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Taylor–Couette (TC) flow, the flow between two independently rotating and co-axial
cylinders, is commonly used as a canonical model for shear flows. Unlike plane Couette
flow, pinned secondary flows can be found in TC flow. These are known as Taylor rolls
and drastically affect the flow behaviour. We study the possibility of modifying these
secondary structures using patterns of stress-free and no-slip boundary conditions on
the inner cylinder. For this, we perform direct numerical simulations of narrow-gap TC
flow with pure inner-cylinder rotation at four different shear Reynolds numbers up to
Res = 3 × 104. We find that one-dimensional azimuthal patterns do not have a significant
effect on the flow topology, and that the resulting torque is a large fraction (∼80 %–90 %)
of torque in the fully no-slip case. One-dimensional axial patterns decrease the torque
more, and for certain pattern frequency disrupt the rolls by interfering with the existing
Reynolds stresses that generate secondary structures. For Re ≥ 104, this disruption leads to
a smaller torque than what would be expected from simple boundary layer effects and the
resulting effective slip length and slip velocity. We find that two-dimensional checkerboard
patterns have similar behaviour to azimuthal patterns and do not affect the flow or the
torque substantially, but two-dimensional spiral inhomogeneities can move around the
pinned secondary flows as they induce persistent axial velocities. We quantify the roll’s
movement for various angles and the widths of the spiral pattern, and find a non-monotonic
behaviour as a function of pattern angle and pattern frequency.

Key words: turbulence control, turbulence simulation, Taylor–Couette flow

1. Introduction

Taylor–Couette (TC) flow (Grossmann, Lohse & Sun 2016), the flow between two
concentric and independently rotating cylinders, has been used as a basic model for shear
flows for many decades (Donnelly 1991). The most particular and prominent feature of
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TC flow is its secondary large-scale flow structures, called Taylor rolls. In their laminar
state, Taylor rolls arise due to centrifugal effects (Taylor 1923). They are axisymmetric,
and fill the entire gap between the two cylinders. As the Reynolds number increases,
instabilities build on top of the rolls. They first develop azimuthal waves, entering the
wavy Taylor vortex flow regime. Further increases in the Reynolds number first cause
the onset of temporal modulation in the roll behaviour, and finally the transition to
turbulence of the rolls (Andereck, Liu & Swinney 1986). Their fate when the Reynolds
number becomes infinitely large depends on the curvature and the way the cylinders rotate.
Lathrop, Fineberg & Swinney (1992) found that, as the Reynolds number increases beyond
Res ∼ O(105), the Taylor rolls disappeared for pure inner-cylinder rotation. However,
Huisman et al. (2014) showed that, at Reynolds numbers of Res ∼ O(106), Taylor rolls
persist in time for certain cases of cylinder counter-rotation, which corresponded to the
cases with largest torque. This was explained in Sacco, Verzicco & Ostilla-Mónico (2019),
which showed that, for high Reynolds numbers, the presence or absence of rolls was
determined primarily by the amount of solid-body rotation in a reference frame where
both cylinders rotated with equal but opposite speeds. In the fully turbulent regime, only
moderate amounts of anti-cyclonic rotation acting as a Coriolis force would generate rolls,
which persisted for the largest Reynolds number achieved in simulations.

Taylor rolls are an important flow phenomenon because, when present, they account for
a large fraction of the convective transport of angular velocity across the gap (Brauckmann
& Eckhardt 2013; Ostilla-Mónico et al. 2016). If we are able to somehow affect or control
the behaviour of Taylor rolls, we can modify the torque and other flow statistics in a
TC or TC-like system. The simplest method would be to change the geometry of the
system to modify or eliminate the curvature and the mean rotation. However, this is often
not possible in existing engineering-technology apparatuses such as centrifugal mixers or
bio-reactors. Other flow control mechanisms are limited by the fact that turbulent Taylor
rolls seem to be a robust feature in the parameter space where they occur. They survive the
early stages of turbulence decay (Ostilla-Mónico et al. 2017), and are still present in the
highly turbulent regime, even when large axisymmetric grooves are placed on the cylinders
(Zhu et al. 2016).

In this manuscript, we explore a different way of modifying these rolls. Namely, we will
study the possibility of affecting the rolls by inducing a separate secondary flow that could
interfere destructively with them. To create this flow, we take inspiration from recent work
which has shown that patterns of heterogeneous roughness induce swirling motions in the
regions between high- and low-momentum flow pathways (Nugroho, Hutchins & Monty
2013; Barros & Christensen 2014; Willingham et al. 2014; Anderson et al. 2015). The same
kind of induced secondary flow can also be generated by using heterogeneous stress-free
boundaries in the place of roughness (Türk et al. 2014). These methods work because
turbulent secondary flows can be generated and sustained due to spanwise gradients in the
Reynolds-stress components. These gradients cause an imbalance between production and
dissipation of turbulent kinetic energy that necessitates secondary advective velocities to
balance. The induced flows are known as ‘Prandtl secondary flows of the second kind’.
Bakhuis et al. (2020) have shown that this is a plausible mechanism for controlling rolls
in TC. They combined experiments and simulations that introduced an alternating pattern
of spanwise roughness in the inner cylinder of a TC system. A significant effect on the
global flow properties and the local flow structures was reported at Reynolds numbers of
O(106), and for certain distributions of roughness a secondary flow was induced. However,
this method of affecting secondary flows will come at the price of increased drag, which
means energy losses in real world applications.

922 A17-2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

ol
ed

o,
 o

n 
21

 A
ug

 2
02

1 
at

 0
6:

10
:3

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.534


Controlling secondary flows in Taylor–Couette flow

We also draw inspiration from recent work in Rayleigh–Beńard (RB) convection, the
flow between two parallel plates heated from below and cooled from above. RB convection
is in close mathematical analogy to TC flow: TC flow can be understood as a convective
flow driven by the shear between the cylinders, where the angular velocity is transported
from one cylinder to the other (Eckhardt, Grossmann & Lohse 2007). Furthermore,
large-scale convective cells are present in RB convection which are very similar to Taylor
rolls. It has been shown that these cells can be altered through the use of boundary
heterogeneities. In particular, numerical (Ripesi et al. 2014; Bakhuis et al. 2018) and
experimental (Wang, Huang & Xia 2017) studies analysed modifications of the canonical
RB flow problem that used alternating conducting and insulating surfaces in the plates
to selectively restrict heat transfer. These studies reported changes in both the large-scale
flow structure and the overall heat transfer rate which depended on the size of the patterns.

Even if this analogy becomes weaker at higher Reynolds numbers, and for low curvature
systems, we take inspiration from it and choose to generate Reynolds-stress imbalances
by reducing the local drag through the use of hydrophobic, or stress-free surfaces. We
choose to focus on ideal stress-free surfaces, where there is no shear at the wall, rather
than introduce real boundary conditions where there is a finite slip, such as those in the
TC experiment of Srinivasan et al. (2015). This provides an ideal model for what can
be achieved in real-world circumstances, and allows us to conduct a wide parameter space
study from which experiments can take inspiration as well as elucidating the basic physical
mechanisms that underlie the process of Taylor roll control.

Aside from affecting secondary structures, the major impact of introducing stress-free
boundary conditions in wall-bounded flows is drag reduction. This has been a very active
research area, both from the point of view of manufacturing hydrophobic surfaces that
can generate slip (Watanabe, Udagawa & Udagawa 1999; Ou, Perot & Rothstein 2004),
as well as to finding the optimal pattern geometries to apply on surfaces. For laminar
flows, the drag reduction from using patterned stress-free surfaces has been studied both
theoretically (Philip 1972a,b; Lauga & Stone 2003), and numerically for both structured
patterns (Cheng, Teo & Khoo 2009) and random patterns (Samaha, Vahedi Tafreshi
& Gad-el Hak 2011). For turbulent flows, Türk et al. (2014) and Jelly, Jung & Zaki
(2014) studied the drag reduction obtained from stress-free spanwise patterns in channel
flow finding drag reductions of approximately 20 %. Meanwhile, Watanabe, Mamori &
Fukagata (2017) studied striped patterns at an oblique angle to the flow, finding the
maximum drag reduction for spanwise patterns. We wish to highlight that a pure focus
on drag reduction, such as explored for example in Lauga & Stone (2003), is not the main
interest of our study here. By patterning a surface with stress-free boundaries we naturally
expect to see drag reduction. Similarly to the previous studies, we expect the pattern
frequency and direction to affect the amount of drag reduction seen. However, we wish to
focus on the relationship between how much drag reduction we see, and how the secondary
structures are affected to better understand how these structures affect the torque.

We note that TC flow with stress-free patterned surfaces was already studied by Naim
& Baig (2019), who performed numerical simulations of TC at Reynolds numbers of
the order Res ∼ O(103) and used one- and two-dimensional stress-free patterns on the
cylinders. The patterns studied in that manuscript are similar to ours (cf. figure 1), and
we will not describe them here. Naim & Baig (2019) report a maximum drag reduction of
34 % at Res = 5000. They also report substantial modification of the large-scale structures.
However, their Reynolds number is in the range 4000 ≤ Res ≤ 5000, which corresponds
to a small region of parameter space.

In this manuscript, we will examine the effect of boundary heterogeneity on the flow for
Reynolds number in the range of Res ∈ (722, 30 000), which explores regions of parameter
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Figure 1. (a) Schematic of a TC geometry. (b) Schematic of the computational domain and the coordinate
system. (c– f ) Alternating free-slip and no-slip patterns over the rotating inner-cylinder: axially oriented pattern
which results in azimuthal (streamwise) inhomogeneity, azimuthally oriented pattern which results in axial
(spanwise) inhomogeneity, spiral pattern and checkerboard pattern.

space from steady Taylor vortices to the fully turbulent regime. We will study the role of
pattern geometry using several pattern shapes. To keep the parameter space manageable,
we focus on the resulting flow organization and torque in TC with pure inner cylinder
rotation, and will only apply stress-free conditions on the inner cylinder.

2. Numerical method

We directly simulate TC flow by solving the incompressible Navier–Stokes equations in
cylindrical coordinates in a rotating frame described below

∂u
∂t

+ u · ∇u + 2Ωrf × u = −∇p + ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity, Ωrf the angular velocity of the rotating frame, p the pressure
and t the time. We use a second-order energy-conserving central finite-difference scheme
for the spatial discretization. Time is advanced using a third-order Runge–Kutta for the
explicit terms and a second-order Crank–Nicolson scheme for the implicit treatment
of the wall-normal viscous terms. The complete algorithm is described in Verzicco &
Orlandi (1996) and van der Poel et al. (2015). We use the open-source code AFiD, which
has been parallelized using MPI directives and has been heavily validated for TC flow
(Ostilla-Mónico et al. 2014).

TC flow has two non-dimensional geometrical parameters which define the system: the
radius ratio η = ri/ro, where ri and ro are the radii of the inner and outer cylinders,
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Controlling secondary flows in Taylor–Couette flow

respectively, and the aspect ratio Γ = L/d, where d = ro − ri is the gap between the
cylinders, and L is the vertical height (or axial periodic length) of the system. In our case,
we fix η = 0.909, a small gap, and Γ = 2.33 with axially periodic boundary conditions,
which corresponds to allowing a single pair of rolls of wavelength λTR/d = 2.33. While
we artificially fix λTR, in real systems, the roll axial wavelength adjusts to the flow and to
the endwall locations (if nearby). For the purpose of this research, we ignore this effect,
and justify this in Appendix B, where we show results for a different roll wavelengths
λTR/d = 3, as well as for two pairs of rolls, to ensure that the results are as independent
as possible from domain size effects. We find that, while the quantitative values of the
results change (by less than 10 %), the qualitative features of the results presented below
are robust.

We simulate TC flow in the rotating frame discussed by Dubrulle et al. (2005), where
the inner and outer cylinder velocities are set to ±1

2 U, with U being the characteristic
velocity. With this, we have two control parameters: the shear Reynolds number Res =
Ud/ν, where ν is the fluid kinematic viscosity, and the non-dimensional Coriolis
parameter RΩ = 2dΩrf /U. For pure inner-cylinder rotation at ui inner-cylinder velocity,
we obtain RΩ = 1 − η and U = 2ui/(1 + η). A schematic of the system is shown in
figure 1, where the azimuthal (θ ), radial (r) and axial (z) coordinates are indicated.
For convenience, we define the non-dimensional radial coordinate r̃ = (r − ri)/d, the
non-dimensional axial coordinate z̃ = z/d and the non-dimensional streamwise coordinate
x̃ = rθ/d. Quantities are non-dimensionalized using the inner-cylinder velocity ui, and
the characteristic length d unless stated otherwise. From here on, any quantity will be
represented non-dimensionally unless stated otherwise.

We set the order of rotational symmetry in the azimuthal direction to nsym = 20 to
reduce computational costs. This results in a streamwise periodic length of 2π half-gaps
in the mid-gap, such that x̃ is in the (0, π) range. This is enough to generate accurate
statistics when no boundary inhomogeneities are present (Ostilla-Mónico, Verzicco &
Lohse 2015; Sacco et al. 2019). To further prove that the results are independent of nsym,
additional simulations are provided in Appendix B. Depending on the Reynolds number,
we vary the number of discretization points Ni of the simulation grid. In the current
study, we simulate Res = 7.22 × 102 (steady Taylor vortex regime) with a resolution
of Nθ × Nr × Nz = 32 × 64 × 64, Res = 2.28 × 103 (modulated Taylor vortex regime)
with 128 × 256 × 128, Res = 104 (turbulent Taylor vortex regime) with 192 × 384 × 256
and Res = 3 × 104 (turbulent Taylor vortex regime) with 384 × 512 × 512. This covers
everything from steady Taylor vortex flow to fully turbulent flow in the ultimate regime. A
table containing all simulated cases and the resulting torque is provided in Appendix A.

The adequacy of the resolution is checked by ensuring the energy input from the
cylinders matches the viscous dissipation to within 2 % (Ostilla-Mónico et al. 2014).
The simulations are started from initial conditions of white noise, and are run for 400
large-eddy turnover times (defined as d/U) to collect statistics after the transient has
passed. An additional criterion for temporal convergence of the statistics is that the angular
velocity transport, defined as Jω(r) = r3(〈uruθ/r〉θ,z,t − ν∂r〈uθ/r〉θ,z,t) (Eckhardt et al.
2007) must be constant to within 2 %, where 〈· · · 〉xi denotes an averaging operator over
variable xi. What this expresses is that the time average of the convective and viscous parts
of the torque are approximately constant at every radial coordinate. This provides a more
stringent criterion than just looking at the convergence of torque, as we use a second-order
statistics (〈uruθ/r〉θ,z,t) to ensure converge. The torque T is then calculated as the radial
average of J(r).

In a classical TC problem, the cylinders have a homogeneous no-slip boundary
condition, where the velocity of the fluid at the wall is simply the cylinder velocity.
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The flow is maintained by a torque applied at the cylinders T , which is usually
non-dimensionalized in the form of the Nusselt number Nu = T/Tpa, where Tpa is the
torque for the purely azimuthal flow solution. In the current study, we alternate no-slip
and free-slip boundary conditions. Free-slip boundary conditions are mathematically
expressed by the combination of no penetration (ur = 0), and vanishing normal derivatives
of the two velocity components tangential to the wall (∂ruθ = ∂ruz = 0). We impose the
stress-free boundary condition by setting the shear τ originating from the wall to zero at
the first grid point. This is done through modifying the viscous term, which for a staggered
velocity is first approximated using a finite difference of shears ([τ+ − τ−]/Δ), and these
shears are then approximated using a finite difference of velocities. The finite-difference
approach of the code rapidly allows us to change between no-slip and stress-free conditions
by setting τ− to be either zero, or to be the velocity gradient between the current velocity
and the wall. More details on the code operation are provided in van der Poel et al. (2015).

There are infinitely many geometric patterns of no-slip and free-slip conditions possible.
In this study, we reduce the geometrical parameter space to only consider the four patterns
shown in figure 1. We further reduce the parameter space by equally partitioning the
patterned surfaces between no-slip and free-slip boundary conditions. If the repeating
pattern is one-dimensional infinite stripes, it suffices to state the orientation of the stripes,
and the spatial frequency to characterize it. In particular, the spatial frequency fj is the
number of repeating patterns per unit gap width, and it is the inverse of the spatial period,
or wavelength λj of the pattern. In the case of alternating free-slip and no-slip boundary
conditions in the azimuthal (streamwise) direction, the pattern wavelength is given by λx =
L̂x/f = 2πri/(dnsymf ), while for stripes that alternate in the axial (spanwise) direction
(figure 3a) the pattern wavelength is λz = Γ/f . For the inclined/spiral patterns, there are
two ways to calculate the effective wavelength λα of the pattern, as it extends in both
stream- and spanwise directions. It is given by either λx sin(α), or λz cos(α), where α

is the angle of inclination of the pattern with respect to the streamwise direction. These
formulas become invalid in the limits of α = 0 and α = π/2, respectively. A visual can be
seen in figure 10(a).

The checkerboard patterns can be quantified through two wavelengths: one in the
axial direction and one in the azimuthal direction. When these are equal, we obtain a
checkerboard pattern composed of repeating squares, and otherwise we obtain repeating
rectangles. In the limit of one of the two wavelengths becoming infinite, we obtain either
pure axial or azimuthal variations. Further visuals on how λα or an equivalent orientation
of a checkerboard pattern can be defined are provided in figure 15(a).

3. Pure axial (spanwise) and azimuthal (streamwise) inhomogeneities

The first patterns we discuss are azimuthal and axial patterns, which can be understood as
purely streamwise and purely spanwise inhomogeneous boundary conditions respectively
(figure 1c,d). The case of axial (spanwise) variations is particularly interesting, because
it is expected to generate the sort of Reynolds-stress imbalances that induce additional
secondary flows. In addition, axial patterns are ‘frozen’ from the point of view of cylinder
and, because they are invariant in time, they are easier to analyse.

We begin by showing the instantaneous velocity near the inner cylinder at r̃ ≈ 0.05 for
the intermediate Reynolds number case Res = 2.28 × 103, in the modulated Taylor vortex
regime. We first focus on the homogeneous case, where we can see strong axial variation,
due to the presence of the Taylor roll, as well as azimuthal patterns caused by the waviness
of the roll. This azimuthal waviness is disrupted in figure 2(a,b) by the insertion of the
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Figure 2. Near-wall instantaneous azimuthal velocity (a) and (b) azimuthal inhomogeneity with fx = 0.32
and fx = 2.55 respectively; (c) no inhomogeneity; and (d), (e) and ( f ): axial inhomogeneities with fz = 0.43,
fz = 0.86 and fz = 3.43, respectively. All results are for Res = 2.28 × 103. Yellow stripes correspond to
stress-free zones and blue zones correspond to no-slip zones.

azimuthal inhomogeneities. It is also disrupted by the insertion of axial inhomogeneities.
Furthermore, the axial stratification changes character when axial patterns are introduced.
There is not much evidence of turbulence, and we expect the Reynolds stresses to be
weak in this case. We highlight that this Reynolds number is most similar to those which
have been explored by Naim & Baig (2019). However, due to the small radius ratio
they considered, the inner cylinder is more active in producing turbulent streaks, which
explains the qualitative differences between the cases in Naim & Baig (2019) and our
simulations.

In the turbulent Taylor vortex regime, the picture is somewhat similar to what was
analysed above. In figure 3, we show the instantaneous azimuthal velocities near the
inner cylinder for Res = 104 at r̃ ≈ 0.015 for various patterns. This value of r̃ roughly
corresponds to y+ = 13 − 15 in wall units, depending on the case, where y+ = (r −
ri)/δν , δν is the viscous unit δν = ν/uτ , and uτ is the frictional velocity. Near-wall
turbulent streaks can be seen due to the higher Reynolds number. For the case of azimuthal
variations, the influence of the pattern on the flow is minor for the lowest frequencies.
The web of streaks is somewhat disrupted, but the effect is small due to the inherent
elongation of streaks in the streamwise direction which bridges the gap across patterns
effectively. Aside from weak signatures of the pattern, these cases do not significantly
deviate from the homogeneous case shown in panel (c). This is consistent with the fact that
azimuthal inhomogeneities will not generate additional spanwise gradients of Reynolds
stresses which are known to induce secondary flows. Thus, as first approximation, we do
not expect them to affect the Taylor rolls much.

Axial inhomogeneities have a larger effect on the flow structure near the walls for
the lower frequencies. Parts of the flow are never forced, while other parts are always
forced. The azimuthal elongation of streaks cannot adequately redistribute momentum in
the axial direction, and larger changes in velocity than those seen in the homogeneous
case can be observed. For the lowest frequency, the roll structure is somewhat disrupted.
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Figure 3. Near-wall instantaneous azimuthal velocity (a) and (b) azimuthal inhomogeneity with fx = 0.32
and fx = 2.55 respectively; (c) no inhomogeneity; and (d), (e) and ( f ) axial inhomogeneities with fz = 0.43,
fz = 0.86 and fz = 3.43, respectively. All results are for Res = 104. Yellow stripes correspond to stress-free
zones and blue zones correspond to no-slip zones.

The pattern wavelength coincides with the roll wavelength, so the roll ‘places’ itself above
the no-slip boundary, and this mitigates the overall effect the inhomogeneities have on
the flow. However, for fz = 0.86 (figure 3e), the pattern wavelength is double the roll
wavelength, and this significantly interferes with the roll formation. As the frequency
is further increased, the destructive interference is weakened. For the highest frequency
simulated (fz = 3.43, figure 3 f ) the axial variation is less strong even if the signature of
the pattern is much more apparent than for azimuthal variations.

We continue by showing the non-dimensional torque Nu for various Reynolds numbers
and stripe wavelengths in figure 4(a,b). Our first observation is that the Nu(k) curve is
monotonic for almost all cases except for the large Re cases of figure 4(b,d), to which
we will return later to. Smaller pattern sizes result in higher torques even if the area
ratio between no-slip and stress-free regions is kept constant at 50 % each, consistent
with the existing literature (Watanabe et al. 2017; Naim & Baig 2019). These results are
emphasized in panels (c,d), which show the Nusselt number normalized by that obtained
when the walls are fully no slip (Nu/Nu0). In the case of azimuthal variations, the patterns
have a small effect: except for Res = 3 × 104, the torque drops down only to 85 % of the
homogeneous value for the smallest frequencies (largest patterns) simulated. For the axial
(spanwise) inhomogeneities the relative drops in torque is much larger (∼ 30 %). This
finding is consistent with Watanabe et al. (2017) and Naim & Baig (2019), who obtained
the largest drop in friction for stripes aligned in the axial direction. The magnitudes of
drag reduction achieved are also of the same order as those in these previous studies, in
particular, with the 32 % drag reduction seen for axial patterns in Naim & Baig (2019).

Increasing the frequency increases the torque, and for the smaller Res cases with
azimuthal inhomogeneities, the asymptotic value of Nu/Nu0 → 1 is reached in practice for
fx > 3 even if only 50 % of the cylinder surface is providing the torque. This means that the
local shear at these parts will be almost double the one present for the homogeneous case.
For Res = 3 × 104 the results also tend to an asymptote but at a slower rate. Our results
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Figure 4. (a,b) Non-dimensionalized (Nu) and (c,d) normalized torque (Nu/Nu0, with Nu0 the
non-dimensionalized torque for homogeneous cylinders) at various wavelengths and Reynolds number. (a,c)
Azimuthal inhomogeneities as in figure 1(c). (b,d) Axial inhomogeneities as in figure 1(d).

are consistent with the numerical Rayleigh–Bénard studies by Bakhuis et al. (2018), which
found a similar effect on the Nusselt number: with a 50 % area coverage of conducting
surface, the full heat transfer of the homogeneous case was recovered for the smallest
patterns of alternating insulating and conducting surfaces.

To explore the non-monotonicity of the Nu( fz) curve at higher Reynolds numbers
(figure 4b) we turn to the secondary flows. As mentioned in the introduction, we can
expect that non-homogeneity patterns in the boundary layers generate secondary flows
that interfere with the existing Taylor rolls. To corroborate this, we show the temporally
and azimuthally averaged azimuthal velocities 〈uθ 〉θ,t for Res = 104 and several values
of fz in figure 5 alongside the homogeneous case. Here, it is even more apparent that
the pattern frequency fz = 0.86 has a strong impact on the rolls, because it imposes an
inhomogeneity that has a wavelength of one half that of the inhomogeneity generated
by a roll pair, and the Prandtl flow of the secondary type induced by the pattern has a
destructive interference with the roll. Decreasing fz to one stripe pair per roll pair matches
the imposed axial inhomogeneity with the natural one from the Taylor roll pair. The roll
pair will then locate itself such that the ‘ejection’, or outflow region, where the outgoing
streams are generated, will reside on top of the no-slip region. Conversely, increasing the
frequency of the imposed axial inhomogeneity, results in the associated secondary flow
being increasingly absorbed inside of the boundary layer while the roll remains unaffected.

We can quantify this disruption using the roll amplitude. We calculate this taking
the temporally and azimuthally averaged radial velocity (〈ur〉t,θ ), and computing the
magnitude of the first Fourier mode in the axial direction at the mid-gap r̃ = 0.5. In
figure 5(e, f ) we show this amplitude A normalized by the amplitude for the homogeneous
case (A0) as a function of Reynolds number and pattern frequency for both azimuthal
and axial patterns. For the latter, we can see very clearly that, for the three higher
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Figure 5. Azimuthally and temporally averaged azimuthal velocity for η = 0.909, Res = 104 and axial
inhomogeneities at several frequencies (a) fz = 0.43, (b) fz = 0.86, (c) fz = 3.43 and (d) no inhomogeneity.
Yellow stripes correspond to stress-free zones and blue zones correspond to no-slip zones. (e, f ) Roll amplitude
normalized by the roll amplitude for the homogeneous case for azimuthal and axial variations as a function of
Res and pattern frequency.

Res, the amplitude shows a large dip for fz = 0.86. For the low-Re case in the steady
Taylor vortex regime there are no Reynolds stresses, as well as for all cases with
azimuthal variations where there is no axial/spanwise imbalance, the behaviour of A/A0 is
monotonic, i.e. the roll amplitude increases as the pattern gets smaller.

The disruption of the roll can be distinguished from a pure boundary layer effect by
examining how the axial patterns affect the behaviour of the temporally, axially and
azimuthally averaged azimuthal velocity 〈uθ (ri)〉θ,t,z. Figures 6(a) and 6(b) show this for
the lowest and highest Re simulated. The special behaviour of the fz = 0.86 case seen
previously vanishes, and the curves are ordered according to fz for both low and high
Reynolds numbers. We can further examine this by looking at how the effective slip
in the inner cylinder behaves. The effective slip velocity Us is defined as the deficit,
or slip, between the inner-cylinder velocity and 〈uθ (ri)〉θ,t,z. The effective slip length 


is then calculated using the averaged azimuthal velocity gradient at the inner cylinder
as 
 = Us/〈∂ruθ (ri)〉θ,t,z. These quantities are shown in figures 6(c) and 6(d) for the
azimuthal variations as a function of Reynolds number and pattern frequency. Remarkably,
no apparent change is observed at fz = 0.86 for the effective slip properties. All the
curves behave monotonically, with the effective slip length, with the effective slip velocity
decreasing with increasing pattern frequency. To highlight this, we show the local torque,
non-dimensionalized as a Nusselt number along the axial direction at the inner cylinder
for various axial inhomogeneities for Res = 2.28 × 103 and Res = 1 × 104 in the figure 7.
We can first see how the presence of the roll causes even the fully no-slip case to have
axial inhomogeneities, and that boundary inhomogeneities interact with this existing
inhomogeneity. Furthermore, the inhomogeneities cause the average value of the torque
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Figure 6. Mean azimuthal velocity along the radial gap for various pattern frequencies fz for (a) Res = 722 and
(b) Res = 3 × 104; darker colours signify higher values of fz, while the dashed black line is the homogeneous
case. (c) Effective slip length; and (d) effective slip velocity for all simulated cases of axial inhomogeneities.
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Figure 7. Temporally and azimuthally averaged Nusselt number at the inner cylinder along the axial direction
for various axial inhomogeneities fz at (a) Res = 2.28 × 103 and (b) Res = 1 × 104.

to increase, especially at the interface between regions. The local peaks are higher for
smaller pattern frequencies as the slip velocity is higher. These results highlight the crucial
difference between TC and the other shear flows previously studied: the disruption coming
from the boundary is able to interact with large-scale components to multiply its effects.

To further visualize the changes that are taking place due to the axial (spanwise) pattern,
we turn to the Reynolds stress. In rectangular coordinates, we can write a relatively simple
equation for a time- and streamwise-averaged streamwise vorticity Ωx (Einstein & Li
1958),

v
∂Ωx

∂y
+ w

∂Ωx

∂z
=

(
∂2

∂y2 − ∂2

∂z2

)
(−〈v′w′〉) + ∂2

∂y∂z
(v′2 − w′2) + ν

(
∂2Ωx

∂z2 + ∂2Ωx

∂z2

)
,

(3.1)

922 A17-11

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

ol
ed

o,
 o

n 
21

 A
ug

 2
02

1 
at

 0
6:

10
:3

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.534


V. Jeganathan, K. Alba and R. Ostilla-Mónico

z̃

r̃

r̃

z̃

1 20

0.5

1.0(a) (b)

(c) (d)

−0.0002

0

0.0002

1 20

0.5

1.0

−0.0002

0

0.0002

1 20

0.5

1.0

−0.0002

0

0.0002

1 20

0.5

1.0

−0.0002

0

0.0002

Figure 8. Azimuthally and temporally averaged Reynolds shear stress 〈uruz〉 for Res = 3 × 104 and axial
inhomogeneities for (a) fz = 0.43, (b) fz = 0.86, (c) fz = 3.43 and (d) no inhomogeneity. Yellow stripes
correspond to stress-free zones and blue zones correspond to no-slip zones.

where φ denotes the temporal- and streamwise-averaging operator, φ′ are fluctuations
around that mean and ωx is simply Ωx, representing the secondary flow.

This equation is derived by performing a streamwise- and temporal Reynolds-averaging
operation on the vorticity advection–diffusion equation

Dω

Dt
= −ω · ∇u + ν∇2ω, (3.2)

where ω is the flow vorticity and D/Dt denotes a convective derivative. By using the
definition of vorticity, the continuity equation and the properties of cross-derivatives, the
seventeen terms originating from Reynolds stresses can be reduced to the four to which
the viscid terms are added (Einstein & Li 1958).

For TC flow, this equation becomes even more complicated because of cylindrical
coordinates. The reduction to (3.1) would add many curvature terms and complicate the
interpretation. Basing ourselves on the analysis by Brauckmann, Salewski & Eckhardt
(2015), we can estimate the magnitude of the curvature terms to be of the order of
RC = (1 − η)/

√
η, which is 0.09 in our narrow-gap and low curvature case. Hence, we

keep the rectangular coordinates as they appear to us to be more useful to gain some
insights, and for now we neglect the error introduced due to curvature. This essentially
means taking Ωx, i.e. the Reynolds-averaged streamwise vorticity to be equivalent to Ωθ ,
setting v = ur and w = uz, and using 〈φ〉θ,t for the φ operator.

We focus on the generation of Ωx through spanwise gradients in shear Reynolds stresses.
These types of gradients induce the secondary flows, which are known as secondary
Prandtl flows of the second type (cf. §1). We first show the behaviour of the 〈uruz〉
Reynolds stress in figure 8, and in figure 9, we visualize GΩ = ∂2

z 〈uruz〉 near the walls.
The case with no inhomogeneity shows a concentration of GΩ near the walls. Here, GΩ

shows a spanwise variation which is periodic with a period equal to the rolls. This is hardly
surprising as this imbalance keeps the roll stable. For the fz = 0.43 case, the pattern cannot
impose a different period of spanwise variation of stresses, which are now increased on the
no-slip surface. For the fz = 0.86 case is where we see a significant interference between
the period imposed by the pattern, and that which stabilizes the roll – and this causes the
disruption seen above. Finally, while some disruption in the G pattern can be seen in the
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Figure 9. Azimuthally and temporally averaged spanwise Reynolds shear stress imbalance GΩ for η = 0.909,
Res = 3 × 104 and axial inhomogeneities at several frequencies (a) fz = 0.43, (b) fz = 0.86, (c) fz = 3.43 and
(d) no inhomogeneity. Yellow stripes correspond to stress-free zones and blue zones correspond to no-slip
zones.

fz = 3.43 case, the oscillations become averaged out due to their higher frequency. This
shows how the maximum roll disruption takes place: it is coupled to a disruption of the
‘natural’ period of the Reynolds stresses.

4. Mixed spanwise and streamwise variations

4.1. Spiral patterns
In this subsection, we modify the one-dimensional patterns studied above by placing them
at an arbitrary oblique angle to the flow. This results in spiral or oblique patterns, which
resemble a barber pole and introduce chirality into the system. While, in a statistical sense,
axial symmetry is recovered because every point is equally likely to be no slip or stress
free as the pattern moves through the domain, axial symmetry is persistently broken in an
instantaneous sense and this is known to induce spanwise (axial) velocities (Hasegawa,
Frohnapfel & Kasagi 2011; Watanabe et al. 2017). This induced velocity makes spiral
patterns another good candidate for affecting the rolls, as Ostilla-Mónico et al. (2016)
observed that an axial pressure gradient that generated an axial velocity was capable of
moving these structures.

We simulate oblique patterns for three (more) angles between θ = 0◦ (purely axial
inhomogeneity) and θ = 90◦ (purely azimuthal inhomogeneity). A sketch that quantifies
the wavelength of the underlying pattern and the speed at which it moves through the
domain is provided in figure 10(a,b) respectively. In particular, in figure 10(b) we plot
the relative spanwise (vs,z = −U sin(α) cos(α)/2) and streamwise (vs,x = −U sin2(α)/2)
pattern velocities with respect to the domain in figure 10(b), for all possible angles of
inclination. The maximum pattern velocity in the z direction is attained when α = 45◦,
and is equal to half of the cylinder speed U/2.

Intuitively, we may think that the pattern moves as the stripes do, and that by following
the movement of the stripes we are following the pattern. However, what is relevant here
is how the boundaries between stripes move, i.e. tracking the way the inhomogeneous
direction moves, because it is the direction across which imbalances exist.

We start by visualizing the near-wall azimuthal velocities for α = 36.6◦ and α = 20.4◦
in figures 10(c) and 10(d), respectively, to show the effect of an inclined pattern on the
flow. While the signatures are stronger than for purely azimuthal variations, they appear
weaker than those coming from purely axial variations as the elongated streaks are able
to bridge the gap between patterns. We continue by plotting the normalized torque for
two Reynolds numbers considered in figure 11, in the modulated Taylor vortex regime and
in the turbulent Taylor vortex regime. The large differences between the resulting torque
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Figure 10. (a) Inclined pattern parameters; (b) velocity of the pattern in spanwise vs,z (solid red) and
streamwise vs,x (dashed blue) directions for various angles of inclination. Near-wall instantaneous azimuthal
velocity of inclined inhomogeneity for Res = 104 with (c) α = 36.6◦, fα = 0.53 and (d) α = 20.4◦, fα = 0.92.
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Figure 11. Normalized torque for various α; (a) Res = 7.22 × 102 and (b) Res = 104.

when using axially and azimuthally oriented patterns are apparent in this representation,
as they are the two limit cases of spiral patterns. Unsurprisingly, we find that, for the most
part, the torques with different angles of the pattern lie between those of the azimuthal
and axial patterns in a predictable, monotonic order, again consistent with Watanabe et al.
(2017) and Naim & Baig (2019).

Before moving to the secondary flows themselves, we quantify the induced axial
(spanwise) velocities by showing 〈vz〉θ,z,t as a function of radius for several patterns and
several Reynolds numbers in figure 12. As can be seen from the figure, it is hard to discern a
simple behaviour from the plots, aside from some indications that, as fz → ∞, the induced
velocities go to zero. For α = 56.0◦ and fz = 1.72 the induced velocity does not change
significantly with Res, while for α = 36.6◦, the Res dependence is much stronger, with
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Figure 12. Mean induced axial velocity as a function of radius. (a) Varying pattern frequency fz with constant
angle α = 36.6◦ and constant Res = 3 × 104. (b) Varying pattern angle α with constant frequency fz = 1.72
and constant Res = 3 × 104. (c) Varying shear Reynolds number Res with constant α = 36.6◦ and constant
fz = 1.72. (d) Varying shear Reynolds number Res with constant α = 56.0◦ and constant fz = 1.72.

∼ 50 % variations. The only real conclusion we can make is that the patterns will induce
a velocity, which is of the order of 1 %–2 % of the cylinder velocity. This coincides with
the direction of the movement of pattern inhomogeneity, and not the pattern itself.

Even if the induced velocities are small, they are enough to nudge the large-scale
structures. Indeed, when we examine 〈uθ 〉θ,t, we find that the clear signature of the rolls
is absent. One such case is presented in figure 13(a), which shows 〈uθ 〉θ,t for the spiral
pattern fz = 1.72, α = 36.6◦ and Res = 104. However, strong rolls are still present in an
instantaneous velocity field. We quantify this statement by showing the auto-correlation of
the radial velocity in the mid-gap along the axial direction in figure 13(b). The large-scale
structures still exist as the radial velocity at the mid-point of the span is negatively
correlated at the wavelength of a Taylor roll.

The next step is to quantify the way the rolls are moving around. To quantify the axial
velocity of the rolls, we follow Sacco et al. (2019), and take the Fourier transform of
the azimuthal velocity in the mid-gap. We use the phase φ of the Fourier mode which
is axisymmetric and fundamental in the axial direction to find the axial displacement of
the rolls, and hence their velocity vroll,z = φ̇Γ /(2π). To show the effectiveness of this
approach, we depict space–time diagrams of the azimuthally averaged azimuthal velocity
in the mid-gap in figure 13(c,d), with the predicted location of the roll superimposed.
For the first case, shown in figure 13(c), the rolls remain relatively steady, fluctuating
around a fixed position. For the second case, in figure 13(d), we can see that the rolls
follow the induced velocity, and are moving downwards in time at a certain velocity,
instead of moving upwards following the motion of the spiral. To explain this, we return
to the diagram in figure 10(b). The no-slip region is swept downwards by the incoming
free-slip region, and the Reynolds-stress imbalance follows this direction of movement.
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Figure 13. (a) Average azimuthal velocity for a pattern of inclined stripes at Res = 104, α = 36.6◦ and fz =
1.72; (b) Radial velocity auto-correlation in the mid-gap along the axial direction for homogeneous TC (dashed)
and α = 36.6◦, fz = 1.72 (solid). (c,d) Space–time diagram of the azimuthal velocity in the mid-gap for (c)
homogeneous TC; and (d) α = 36.6◦ and fz = 1.72. Red and blue dashed lines correspond to the maximum
and the minimum mid-gap average azimuthal velocities in time, respectively, predicted from the phase angle
of the fundamental mode of the Fourier transform.

We postulate that the change in inhomogeneities in the downwards direction tends to move
the roll downwards along the direction of change of inhomogeneities.

In figure 14(a,c,e), we show the roll velocity vroll,z for various pattern frequencies and
varying Reynolds number. We highlight again that the negative sign of the axial roll
velocity denotes that the rolls are moving downwards in the axial direction, and not
upwards, following the stripe. For all the angles of inclination of the pattern, the roll
velocity is non-monotonic; it increases with pattern frequency until a maximum is reached,
and then decreases as the pattern becomes smaller and its effect becomes confined to the
boundary layers.

The rolls appear to have a certain resistance to moving because they achieve small
velocities relative to those of the pattern. Indeed, the roll velocity is of the order of
the induced axial velocities. It is very hard to elucidate what the functional form of
vroll,z(α, fz, Res) is. For the Res shown, some patterns seem to be present. First, increasing
the angle of inclination from α = 20.4◦ to α = 36.6◦, increases the roll velocity peak.
However, if the angle of inclination further increases to α = 56.0◦, a decrease in the roll
velocity peak is observed. To account for this, we show in figure 14(b,d,f ) the roll velocity
as a percentage of the pattern velocity in the axial direction, plotted for various pattern
frequencies and angles of inclination. It can be clearly seen that, for smaller values of
α, the rolls move with a higher fraction of the geometrical velocity, even if the absolute
velocities are smaller. The second noticeable thing is that there is a fz frequency for which
the velocity is maximal, and further increasing or decreasing the pattern size will slow
down the roll movement. While due to the limitations of our computer simulations it
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Figure 14. (a,c,e) Axial roll velocity for Res = 2.28 × 103, 104, 3.00 × 104. (b,d, f ) Axial roll velocity as the
percentage of the spanwise pattern velocity for different angles and axial frequencies of the pattern for Res =
2.28 × 103, 104, 3.00 × 104.

is impossible to do a proper fz sweep, this underlying pattern is present for almost all
curves. Finally, the dependence on Res cannot be properly elucidated. It is clear that, as
Res increases, the rolls keep on moving, in line with the presence of induced velocities
for all values of Res seen in figure 12. However, the underlying pattern is not clear. So, to
summarize, these oblique patterns will generate induced velocities that move the rolls at
velocities much slower than the cylinder speed, but how to optimize this velocity is unclear.
Further supporting material that shows that oblique patterns induce spanwise velocities
and move the rolls is provided in Appendix B for different roll wavelengths and numbers
of rolls.

4.2. Checkerboard patterns
The final pattern we have studied is checkerboard patterns, as shown in figure 15(a).
A schematic that defines their parameters is shown in figure 15(a). Similar to spiral
patterns, these patterns are inhomogeneous in both axial (spanwise) and azimuthal
(streamwise) directions, and will generate spanwise imbalances in the Reynolds stresses
which can induce secondary flows. However, checkerboard patterns do not break the axial
symmetry, so, in principle, we would not expect that a persistent axial velocity will result
from their application, and this is indeed corroborated when looking at the statistics.
Furthermore, as they move with the cylinder, the imbalances change and a symmetry is
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Figure 15. (a) Checkerboard pattern parameters and (b) near-wall instantaneous azimuthal velocity of
α = 45◦ square checkerboard pattern at Res = 104.
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Figure 16. (a) Non-dimensionalized and (b) normalized torque at various square checkerboard frequencies
and Reynolds numbers.

restored. Thus, their effect on the rolls is hard to guess a priori because the intermittent
imbalances could modify the rolls, or the effect could be rapidly absorbed within the
boundary layers.

To show the effect of the pattern on the boundary layer, we present the near-wall
azimuthal velocity in figure 15(b). Unlike the spiral pattern, the footprint on the flow
appears to be much smaller. Indeed, the flow appears to be very similar to that
generated by azimuthal inhomogeneities, where the streak elongation is able to wash
away the inhomogeneities very fast. To corroborate this, we show the torque of a square
checkerboard pattern (i.e. α = 45◦) for various frequencies, as shown in figure 16. The
curve is monotonic, and the torque increases with increasing pattern frequency. The
checkerboard case is thus not as special as the axial or spiral patterns.

To further analyse the square checkerboard pattern, we can compare its effect on the
torque with the spiral pattern at α = 36.6◦. To do this, we also simulated a similar
rectangular checkerboard pattern at α = 36.6◦. In figure 17(a), we show the normalized
torques for the two checkerboard patterns considered, and the spiral case, for Res = 104.
For the lower frequencies, the spiral pattern has a much lower torque than the checkerboard
patterns, whereas for the higher frequencies there is no significant difference in the torque.

The absence of a large dip in the torque for small frequencies is another indication
that the checkerboard pattern barely disrupts the rolls. This is further corroborated by
figure 17(b), which shows the normalized roll amplitude for the two checkerboard cases
studied. The values of A/A0 seen for both checkerboard geometries are in line with
those observed for azimuthal variations. Both azimuthal and checkerboard patterns do
not significantly disrupt the rolls and induce no meaningful secondary flows, making them
of low interest to our future research. Therefore, our analysis on this case is brief.
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Figure 17. (a) Normalized torque for different patterns: α = 36.6◦ spiral pattern (SP), α = 36.6◦ rectangle
checkerboard (CB) pattern, and α = 45◦ square checkerboard for Res = 104. (b) Normalized roll amplitude for
different pattern frequencies and two types of checkerboard pattern at Res = 104.

5. Summary and conclusion

Four pattern geometries of stress-free and no-slip boundary conditions have been applied
on the inner cylinder of a TC system to study the effect of boundary inhomogeneities on
existing pinned secondary flows (known as Taylor rolls) as well as other flow statistics. We
found that the azimuthal variations do not significantly alter the rolls and reduce the torque
by moderate amounts (as low as 10 % for most of the Reynolds numbers simulated) even
if 50 % of the surface is patterned and not able to transmit shear. The natural elongation of
streaks in the streamwise direction counters the effect of azimuthal patterns effectively.
In addition, because the azimuthal pattern is moving with the cylinder, the flow will
see intermittent stress-free and no-slip conditions, which restore symmetry in an average
sense.

The picture is different for the axial variations. A certain portion of the cylinder is always
stress free at any time, and this generates a persistent imbalance. Axial variations reduce
the torque to values as low as 65 % of the homogeneous TC torque value, consistent with
the low Reynolds number results found by Watanabe et al. (2017) and Naim & Baig (2019).
In addition, the fz = 0.86 pattern was found to generate Reynolds-stress imbalances that
induce a secondary flow that destructively interferes with the rolls, and this reduces the
torque beyond what is expected from just boundary layer effects analysed through effective
slip lengths and velocities.

We also applied spiral variations which break axial reflection symmetries of the problem
and introduce chirality. This induces a persistent axial velocity, which does not heavily
modify the roll but it is able to move it around along the direction of relative pattern
velocity with respect to the cylinder. For the three angles of inclination studied, there
is an optimum frequency at each inclination angle for which the roll movement becomes
maximum, which does not always coincide with the frequency that generates the maximum
induced velocity. When normalizing the roll velocity by the relative pattern velocity, we
found that the patterns with smaller angles of inclination tend to move the rolls with a
higher fraction of this velocity.

The last pattern we studied was the checkerboard pattern which neither generates an
induced velocity nor a persistent Reynolds-stress imbalance. Because of this, it ends up
not having a significant effect on the rolls, while modifying the torque in a similar manner
to the azimuthal patterns.

This study has served as confirmation that the Taylor rolls can be affected by careful
patterning of the inner-cylinder boundary. Limitations of this study are primarily due to the
fact that the parameter space to be explored is very large, and that we are only dealing with
a narrow-gap TC system with radius ratio η = 0.909 under pure inner-cylinder rotation.
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While this selection was advantageous to focus on Taylor rolls, as they are present even
at higher Res, in order to fully comprehend the effect of boundary heterogeneity, we must
further simulate radius ratios or combinations of different cylinder rotations where the
rolls are not present at higher Res. Further work will also include the analysis of more
realistic finite slip length patterns, which are obtainable in the laboratory.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.534.
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Appendix A. Nusselt number results

In tables 1 and 2 we present a summary of the Nusselt numbers obtained in the main study.

α fα Nu α fα Nu α fα Nu α fα Nu α fα Nu

Res = 7.22 × 102, Nu0 = 3.47
0◦ 6.87 3.23 20.4◦ 7.32 3.41 36.6◦ 8.55 3.49 56.0◦ 6.14 3.46 90◦ 5.09 3.46

3.43 3.11 3.66 3.33 4.27 3.45 3.07 3.43 2.55 3.44
1.72 2.98 1.83 3.21 2.14 3.39 1.54 3.37 1.27 3.38
0.86 2.75 0.92 2.98 1.07 3.26 0.77 3.24 0.64 3.23
0.43 2.52 0.53 3.07 0.32 3.03

Res = 2.28 × 103, Nu0 = 5.77
0◦ 6.87 5.18 20.4◦ 7.32 5.65 36.6◦ 8.55 5.75 56.0◦ 6.14 5.78 90.0◦ 5.09 5.85

3.43 4.93 3.66 5.53 4.27 5.70 3.07 5.73 2.55 5.83
1.72 4.75 1.83 5.38 2.14 5.60 1.54 5.64 1.27 5.62
0.86 4.45 0.92 4.52 1.07 5.41 0.77 5.48 0.64 5.38
0.43 3.83 0.53 4.80 0.32 5.08

Res = 1.0 × 104, Nu0 = 10.6
0◦ 6.87 9.73 20.4◦ 7.32 10.1 36.6◦ 8.55 10.4 56.0◦ 6.14 10.5 90.0◦ 5.09 10.6

3.43 9.20 3.66 9.82 4.27 10.2 3.07 10.3 2.55 10.5
1.72 8.38 1.83 9.36 2.14 9.92 1.54 10.0 1.27 10.1
0.86 7.70 0.92 8.63 1.07 9.48 0.77 9.57 0.64 9.76
0.43 7.50 0.53 8.88 0.32 9.15

Res = 3.0 × 104, Nu0 = 21.1
0◦ 6.87 18.1 20.4◦ 7.32 19.1 36.6◦ 8.55 19.7 56.0◦ 12.3 20.7 90.0◦ 5.09 20.3

3.43 16.4 3.66 17.8 4.27 19.0 6.14 20.1 2.55 19.2
1.72 15.5 1.83 16.4 2.14 18.0 3.07 18.0 1.27 18.4
0.86 14.7 0.92 15.3 1.07 17.0 1.54 18.3 0.64 17.1
0.43 14.3 0.53 15.9 0.77 16.8 0.32 15.7

Table 1. Nusselt number for cases with one-dimensional stripes and λTR = 2.33 and one roll.
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Res fα Nu Res fα Nu Res fα Nu Res fα Nu

7.22 × 102 5.09 3.46 2.28 × 103 5.09 5.73 1.0 × 103 5.09 10.4 1.0 × 103 5.09 10.3
α = 45◦ 2.55 3.43 α = 45◦ 2.55 5.70 α = 45◦ 2.55 10.3 36.6◦ 2.55 10.3

1.27 3.37 1.27 5.66 1.27 10.2 1.27 9.92
0.64 3.27 0.64 5.46 0.64 9.80 0.64 9.60
0.32 3.06 0.32 5.11 0.32 8.96 0.32 9.21

Table 2. Nusselt number for cases with checkerboard patterns and λTR = 2.33 and one roll.
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λTR = 2.33, nr = 1
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λTR = 3.00, nr = 1

Figure 18. (a) Normalized torque and (b) roll amplitudes at various wavelengths and different types of Taylor
rolls for Res = 104.
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Figure 19. Normalized torque for Res = 104 with (a) λTR = 2.33, nr = 1 and (b) λTR = 2.33, nr = 2.

Appendix B. Box size dependence

In this appendix we show additional results which corroborate the independence of our
conclusions from some of the geometrical and numerical control parameters chosen. In
particular, we vary the number of roll pairs nr and the wavelength of the rolls λTR. The
main study was conducted using Γ = λTR = 2.33, and nr = Γ/λTR = 1. In this appendix
we independently vary Γ and nr, and we also vary the order of rotational symmetry.

B.1. Axial patterns
In figure 18(a) we show the Nu( fz)/Nu0 curves at Res = 104 for different roll wavelengths
and numbers. All curves can be seen to have approximately the same shape. Figure 18(b)
shows the normalized roll amplitude as a function of fz for different cases. All curves show
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Figure 20. (a) Roll movement with two pairs of rolls: space–time plot of the averaged azimuthal velocity
at the mid-gap for λTR = 2.33, nr = 2, α = 36.6◦ and fz = 1.72. Red and blue dashed lines correspond to the
maximum and the minimum mid-gap average azimuthal velocities in time respectively predicted from the phase
angle of second mode of the Fourier transform; (b) induced axial velocity as a function of pattern frequency fz
with constant angle α = 36.6◦ for λTR = 2.33, nr = 2 and Res = 104. (c) Axial roll velocity of inclined pattern
pair for Res = 104.

a large dip in the roll amplitude for patterns at half the frequency of the roll, consistent with
what was observed in figure 5( f ).

B.2. Spiral patterns
Figure 19 shows the normalized torque for the spiral patterns at Res = 104 for the domain
studied above (Γ = 2.33 and nsym = 20), and a computational box with twice the domain
size (Γ = 4.66 and nsym = 10) such that two rolls are present. We can see that the graphs
show very similar behaviour, with the same ordering of the curves according to pattern
angle.

The roll motion is analysed in figure 20. Panel (a) shows how we apply the Fourier
method to determine roll velocity in the case of two rolls: by taking the second
fundamental axial Fourier mode. Panel (b) shows the induced velocities as a function of
fz. Again, velocities are more or less of the order of 1 %–2 % of the inner-cylinder velocity,
are in the negative direction and are highest close to the inner cylinder. Finally, panel (c)
shows how the roll velocity has a maximum for intermediate values of fz, consistent with
what was seen in the study (figure 14), and the velocities are also of the order of or less
than 1 % of the roll velocity. This is true both for rolls of different wavelength, and for
cases with two rolls.
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B.3. Nusselt number data
We present the Nusselt number data for this section in tables 3 and 4.

α fα Nu α fα Nu α fα Nu α fα Nu α fα Nu

0◦ 6.87 9.60 20.4◦ 7.32 10.2 36.6◦ 8.55 10.4 56.0◦ 6.14 10.5 90.0◦ 5.09 10.5
3.43 9.15 3.66 9.90 4.27 10.2 3.07 10.3 2.55 10.4
1.72 8.47 1.83 9.40 2.14 9.82 1.54 10.0 1.27 10.1
0.86 7.58 0.92 8.60 1.07 9.40 0.77 9.57 0.64 9.66
0.43 7.56 0.53 8.81 0.32 9.11

Table 3. Roll number dependence: Nu for cases with one-dimensional stripes, Res = 104, λTR = 2.33 and
two rolls. The homogeneous Nusselt number is Nu0 = 10.7.

α fα Nu α fα Nu α fα Nu α fα Nu

λTR = 3, Nu0 = 10.3 λTR = 1.5, Nu0 = 10.3

0◦ 6.87 9.22 36.6◦ 8.55 9.99 90.0◦ 5.09 10.1 0◦ 6.87 9.22
3.43 8.52 4.27 9.75 2.55 9.90 3.43 8.52
1.72 7.99 2.14 9.38 1.27 9.55 1.72 7.98
0.86 7.42 1.07 8.87 0.64 9.04 0.86 7.33
0.43 7.11 0.53 8.28 0.32 8.43 0.43 7.08

Table 4. Roll wavelength dependence: Nu for cases with one-dimensional stripes, Res = 104 and changing
λTR.
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