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Abstract—Monolithic 3D (M3D) integration for integrated cir-
cuits (ICs) offers the promise of higher performance and lower
power consumption over stacked-3D ICs. However, M3D suffers
from large power supply noise (PSN) in the power distribution net-
work due to high current demand and long conduction paths from
voltage sources to local receivers. Excessive switching activities
during the capture cycles in at-speed delay testing exacerbate the
PSN-induced voltage droop problem. Therefore, PSN reduction
is necessary for M3D ICs during testing to prevent the failure
of good chips on the tester (i.e., yield loss). In this paper, we
first develop an analysis flow for M3D designs to compute the
PSN-induced voltage droop. Based on the analysis results, we
extract the test patterns that are likely to cause yield loss. Next,
we propose a reinforcement learning (RL)-based framework to
insert test points and generate low-switching patterns that help in
mitigating PSN without degrading the test coverage. Simulation
results for benchmark M3D designs demonstrate the effectiveness
of the proposed power-safe testing approach, compared to baseline
cases that utilize commercial tools.

I. INTRODUCTION

Monolithic 3D (M3D) integration is an emerging technology

that promises to continue performance improvement when

Moore’s Law hits physical limits. M3D leverages fine-grained

monolithic inter-tier vias (MIVs) to achieve high alignment

precision and low power consumption. Compared to through-

silicon vias in today’s 3D technologies, MIVs are one to two

orders of magnitude smaller in size and the induced capacitance

is negligible [1]. These advantages enable the use of MIVs in

large numbers, leading to a significant reduction in wirelength.

The benefits of M3D integration are accompanied by design

and test challenges. One of the major concerns is related to

the power supply noise (PSN) in the power delivery network

(PDN). Compared to traditional 2D designs, M3D integrated

circuits (ICs) suffer more from PSN-induced voltage droop [2].

This problem is more severe in the test mode than in the

functional mode due to high switching activities during testing.

Excessive switching activities in the capture cycle can lead to

circuit timing degradation, which makes good chips fail on the

tester and yield loss.

Various test techniques have been proposed in the literature

to mitigate switching activities in the capture cycle. [3] provides

a survey of power-safe testing strategies used in industrial

designs. A don’t-care bit-filling (X-filling) algorithm [4] has

been developed to assign values to don’t-care bits in a partially-

specified pattern such that the switching activity can be mini-
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mized. However, X-filling algorithms limit the effectiveness of

test compaction. Low-power automatic test pattern generation

(ATPG) restricts the maximum switching activity of each

pattern. Clock-gating switches off parts of the circuit in the

capture cycle. However, low-power ATPG and clock-gating can

lead to either test data inflation or a reduction in test coverage.

Test point insertion (TPI) is used to improve the testability

and diagnosability of the circuit under test [5]. TPI leads to

high test coverage and a reduction of pattern count. However,

the study of TPI to reduce test power has not received much

attention. [6] uses TPs to decrease peak power consumption

during scan capture, but the locations for TPI are limited

to the outputs of scan elements. In [7], TPs are inserted at

the boundary of high-capture-power regions to reduce local

switching activities. However, the number of variables in the

proposed satisfiability (SAT)-based solution grows with the size

of the circuit, which is not scalable for high-density M3D

designs. A new TPI methodology is therefore needed for M3D

ICs to mitigate the PSN problem during testing.

In this paper, we propose a power-safe testing framework

for M3D designs. We leverage reinforcement learning (RL)

to find the best locations for TPI to help eliminate the yield

loss problem due to the PSN-induced voltage droop. The key

contributions of this paper are as follows:

• We develop a detailed M3D power analysis flow to extract

the PSN-induced voltage droop at local receivers.

• We describe an RL-based framework that uses the PSN-

induced voltage droop data and determines the optimal

types and locations of TPs for test power reduction.

• We demonstrate the effectiveness of the proposed ap-

proach by presenting evaluation results for M3D designs

and comparing our technique with a commercial tool.

The rest of the paper is organized as follows. Section II

provides an overview of M3D integration, test points, and RL.

Section III presents the proposed power analysis flow for M3D

designs. Details of our RL-based TPI framework are provided

in Section IV. In Section V, we compare the effectiveness of

the proposed framework with baseline cases that insert TPs

determined by a commercial ATPG tool. Finally, Section VI

concludes the paper.

II. BACKGROUND

A. Monolithic 3D Integration

All device tiers in an M3D design are fabricated in situ

on the same wafer. This has been made possible by the
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low-temperature manufacturing processes [8]. Low-temperature

processes are essential for upper-tier fabrication to prevent

devices and wires underneath from damage. Despite break-

throughs in manufacturing techniques, the PSN in M3D PDNs

remains a big challenge. PSN contributes to the difference

between the nominal voltage at power supplies and the voltage

at local receivers. In M3D designs, the supply current for the

bottom-tier devices must flow through the top-tier PDN [2].

The increase in the equivalent resistance along the conduction

path between power supply and receivers can lead to a high

IR-drop.

Efforts have been devoted in recent years to reducing PSN in

M3D designs. [2] proposes cell repositioning and metal scaling

to reduce the IR-drop. [9] uses genetic programming to create

a reliable PDN for M3D designs. However, such PDN opti-

mization methodologies aim at reducing PSN in the functional

mode. The voltage droop caused by PSN during testing has not

been addressed in prior work on testing M3D designs. In [4],

test-pattern reshaping algorithms are developed to eliminate the

PSN-induced yield loss problem in M3D designs. However,

the efficiency of the reshaping process is constrained by the

ATPG procedure without any design-for-testability structures.

Other related work on test power reduction for 2D designs is

of limited effectiveness for M3D because additional PSN due

to the 3D stacking in PDNs is overlooked. Therefore, there is

a need for a new solution that can adequately address the M3D

PSN issues during testing.

B. Test Points

Test points are of two types: control points (CPs) and

observe points (OPs). CPs are used to assign specific values

to certain signals in the design during testing. Typically, CPs

are inserted at locations that are difficult to control by existing

scan elements. OPs are introduced to capture signals at specific

locations, especially where fault effects are hard to propagate

through the capture logic.

The general purposes of TPI include pattern count reduction

and test coverage improvement. Leveraging TPI for test power

reduction has not been fully explored yet. For delay testing, OPs

can facilitate the observation of fault effects; CPs can provide

constant values in the capture cycles to switch off unnecessary

signals. These advantages allow ATPG tools to generate low-

switching patterns without an adverse impact on test coverage.

Therefore, we aim at developing an efficient framework to find

the best locations for TPI to reduce switching activities during

testing and eliminate the PSN-induced yield loss.

C. Reinforcement Learning

RL is a class of machine learning algorithms that can learn

an optimal decision-making process in an environment [10].

The optimal behavior is learned through the observations of

how the environment is changed by the action taken at each

time step, guided by reward values. The goal of RL is to find

the policy such that the cumulative reward over discrete time

steps is optimized.

RL algorithms have been shown to be effective in solving

electronic design automation problems. [11] proposes a deep

Test pattern M3D netlist
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VCD file
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Fig. 1: Power analysis flow for M3D ICs.

RL solution for macro floorplanning that can achieve significant

power, performance, and area (PPA) improvements. In [12], RL

models are utilized to efficiently generate standard cell layouts

and fix design rule checking errors in the routing process.

An RL-based gate sizing algorithm for timing optimization

is developed in [13]. The effectiveness of RL in IC design

problems motivates us to develop an RL-based framework for

TPI. We aim at training an RL agent to find an optimal set

of TPs that can reduce switching activities and improve the

test coverage for low-power patterns. Such a co-optimization

problem typically requires large runtime and considerable hu-

man efforts in existing algorithms. In RL, multiple objectives

can be encoded into the reward function in the form of a

weighted combination of evaluation metrics, which ensures that

a solution can be derived more efficiently.

III. M3D POWER ANALYSIS

In this section, we describe the proposed power analysis

flow for M3D ICs to obtain the PSN-induced voltage droop at

each gate. We extend the analysis method available for today’s

commercial tools for conventional 2D designs by considering

the 3D structure of M3D PDNs. The analysis results are utilized

to identify test patterns that are susceptible to yield loss and

to evaluate the effectiveness of the proposed RL-based TPI

framework.

A. Overview

We first converted benchmark designs into the M3D version

using the method in [14]. The 3D placement and routing results

after tier-partitioning are saved in a design exchange format

(DEF) file. Next, we generated transition-delay fault (TDF)

patterns by Siemens EDA Tessent and wrote out the patterns

into Verilog testbenches. Given a pattern and the M3D design

netlist, we used Siemens EDA Questa advanced simulator to

conduct a gate-level logic simulation and record the switching

activities during capture cycles in a value change dump (VCD)

file. The M3D netlist, DEF, and VCD files were imported into

Cadence Voltus to perform vector-based power analysis of each

tier separately using the flow for traditional 2D designs. Finally,

we combined the tier-level analysis results to evaluate the PSN-

induced voltage droop in M3D. An overview of the proposed

power analysis flow is shown in Fig. 1.
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Input: M3D netlist N , DEF file fDEF , Power analysis results fp
Output: M3D voltage droop Vdroop

1 Vdroop := ∅
2 foreach logic gate g in N do
3 vg = VoltageDroopExtraction(g, fp)
4 if g in top tier then

5 Vdroop := Vdroop ∪ vg
6 else
7 vtop = NearestTopTierVoltageDroop(g, fDEF , fp)
8 v′g := vg + vtop
9 Vdroop := Vdroop ∪ v′g

10 end
11 end

12 return Vdroop;

Fig. 2: Pseudo-code for M3D voltage droop evaluation.

B. M3D Voltage Droop Evaluation

Because commercial tools do not consider the impact of

3D integration, we develop an algorithm to extract the PSN-

induced voltage droop in M3D designs. Fig. 2 sketched the

steps involved in M3D voltage droop evaluation. Lines 2-11

iterate through every gate g in the input design. Line 3 extracts

the voltage droop of g from the tier-level power analysis report

generated by Cadence Voltus, denoted as vg . In Line 5, if g is

located at the top tier, we use vg to represent the voltage droop

of g. This is because the top-tier PDN is directly connected to

power supplies (i.e., C4 bumps). A problem with commercial

tools is that they overlook the following scenario. If g is in

the bottom tier, it suffers from additional voltage droop as the

supply current needs to flow through the top-tier PDN. Such an

effect is ignored by commercial tools during tier-level power

analysis. To simulate this scenario, in Line 7, we extract the

voltage droop of the top-tier gate that is nearest to the location

of g according to placement results. Lines 8-9 superimpose the

extracted value on vg to reflect the PSN effect in 3D integration

and used the superimposed value to represent the PSN-induced

voltage droop at g. The evaluation process is completed after

iterating through all the gates in both tiers.

Fig. 3 shows the voltage droop distributions of the Tate

Bilinear Pairing (Tate) benchmark with and without M3D

voltage droop evaluation. Note that the values provided by

a commercial tool are the difference between receivers and

power sources of each tier (i.e., C4 bumps for the top tier and

power MIVs for the bottom tier, respectively). From Fig. 3(a)

and Fig. 3(b), it is obvious that the voltage droop problem is

more severe in the top tier than in the bottom tier. This has

been explained in [2]. With the reduction of footprint in M3D

designs, the number of C4 bumps is limited by their large size.

Excessive current demand and the limited number of power

sources lead to high voltage droop in the power rails near

the C4 bumps. In contrast, the bottom-tier PDN is supplied

by numerous power MIVs, which serve as current sources

to prevent a large-magnitude current from flowing through

each MIV and surrounding metal wires. Therefore, the IR-drop

problem is mitigated. This scenario points out the drawback of

using existing 2D analysis flow for M3D designs. Voltage droop

hotspots shown in Fig. 3 tend to be overlooked in the report

(a) (b) (c)

Fig. 3: Voltage droop distributions for the Tate benchmark: (a)

top-tier distribution from ATPG; (b) bottom-tier distribution

from ATPG; (c) distribution with the proposed M3D voltage

droop evaluation.
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Fig. 4: Flowchart for the proposed RL-based TPI framework.

generated by the commercial tool. The impact of such hotspots

on circuit timing may be underestimated, making it difficult to

identify the patterns that can cause yield loss. With the proposed

evaluation algorithm, the PSN-induced voltage droop in M3D

designs can be extracted appropriately. This is important for the

proposed RL-based framework for TPI to ensure that the yield-

loss problem is fully eliminated with the TP-inserted designs

and the resulting low-switching patterns.

IV. PROPOSED RL-BASED FRAMEWORK

Fig. 4 presents the flowchart of the proposed RL-based

TPI framework, where WSA is the weighted switching activ-

ity [15]. Given an M3D design, the corresponding DEF file,

and TDF patterns generated by an ATPG tool, we conduct

power simulation to extract high-switching patterns that are

susceptible to yield loss. Next, we update the fault list to

capture the remaining undetected faults (UDs) after pattern

extraction. The updated fault list and the M3D design become

inputs to our RL model to find the best set of TPs that can

help in detecting the UDs without incurring high switching

activities. We also leverage an ATPG-based TPI process for

test coverage improvement accompanied by the TPs determined

by RL. Finally, low-power ATPG is carried out on the TP-

inserted design to generate patterns that can mitigate the PSN-

induced yield loss problem without any adverse impact on the

test coverage.

A. Extraction of High-switching Patterns

In an ATPG pattern set, only a small proportion of patterns

can lead to yield loss; it is not necessary to reduce the switching

activity for each pattern. Therefore, the first step in the proposed

framework is to identify the high-switching patterns that lead to
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Input: M3D netlist N , DEF file fDEF , ATPG Patterns P
Output: Patterns P ′ ∈ P that are susceptible to yield loss

1 P ′ := ∅
2 Psampled := RandomSampling(P )
3 foreach pattern p in Psampled do
4 Vdroop := M3DPowerAnalysis(p, N , fDFT )
5 if ScaledSlack(Vdroop, N ) < 0 then
6 P ′ := P ′∪ HighSwitchPatterns(p, P )
7 end

8 end

9 return P ′;

Fig. 5: Pseudo-code for extracting high-switching patterns.

excessive PSN-induced voltage droop. We extract such patterns

from the original pattern set. Fig. 5 sketches the steps in

our high-switching pattern extraction algorithm. In Line 2,

we randomly sample the input ATPG patterns because it is

time-consuming to conduct power analysis on every pattern.

In this work, we sample 5% of the ATPG pattern set to

identify high-switching patterns. Lines 3-8 iterate through each

sampled pattern, denoted as p. Line 4 runs the M3D power

analysis to obtain the PSN-induced voltage droop as described

in Section III. With the voltage droop values, we scale the slack

of the critical path in the M3D design in Line 5. Let vmax be

the maximum voltage droop values with p assuming the worst-

case scenario. The scaled slack is calculated as follows [16]:

sdroop = tclock − tcrit ×
1− vth

vDD

1− vth

vDD−vmax

(1)

where tclock is the clock period, tcrit is the delay of the critical

path, vDD and vth are the supply voltage and the threshold

voltage according to the standard cell library, respectively. In

a fault-free chip without any voltage droop, the slack of the

critical path is always positive. However, if the voltage droop

induced by high switching activity in p makes sdroop become

negative, an erroneous response can be captured during testing,

leading to the failure of the good chip and yield loss. Therefore,

in Line 6, we calculate the WSA of each pattern; all patterns

with a WSA larger than the WSA of p are collected. Faults that

are uniquely detected by the collected patterns are the main

focus of the subsequent TPI process.

B. RL Training Environment

After extracting high-switching patterns, we conduct fault

simulation with the remaining patterns in the ATPG pattern

set to update the fault list. UDs in the updated fault list are

imported into the RL environment to guide the training process.

The objective of RL-based TPI is to find the best set of TPs that

can help in detecting such UDs with low-switching patterns.

Ideally, a TP can be inserted anywhere in the design.

However, this level of flexibility introduces prohibitively high

runtime to evaluate every candidate location for TPI, making

it impractical for RL training. Therefore, we narrow down

the number of candidates in each iteration during the training

process by partitioning the design into tiles and choosing one

location for each tile at a time. Fig. 6 shows an overview of our

RL training environment. We first convert the M3D netlist into

a graph, where each fault site (i.e., every pin of a gate) creates a

node, and connections between fault sites form the edges. After

graph construction, node features are calculated based on the

topological dependencies of the circuit and the input fault list.

Next, we partition the graph into tiles based on the location of

C4 bumps under the assumption that gates in the same tile tend

to be supplied by the same bump. When multiple gates in the

same tile switch simultaneously, a large-magnitude current is

drawn from the bump and flows through the surrounding metal

wires, leading to a large voltage droop. Therefore, the proposed

tile-partitioning method aims at collecting gates that are highly

correlated in a tile and guiding the RL model to minimize the

tile-based switching activities.

With the partitioned graph, we utilize the proposed tile-

based candidate heuristic to find a candidate for each tile in

one training iteration. In tile Ti, we choose the gate with

the largest distance to the launch and capture flops to be

the candidate. This is because when an OP is inserted, the

probability of detecting multiple UDs along the propagation

paths from the launch flops to the candidate location is in-

creased, while inserting a CP helps in switching off large

activities between the candidate and the capture flops. The

node feature of such a candidate is used as the representation

of Ti, denoted as hTi
. Feature vectors of candidates for n

tiles in the design [hT1
,hT2

. . .hTn
] forms an observation of

the RL model; the combinations of all tile-based candidate

features construct the observation space. The action space is

composed of two elements: (i) TPtile ∈ {T1, T2, . . . , Tn}, and

(ii) TPtype ∈ {AND-type CP, OR-type CP, OP}, where TPtile

and TPtype represent which tile-based candidate and which type

of TPs are going to be inserted, respectively. The state of

the environment and the reward are updated in every iteration

according to the action taken by the RL agent.

C. Reward Function

The primary objective of the proposed framework is to

improve the test coverage of UDs while minimizing switching

activities. In this case, we define our reward function as a

weighted combination of performance metrics. Let st and at

be the state and the action taken at time step t, making the state

become st+1. The reward function is defined as follows:

rt = α · rtUD + β · rtSW (2)

where α and β are hyperparameters, rUD and rSW are rewards

for the detection of UDs and the reduction in tile-based

switching activities, respectively.

Note that the most straightforward method to evaluate the

impact of each action on the test coverage and the switching

activity is to re-generate patterns every time a TP is inserted.

However, the synthesis of TP logic and the pattern genera-

tion with commercial tools lead to large runtime overhead,

making it infeasible for RL training. To approximate the

impact of each TP, we utilize the signal-transition probability

(STP) metric from [17]. The STP of each node is denoted as

[pS0
, pS1

, pTr
, pTf

], where pS0
(pS1

) are the probabilities of

static-0 (static-1) signals, and pTr
(pTf

) are the probabilities
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Fig. 6: Overview of the training environment of the proposed RL-based TPI framework.

of rising (falling) transitions. We set the STPs of nodes corre-

sponding to primary inputs and pseudo primary inputs (i.e., out-

put pins of scan elements) to be [0.5, 0.5, 0, 0]. Next, to simulate

the launch and capture cycles in a TDF pattern, we propagate

the STPs throughout the graph twice to create the initial value

of each node. If an AND-type CP is inserted at node i at time

t, because the signal of node i can be forced to static-1 when

TPE is enabled (see Section II-B), we update the STPi such

that STPt+1

i = 0.5 · [1, 0, 0, 0]+0.5 ·STPt
i. If an OR-type CP is

inserted, STPt+1

i is updated to be 0.5 · [0, 1, 0, 0] + 0.5 · STPt
i.

The STPt+1

i is then propagated through the fan-out cone of

node i to complete the state transition. The STP of every node

remains unchanged if an OP is inserted.

Based on the STPs, we approximate the detection of each

UD with
∑

(pTr
+ pTf

) of nodes in its fan-out cone. This

value should be maximized to increase the probability of the

UD being captured by the scan elements. Note that if an OP is

inserted, the UD can be captured without propagating through

the existing scan flops; therefore, we calculate the
∑

(pTr
+pTf

)
along the paths through the OP to represent the impact of the

action. If such a summation is increased due to the action at,

the detection reward of UD u, denoted as dtu, is 1; otherwise,

dtu is −1. Let the set of UDs being affected by the action be

SUD. Then rtUD can be calculated as:

rtUD =

∑
u∈SUD

dtu

|SUD|
(3)

For rSW , we approximate the tile-based switching activities

with
∑

(pTr
+ pTf

) for all the nodes in each tile. This value

should be reduced to minimize the PSN-induced voltage droop.

Therefore, the switching activity reward of tile Ti, denoted as

swTi
, is 1 if

∑
(pTr

+ pTf
) is decreased after a TP is inserted;

otherwise, swTi
is −1. Let the set of tiles in the design be ST .

Then rtSW is calculated as:

rtSW =

∑
Ti∈ST

swt
Ti

|ST |
(4)

Using Eq. (2)-(4), the RL agent is able to learn the impact

of each action on both the detection of UDs and the tile-based

switching activity. In this work, we set α = β = 0.5 in Eq. (2)

to achieve co-optimization of test coverage improvement and

switching activity reduction. An assessment using other values

of α and β is left for future work.

V. EXPERIMENTAL RESULTS

We evaluate the proposed RL-based TPI framework on four

two-tier benchmark M3D designs, namely LDPC and Tate from

OpenCores, and netcard and leon3mp from the ISPD 2012

benchmark suite [18]. We first leverage Siemens EDA Tessent

to generate ATPG patterns, followed by the proposed high-

switching pattern extraction algorithm to extract the patterns

that are susceptible to yield loss. Details of ATPG-generated

patterns for the benchmark M3D designs are shown in Table I,

where Vdroop is the PSN-induced voltage droop. Next, we

utilize our RL models to find the TPs that help in detecting

UDs without causing high switching activities. Our RL frame-

work is implemented in PyTorch with the Stable-Baselines3

package [19]. Finally, we run Siemens EDA Tessent to insert

TPs and conduct low-power ATPG procedures to generate the

final pattern sets. In this work, the number of TPs is limited to

1% of the number of scan flops, which is the threshold adopted

by Siemens EDA Tessent, to prevent large area overhead.

We create two baseline cases, namely No-TP and ATPG-

TPI, by generating low-power patterns for benchmark M3D

designs without any TP and with TPs determined by ATPG,

respectively. Table II shows the results obtained after lower-

power pattern generation with the proposed RL-based TPI and

the baseline cases. Note that the values in parenthesis are

changes from the original pattern sets listed in Table I.

Compared to No-TP, the proposed RL-based TPI framework

provides higher test coverage for all benchmarks. This is

because some faults in the designs cannot be sensitized, prop-

agated, and captured by patterns with low switching activities

without any TP inserted. For the netcard benchmark, the reduc-

tion in test coverage is up to 0.99%. Such a reduction results

in more than 22K faults being undetected during testing, which

significantly increases the probability of test escape. Moreover,

the worse-case Vdroop of LDPC exceeds the critical voltage

droop shown in Table I. The PSN-induced yield loss problem

in the No-TP case cannot be fully eliminated. The proposed

RL-based TPI framework ensures that the PSN-induced voltage

droop for all benchmarks is lower than the critical Vdroop. The

inserted TPs also help in improving the test coverage.

The TPI procedure in the ATPG tool mainly focuses on test

coverage improvement. It is expected that for the LDPC bench-

mark, ATPG-TPI can achieve better test coverage than RL-

based TPI. However, for netcard and leon3mp, the test coverage

reduces after inserting TPs. This is due to the fact that switching

activity is not considered during the ATPG-based TPI process.

The inserted TPs tend to increase the ability of each pattern

to sensitize and capture multiple faults, leading to additional

switching activities. Such patterns with high switching activities

are discarded during low-power pattern generation; therefore,
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TABLE I: Details of the ATPG-generated patterns.

Design # Patterns Test coverage # High-switching patterns Worst-case Vdroop Critical Vdroop to cause yield loss Average WSA

LDPC 629 95.43% 121 (19.24%) 0.182 V 0.179 V 33.68%

Tate 366 98.43% 182 (49.73%) 0.130 V 0.120 V 22.49%

netcard 43873 97.81% 4833 (11.02%) 0.179 V 0.160 V 8.87%

leon3mp 18461 99.11% 1620 (8.78%) 0.118 V 0.116 V 6.65%

TABLE II: Comparisons between the proposed RL-based TPI framework and baseline cases.

Design
TPI # TPs # TPs

# Patterns Test coverage
Worst-case Vdroop of Average Yield loss

method from ATPG from RL low-power patterns WSA eliminated?

LDPC
No-TP 0 0 608 (-3.34%) 95.42% (-0.01%) 0.181 V 33.09% No

ATPG-TPI 20 0 712 (+13.20%) 95.65% (+0.22%) 0.165 V 33.17% Yes
RL-based TPI 5 15 656 (+4.29%) 95.47% (+0.04%) 0.173 V 32.93% Yes

Tate
No-TP 0 0 331 (-9.56%) 98.05% (-0.38%) 0.111 V 21.54% Yes

ATPG-TPI 314 0 432 (+18.03%) 98.82% (+0.39%) 0.111 V 21.32% Yes
RL-based TPI 78 236 460 (+25.68%) 98.88% (+0.45%) 0.111 V 20.68% Yes

netcard
No-TP 0 0 44962 (+2.48%) 96.82% (-0.99%) 0.133 V 8.85% Yes

ATPG-TPI 674 0 40172 (-7.20%) 97.51% (-0.30%) 0.151 V 8.83% Yes
RL-based TPI 168 506 41218 (-6.05%) 97.91% (+0.10%) 0.133 V 8.82% Yes

leon3mp
No-TP 0 0 19554 (+5.92%) 99.02% (-0.09%) 0.108 V 6.63% Yes

ATPG-TPI 1087 0 16862 (-8.66%) 97.74% (-1.37%) 0.113 V 6.64% Yes
RL-based TPI 217 870 18051 (-2.22%) 99.25% (+0.14%) 0.115 V 6.51% Yes

test coverage is decreased. In contrast, the proposed framework

includes switching activity in the reward function during RL

training. The impact of TPs on test coverage during low-power

pattern generation is minimized. Results with the RL-based TPI

demonstrate that our framework can eliminate the voltage droop

problem without any adverse impact on test coverage.

Note that the proposed RL model requires much fewer TPs

for PSN mitigation compared to ATPG-TPI. This advantage

allows additional TPs to be inserted to further improve test

coverage. In our framework, we carry out TPI procedures for

test coverage improvement with the remaining budget after

inserting the TPs selected using RL. Table II shows that the pro-

posed solution achieves better test coverage and lower worst-

case Vdroop than APTG-TPI for most designs. For leon3mp,

the test coverage improvement helps to detect additional 4.7K

faults during testing, leading to a significant reduction in test

escapes. Moreover, RL-based TPI achieves the best average

WSA for all benchmarks compared to baseline cases. This

helps minimize the impact of PSN on circuit delay throughout

the testing process, which also reduces the likelihood of good

chips failing on the tester under small variations.

VI. CONCLUSION

We have developed a power analysis flow to obtain the PSN-

induced voltage droop in M3D designs. We have created a pat-

tern extraction algorithm to extract high-switching patterns that

are susceptible to yield loss. Based on the above methods, we

have proposed an RL-based TPI framework to generate the best

TPs that help in detecting UDs without incurring high switching

activities. Using the OpenCore and ISPD benchmarks, we have

demonstrated that our framework is effective in reducing the

PSN-induced voltage droop. With the proposed TPI solution,

the yield loss problem due to the PSN in M3D designs can

be eliminated, without any loss of test coverage and with a

negligible increase in pattern count.
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