provide a data
augmentation solution to improve the transferability of our
GNN models.

To evaluate the transferability of the proposed diagno-
sis framework, we generated datasets for each benchmark
with various design configurations. Figure 4 shows our data
generation flow. Given a 2D netlist at the register-transfer
level (RTL), we conducted synthesis with the open-source
Nangate 45 nm standard cell library using Synopsys Design
Compiler. The synthesized netlists were partitioned into M3D
with the partitioning algorithm proposed in [34]. Next, test-
compression hardware was inserted using the embedded de-
terministic test (EDT) methodology (Siemens EDA Tessent),
followed by the TDF pattern generation. Without loss of gen-
erality, the compaction ratio is set to 20x in all benchmarks,
that is, at most 20 scan chains are connected to one test output
channel using a response compactor. We also inserted bypass
signals that enable the designs to scan out uncompressed
responses without passing through response compactors. The
design matrix of our M3D benchmarks is shown in Table III.
To generate datasets for diagnosis, we randomly injected one
TDF at a time in a circuit and carried out logic simulations
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with the TDF patterns to obtain erroneous output responses.
These responses were collected into a failure log file, which
created a sample in the datasets. We generated 5000 samples
for each benchmark, with and without response compaction,
respectively. The M3D netlist, TDF patterns, and the collection
of failure logs from the data generation flow became inputs of
the proposed diagnosis framework, as shown in Fig. 1.

Besides the design configuration, denoted as Syn-1, used for
training, we generated additional datasets for each benchmark
with different design configurations for the purpose of trans-
ferability analysis, including (i) TPI: test point (TP)-inserted
netlists; (ii) Syn-2: netlists synthesized with another clock
frequency; (iii) Par: netlists partitioned using the M3D parti-
tioning algorithm in [35]. TPs are widely-used DfT structures
to help in improving test coverage and reducing pattern counts.
We set the maximum number of TPs to be 1% of the number
of gates in the design and utilized ATPG tools to determine TP
locations. Note that designs with different clock frequencies
are re-synthesized and re-partitioned into M3D from the RTL
level. Test patterns are re-generated after TP insertion. These
changes can lead to significant variations in gate types, spatial
distribution of gates, and how each fault is detected. Our goal
is to create a transferable GNN-based framework that can be
directly applied to these designs without retraining.

To analyze the transferability of our GNN models, we first
leveraged principle component analysis (PCA) [36] to visual-
ize the distribution of feature vectors listed in Table II. The
visualization for the Tate benchmark is shown in Fig 5. Each
sample represents a feature vector of a sub-graph generated by
our back-tracing algorithm, where each sub-graph corresponds
to an injected fault and the associated failure log. Clearly,
feature distributions of all netlists, are greatly overlapped even
though different design configurations lead to variations in test
patterns and gate types. This is because such netlists have
equivalent functionality; sub-graphs obtained from our back-
tracing algorithm tend to have similar feature distributions and
topological dependencies. This similarity demonstrates that the
selected features and the proposed back-tracing algorithm is
not biased by different design configurations when performing
diagnosis on the same benchmark design. Therefore, Tier-
predictor and MIV-pinpointer are able to learn from a small
number of netlists and inference on others without retraining.

We further demonstrate the transferability of the proposed
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Fig. 6: Accuracy of the proposed GNN models with Tate benchmark.

framework by comparing a transferred model to models trained
from each design configuration. Note that the amount and
the diversity of the dataset are important factors to affect the
performance of ML models. To enhance the transferability
of the proposed framework, we develop a data augmentation
method by collecting samples from randomly-partitioned M3D
netlists. As shown in Fig. 5, varying design configurations does
not generate anomalous samples that can lead to an adverse
impact during training. Therefore, for the purpose of training,
we randomly partition 2D netlists into M3D to create various
spatial distributions of logic gates. This helps in enhancing the
diversity of the dataset and preventing the GNN model from
being biased toward any design configuration.

Figure 6 shows the accuracy of Tier-predictor and MIV-
pinpointer for the Tate benchmark, respectively. Note that
Dedicated Model is trained individually for each design
configuration, while Transferred Model is trained with sam-
ples from Syn-1 and two randomly-partitioned netlists. For
both Tier-predictor and MIV-pinpointer, Transferred Model
can achieve nearly the same accuracy as Dedicated Model.
Transferred Model even outperforms Dedicated Model for the
Syn-2 and Par netlists, whose samples were not included
during the training of Transferred Model. This is because
Transferred Model has learned from a highly-diverse training
dataset obtained from randomly-partitioned netlists. Therefore,
with the proposed data-augmentation solution, Tier-predictor
and MIV-pinpointer can be transferred to perform diagnosis
on the same benchmark with various design configurations.
Such transferability is extremely important for emerging M3D
technologies because the design flow is not standardized and
there is a lack of post-silicon data. Reusing pre-trained models
on new netlists significantly reduces the runtime for diagnosis
and provides quick feedback to the foundry and design groups.
These advantages help us to improve yield learning and
shorten the time-to-market.

V. PROPOSED CANDIDATE PRUNING AND REORDERING
PoLiCcy

In this section, we describe the proposed GNN-based can-
didate pruning and reordering policy. We utilize prediction
results from Tier-predictor and MIV-pinpointer to enhance the
quality of diagnosis reports generated by ATPG tools. Given
a failure log file from the tester, the tier-level localization
and ATPG diagnosis are conducted in parallel to generate
prediction results and a diagnosis report, respectively. Such a
diagnosis report provides a list of candidates that are predicted
to be the defect locations by ATPG tools. The proposed
candidate pruning and reordering policy aims to improve the



TABLE IV: Details of the confusion matrix for the proposed Tier-predictor.
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Fig. 7: Flowchart for candidate pruning and reordering.

quality of the diagnosis report by removing unlikely candidates
and moving the ground-truth defect location to the top of the
list.

A. Overview

An overview of the proposed candidate pruning and re-
ordering policy is shown in Fig. 7. Given a failure log file
from the tester, we utilize ATPG and our fault localization
framework to produce a diagnosis report and the predicted
tier-level defect locations. Next, as MIVs are prone to delay
defects in M3D designs (see Section I), we first evaluate the
prediction from MIV-pinpointer to extract all faulty MIVs.
All candidates in the report that are equivalent to such MIVs
are moved to the top of the report. This can help diagnosis
engineers to prioritize MIV faults during the subsequent PFA.
After evaluating MIV-pinpointer, we extract the predicted
faulty tier from Tier-predictor and use its probability as a
confidence score. We compare such a score to a threshold
value, denoted as T, to determine the confidence level of
the predicted faulty tier, where T}, is derived from a PR
curve generated during training. If the prediction from Tier-
predictor has low confidence, we reorder the diagnosis reports
by moving all candidates in the faulty tier to the top of the
lists. Otherwise, we utilize the proposed GNN-based Classifier
to decide whether to prune candidates. The pruning process
removes all candidates in the tier predicted to be fault-free
from diagnosis reports to improve both diagnostic resolution
and FHI.

B. Precision-recall Curve

In the field of classification problems, a confusion matrix
is a popular visualization method to show the effectiveness of
an algorithm. The description of a confusion matrix for the
proposed Tier-predictor is shown in Table IV. We classify a
sample as Actual Positive if the tier predicted to be faulty is
equivalent to the tier-level ground truth defect location. Oth-

(Incorrect prediction and Probability > Classification threshold)

True Negative
(Incorrect prediction and Probability < Classification threshold)

erwise, the sample is classified as Actual Negative. Predicted
Positive and Predicted Negative are distinguished by compar-
ing the probability of the predicted faulty tier to a classification
threshold between 0 and 1. Samples with probabilities larger
than the threshold are categorized as Predicted Positive, while
others are represented as Predicted Negative. By switching the
threshold value, various distributions of Predictive Positive and
Predictive Negative can be generated.

Based on distributions in confusion matrices, receiver op-
erating characteristic (ROC) curves and PR curves are widely
used to visualize the performance of an algorithm at all
classification thresholds. Compared to ROC curves, PR curves
can provide more insights when the datasets are highly imbal-
anced [37]. For the proposed Tier-predictor, a skew distribution
between Actual Positive and Actual Negative tends to be
formed as Tier-predictor can achieve up to 90% accuracy.
Therefore, we choose the PR curve to evaluate our tier-level
localization framework. The precision and recall are defined
as follows:

Precisi True Positive @)
recision = — —
True Positive + False Positive

True Positive
Recall = 3
ecd True Positive + False Negative ®

To plot PR curves, we alter the classification threshold to
calculate the corresponding Precision and Recall values. As
the threshold increases, Precision tends to increase while
Recall tends to decrease. This is because a large threshold
increases the difficulty of classifying samples as Predicted
Positive, leading to a low False Positive and a high False
Negative. In the proposed candidate pruning and reordering
policy, samples classified as Predicted Positive (i.e., Ture
Positive + False Positive) become inputs of the GNN-based
Classifier. Candidates in such samples can be pruned to help in
improving the quality of the corresponding diagnosis reports.
However, pruning False Positive samples leads to a loss of
diagnosis accuracy because the ground-truth defect locations
are removed from the diagnosis reports. To avoid a large
number of False Positive samples, we utilize PR curves to find
the best threshold as T'p in the proposed candidate pruning and
reordering policy. As our objective is to improve the quality of
diagnosis reports with a loss of diagnosis accuracy below 1%,
the threshold T’p is determined by calculating the minimum
classification threshold in the PR curve of the training dataset
such that Precision is larger than or equal to 99%.

C. GNN-based Classifier

After obtaining 7p from PR curves, samples
with  high-confidence  Tier-predictor predictions (i.e.,
max(Prop, Phottom) > 1Ip) are represented as Predicted
Positive. Next, we train the proposed GNN-based Classifier
focusing on Predicted Positive samples to determine whether



to prune or reorder candidates in the corresponding diagnosis
reports. Note that the pruning process can improve both
diagnostic resolution and FHI for True Positive samples
without any loss of diagnosis accuracy. For False Positive
samples, the ground-truth defect locations are removed due
to incorrect Tier-predictor predictions, leading to an adverse
impact on the subsequent PFA. The objective of the proposed
Classifier is to prioritize Predicted Positive samples and to
distinguish True Positive from False Positive. This allows
the pruning process to significantly improve the quality
of diagnosis reports while minimizing accuracy loss. In
addition, Tp obtained during training may not be the best
classification threshold for diagnosing netlists with various
design configurations, leading to an increase in the number
of False Positive samples. The transferability of Classifier
helps in extracting such samples appropriately to prevent any
significant loss in diagnosis accuracy.

For the proposed Classifier, an imbalanced dataset is a
major challenge during training. Because our Tier-predictor
can achieve extremely high accuracy, the number of True
Positive samples is significantly larger than False Positive
samples. From our experiments, a ratio of around 90:1 is
observed for the Tate benchmark. Such an unbalanced dataset
leads to a distorted model that tends to ignore the minority
class. Oversampling is a common technique used to increase
the size of the minority class and make it similar to the size
of the majority class. Several oversampling algorithms have
been proposed in previous work [38] [39]. However, existing
algorithms cannot be directly applied to graphs because they
mainly focus on Euclidean data. A conversion step is required
to map graph data to simplified representations, while such
a conversion can lead to a loss of topological dependencies
in the graphs. Therefore, we develop a novel oversampling
algorithm by inserting dummy buffers into samples in the
minority class. For each sample, we append one buffer at
the output of each node once at a time to create synthetic
samples. The synthetic samples help to increase the population
of the minority class without affecting the functionality of
CUDs. During the oversampling process, consecutive buffers
are added to each node to generate minority data until the
dataset becomes balanced.

With the balanced dataset, we leverage the network-based
deep transfer learning [40] to train the proposed Classifier. We
first append the pre-trained hidden layers from Tier-predictor
to Classifier, followed by trainable classification layers. Pre-
trained layers are used to extract informative features from
Tier-predictor; classification layers are responsible for deter-
mining whether to prune or reorder the reports according to
the extracted features. A graph pooling layer is inserted at
the end of Classifier to generate the probabilities of pruning
and reordering. Such probabilities guide in how to fine-tune
the diagnosis reports to improve the quality of the diagnosis
process.

D. ATPG Report Pruning and Reordering

Using the results from our GNN models, we prune and
reorder candidates in the ATPG diagnosis report to improve
the diagnostic resolution and the FHI. Fig. 8 presents an

1. C2-MIV
2. C1 —top tier
3. C3 —bottom tier

Tier-predictor:
[Pmp: pbuttam] =1[0.1,0.9]

=>p=09
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2. C2-MIV
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Fig. 8: Example of the ATPG report pruning and reordering process.

example of our pruning and reordering process. We first collect
all candidates listed in the diagnosis report generated by
ATPG. Results of the MIV-pinpointer are then analyzed to
extract candidate fault sites in the diagnosis report that are
equivalent to the MIVs predicted to be faulty. Such fault sites
are placed at the top of the final report to prioritize MIV
faults during the subsequent failure analysis. As MIVs are
prone to defects in emerging M3D integration [9], FHI can be
improved in this way. Next, the maximum of [piop, Phottom)s
denoted as p, is compared with 7}, to determine the confidence
level of the Tier-predictor prediction. If such a prediction
has high confidence (i.e., p > T'p), we utilize Classifier to
decide whether to prune or reorder candidates. Otherwise, the
reordered report is generated.

To reorder candidates, all fault sites in the top (bottom)
tier are moved toward the top of the report if p;op > Doottom
(Pbottom > Ptop)- For pruning, candidates in the tier predicted
to be fault-free are filtered out from the final report because
such candidates are unlikely to be the ground-truth fault
location. Note that filtering out candidates may occasionally
lead to a loss of accuracy. However, when Tier-predictor points
out the incorrect tier as being faulty, the accuracy loss may be
recovered by the MIV-pinpointer if the ground-truth fault is
equivalent to the MIV fault localized by the MIV-pinpointer.
With the pruning and reordering process, the ground-truth
defect locations can be placed near the top of the lists,
leading to better FHI than the ATPG diagnosis reports. Pruning
also helps in improving diagnostic resolution by reducing the
number of redundant candidates.

VI. EXPERIMENTAL RESULTS
A. Diagnosis on Benchmark M3D designs

We first examine the quality of our diagnosis framework
using 750 samples (15% of the generated dataset) for bench-
mark M3D designs with various design configurations. The
quality of ATPG diagnosis reports is shown in Table V. We
compare diagnostic resolution, accuracy, and FHI of diagnosis
reports obtained after the pruning and reordering step with a
baseline fault localization algorithm in [11], which has been
demonstrated to achieve significant improvement in diagnostic
resolution for conventional 2D designs. Note that in the
experimental results section in [11], only the results from



TABLE V: Quality of ATPG diagnosis reports for M3D benchmarks without response compaction.

Design | Configuration | Accuracy _ Mean ] Standarfl deviatign Mean  Standard deviation
diagnostic resolution  diagnostic resolution FHI FHI
Syn-1 100.0% 52 5.5 4.1 42
AES TPI 100.0% 5.3 5.6 4.0 4.5
Syn-2 100.0% 6.0 6.2 4.0 4.2
Par 100.0% 5.7 5.7 3.7 3.9
Syn-1 100.0% 4.4 4.6 3.6 4.0
Tate TPI 100.0% 4.6 5.0 3.7 4.2
Syn-2 100.0% 4.6 53 3.7 4.5
Par 100.0% 4.1 54 2.8 2.6
Syn-1 96.4% 28.1 28.4 19.0 21.8
netcard TPI 100.0% 10.3 8.6 7.0 6.6
Syn-2 97.4% 31.9 28.5 21.5 234
Par 88.6% 21.0 21.9 12.7 17.0
Syn-1 98.8% 14.0 17.8 9.8 13.8
leon3 TPI 99.8% 10.8 11.6 7.3 8.5
Syn-2 98.8% 12.5 16.0 8.0 10.3
Par 97.8% 11.5 17.2 8.5 15.5

TABLE VI: Effectiveness of delay fault-localization in M3D benchmarks without response compaction using a 2D baseline [11] and the

proposed framework

[11] Proposed framework
. GNN standalone GNN + [11] .
Config. w (o) w (o) Tier Tier
Acc \ , 1 (@) mG) @) 1 () ,
resol. FHI local. Acc. resol. FHI Acc. resol. FHI local.
| AES
Svn-1 100.0% 2.5 (1.7) 2.1 (1.5) 67.9% 99.2% 4.9 (5.5) 3.3 (3.3) 99.2% 2.5 (1.8) 2.1 (1.5) 85.5%
y (-0.0%) (+51.9%) (+48.8%) o (-0.8%) (+5.8%) (+19.5%) (-0.8%) (+51.9%) (+48.8%) e
TPI 100.0% 2.7 (1.9) 2.1 (1.7) 62.59% 99.7% 5.1 (5.7) 3.1 (3.5) 99.7% 2.6 (1.9) 2.1 (1.8) 37 49
(-0.0%) (+49.1%) (+47.5%) 7 (-0.3%) (+3.8%) (+22.5%) (-0.3%) (+50.9%) (+47.5%) e
100.0% 34 (3.1) 2.5 (2.5) 99.6% 5.9 (6.2) 3.2 (3.3) 99.6% 34 (3.2) 2.5 (2.5)
Syn-2 (-0.0%) (+43.3%) (+37.5%) 36.9% (-0.4%) (+1.7%) (+20.0%) (-0.4%) (+43.3%) (+37.5%) 86.6%
Par 99.9% 35 @3.2) 2.5 (2.4) 49 4% 100.0% 5.6 (5.7) 3.2 (3.5) 99.9% 35 @3.2) 2.5 (2.4) 7379
(-0.1%) (+38.6%) (+32.4%) i (0.0%) (+1.8%) (+13.5%) (-0.1%) (+38.6%) (+32.4%) R
[ Tate
Syn-1 99.9% 3.0 (2.3) 2.3 (1.8) 42.6% 99.9% 4.1 (4.2) 2.7 (2.9) 99.7% 2.9 (2.3) 2.2 (1.7) 91.2%
(-0.1%) (+31.8%) (+36.1%) (-0.1%) (+6.8%) (+25.0%) (-0.3%) (+34.1%) (+38.9%)
TPI 100.0% 2.9 (2.5) 2.3 (1.9) 41.1% 99.3% 4.2 (4.6) 2.6 (2.6) 99.3% 2.8 (2.5) 2.2 (1.9) 91.5%
(-0.0%) (+37.0%) (+37.8%) e (-0.7%) (+8.7%) (+29.7%) (-0.7%) (+39.1%) (+40.5%) =0
Syn-2 100.0% 32 (3.1 2.5 (2.5) 3729 99.6% 4.2 (5.0) 2.7 (2.9) 99.6% 3.1 (3.0) 24 (2.4) 91.5%
y (-0.0%) (+30.4%) (+32.4%) e (-0.4%) (+8.7%) (+27.0%) (-0.4%) (+32.6%) (+35.1%) e
Par 100.0% 3.0 (2.8) 2.1 (1.8) 3799 99.0% 4.0 (5.4) 24 (2.7) 99.0% 2.9 (2.8) 2.1 (1.8) 32 8%
(-0.0%) (+26.8%) (+25.0%) e (-1.0%) (+2.4%) (+14.3%) (-1.0%) (+29.3%) (+25.0%) 0%
| netcard
Svn-1 96.4% 26.2 (27.6) 17.8 (20.9) 1.5% 96.0% 18.9 (20.2)  10.9 (14.0) 96.0% 18.0 (19.7)  10.6 (13.8) 95,49
y (-0.0%) (+6.8%) (+6.3%) =7 (-0.4%) (+32.7%) (+42.6%) (-0.4%) (+35.9%) (+44.2%) i
TPI 100.0% 7.6 (6.5) 5.3 (5.3) 6.1% 99.8% 7.5 (71.5) 4.2 (5.1) 99.5% 4.6 (5.7) 3.0 3.9 9819
(-0.0%) (+26.2%) (+24.3%) 7 (-0.2%) (+27.2%) (+40.0%) (-0.5%) (+55.3%) (+57.1%) e
Svn-2 97.4% 22.7 23.4) 15.1 (18.1) 73% 97.2% 229 (21.7) 123 (14.2) 97.2% 20.0 (19.6) 10.7 (12.8) 95.9%
M (-0.0%) (+28.8%) (+29.8%) O (-0.2%) (+28.2%) (+42.8%) (-0.2%) (+37.3%) (+50.2%) e
Par 88.6% 18.8 (20.7) 12.2 (16.9) 239 87.1% 15.2 (16.6) 7.7 (10.1) 87.1% 14.3 (15.9) 7.3 (9.8) 94.5%
a (-0.0%) (+10.5%) (+3.9%) = (-1.5%) (+27.6%) (+39.4%) (-1.5%) (+31.9%) (+42.5%) =7
‘ leon3mp
Svn-1 98.8% 11.2 (16.4) 7.7 (12.5) 539 97.8% 9.7 (12.5) 6.2 (9.2) 97.8% 8.8 (12.0) 5.7 (8.8) 93.5%
Y (-0.0%) (+20.0%) (+21.4%) 7 (-1.0%) (+30.7%) (+36.7%) (-1.0%) (+37.1%) (+41.8%) o7
TPI 99.8% 8.2 (10.0) 5.5 (7.5) 299 99.0% 8.2 (9.8) 4.9 (6.8) 98.8% 6.9 (9.4) 4.3 (6.3) 88.2%
(-0.0%) (+24.1%) (+24.7%) R (-0.8%) (+24.1%) (+32.9%) (-1.0%) (+36.1%) (+41.1%) e
Svn-2 98.8% 9.6 (14.3) 6.0 (9.0) 279 98.1% 8.8 (11.1) 5.1 (6.8) 98.1% 8.0 (10.6) 4.6 (6.3) 91.8%
y (-0.0%) (+23.2%) (+25.0%) R (-0.7%) (+29.6%) (+36.3%) (-0.7%) (+36.0%) (+42.5%) e
Par 97.8% 9.9 (16.3) 7.4 (14.6) 379 94.9% 8.2 (11.9) 5.2 (8.6) 94.9% 7.8 (11.7) 5.0 (8.4) 36.8%
(-0.0%) (+13.9%) (+12.9%) I (-2.9%) (+28.7%) (+38.8%) (-2.9%) (+32.2%) (+41.2%) 070

Config.: configuration; Acc.: accuracy; p: mean; o: standard deviation; resol.: diagnostic resolution; local.: localization.

the first-level classifier in the proposed two-level classification
framework are chosen to prevent a large loss of accuracy. As
diagnosis accuracy is also the top priority during the candidate
pruning and reordering process, we compare the results from
the first-level classifier in the baseline with our framework.
Table VI shows the results for each benchmark without

response compaction, where the values in parenthesis are
changes from the ATPG diagnosis reports listed in Table V.
Note that the GNN models in our experiments are trained with
datasets from Syn-1 and two randomly-partitioned netlists.
Netlists with different configurations are evaluated to demon-
strate the transferability of our framework. For AES and Tate,



TABLE VII: Quality of ATPG diagnosis reports for M3D benchmarks with response compaction.

Design | Configuration | Accuracy _ Mean ] Standarfl deviatign Mean  Standard deviation
diagnostic resolution  diagnostic resolution FHI FHI
Syn-1 98.8% 9.0 18.2 53 10.5
AES TPI 96.9% 10.6 20.7 4.8 8.0
Syn-2 97.1% 12.9 21.9 5.6 10.4
Par 98.4% 11.7 20.0 5.7 10.9
Syn-1 99.9% 5.7 10.0 4.1 5.5
Tate TPI 100.0% 5.8 10.4 4.2 5.9
Syn-2 99.4% 6.7 14.0 4.5 7.2
Par 99.7% 6.1 14.4 34 6.1
Syn-1 94.8% 30.6 30.6 20.3 22.9
netcard TPI 99.7% 11.8 12.8 8.0 8.9
Syn-2 93.5% 34.3 30.8 21.0 22.5
Par 87.8% 23.6 25.4 14.0 18.4
Syn-1 98.5% 14.8 19.1 10.0 13.8
leon3 TPI 99.8% 11.8 14.7 8.1 11.2
Syn-2 98.8% 13.1 16.7 8.4 10.8
Par 97.5% 12.0 18.0 8.6 15.3

TABLE VIII: Effectiveness of delay fault-localization in M3D benchmarks with response compaction using a 2D baseline [11] and the

proposed framework.

[11] Proposed framework
. GNN standalone GNN + [11] .
Config. w (o) w (o) Tier Tier
Acc resol. FHI local. Acc. /;e s((()Tl? H FI(-IC;) Acc. ﬁ: s((c)fl? ‘;I(-I[;) local.
| AES
Syn-1 98.8% 49 (9.4) 2.6 (4.9) 47.4% 98.4% 8.2 (17.5) 4.0 (8.5) 98.4% 4.6 (9.0) 2.5 @7 85.7%
(-0.0%) (+45.6%) (+50.9%) ’ (-0.4%) (+8.9%) (+24.5%) (-0.4%) (+48.9%) (+52.8%) '
TPI 96.9% 6.0 (11.5) 2.4 (3.8) 45.6% 96.3% 10.0 (20.5) 4.1 (8.0) 96.3% 5.8 (11.6) 2.4 (3.8) 82.0%
(-0.0%) (+43.4%) (+50.0%) ’ (-0.6%) (+5.7%) (+14.6%) (-0.6%) (+45.3%) (+50.0%) ’
Syn-2 97.1% 7.9 (12.8) 32 (6.4) 1% 95.4% 12.2 (21.6) 5.1 (10.0) 95.4% 7.5 (12.5) 3.2 (6.6) 75 6%
y (-0.0%) (+38.8%) (+42.9%) ' (-1.7%) (+5.4%) (+8.9%) (-1.7%) (+41.9%) (+42.9%) '
Par 98.4% 7.5 (11.3) 3.3 (5.5) 33.7% 94.8% 10.7 (19.1) 4.6 (8.4) 94.8% 6.9 (10.9) 3.1 (4.9 74.8%
(-0.0%) (+35.9%) (+42.1%) ' (-3.6%) (+8.5%) (+19.3%) (-3.6%) (+41.0%) (+45.6%) '
[ Tate |
Svn-1 99.9% 3.7 (5.5) 2.6 (3.3) 38.6% 99.2% 54 (9.9) 3.2 (5.1) 99.2% 3.6 (5.5) 2.5(3.2) 33.6%
y (-0.0%) (+35.1%) (+36.6%) ' (-0.7%) (+5.3%) (+22.0%) (-0.7%) (+36.8%) (+39.0%) '
TPI 100.0% 3.6 (5.8) 2.5(2.9) 38.3% 99.6% 5.4 (10.3) 3.3 (5.3) 99.6% 3.5 (5.8) 24 (2.9) 34.3%
(-0.0%) (+37.9%) (+40.5%) ' (-0.4%) (+6.9%) (+21.4%) (-0.4%) (+39.7%) (+42.9%) '
Syn-2 99.4% 4.5 (8.7) 2.9 4.5) 30.7% 99.2% 6.4 (14.0) 3.7 (7.6) 99.2% 4.4 (8.8) 2.8 (4.5) 80.3%
(-0.0%) (+32.8%) (+35.6%) ’ (-0.2%) (+4.5%) (+17.8%) (-0.2%) (+34.3%) (+37.8%) ’
Par 99.7% 4.1 (7.5) 2.5 (4.0) 3339 98.7% 5.9 (14.4) 3.5 8.2) 98.7% 4.0 (7.6) 2.5 (4.0) 73.8%
(-0.0%) (+32.8%) (+26.5%) o (-1.0%) (+3.3%) (+2.9%) (-1.0%) (+34.4%) (+26.5%) '
l netcard ‘
Syn-1 94.8% 29.5 (30.1) 19.4 (22.3) 0.2% 94.4% 22.9 (26.8) 12.3 (16.3) 94.4% 22.5(26.6) 12.1 (16.2) 93.2%
(-0.0%) (+3.6%) (+4.4%) ’ (-0.4%) (+25.2%) (+39.4%) (-0.4%) (+26.5%) (+40.4%) ’
TPI 99.7% 5.6 (94) 4.3 (6.6) 32.79% 98.7% 8.2 (10.6) 4.7 (6.5) 98.7% 5.2 (8.3) 3.5 (5.9 96.0%
(-0.0%) (+52.5%) (+46.2%) ' (-1.0%) (+30.5%) (+41.2%) (-1.0%) (+55.9%) (+56.2%) '
Syn-2 93.5% 29.8 (28.6) 17.7 (19.8) 1.4% 92.2% 24.6 26.4) 12.1 (14.3) 92.2% 229 (25.5) 11.2 (13.7) 95.0%
y (-0.0%) (+13.1%) (+15.7%) ’ (-1.3%) (+28.3%) (+42.4%) (-1.3%) (+33.2%) (+46.7%) '
Par 87.8% 20.0 (23.8) 12.8 (17.8) 519% 86.3% 20.2 (24.0) 9.6 (13.2) 86.3% 18.6 (23.2) 9.0 (12.7) 36.5%
(-0.0%) (+15.3%) (+8.6%) ’ (-1.5%) (+14.4%) (+31.4%) (-1.5%) (+21.2%) (+35.7%) '
‘ leon3mp |
Syn-1 98.6% 10.7 (17.1) 7.1 (12.1) 13.1% 97.0% 10.6 (14.9) 6.3 (9.2) 97.0% 9.4 (14.2) 5.6 (8.7) 91.2%
y (-0.1%) (+27.7%) (+29.0%) o (-1.5%) (+28.4%) (+37.0%) (-1.5%) (+36.5%) (+44.0%) '
TPI 99.8% 6.3 (11.8) 4.5 (9.2) 29.9% 97.8% 9.3 (13.4) 5.3 (8.3) 97.8% 8.1 (13.2) 5.1 (9.6) 36.8%
(-0.0%) (+46.6%) (+44.4%) ’ (-2.0%) (+21.2%) (+34.6%) (-2.0%) (+31.4%) (+37.0%) '
Syn-2 98.8% 10.2 (14.9) 6.4 (9.4) 249 97.6% 9.2 (12.0) 5.3 (7.3) 97.6% 8.4 (11.7) 4.9 (6.9) 91.0%
(-0.0%) (+22.1%) (+23.8%) ’ (-1.2%) (+29.8%) (+36.9%) (-1.2%) (+35.9%) (+41.7%) ’
Par 97.5% 8.4 (15.8) 6.4 (13.1) 243% 93.8% 10.3 (16.9) 6.2 (11.6) 93.8% 9.5 (16.5) 59 (11.2) 76.3%
(-0.0%) (+30.0%) (+25.6%) ' (-3.7%) (+14.2%) (+27.9%) (-3.7%) (+20.8%) (+31.4%) '

the improvement in diagnostic resolution and FHI of the pro-
posed framework with GNN standalone are less obvious than
the improvement obtained from the baseline. This is because
ATPG diagnosis reports tend to provide good resolution with
candidates only in the faulty tier. Therefore, the candidate
pruning and reordering process does not considerably benefit

from the tier-level localization to improve the quality of
diagnosis reports. In contrast, the baseline approach analyzes
each candidate one at a time to determine whether such a
candidate should be removed from the diagnosis report. It is
expected that the baseline can achieve better improvement in
diagnostic resolution and FHI than the proposed framework for



small benchmarks. However, for netcard and leon3mp, ATPG
reports are likely to contain candidates in both tiers as the
complexity of designs increases. By pruning and reordering
candidates based on the predictions of our GNN models, the
proposed framework can enhance the quality of diagnosis
reports more significantly than the baseline approach, without
any unacceptable loss in accuracy.

An important advantage of the proposed framework is its
compatibility with existing algorithms for conventional 2D
designs to provide the resolution at the tier level and further
improve the quality of diagnosis reports. We first utilize
the proposed framework to carry out tier-level localization,
followed by the baseline approach to evaluate the remaining
candidates after the pruning and reordering process. Compared
to the results with standalone GNN and the baseline, the
combined approach improves the diagnostic resolution and
FHI without additional loss of accuracy. Such improvements
can achieve more than 55% for the netcard benchmark with the
TPI configuration. As the proposed framework can be carried
out alongside the ATPG diagnosis and the candidate pruning
and reordering process can be embedded in the candidate
analysis step, no test time overhead is needed to combine the
proposed framework with the baseline approach.

Note that the proposed candidate pruning and reordering
policy may occasionally remove the ground-truth defect lo-
cation from the diagnosis report. To compensate for the loss
of accuracy, we generate a backup dictionary, which records
the candidates being pruned corresponding to each failure
chip. Diagnosis engineers can therefore search in the backup
dictionary for further analysis whenever the root cause of a
failure is not found based on the pruned report. With this
compensation method, our framework is guaranteed to achieve
the same accuracy as ATPG. Although the backup dictionary
requires additional memory, its size depends on the number
of candidates being pruned in each sample, which can be
estimated by the difference in diagnostic resolution between
ATPG diagnosis reports and reports generated by the proposed
framework. As shown in Table VI, the largest difference
among the four benchmarks is Syn-2 for netcard; the size of
the corresponding backup dictionary is only 246 kilobytes.
Therefore, the memory overhead of the proposed method is
within acceptable limits.

In addition to diagnostic resolution and FHI, the resolution
at the tier level during diagnosis is important for M3D designs
to facilitate yield learning. As the baseline approach does
not directly provide such a resolution, tier-level localization
can be achieved by analyzing the remaining candidates after
fault localization. If all candidates are in the faulty tier, the
corresponding report is successfully localized at the tier level;
otherwise, tier-level localization is not accomplished. For the
proposed framework, tier-level localization is obtained from
the predictions of our Tier-predictor. Tier localization values
in Table VI are the percentages of reports being localized at
the faulty tier using the baseline and the proposed framework,
respectively. Note that we do not consider the reports that have
been localized during the ATPG diagnosis process (i.e., ATPG
diagnosis reports only contain candidates in one tier) in the
calculation. Clearly, the proposed framework can accurately
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Fig. 9: Runtime for the deployment of the proposed framework.

identify the faulty tier for all benchmark M3D designs with
various design configurations. The baseline approach is not
effective for tier-level localization because the tier structure
and fabrication-related defects in M3D do not exist in 2D
designs. Therefore, the tier-level location of each candidate is
overlooked during fault localization. The effectiveness of the
baseline approach on tier-level localization decreases when the
size of the CUD becomes large as the number of candidates
increases in diagnosis reports. Although the diagnostic res-
olution and FHI are significantly improved, candidates after
fault localization are likely to be located in both tiers. The
evaluation of tier localization demonstrates that the baseline
approach is not sufficient to provide a high level of resolution
at the tier level for M3D designs. With the proposed frame-
work, the faulty tier can be identified early in the diagnosis
process to provide quick feedback to the foundry and facilitate
yield learning.

The quality of ATPG diagnosis reports and results for
benchmark designs with response compaction are shown in
Table VII and Table VIII, respectively. Note that both the
diagnostic resolution and accuracy of designs are worse than
the results without compaction. This is expected because the
scan cells that capture erroneous responses cannot be pin-
pointed without bypass signals. The search space is therefore
increased, leading to a reduction in diagnostic resolution and
accuracy. However, the proposed framework is shown to be
effective with compressed patterns. Reports generated by this
framework achieve up to 30.5% improvement in diagnostic
resolution and 42.4% improvement in FHI with a very low
accuracy loss. For tier-level localization, the proposed frame-
work localizes faults at the tier level more effectively than
the baseline approach. Furthermore, our approach does not
require additional hardware or test data and is compatible with
any combinational (e.g., XOR-based) response compactor.
Evaluation of netlists with different configurations clearly
demonstrates the transferability of our framework. This advan-
tage is significant for the emerging M3D technology as there
is no standardized design flow. Therefore, M3D netlists with
various synthesis and partitioning results can be generated.
GNN models in our framework can be transferable to perform
diagnosis directly on such netlists without retraining.

B. Runtime Analysis

We next conduct the runtime analysis of the proposed
framework, including the training phase and the framework
deployment. The training phase contains pre-processing steps
for feature construction and the training processes of the
proposed GNN models. The runtime for the deployment of
our framework is shown in Fig. 9. Given a failure log file,
ATPG diagnosis and GNN model inferencing are carried out



TABLE IX: Runtime analysis of the proposed framework for bench-
mark M3D designs.

Training Deployment
. Feature GNN
Design construction | training Tarpc | ToNN | Tupdate
(sec) (sec) (sec) (sec) (sec)
AES 1.8k 1.8k 1527 55.4 11.0
Tate 2.0k 906.9 340.6 51.1 11.6
netcard 213.9k 823.3 536.8 227.7 15.4
leon3mp 140.9k 1.7k 1.0k 2527 3.8
—— AES
106 Tate
netcard
2195/ —— leon3m
?EIO p
= 4
10
10°
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Fig. 10: Difference in runtime for PFA between the ATPG flow and
the proposed framework.

simultaneously, followed by the candidate pruning and reorder-
ing process to update the ATPG diagnosis report. Table IX
shows the runtime for training and deploying the proposed
framework. Note that the values for the deployment are the
total runtime needed to complete diagnosing test sets (i.e., 750
samples) for benchmarks with Syn-2 design configuration. In
the training phase, the runtime for the feature construction
is proportional to the size and the number of test patterns
of the CUD. However, feature construction is required to be
conducted only once and can be reused for every failure log
file during inferencing; therefore, the cost can be amortized.
For the framework deployment, GNN model inferencing is
much faster than the ATPG diagnosis process. The runtime
overhead of adding our framework on commercial tools is the
subsequent candidate pruning and reordering process, which
is relatively small compared to Tarpg.

To quantify the effectiveness of the proposed framework
on the subsequent PFA, we assume that the PFA requires
z seconds to analyze one candidate in a diagnosis report.
Let Tiotq; be the total runtime to identify the ground-truth
defect location. For the ATPG flow, Tiutqi(ATPG) can be
calculated as Tarpg + FHIarpg X x, where FHI arpa
is the FHI in the ATPG diagnosis report. While for the
proposed framework, T}, q;(proposed framework) equals to
maX(TATPG,TGNN) + Tupdate + FHIypgate X T, Where
FHI,pgate is the updated FHI in the final report after
candidate pruning and reordering. The difference Ty;r; =
Tiotal (ATPG) — Tiotai(proposed framework) over the test set
for each benchmark with Syn-2 configuration is shown in
Fig. 10. Note that positive Ty; sy demonstrates that leveraging
the proposed framework can save time for identifying the
ground truth defects compared to the ATPG tool. As the
runtime for each candidate in the PFA process increases, the
amount of time saved from the proposed framework becomes
more significant. Our framework is most effective in reducing
runtime for the netcard benchmark because the improvement
in FHI after candidate pruning and reordering can achieve up

to 42.7%. For other benchmarks, Ty; 77 is at least 10® seconds
when z is larger than 10 seconds. The reduction in runtime
for PFA enables us to efficiently identify the root causes
of defective chips. This is important for the emerging M3D
integration technology to increase the manufacturing processes
and shorten the time-to-market.

VII. DISCUSSION
A. Diagnosis on Designs with Multiple Faults

In M3D, different tiers suffer from different fabrication-
related systematic defects due to immature manufacturing
processes (see Section I). Such defects tend to cause multiple
delay faults throughout the faulty tier, which significantly
impacts the timing of the circuit and increases the complexity
of logic diagnosis. Tier-level localization becomes important
to identify the faulty tier early in the diagnosis process to
accelerate yield learning. Therefore, the proposed framework
is extended to perform diagnosis on defective designs that have
multiple faults in the faulty tier.

To simulate the designs with tier-specific systematic defects,
we randomly inject 2 to 5 TDFs in one tier and carry out fault
simulation to create the failure log file. We generate 5000
failure log files for each benchmark with Syn-1 configuration
for the purpose of training. The testing datasets are composed
of 750 samples for benchmarks with Syn-2 configuration to
demonstrate the effectiveness and transferability of the pro-
posed framework. Results of multiple delay faults localization
are shown in Table X. Note that a diagnosis report is counted
as accurate if all injected faults in the CUD are included in the
candidate list. ATPG reports for the netcard benchmark suffer
from low accuracy because the number of test patterns for net-
card is much more than other benchmarks. Injecting multiple
faults in the design leads to failure log files with a large num-
ber of failing patterns and failure output responses, increasing
the searching space and making it difficult to accurately narrow
down candidate fault locations. Although diagnosis accuracy is
limited by ATPG reports, the proposed framework provides the
resolution at the tier level with 88.0% accuracy. This advantage
compensates for the low diagnosis accuracy as the foundry
can review its manufacturing processes directly based on
predictions of the proposed Tier-predictor even if the ground-
truth defect locations cannot be identified from the diagnosis
reports. Moreover, the quality of diagnosis reports for all
benchmarks is enhanced by the improvement in FHI. Such an
improvement prevents the subsequent PFA from wasting time
on analyzing fault-free candidates. The analysis of multiple
faults localization demonstrates that the proposed framework
is applicable to perform diagnosis on designs with tier-specific
systematic defects. As such defects are needed to be eliminated
before M3D can become ready for commercial exploitation,
feedback from the proposed framework is essential for the
foundry to accelerate yield learning and improve the immature
fabrication processes.

B. Diagnosis with Standalone Tier-predictor and MIV-
pinpointer

In the proposed framework, Tier-predictor is utilized to
predict the faulty tier and provide guidance on the candidate



TABLE X: Effectiveness of multiple delay faults-localization in M3D benchmarks using ATPG diagnosis and the proposed framework.

ATPG diagnosis only Proposed framework
Design Accuracy Mean Std. Mean  Std. Accuracy Mean Std. Mean Std. Tier
resol.  resol. FHI FHI resol. resol. FHI FHI local.
AES 99.7% 6.0 3.6 3.8 2.3 99.6% (-0.1%) 5.9 (+1.1%) 3.6 3.4 (+12.3%) 21 643%
Tate 97.7% 5.1 3.6 39 29 | 97.1% (-0.6%) 4.8 (+5.9%) 33 3.0 (+23.0%) 2.1 78.1%
netcard 53.2% 355 14.6 18.2 132 | 52.8% (-0.4%) 17.4 (+31.6%) 11.3 11.4 (+437.3%) 9.0 88.0%
leon3mp 88.1% 12.6 8.7 7.9 5.4 88.1% (-0.0%) 12.6 (+0.0%) 8.7 5.7 (+28.7%) 46  79.0%

TABLE XI: Effectiveness of delay fault-localization with individual
models of the proposed framework.

Diagnosis Accurac Mean Std. Mean Std.
method y resol. resol. FHI FHI
[ ATPGonly [ 100.0% 49 5.3 3.6 42 ]

. . 98.5% 4.6 29

Tier-predictor (-1.5%) (+6.1%) 53 (+19.4%) 32
. 100.0% 4.9 3.6

MIV-pinpointer (:0.0%) (+0.0%) 5.3 (+0.0%) 42

Tier-predictor + 99.1% 4.7 53 29 32

MIV-pinpointer (-0.9%) (+4.1%) : (+19.4%) :

pruning and reordering process; MIV-pinpointer aims at identi-
fying faulty MIVs. To evaluate their impacts on improving the
quality of diagnosis reports, we carry out a detailed analysis by
performing diagnosis with each model standalone. Note that in
order to clearly demonstrate the influence of MIV-pinpointer,
we augment the size of the test set by 10% with MIV fault-
injected samples only.

Table XI shows the effectiveness of fault localization with
individual models and with both models on the AES bench-
mark with Syn-1 configuration. Tier-predictor achieves better
improvement in diagnostic resolution and FHI than MIV-
pinpointer as the candidate pruning and reordering process
improves the quality of reports mainly based on tier-level
predictions. However, diagnosis with Tier-predictor standalone
suffers from more than 1% loss of diagnosis accuracy. This
is because MIVs do not belong to any tiers in the M3D
designs. If an MIV fault is presented, the candidate pruning
process may occasionally remove such a faulty MIV from
the diagnosis report when the prediction from MIV-pinpointer
is not considered. In contrast, the changes in the quality
of diagnosis reports from MIV-pinpointer are not obvious
because MIV-pinpointer standalone only moves the predicted
faulty MIVs to the top of reports without pruning or reordering
the remaining candidates. No improvement is achieved if such
faulty MIVs have already been placed at the top of candidate
lists during ATPG diagnosis. However, predictions from MIV-
pinpointer can compensate for the loss of accuracy caused
by Tier-predictor as we prioritize MIV faults when updating
the diagnosis reports. If an MIV is predicted to be faulty, it
can no longer be pruned by the subsequent candidate pruning
and reordering process. This effect can be clearly observed by
the results when both Tier-predictor and MIV-pinpointer are
applied. Compared to Tier-predictor standalone, the loss of
accuracy is improved to be below 1% when MIV-pinpointer
helps in reserving susceptible MIV faults in the reports,
which is significant to prevent misleading candidates from the
PFA. Therefore, both models are of the same importance in
the proposed framework to achieve tier-level localization and
improve the quality of diagnosis reports.

VIII. CONCLUSION

We have proposed a GNN-based framework to conduct tier-
level fault diagnosis simply based on the CUD netlist and
failure log files from the tester. Two GNN models, namely
Tier-predictor and MIV-pinpointer, have been trained to predict
which tier and MIVs have defects. We have conducted the
transferability analysis between various design configurations
and proposed a data-augmentation method to improve the
transferability of the proposed framework. We have also
provided a GNN-based candidate reordering and pruning algo-
rithm using our predictions to improve the quality of ATPG di-
agnosis reports. We have shown that with a very low accuracy
loss, the diagnostic resolution and the FHI are significantly
improved for the OpenCore and ISPD benchmarks. We have
demonstrated that our framework is effective for designs with
test compression without additional resource requirements, and
it is compatible with commercial tools and existing algorithms
to provide the high level of resolution at the tier level. We
have discussed the transferability of the proposed framework
between benchmark M3D designs and provided guidance on
choosing appropriate models for diagnosis. We have also
provided a detailed analysis of performing diagnosis with
individual Tier-predictor and MIV-pinpointer and highlighted
their impacts on improving the quality of diagnosis reports.
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