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AbstractÐMonolithic 3D (M3D) integration is a promising
technology for achieving high performance and low power con-
sumption. However, the limitations of current M3D fabrication
flows lead to performance degradation of devices in the top tier
and unreliable interconnects between tiers. Fault localization at
the tier level is therefore necessary to enhance yield learning,
For example, tier-level localization can enable targeted diagnosis
and process optimization efforts. In this paper, we develop a
graph neural network-based diagnosis framework to efficiently
localize faults to a device tier. The proposed framework can be
used to provide rapid feedback to the foundry and help enhance
the quality of diagnosis reports generated by commercial tools.
Results for four M3D benchmarks, with and without response
compaction, show that the proposed solution achieves up to
32.86% improvement in diagnostic resolution with less than 1%
loss of accuracy, compared to results from commercial tools. The
proposed framework has also been demonstrated to be trans-
ferable to perform diagnosis on various design configurations
without performance degradation.

Index TermsÐMonolithic 3D integration, Graph neural net-
work, Diagnosis

I. INTRODUCTION

A
S Moore’s law reaches physical limits, three-dimensional

(3D) integration is now being adopted for integrated

circuits (ICs). In today’s 3D technology, die/wafer bonding

with through-silicon vias (TSVs) is being used due to its

minimal impact on current fabrication flows. However, keep-

out-zones around TSVs (necessary to prevent wire damage

due to tensile stress) can create routing blockages and increase

the chip footprint and total wirelength. Monolithic 3D (M3D)

integration has emerged as a promising technology to achieve

higher performance and lower power consumption compared

to 2D and die/wafer bonded 3D ICs [1]. M3D leverages fine-

grained monolithic inter-tier vias (MIVs) to achieve high-

precision alignment and extremely thin device layers [2]. The

size of MIVs is of the same order of magnitude as conventional

back-end-of-line (BEOL) vias. As a result, a large number of

MIVs can be used in M3D designs, leading to a significant

reduction in wirelength.

Despite these advantages, M3D introduces several chal-

lenges that must be addressed before this technology can be

widely adopted. Temperature management during fabrication

is one of the major concerns. Typically, thermal budgets of

transistor manufacturing processes exceed 1000◦C (e.g., for

dopant activation) [3]. However, in M3D designs, the fabri-

cation of upper-tier transistors in M3D designs with typical

thermal budgets causes damage to wires and cells under-

neath [4]. While advanced processes have been developed
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to fabricate transistors at a low temperature, they can cause

up to 20% performance mismatch between the devices in

different tiers [5]. The reliability of interconnects is another

concern for M3D ICs. Standard copper/low-k BEOL cannot

be used between tiers because the fabrication steps in the

upper tiers pose contamination risks, while low-k dielectrics

are thermally unstable after annealing processes [6]. As an

alternative, tungsten has good thermal stability, but its intrinsic

resistance is six times larger than copper, leading to an increase

in RC delay in the lower tiers [7]. Moreover, MIVs in M3D

designs are prone to defects as they penetrate through the

inter-tier dielectric. Surface roughness can produce voids in

the dielectric [8], which may lead to voids in MIVs during

etching, resulting in delay defects and degradation of circuit

performance [9]. These defects due to immature manufacturing

processes tend to be manifested as systematic delay faults

that are located in the same tier. It is necessary to prevent

such fabrication-related defects before M3D can become ready

for commercial exploitation. Delay-fault diagnosis is therefore

important in order to provide early feedback to the foundry and

facilitate yield learning.

In contrast to die/wafer bonding in stacked 3D integration,

tiers in M3D designs are fabricated in situ, which makes

it hard to ensure a known-good tier before assembly. Post-

assembly methods such as [10] are not applicable to M3D

due to the large area overhead for wrapper cells around MIVs.

In addition, delay-fault diagnosis catered to M3D designs is

especially important as tiers in M3D ICs suffer from different

systematic defects due to immature manufacturing processes.

Such tier-specific fabrication-related defects do not exist in 2D

designs; therefore, they are overlooked by previous work. [11]

leverages unsupervised learning to extract good candidates

in diagnosis reports. However, the extracted candidates can

be located in different tiers in M3D designs, which is not

sufficient to provide the high level of resolution (i.e., fault

localization) needed at the tier level. [12] proposed a built-

in-self-test (BIST) solution for MIV testing and diagnosis.

However, the BIST structure does not localize faults to a spe-

cific tier and requires dedicated test tiers between each pair of

device tiers, which increases the manufacturing cost. In [13],

an observation-point insertion algorithm was developed for

tier-level fault localization, but the impact of this solution on

fault diagnosis was not studied and the area overhead becomes

prohibitive for the likely scenario of a large number of MIVs.

To make M3D integration feasible, there is a need for a diagno-

sis framework that can efficiently localize faults to a tier. Such

a diagnosis framework should provide early feedback to the

foundry before the time-consuming physical failure analysis

(PFA). For example, an immature manufacturing process can
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result in a large number of chips failing on the tester with

defects located in the same tier. Tier-level fault localization

makes it possible for the foundry to review its processes for

the predicted faulty tier without waiting for further analysis;

therefore, yield learning is accelerated. An effective diagnosis

method should also be compatible with existing diagnosis

flows provided by commercial tools to improve the quality

of diagnosis.

In this paper, we propose a novel machine learning-based

(ML-based) diagnosis framework for M3D ICs to locate faults

at the tier level. We focus on at-speed transition delay fault

(TDF) diagnosis because the M3D-specific defects discussed

above tend to be manifested in the form of delay faults that

impact circuit timing. Our method is able to localize faults

based on the circuit netlist and failure log files from the tester.

The key contributions of this paper are as follows:

• We develop two models, Tier-predictor and MIV-

pinpointer, based on graph neural networks (GNNs) to

locate faults at the tier level and in MIVs.

• We develop a GNN-based policy to improve the quality

of diagnosis reports.

• We ensure the compatibility of the proposed method with

conventional scan-based designs and commercial tools,

both with and without test compression.

• We show that the proposed framework is transferable

such that diagnosis can be carried out for designs with

various design configurations.

• We demonstrate that the proposed framework can be

synergistically combined with previous work to provide

the high level of resolution at the tier level.

• The proposed framework simply utilizes the circuit netlist

and failure log files from the tester for making predic-

tions; therefore, test cost is minimized as no additional

test time is needed to generate diagnostic data.

The rest of the paper is organized as follows. Section II

provides an overview of M3D integration, logic diagnosis, and

GNN. Section III presents the proposed diagnosis framework.

In Section IV, we conduct transferability analysis and provide

our solutions to improve the transferability of the GNN-based

framework. Section V presents the proposed candidate pruning

and reordering algorithm. We compare the effectiveness of

our framework with a commercial fault-diagnosis tool in

Section VI. In Section VII, we discuss the transferability of our

framework between designs and provide guidance on choosing

appropriate models for diagnosis. Finally, Section VIII con-

cludes the paper.

II. BACKGROUND

A. Monolithic 3D Integration

M3D integration processes active device tiers sequentially

on a single wafer. M3D integration has the potential to

enable a wide variety of applications. M3D NAND flash

memory has been commercially produced in recent years due

to better performance and lower cost compared to 2D planar

NAND Flash [14]. In [15], an M3D nonvolatile random-access

memory (NVRAM) was proposed for AI accelerators. The

3D-integrated interface helped in the alleviation of memory-

bounded problems, both during training and inference. In [16],

heterogeneous M3D systems, i.e., multiple technology nodes

for different tiers, were predicted to be promising solutions

for next-generation wireless communication.

Research efforts are also being devoted to M3D testing and

diagnosis. [13] developed an observation-point insertion algo-

rithm for tier-level fault localization. A test pattern reshaping

algorithm was proposed in [17] to reduce PSN-induced voltage

droop during M3D delay testing. However, fault diagnosis for

M3D-specific defects has not been addressed in prior work.

This is critical because tiers in an M3D design suffer from

different fabrication-related limitations and process variations.

For example, defects arising from the relatively immature low-

temperature processes and the bonding interface of inter-layer

dielectric and upper tier’s active layer typically influence tran-

sistors in the upper tiers, while delay faults due to unreliable

interconnects between tiers affect the timing in the bottom

tiers [5] [6]. Tier-level diagnosis is thus important to localize

faults to a tier, enabling efficient PFA and technology bringup.

B. Logic diagnosis

Logic diagnosis is used to identify potential defect locations

when a chip fails on the tester. A diagnosis process aims

to provide an accurate guide to the subsequent PFA step.

Three important measures are used to evaluate the quality of

a diagnosis algorithm: (i) diagnostic resolution, (ii) accuracy,

and (iii) first-hit index (FHI) [18]. Diagnostic resolution is

defined as the number of fault candidates in a diagnosis report;

accuracy is determined by whether one of the candidates

pinpoints the ground-truth defect location. Ideally, the diag-

nostic resolution should be 1, but it is hard to ensure that the

only identified candidate is the ground-truth defect location.

An efficient diagnosis methodology needs to find a trade-off

between resolution and accuracy. A diagnosis report is ranked

with the most probable candidate listed at the top. FHI refers

to the index of the first candidate that is actually a ground-truth

defect location. Smaller the FHI, better the diagnosis process.

Test compression is widely used in modern IC designs

to achieve a significant reduction in test time and data vol-

ume; however, the test-compression environment increases

the difficulty of identifying the ground-truth defect locations

during diagnosis. In the proposed framework, we aim at

improving diagnostic resolution for M3D designs, both with

and without response compaction. Our tier-level predictions

are used to enhance the quality of diagnosis reports generated

by an automatic test pattern generation (ATPG) tool. This is

a key benefit of the proposed solution−it is synergistic and

compatible with commercial tools. In addition, ML-aided MIV

diagnosis can help in the early characterization of defective

MIVs.

C. Graph Neural Network (GNN)

GNN is an ML method that processes data on graphs.

In the field of IC design, GNN has attracted special at-

tention because it can carry out computations directly in

non-Euclidean domains. ML models such as recurrent neural

networks and convolutional neural networks are not effective

for graph-structured data because they operate on Euclidean
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TABLE V: Quality of ATPG diagnosis reports for M3D benchmarks without response compaction.

Design Configuration Accuracy
Mean

diagnostic resolution
Standard deviation

diagnostic resolution
Mean
FHI

Standard deviation
FHI

AES

Syn-1 100.0% 5.2 5.5 4.1 4.2
TPI 100.0% 5.3 5.6 4.0 4.5

Syn-2 100.0% 6.0 6.2 4.0 4.2
Par 100.0% 5.7 5.7 3.7 3.9

Tate

Syn-1 100.0% 4.4 4.6 3.6 4.0
TPI 100.0% 4.6 5.0 3.7 4.2

Syn-2 100.0% 4.6 5.3 3.7 4.5
Par 100.0% 4.1 5.4 2.8 2.6

netcard

Syn-1 96.4% 28.1 28.4 19.0 21.8
TPI 100.0% 10.3 8.6 7.0 6.6

Syn-2 97.4% 31.9 28.5 21.5 23.4
Par 88.6% 21.0 21.9 12.7 17.0

leon3

Syn-1 98.8% 14.0 17.8 9.8 13.8
TPI 99.8% 10.8 11.6 7.3 8.5

Syn-2 98.8% 12.5 16.0 8.0 10.3
Par 97.8% 11.5 17.2 8.5 15.5

TABLE VI: Effectiveness of delay fault-localization in M3D benchmarks without response compaction using a 2D baseline [11] and the
proposed framework

Config.

[11] Proposed framework

Acc.
µ (σ)
resol.

µ (σ)
FHI

Tier
local.

GNN standalone GNN + [11]
Tier

local.Acc.
µ (σ)
resol.

µ (σ)
FHI

Acc.
µ (σ)
resol.

µ (σ)
FHI

AES

Syn-1
100.0% 2.5 (1.7) 2.1 (1.5)

67.9%
99.2% 4.9 (5.5) 3.3 (3.3) 99.2% 2.5 (1.8) 2.1 (1.5)

85.5%
(-0.0%) (+51.9%) (+48.8%) (-0.8%) (+5.8%) (+19.5%) (-0.8%) (+51.9%) (+48.8%)

TPI
100.0% 2.7 (1.9) 2.1 (1.7)

62.5%
99.7% 5.1 (5.7) 3.1 (3.5) 99.7% 2.6 (1.9) 2.1 (1.8)

87.4%
(-0.0%) (+49.1%) (+47.5%) (-0.3%) (+3.8%) (+22.5%) (-0.3%) (+50.9%) (+47.5%)

Syn-2
100.0% 3.4 (3.1) 2.5 (2.5)

56.9%
99.6% 5.9 (6.2) 3.2 (3.3) 99.6% 3.4 (3.2) 2.5 (2.5)

86.6%
(-0.0%) (+43.3%) (+37.5%) (-0.4%) (+1.7%) (+20.0%) (-0.4%) (+43.3%) (+37.5%)

Par
99.9% 3.5 (3.2) 2.5 (2.4)

49.4%
100.0% 5.6 (5.7) 3.2 (3.5) 99.9% 3.5 (3.2) 2.5 (2.4)

73.7%
(-0.1%) (+38.6%) (+32.4%) (0.0%) (+1.8%) (+13.5%) (-0.1%) (+38.6%) (+32.4%)

Tate

Syn-1
99.9% 3.0 (2.3) 2.3 (1.8)

42.6%
99.9% 4.1 (4.2) 2.7 (2.9) 99.7% 2.9 (2.3) 2.2 (1.7)

91.2%
(-0.1%) (+31.8%) (+36.1%) (-0.1%) (+6.8%) (+25.0%) (-0.3%) (+34.1%) (+38.9%)

TPI
100.0% 2.9 (2.5) 2.3 (1.9)

41.1%
99.3% 4.2 (4.6) 2.6 (2.6) 99.3% 2.8 (2.5) 2.2 (1.9)

91.5%
(-0.0%) (+37.0%) (+37.8%) (-0.7%) (+8.7%) (+29.7%) (-0.7%) (+39.1%) (+40.5%)

Syn-2
100.0% 3.2 (3.1) 2.5 (2.5)

37.2%
99.6% 4.2 (5.0) 2.7 (2.9) 99.6% 3.1 (3.0) 2.4 (2.4)

91.5%
(-0.0%) (+30.4%) (+32.4%) (-0.4%) (+8.7%) (+27.0%) (-0.4%) (+32.6%) (+35.1%)

Par
100.0% 3.0 (2.8) 2.1 (1.8)

37.2%
99.0% 4.0 (5.4) 2.4 (2.7) 99.0% 2.9 (2.8) 2.1 (1.8)

82.8%
(-0.0%) (+26.8%) (+25.0%) (-1.0%) (+2.4%) (+14.3%) (-1.0%) (+29.3%) (+25.0%)

netcard

Syn-1
96.4% 26.2 (27.6) 17.8 (20.9)

1.5%
96.0% 18.9 (20.2) 10.9 (14.0) 96.0% 18.0 (19.7) 10.6 (13.8)

95.4%
(-0.0%) (+6.8%) (+6.3%) (-0.4%) (+32.7%) (+42.6%) (-0.4%) (+35.9%) (+44.2%)

TPI
100.0% 7.6 (6.5) 5.3 (5.3)

6.1%
99.8% 7.5 (7.5) 4.2 (5.1) 99.5% 4.6 (5.7) 3.0 (3.9)

98.1%
(-0.0%) (+26.2%) (+24.3%) (-0.2%) (+27.2%) (+40.0%) (-0.5%) (+55.3%) (+57.1%)

Syn-2
97.4% 22.7 (23.4) 15.1 (18.1)

7.8%
97.2% 22.9 (21.7) 12.3 (14.2) 97.2% 20.0 (19.6) 10.7 (12.8)

95.9%
(-0.0%) (+28.8%) (+29.8%) (-0.2%) (+28.2%) (+42.8%) (-0.2%) (+37.3%) (+50.2%)

Par
88.6% 18.8 (20.7) 12.2 (16.9)

2.3%
87.1% 15.2 (16.6) 7.7 (10.1) 87.1% 14.3 (15.9) 7.3 (9.8)

94.5%
(-0.0%) (+10.5%) (+3.9%) (-1.5%) (+27.6%) (+39.4%) (-1.5%) (+31.9%) (+42.5%)

leon3mp

Syn-1
98.8% 11.2 (16.4) 7.7 (12.5)

5.3%
97.8% 9.7 (12.5) 6.2 (9.2) 97.8% 8.8 (12.0) 5.7 (8.8)

93.5%
(-0.0%) (+20.0%) (+21.4%) (-1.0%) (+30.7%) (+36.7%) (-1.0%) (+37.1%) (+41.8%)

TPI
99.8% 8.2 (10.0) 5.5 (7.5)

2.9%
99.0% 8.2 (9.8) 4.9 (6.8) 98.8% 6.9 (9.4) 4.3 (6.3)

88.2%
(-0.0%) (+24.1%) (+24.7%) (-0.8%) (+24.1%) (+32.9%) (-1.0%) (+36.1%) (+41.1%)

Syn-2
98.8% 9.6 (14.3) 6.0 (9.0)

2.7%
98.1% 8.8 (11.1) 5.1 (6.8) 98.1% 8.0 (10.6) 4.6 (6.3)

91.8%
(-0.0%) (+23.2%) (+25.0%) (-0.7%) (+29.6%) (+36.3%) (-0.7%) (+36.0%) (+42.5%)

Par
97.8% 9.9 (16.3) 7.4 (14.6)

8.7%
94.9% 8.2 (11.9) 5.2 (8.6) 94.9% 7.8 (11.7) 5.0 (8.4)

86.8%
(-0.0%) (+13.9%) (+12.9%) (-2.9%) (+28.7%) (+38.8%) (-2.9%) (+32.2%) (+41.2%)

Config.: configuration; Acc.: accuracy; µ: mean; σ: standard deviation; resol.: diagnostic resolution; local.: localization.

the first-level classifier in the proposed two-level classification

framework are chosen to prevent a large loss of accuracy. As

diagnosis accuracy is also the top priority during the candidate

pruning and reordering process, we compare the results from

the first-level classifier in the baseline with our framework.

Table VI shows the results for each benchmark without

response compaction, where the values in parenthesis are

changes from the ATPG diagnosis reports listed in Table V.

Note that the GNN models in our experiments are trained with

datasets from Syn-1 and two randomly-partitioned netlists.

Netlists with different configurations are evaluated to demon-

strate the transferability of our framework. For AES and Tate,
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TABLE VII: Quality of ATPG diagnosis reports for M3D benchmarks with response compaction.

Design Configuration Accuracy
Mean

diagnostic resolution
Standard deviation

diagnostic resolution
Mean
FHI

Standard deviation
FHI

AES

Syn-1 98.8% 9.0 18.2 5.3 10.5
TPI 96.9% 10.6 20.7 4.8 8.0

Syn-2 97.1% 12.9 21.9 5.6 10.4
Par 98.4% 11.7 20.0 5.7 10.9

Tate

Syn-1 99.9% 5.7 10.0 4.1 5.5
TPI 100.0% 5.8 10.4 4.2 5.9

Syn-2 99.4% 6.7 14.0 4.5 7.2
Par 99.7% 6.1 14.4 3.4 6.1

netcard

Syn-1 94.8% 30.6 30.6 20.3 22.9
TPI 99.7% 11.8 12.8 8.0 8.9

Syn-2 93.5% 34.3 30.8 21.0 22.5
Par 87.8% 23.6 25.4 14.0 18.4

leon3

Syn-1 98.5% 14.8 19.1 10.0 13.8
TPI 99.8% 11.8 14.7 8.1 11.2

Syn-2 98.8% 13.1 16.7 8.4 10.8
Par 97.5% 12.0 18.0 8.6 15.3

TABLE VIII: Effectiveness of delay fault-localization in M3D benchmarks with response compaction using a 2D baseline [11] and the
proposed framework.

Config.

[11] Proposed framework

Acc.
µ (σ)
resol.

µ (σ)
FHI

Tier
local.

GNN standalone GNN + [11]
Tier

local.Acc.
µ (σ)
resol.

µ (σ)
FHI

Acc.
µ (σ)
resol.

µ (σ)
FHI

AES

Syn-1
98.8% 4.9 (9.4) 2.6 (4.9)

47.4%
98.4% 8.2 (17.5) 4.0 (8.5) 98.4% 4.6 (9.0) 2.5 (4.7)

85.7%
(-0.0%) (+45.6%) (+50.9%) (-0.4%) (+8.9%) (+24.5%) (-0.4%) (+48.9%) (+52.8%)

TPI
96.9% 6.0 (11.5) 2.4 (3.8)

45.6%
96.3% 10.0 (20.5) 4.1 (8.0) 96.3% 5.8 (11.6) 2.4 (3.8)

82.0%
(-0.0%) (+43.4%) (+50.0%) (-0.6%) (+5.7%) (+14.6%) (-0.6%) (+45.3%) (+50.0%)

Syn-2
97.1% 7.9 (12.8) 3.2 (6.4)

32.1%
95.4% 12.2 (21.6) 5.1 (10.0) 95.4% 7.5 (12.5) 3.2 (6.6)

75.6%
(-0.0%) (+38.8%) (+42.9%) (-1.7%) (+5.4%) (+8.9%) (-1.7%) (+41.9%) (+42.9%)

Par
98.4% 7.5 (11.3) 3.3 (5.5)

33.7%
94.8% 10.7 (19.1) 4.6 (8.4) 94.8% 6.9 (10.9) 3.1 (4.9)

74.8%
(-0.0%) (+35.9%) (+42.1%) (-3.6%) (+8.5%) (+19.3%) (-3.6%) (+41.0%) (+45.6%)

Tate

Syn-1
99.9% 3.7 (5.5) 2.6 (3.3)

38.6%
99.2% 5.4 (9.9) 3.2 (5.1) 99.2% 3.6 (5.5) 2.5 (3.2)

83.6%
(-0.0%) (+35.1%) (+36.6%) (-0.7%) (+5.3%) (+22.0%) (-0.7%) (+36.8%) (+39.0%)

TPI
100.0% 3.6 (5.8) 2.5 (2.9)

38.3%
99.6% 5.4 (10.3) 3.3 (5.3) 99.6% 3.5 (5.8) 2.4 (2.9)

84.3%
(-0.0%) (+37.9%) (+40.5%) (-0.4%) (+6.9%) (+21.4%) (-0.4%) (+39.7%) (+42.9%)

Syn-2
99.4% 4.5 (8.7) 2.9 (4.5)

30.7%
99.2% 6.4 (14.0) 3.7 (7.6) 99.2% 4.4 (8.8) 2.8 (4.5)

80.3%
(-0.0%) (+32.8%) (+35.6%) (-0.2%) (+4.5%) (+17.8%) (-0.2%) (+34.3%) (+37.8%)

Par
99.7% 4.1 (7.5) 2.5 (4.0)

33.3%
98.7% 5.9 (14.4) 3.5 (8.2) 98.7% 4.0 (7.6) 2.5 (4.0)

73.8%
(-0.0%) (+32.8%) (+26.5%) (-1.0%) (+3.3%) (+2.9%) (-1.0%) (+34.4%) (+26.5%)

netcard

Syn-1
94.8% 29.5 (30.1) 19.4 (22.3)

0.2%
94.4% 22.9 (26.8) 12.3 (16.3) 94.4% 22.5 (26.6) 12.1 (16.2)

93.2%
(-0.0%) (+3.6%) (+4.4%) (-0.4%) (+25.2%) (+39.4%) (-0.4%) (+26.5%) (+40.4%)

TPI
99.7% 5.6 (9.4) 4.3 (6.6)

32.7%
98.7% 8.2 (10.6) 4.7 (6.5) 98.7% 5.2 (8.3) 3.5 (5.9)

96.0%
(-0.0%) (+52.5%) (+46.2%) (-1.0%) (+30.5%) (+41.2%) (-1.0%) (+55.9%) (+56.2%)

Syn-2
93.5% 29.8 (28.6) 17.7 (19.8)

1.4%
92.2% 24.6 (26.4) 12.1 (14.3) 92.2% 22.9 (25.5) 11.2 (13.7)

95.0%
(-0.0%) (+13.1%) (+15.7%) (-1.3%) (+28.3%) (+42.4%) (-1.3%) (+33.2%) (+46.7%)

Par
87.8% 20.0 (23.8) 12.8 (17.8)

5.1%
86.3% 20.2 (24.0) 9.6 (13.2) 86.3% 18.6 (23.2) 9.0 (12.7)

86.5%
(-0.0%) (+15.3%) (+8.6%) (-1.5%) (+14.4%) (+31.4%) (-1.5%) (+21.2%) (+35.7%)

leon3mp

Syn-1
98.6% 10.7 (17.1) 7.1 (12.1)

13.1%
97.0% 10.6 (14.9) 6.3 (9.2) 97.0% 9.4 (14.2) 5.6 (8.7)

91.2%
(-0.1%) (+27.7%) (+29.0%) (-1.5%) (+28.4%) (+37.0%) (-1.5%) (+36.5%) (+44.0%)

TPI
99.8% 6.3 (11.8) 4.5 (9.2)

29.9%
97.8% 9.3 (13.4) 5.3 (8.3) 97.8% 8.1 (13.2) 5.1 (9.6)

86.8%
(-0.0%) (+46.6%) (+44.4%) (-2.0%) (+21.2%) (+34.6%) (-2.0%) (+31.4%) (+37.0%)

Syn-2
98.8% 10.2 (14.9) 6.4 (9.4)

2.4%
97.6% 9.2 (12.0) 5.3 (7.3) 97.6% 8.4 (11.7) 4.9 (6.9)

91.0%
(-0.0%) (+22.1%) (+23.8%) (-1.2%) (+29.8%) (+36.9%) (-1.2%) (+35.9%) (+41.7%)

Par
97.5% 8.4 (15.8) 6.4 (13.1)

24.3%
93.8% 10.3 (16.9) 6.2 (11.6) 93.8% 9.5 (16.5) 5.9 (11.2)

76.3%
(-0.0%) (+30.0%) (+25.6%) (-3.7%) (+14.2%) (+27.9%) (-3.7%) (+20.8%) (+31.4%)

the improvement in diagnostic resolution and FHI of the pro-

posed framework with GNN standalone are less obvious than

the improvement obtained from the baseline. This is because

ATPG diagnosis reports tend to provide good resolution with

candidates only in the faulty tier. Therefore, the candidate

pruning and reordering process does not considerably benefit

from the tier-level localization to improve the quality of

diagnosis reports. In contrast, the baseline approach analyzes

each candidate one at a time to determine whether such a

candidate should be removed from the diagnosis report. It is

expected that the baseline can achieve better improvement in

diagnostic resolution and FHI than the proposed framework for







13

TABLE X: Effectiveness of multiple delay faults-localization in M3D benchmarks using ATPG diagnosis and the proposed framework.

Design
ATPG diagnosis only Proposed framework

Accuracy
Mean
resol.

Std.
resol.

Mean
FHI

Std.
FHI

Accuracy
Mean
resol.

Std.
resol.

Mean
FHI

Std.
FHI

Tier
local.

AES 99.7% 6.0 3.6 3.8 2.3 99.6% (-0.1%) 5.9 (+1.1%) 3.6 3.4 (+12.3%) 2.1 64.3%

Tate 97.7% 5.1 3.6 3.9 2.9 97.1% (-0.6%) 4.8 (+5.9%) 3.3 3.0 (+23.0%) 2.1 78.1%

netcard 53.2% 35.5 14.6 18.2 13.2 52.8% (-0.4%) 17.4 (+31.6%) 11.3 11.4 (+37.3%) 9.0 88.0%

leon3mp 88.1% 12.6 8.7 7.9 5.4 88.1% (-0.0%) 12.6 (+0.0%) 8.7 5.7 (+28.7%) 4.6 79.0%

TABLE XI: Effectiveness of delay fault-localization with individual
models of the proposed framework.

Diagnosis
Accuracy

Mean Std. Mean Std.
method resol. resol. FHI FHI

ATPG only 100.0% 4.9 5.3 3.6 4.2

Tier-predictor
98.5% 4.6

5.3
2.9

3.2
(-1.5%) (+6.1%) (+19.4%)

MIV-pinpointer
100.0% 4.9

5.3
3.6

4.2
(-0.0%) (+0.0%) (+0.0%)

Tier-predictor + 99.1% 4.7
5.3

2.9
3.2

MIV-pinpointer (-0.9%) (+4.1%) (+19.4%)

pruning and reordering process; MIV-pinpointer aims at identi-

fying faulty MIVs. To evaluate their impacts on improving the

quality of diagnosis reports, we carry out a detailed analysis by

performing diagnosis with each model standalone. Note that in

order to clearly demonstrate the influence of MIV-pinpointer,

we augment the size of the test set by 10% with MIV fault-

injected samples only.

Table XI shows the effectiveness of fault localization with

individual models and with both models on the AES bench-

mark with Syn-1 configuration. Tier-predictor achieves better

improvement in diagnostic resolution and FHI than MIV-

pinpointer as the candidate pruning and reordering process

improves the quality of reports mainly based on tier-level

predictions. However, diagnosis with Tier-predictor standalone

suffers from more than 1% loss of diagnosis accuracy. This

is because MIVs do not belong to any tiers in the M3D

designs. If an MIV fault is presented, the candidate pruning

process may occasionally remove such a faulty MIV from

the diagnosis report when the prediction from MIV-pinpointer

is not considered. In contrast, the changes in the quality

of diagnosis reports from MIV-pinpointer are not obvious

because MIV-pinpointer standalone only moves the predicted

faulty MIVs to the top of reports without pruning or reordering

the remaining candidates. No improvement is achieved if such

faulty MIVs have already been placed at the top of candidate

lists during ATPG diagnosis. However, predictions from MIV-

pinpointer can compensate for the loss of accuracy caused

by Tier-predictor as we prioritize MIV faults when updating

the diagnosis reports. If an MIV is predicted to be faulty, it

can no longer be pruned by the subsequent candidate pruning

and reordering process. This effect can be clearly observed by

the results when both Tier-predictor and MIV-pinpointer are

applied. Compared to Tier-predictor standalone, the loss of

accuracy is improved to be below 1% when MIV-pinpointer

helps in reserving susceptible MIV faults in the reports,

which is significant to prevent misleading candidates from the

PFA. Therefore, both models are of the same importance in

the proposed framework to achieve tier-level localization and

improve the quality of diagnosis reports.

VIII. CONCLUSION

We have proposed a GNN-based framework to conduct tier-

level fault diagnosis simply based on the CUD netlist and

failure log files from the tester. Two GNN models, namely

Tier-predictor and MIV-pinpointer, have been trained to predict

which tier and MIVs have defects. We have conducted the

transferability analysis between various design configurations

and proposed a data-augmentation method to improve the

transferability of the proposed framework. We have also

provided a GNN-based candidate reordering and pruning algo-

rithm using our predictions to improve the quality of ATPG di-

agnosis reports. We have shown that with a very low accuracy

loss, the diagnostic resolution and the FHI are significantly

improved for the OpenCore and ISPD benchmarks. We have

demonstrated that our framework is effective for designs with

test compression without additional resource requirements, and

it is compatible with commercial tools and existing algorithms

to provide the high level of resolution at the tier level. We

have discussed the transferability of the proposed framework

between benchmark M3D designs and provided guidance on

choosing appropriate models for diagnosis. We have also

provided a detailed analysis of performing diagnosis with

individual Tier-predictor and MIV-pinpointer and highlighted

their impacts on improving the quality of diagnosis reports.
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