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Abstract—Monolithic 3D (M3D) integration for integrated cir-
cuits (ICs) offers the promise of higher performance and lower
power consumption over stacked-3D ICs. However, M3D suffers
from large power supply noise (PSN) in the power distribution net-
work due to high current demand and long conduction paths from
voltage sources to local receivers. Excessive switching activities
during the capture cycles in at-speed delay testing exacerbate the
PSN-induced voltage droop problem. Therefore, PSN reduction
is necessary for M3D ICs during testing to prevent the failure
of good chips on the tester (i.e., yield loss). In this paper, we
first develop an analysis flow for M3D designs to compute the
PSN-induced voltage droop. Based on the analysis results, we
extract the test patterns that are likely to cause yield loss. Next,
we propose a reinforcement learning (RL)-based framework to
insert test points and generate low-switching patterns that help in
mitigating PSN without degrading the test coverage. Simulation
results for benchmark M3D designs demonstrate the effectiveness
of the proposed power-safe testing approach, compared to baseline
cases that utilize commercial tools.

I. INTRODUCTION

Monolithic 3D (M3D) integration is an emerging technology
that promises to continue performance improvement when
Moore’s Law hits physical limits. M3D leverages fine-grained
monolithic inter-tier vias (MIVs) to achieve high alignment
precision and low power consumption. Compared to through-
silicon vias in today’s 3D technologies, MIVs are one to two
orders of magnitude smaller in size and the induced capacitance
is negligible [1]. These advantages enable the use of MIVs in
large numbers, leading to a significant reduction in wirelength.

The benefits of M3D integration are accompanied by design
and test challenges. One of the major concerns is related to
the power supply noise (PSN) in the power delivery network
(PDN). Compared to traditional 2D designs, M3D integrated
circuits (ICs) suffer more from PSN-induced voltage droop [2].
This problem is more severe in the test mode than in the
functional mode due to high switching activities during testing.
Excessive switching activities in the capture cycle can lead to
circuit timing degradation, which makes good chips fail on the
tester and yield loss.

Various test techniques have been proposed in the literature
to mitigate switching activities in the capture cycle. [3] provides
a survey of power-safe testing strategies used in industrial
designs. A don’t-care bit-filling (X-filling) algorithm [4] has
been developed to assign values to don’t-care bits in a partially-
specified pattern such that the switching activity can be mini-
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mized. However, X-filling algorithms limit the effectiveness of
test compaction. Low-power automatic test pattern generation
(ATPG) restricts the maximum switching activity of each
pattern. Clock-gating switches off parts of the circuit in the
capture cycle. However, low-power ATPG and clock-gating can
lead to either test data inflation or a reduction in test coverage.

Test point insertion (TPI) is used to improve the testability
and diagnosability of the circuit under test [5]. TPI leads to
high test coverage and a reduction of pattern count. However,
the study of TPI to reduce test power has not received much
attention. [6] uses TPs to decrease peak power consumption
during scan capture, but the locations for TPI are limited
to the outputs of scan elements. In [7], TPs are inserted at
the boundary of high-capture-power regions to reduce local
switching activities. However, the number of variables in the
proposed satisfiability (SAT)-based solution grows with the size
of the circuit, which is not scalable for high-density M3D
designs. A new TPI methodology is therefore needed for M3D
ICs to mitigate the PSN problem during testing.

In this paper, we propose a power-safe testing framework
for M3D designs. We leverage reinforcement learning (RL)
to find the best locations for TPI to help eliminate the yield
loss problem due to the PSN-induced voltage droop. The key
contributions of this paper are as follows:

o We develop a detailed M3D power analysis flow to extract
the PSN-induced voltage droop at local receivers.

e We describe an RL-based framework that uses the PSN-
induced voltage droop data and determines the optimal
types and locations of TPs for test power reduction.

o We demonstrate the effectiveness of the proposed ap-
proach by presenting evaluation results for M3D designs
and comparing our technique with a commercial tool.

The rest of the paper is organized as follows. Section II
provides an overview of M3D integration, test points, and RL.
Section III presents the proposed power analysis flow for M3D
designs. Details of our RL-based TPI framework are provided
in Section IV. In Section V, we compare the effectiveness of
the proposed framework with baseline cases that insert TPs
determined by a commercial ATPG tool. Finally, Section VI
concludes the paper.

II. BACKGROUND
A. Monolithic 3D Integration

All device tiers in an M3D design are fabricated in situ
on the same wafer. This has been made possible by the
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low-temperature manufacturing processes [8]. Low-temperature
processes are essential for upper-tier fabrication to prevent
devices and wires underneath from damage. Despite break-
throughs in manufacturing techniques, the PSN in M3D PDNs
remains a big challenge. PSN contributes to the difference
between the nominal voltage at power supplies and the voltage
at local receivers. In M3D designs, the supply current for the
bottom-tier devices must flow through the top-tier PDN [2].
The increase in the equivalent resistance along the conduction
path between power supply and receivers can lead to a high
IR-drop.

Efforts have been devoted in recent years to reducing PSN in
M3D designs. [2] proposes cell repositioning and metal scaling
to reduce the IR-drop. [9] uses genetic programming to create
a reliable PDN for M3D designs. However, such PDN opti-
mization methodologies aim at reducing PSN in the functional
mode. The voltage droop caused by PSN during testing has not
been addressed in prior work on testing M3D designs. In [4],
test-pattern reshaping algorithms are developed to eliminate the
PSN-induced yield loss problem in M3D designs. However,
the efficiency of the reshaping process is constrained by the
ATPG procedure without any design-for-testability structures.
Other related work on test power reduction for 2D designs is
of limited effectiveness for M3D because additional PSN due
to the 3D stacking in PDNs is overlooked. Therefore, there is
a need for a new solution that can adequately address the M3D
PSN issues during testing.

B. Test Points

Test points are of two types: control points (CPs) and
observe points (OPs). CPs are used to assign specific values
to certain signals in the design during testing. Typically, CPs
are inserted at locations that are difficult to control by existing
scan elements. OPs are introduced to capture signals at specific
locations, especially where fault effects are hard to propagate
through the capture logic.

The general purposes of TPI include pattern count reduction
and test coverage improvement. Leveraging TPI for test power
reduction has not been fully explored yet. For delay testing, OPs
can facilitate the observation of fault effects; CPs can provide
constant values in the capture cycles to switch off unnecessary
signals. These advantages allow ATPG tools to generate low-
switching patterns without an adverse impact on test coverage.
Therefore, we aim at developing an efficient framework to find
the best locations for TPI to reduce switching activities during
testing and eliminate the PSN-induced yield loss.

C. Reinforcement Learning

RL is a class of machine learning algorithms that can learn
an optimal decision-making process in an environment [10].
The optimal behavior is learned through the observations of
how the environment is changed by the action taken at each
time step, guided by reward values. The goal of RL is to find
the policy such that the cumulative reward over discrete time
steps is optimized.

RL algorithms have been shown to be effective in solving
electronic design automation problems. [11] proposes a deep
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Fig. 1: Power analysis flow for M3D ICs.
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RL solution for macro floorplanning that can achieve significant
power, performance, and area (PPA) improvements. In [12], RL
models are utilized to efficiently generate standard cell layouts
and fix design rule checking errors in the routing process.
An RL-based gate sizing algorithm for timing optimization
is developed in [13]. The effectiveness of RL in IC design
problems motivates us to develop an RL-based framework for
TPI. We aim at training an RL agent to find an optimal set
of TPs that can reduce switching activities and improve the
test coverage for low-power patterns. Such a co-optimization
problem typically requires large runtime and considerable hu-
man efforts in existing algorithms. In RL, multiple objectives
can be encoded into the reward function in the form of a
weighted combination of evaluation metrics, which ensures that
a solution can be derived more efficiently.

III. M3D POWER ANALYSIS

In this section, we describe the proposed power analysis
flow for M3D ICs to obtain the PSN-induced voltage droop at
each gate. We extend the analysis method available for today’s
commercial tools for conventional 2D designs by considering
the 3D structure of M3D PDNs. The analysis results are utilized
to identify test patterns that are susceptible to yield loss and
to evaluate the effectiveness of the proposed RL-based TPI
framework.

A. Overview

We first converted benchmark designs into the M3D version
using the method in [14]. The 3D placement and routing results
after tier-partitioning are saved in a design exchange format
(DEF) file. Next, we generated transition-delay fault (TDF)
patterns by Siemens EDA Tessent and wrote out the patterns
into Verilog testbenches. Given a pattern and the M3D design
netlist, we used Siemens EDA Questa advanced simulator to
conduct a gate-level logic simulation and record the switching
activities during capture cycles in a value change dump (VCD)
file. The M3D netlist, DEF, and VCD files were imported into
Cadence Voltus to perform vector-based power analysis of each
tier separately using the flow for traditional 2D designs. Finally,
we combined the tier-level analysis results to evaluate the PSN-
induced voltage droop in M3D. An overview of the proposed
power analysis flow is shown in Fig. 1.
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Input: M3D netlist N, DEF file fppr, Power analysis results f,
Output: M3D voltage droop Viroop

1 Vdroop =0

2 foreach logic gate g in N do

3 vg = VoltageDroopExtraction(g, fp)

4 if g in top tier then

5 ‘ Vdroop = Vdroop Uvg

6 else

7 vtop = NearestTopTierVoltageDroop(g, fpeF. fp)
s Ulg = Vg + Vtop

9 Vdroop = Vdroop U U;;

10 end

11 end

12 return Vi,o0p;

Fig. 2: Pseudo-code for M3D voltage droop evaluation.

B. M3D Voltage Droop Evaluation

Because commercial tools do not consider the impact of
3D integration, we develop an algorithm to extract the PSN-
induced voltage droop in M3D designs. Fig. 2 sketched the
steps involved in M3D voltage droop evaluation. Lines 2-11
iterate through every gate g in the input design. Line 3 extracts
the voltage droop of g from the tier-level power analysis report
generated by Cadence Voltus, denoted as v,. In Line 5, if g is
located at the top tier, we use v, to represent the voltage droop
of g. This is because the top-tier PDN is directly connected to
power supplies (i.e., C4 bumps). A problem with commercial
tools is that they overlook the following scenario. If g is in
the bottom tier, it suffers from additional voltage droop as the
supply current needs to flow through the top-tier PDN. Such an
effect is ignored by commercial tools during tier-level power
analysis. To simulate this scenario, in Line 7, we extract the
voltage droop of the top-tier gate that is nearest to the location
of g according to placement results. Lines 8-9 superimpose the
extracted value on v, to reflect the PSN effect in 3D integration
and used the superimposed value to represent the PSN-induced
voltage droop at g. The evaluation process is completed after
iterating through all the gates in both tiers.

Fig. 3 shows the voltage droop distributions of the Tate
Bilinear Pairing (Tate) benchmark with and without M3D
voltage droop evaluation. Note that the values provided by
a commercial tool are the difference between receivers and
power sources of each tier (i.e., C4 bumps for the top tier and
power MIVs for the bottom tier, respectively). From Fig. 3(a)
and Fig. 3(b), it is obvious that the voltage droop problem is
more severe in the top tier than in the bottom tier. This has
been explained in [2]. With the reduction of footprint in M3D
designs, the number of C4 bumps is limited by their large size.
Excessive current demand and the limited number of power
sources lead to high voltage droop in the power rails near
the C4 bumps. In contrast, the bottom-tier PDN is supplied
by numerous power MIVs, which serve as current sources
to prevent a large-magnitude current from flowing through
each MIV and surrounding metal wires. Therefore, the IR-drop
problem is mitigated. This scenario points out the drawback of
using existing 2D analysis flow for M3D designs. Voltage droop
hotspots shown in Fig. 3 tend to be overlooked in the report
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Fig. 3: Voltage droop distributions for the Tate benchmark: (a)
top-tier distribution from ATPG; (b) bottom-tier distribution
from ATPG; (c) distribution with the proposed M3D voltage
droop evaluation.
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Fig. 4: Flowchart for the proposed RL-based TPI framework.

generated by the commercial tool. The impact of such hotspots
on circuit timing may be underestimated, making it difficult to
identify the patterns that can cause yield loss. With the proposed
evaluation algorithm, the PSN-induced voltage droop in M3D
designs can be extracted appropriately. This is important for the
proposed RL-based framework for TPI to ensure that the yield-
loss problem is fully eliminated with the TP-inserted designs
and the resulting low-switching patterns.

IV. PROPOSED RL-BASED FRAMEWORK

Fig. 4 presents the flowchart of the proposed RL-based
TPI framework, where WSA is the weighted switching activ-
ity [15]. Given an M3D design, the corresponding DEF file,
and TDF patterns generated by an ATPG tool, we conduct
power simulation to extract high-switching patterns that are
susceptible to yield loss. Next, we update the fault list to
capture the remaining undetected faults (UDs) after pattern
extraction. The updated fault list and the M3D design become
inputs to our RL model to find the best set of TPs that can
help in detecting the UDs without incurring high switching
activities. We also leverage an ATPG-based TPI process for
test coverage improvement accompanied by the TPs determined
by RL. Finally, low-power ATPG is carried out on the TP-
inserted design to generate patterns that can mitigate the PSN-
induced yield loss problem without any adverse impact on the
test coverage.

A. Extraction of High-switching Patterns

In an ATPG pattern set, only a small proportion of patterns
can lead to yield loss; it is not necessary to reduce the switching
activity for each pattern. Therefore, the first step in the proposed
framework is to identify the high-switching patterns that lead to
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Input: M3D netlist N, DEF file fpgr, ATPG Patterns P
Output: Patterns P’ € P that are susceptible to yield loss
P =0
Psamplea = RandomSampling(P)
foreach pattern p in Psqmpieq do

Viroop = M3DPowerAnalysis(p, N, fprr)

if ScaledSlack(Viroop, N) < 0 then

| P’ := P’U HighSwitchPatterns(p, P)

end

end

S I N

return P’;

°

Fig. 5: Pseudo-code for extracting high-switching patterns.

excessive PSN-induced voltage droop. We extract such patterns
from the original pattern set. Fig. 5 sketches the steps in
our high-switching pattern extraction algorithm. In Line 2,
we randomly sample the input ATPG patterns because it is
time-consuming to conduct power analysis on every pattern.
In this work, we sample 5% of the ATPG pattern set to
identify high-switching patterns. Lines 3-8 iterate through each
sampled pattern, denoted as p. Line 4 runs the M3D power
analysis to obtain the PSN-induced voltage droop as described
in Section III. With the voltage droop values, we scale the slack
of the critical path in the M3D design in Line 5. Let v,,4, be
the maximum voltage droop values with p assuming the worst-
case scenario. The scaled slack is calculated as follows [16]:
_ Uth
Sdroop = telock — terit X 1_7”755 (D
VDD~ VUmax

where t.,c1 1S the clock period, £..;: is the delay of the critical
path, vpp and vy, are the supply voltage and the threshold
voltage according to the standard cell library, respectively. In
a fault-free chip without any voltage droop, the slack of the
critical path is always positive. However, if the voltage droop
induced by high switching activity in p makes s4,4,, become
negative, an erroneous response can be captured during testing,
leading to the failure of the good chip and yield loss. Therefore,
in Line 6, we calculate the WSA of each pattern; all patterns
with a WSA larger than the WSA of p are collected. Faults that
are uniquely detected by the collected patterns are the main
focus of the subsequent TPI process.

B. RL Training Environment

After extracting high-switching patterns, we conduct fault
simulation with the remaining patterns in the ATPG pattern
set to update the fault list. UDs in the updated fault list are
imported into the RL environment to guide the training process.
The objective of RL-based TPI is to find the best set of TPs that
can help in detecting such UDs with low-switching patterns.

Ideally, a TP can be inserted anywhere in the design.
However, this level of flexibility introduces prohibitively high
runtime to evaluate every candidate location for TPI, making
it impractical for RL training. Therefore, we narrow down
the number of candidates in each iteration during the training
process by partitioning the design into tiles and choosing one
location for each tile at a time. Fig. 6 shows an overview of our
RL training environment. We first convert the M3D netlist into

a graph, where each fault site (i.e., every pin of a gate) creates a
node, and connections between fault sites form the edges. After
graph construction, node features are calculated based on the
topological dependencies of the circuit and the input fault list.
Next, we partition the graph into tiles based on the location of
C4 bumps under the assumption that gates in the same tile tend
to be supplied by the same bump. When multiple gates in the
same tile switch simultaneously, a large-magnitude current is
drawn from the bump and flows through the surrounding metal
wires, leading to a large voltage droop. Therefore, the proposed
tile-partitioning method aims at collecting gates that are highly
correlated in a tile and guiding the RL model to minimize the
tile-based switching activities.

With the partitioned graph, we utilize the proposed tile-
based candidate heuristic to find a candidate for each tile in
one training iteration. In tile 7;, we choose the gate with
the largest distance to the launch and capture flops to be
the candidate. This is because when an OP is inserted, the
probability of detecting multiple UDs along the propagation
paths from the launch flops to the candidate location is in-
creased, while inserting a CP helps in switching off large
activities between the candidate and the capture flops. The
node feature of such a candidate is used as the representation
of T;, denoted as hr,. Feature vectors of candidates for n
tiles in the design [hr,, hr, ... h7,] forms an observation of
the RL model; the combinations of all tile-based candidate
features construct the observation space. The action space is
composed of two elements: (i) TPy € {T1,T5,...,T,}, and
(ii) TPyp. € {AND-type CP, OR-type CP, OP}, where TPy
and TPy, represent which tile-based candidate and which type
of TPs are going to be inserted, respectively. The state of
the environment and the reward are updated in every iteration
according to the action taken by the RL agent.

C. Reward Function

The primary objective of the proposed framework is to
improve the test coverage of UDs while minimizing switching
activities. In this case, we define our reward function as a
weighted combination of performance metrics. Let s! and a'
be the state and the action taken at time step ¢, making the state
become s‘*!. The reward function is defined as follows:

" =a-rpp+B-rsw (2)

where « and (3 are hyperparameters, ryp and rgy are rewards
for the detection of UDs and the reduction in tile-based
switching activities, respectively.

Note that the most straightforward method to evaluate the
impact of each action on the test coverage and the switching
activity is to re-generate patterns every time a TP is inserted.
However, the synthesis of TP logic and the pattern genera-
tion with commercial tools lead to large runtime overhead,
making it infeasible for RL training. To approximate the
impact of each TP, we utilize the signal-transition probability
(STP) metric from [17]. The STP of each node is denoted as
[pse, Ps,» pr,,P1;]s Where ps, (ps,) are the probabilities of
static-0 (static-1) signals, and pr, (pr,) are the probabilities
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Fig. 6: Overview of the training environment of the proposed RL-based TPI framework.

of rising (falling) transitions. We set the STPs of nodes corre-
sponding to primary inputs and pseudo primary inputs (i.e., out-
put pins of scan elements) to be [0.5, 0.5, 0, 0]. Next, to simulate
the launch and capture cycles in a TDF pattern, we propagate
the STPs throughout the graph twice to create the initial value
of each node. If an AND-type CP is inserted at node ¢ at time
t, because the signal of node ¢ can be forced to static-1 when
TPE is enabled (see Section II-B), we update the STP; such
that STP, ™' = 0.5-[1,0,0, 0] +0.5- STP.. If an OR-type CP is
inserted, STP:™ is updated to be 0.5 - [0,1,0,0] + 0.5 - STPL.
The STP’;Jrl is then propagated through the fan-out cone of
node ¢ to complete the state transition. The STP of every node
remains unchanged if an OP is inserted.

Based on the STPs, we approximate the detection of each
UD with ) (pr, + pr,) of nodes in its fan-out cone. This
value should be maximized to increase the probability of the
UD being captured by the scan elements. Note that if an OP is
inserted, the UD can be captured without propagating through
the existing scan flops; therefore, we calculate the ) (pr, +pr; )
along the paths through the OP to represent the impact of the
action. If such a summation is increased due to the action af,
the detection reward of UD u, denoted as df“ is 1; otherwise,
d!, is —1. Let the set of UDs being affected by the action be
Sup. Then rf;, can be calculated as:

ZUESUD dz
|Supl

rhp = 3)

For rgw, we approximate the tile-based switching activities
with > (pr, + pr,) for all the nodes in each tile. This value
should be reduced to minimize the PSN-induced voltage droop.
Therefore, the switching activity reward of tile 7;, denoted as
swry, is 1if Y (pr, +pr,) is decreased after a TP is inserted;
otherwise, swr, is —1. Let the set of tiles in the design be St.
Then 7%y, is calculated as:

Sz
Using Eq. (2)-(4), the RL agent is able to learn the impact
of each action on both the detection of UDs and the tile-based
switching activity. In this work, we set « = = 0.5 in Eq. (2)
to achieve co-optimization of test coverage improvement and
switching activity reduction. An assessment using other values
of ov and 3 is left for future work.

“4)

t_
Tsw =

V. EXPERIMENTAL RESULTS

We evaluate the proposed RL-based TPI framework on four
two-tier benchmark M3D designs, namely LDPC and Tate from

OpenCores, and netcard and leon3mp from the ISPD 2012
benchmark suite [18]. We first leverage Siemens EDA Tessent
to generate ATPG patterns, followed by the proposed high-
switching pattern extraction algorithm to extract the patterns
that are susceptible to yield loss. Details of ATPG-generated
patterns for the benchmark M3D designs are shown in Table I,
where Vj,o0p is the PSN-induced voltage droop. Next, we
utilize our RL models to find the TPs that help in detecting
UDs without causing high switching activities. Our RL frame-
work is implemented in PyTorch with the Stable-Baselines3
package [19]. Finally, we run Siemens EDA Tessent to insert
TPs and conduct low-power ATPG procedures to generate the
final pattern sets. In this work, the number of TPs is limited to
1% of the number of scan flops, which is the threshold adopted
by Siemens EDA Tessent, to prevent large area overhead.

We create two baseline cases, namely No-TP and ATPG-
TPI, by generating low-power patterns for benchmark M3D
designs without any TP and with TPs determined by ATPG,
respectively. Table II shows the results obtained after lower-
power pattern generation with the proposed RL-based TPI and
the baseline cases. Note that the values in parenthesis are
changes from the original pattern sets listed in Table I.

Compared to No-TP, the proposed RL-based TPI framework
provides higher test coverage for all benchmarks. This is
because some faults in the designs cannot be sensitized, prop-
agated, and captured by patterns with low switching activities
without any TP inserted. For the netcard benchmark, the reduc-
tion in test coverage is up to 0.99%. Such a reduction results
in more than 22K faults being undetected during testing, which
significantly increases the probability of test escape. Moreover,
the worse-case Vjro0p of LDPC exceeds the critical voltage
droop shown in Table I. The PSN-induced yield loss problem
in the No-TP case cannot be fully eliminated. The proposed
RL-based TPI framework ensures that the PSN-induced voltage
droop for all benchmarks is lower than the critical Vig,.o0p. The
inserted TPs also help in improving the test coverage.

The TPI procedure in the ATPG tool mainly focuses on test
coverage improvement. It is expected that for the LDPC bench-
mark, ATPG-TPI can achieve better test coverage than RL-
based TPI. However, for netcard and leon3mp, the test coverage
reduces after inserting TPs. This is due to the fact that switching
activity is not considered during the ATPG-based TPI process.
The inserted TPs tend to increase the ability of each pattern
to sensitize and capture multiple faults, leading to additional
switching activities. Such patterns with high switching activities
are discarded during low-power pattern generation; therefore,
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TABLE I: Details of the ATPG-generated patterns.

[ Design [ # Patterns | Test coverage | # High-switching patterns | Worst-case Vgro0p | Critical Viroop to cause yield loss [ Average WSA |

LDPC 629 95.43% 121 (19.24%) 0.182 'V 0.179 V 33.68%
Tate 366 98.43% 182 (49.73%) 0.130 V 0.120 V 22.49%
netcard 43873 97.81% 4833 (11.02%) 0.179 V 0.160 V 8.87%
leon3mp 18461 99.11% 1620 (8.78%) 0.118 V 0.116 V 6.65%
TABLE II: Comparisons between the proposed RL-based TPI framework and baseline cases.
. TPI # TPs # TPs Worst-case V, of | Average Yield loss
Design method from ATPG | from RL # Patterns Test coverage low-power [;ie;t(t)gfns WSAg eliminated?
No-TP 0 0 608 (-3.34%) 95.42% (-0.01%) 0.181 V 33.09% No
LDPC ATPG-TPI 20 0 712 (+13.20%) 95.65% (+0.22%) 0.165 V 33.17% Yes
RL-based TPI 5 15 656 (+4.29%) 95.47% (+0.04%) 0.173 V 32.93% Yes
No-TP 0 0 331 (-9.56%) 98.05% (-0.38%) 0.111V 21.54% Yes
Tate ATPG-TPI 314 0 432 (+18.03%) | 98.82% (+0.39%) 0.111V 21.32% Yes
RL-based TPI 78 236 460 (+25.68%) 98.88% (+0.45%) 0.111 V 20.68% Yes
No-TP 0 0 44962 (+2.48%) | 96.82% (-0.99%) 0.133 V 8.85% Yes
netcard ATPG-TPI 674 0 40172 (-7.20%) | 97.51% (-0.30%) 0.151'V 8.83% Yes
RL-based TPI 168 506 41218 (-6.05%) | 97.91% (+0.10%) 0.133 V 8.82% Yes
No-TP 0 0 19554 (+5.92%) | 99.02% (-0.09%) 0.108 V 6.63% Yes
leon3mp ATPG-TPI 1087 0 16862 (-8.66%) 97.74% (-1.37%) 0.113 V 6.64% Yes
RL-based TPI 217 870 18051 (-2.22%) | 99.25% (+0.14%) 0.115V 6.51% Yes
test coverage is decreased. In contrast, the proposed framework REFERENCES

includes switching activity in the reward function during RL
training. The impact of TPs on test coverage during low-power
pattern generation is minimized. Results with the RL-based TPI
demonstrate that our framework can eliminate the voltage droop
problem without any adverse impact on test coverage.

Note that the proposed RL model requires much fewer TPs
for PSN mitigation compared to ATPG-TPI. This advantage
allows additional TPs to be inserted to further improve test
coverage. In our framework, we carry out TPI procedures for
test coverage improvement with the remaining budget after
inserting the TPs selected using RL. Table II shows that the pro-
posed solution achieves better test coverage and lower worst-
case Viroop than APTG-TPI for most designs. For leon3mp,
the test coverage improvement helps to detect additional 4.7K
faults during testing, leading to a significant reduction in test
escapes. Moreover, RL-based TPI achieves the best average
WSA for all benchmarks compared to baseline cases. This
helps minimize the impact of PSN on circuit delay throughout
the testing process, which also reduces the likelihood of good
chips failing on the tester under small variations.

VI. CONCLUSION

We have developed a power analysis flow to obtain the PSN-
induced voltage droop in M3D designs. We have created a pat-
tern extraction algorithm to extract high-switching patterns that
are susceptible to yield loss. Based on the above methods, we
have proposed an RL-based TPI framework to generate the best
TPs that help in detecting UDs without incurring high switching
activities. Using the OpenCore and ISPD benchmarks, we have
demonstrated that our framework is effective in reducing the
PSN-induced voltage droop. With the proposed TPI solution,
the yield loss problem due to the PSN in M3D designs can
be eliminated, without any loss of test coverage and with a
negligible increase in pattern count.
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