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In 1967, scientists used a simple climate model to predict that human-
caused increases in atmospheric CO2 should warm Earth’s tropo-
sphere and cool the stratosphere. This important signature of an-
thropogenic climate change has been documented in weather bal-
loon and satellite temperature measurements extending from near-
surface to the lower stratosphere. Stratospheric cooling has also
been confirmed in the mid- to upper stratosphere, a layer extending
from roughly 25 to 50 km above Earth’s surface (S25−50). To date,
however, S25−50 temperatures have not been used in pattern-based
attribution studies of anthropogenic climate change. Here we perform
the first such “fingerprint” study with satellite-derived patterns of
temperature change that extend from the lower troposphere to the
upper stratosphere. Including S25−50 information increases signal-
to-noise ratios by a factor of five, markedly enhancing fingerprint
detectability. Key features of this global-scale human fingerprint
include stratospheric cooling and tropospheric warming at all lati-
tudes, with stratospheric cooling amplifying with height. In contrast,
the dominant modes of internal variability in S25−50 have smaller-
scale temperature changes and lack uniform sign. These pronounced
spatial differences between S25−50 signal and noise patterns are ac-
companied by large cooling of S25−50 (1-2◦C over 1986 to 2022) and
low S25−50 noise levels. Our results explain why extending “vertical
fingerprinting” to the mid- to upper stratosphere yields incontrovert-
ible evidence of human effects on the thermal structure of Earth’s
atmosphere.
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In simulations performed with a simple radiative convective1

climate model in 1967, Manabe and Wetherald progressively2

doubled levels of atmospheric CO2 from 150 to 300 to 6003

parts per million (1). This yielded increasing warming of4

the troposphere and increasing cooling of the stratosphere5

(2), with cooling predicted to amplify with greater height6

above the tropopause. The vertical profile of temperature7

change predicted by Manabe and Wetherald was subsequently8

confirmed by more complex models and by observations (3–8).9

By the early 2000s, measurements of multidecadal changes10

in the thermal structure of the atmosphere were available from11

weather balloon networks (9, 10), satellite-based microwave12

sounders (11–13), and reanalyses (14). All three sources pro-13

vided adequate spatial coverage for estimating observed pat-14

terns of zonal-mean temperature change (5–7, 15) and for15

comparing these patterns with vertically resolved temperature16

changes obtained from General Circulation Model simulations.17

Early comparisons of this type noted that the observed18

latitude-height patterns were distinctly different from esti- 19

mated patterns of natural internal variability, but consistent 20

with the profile of atmospheric temperature change predicted 21

by Manabe and Wetherald in response to CO2 increases (4, 16). 22

This early research relied on weather balloon datasets with 23

coverage extending from the near-surface to the lower strato- 24

sphere, roughly 20 to 25 km above the surface. 25

Building on this pioneering work, quantitative “fingerprint” 26

studies revealed that model-predicted latitude-height patterns 27

of anthropogenic influence were statistically identifiable in 28

weather balloon temperature data (15, 17). This finding has 29

been confirmed repeatedly by subsequent investigations with 30

newer models and improved weather balloon data sets (18, 19). 31

The primary anthropogenic influences identified in weather 32

balloon atmospheric temperature data are external forcings 33

associated with increases in well-mixed greenhouse gases, the 34

depletion and recovery of stratospheric ozone, and changes in 35

particulate pollution (18–20). 36

Anthropogenic fingerprints have also been identified in at- 37

mospheric temperature measurements obtained from satellite- 38

based Microwave Sounding Units and Advanced Microwave 39

Sounding Units (MSU and AMSU) (21–23). As in the case 40
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of fingerprint studies with weather balloon data, the early41

fingerprint work with satellite-derived atmospheric temper-42

atures relied on data sets that did not extend higher than43

approximately 25 km above Earth’s surface (24–27).44

In consequence, all previous pattern-based studies seeking45

to discern a human fingerprint in weather balloon and satellite46

atmospheric temperature data have neglected the mid- to47

upper stratosphere (S25−50), where the temperature signal of48

CO2 increase is expected to be considerably larger than in the49

troposphere or the lower stratosphere (1, 8). In searching for an50

anthropogenic CO2 signal, the S25−50 layer has the additional51

advantage that it is less affected than lower atmospheric layers52

by particulate pollution and by human-caused changes in53

stratospheric ozone (28).54

Satellite-based Stratospheric Sounding Units (SSU) provide55

temperature changes for the S25−50 layer (29). Initial SSU-56

based temperature-change estimates obtained by two different57

groups diverged markedly (8) but are now in closer agreement58

(27, 30, 31).∗ Only one group, however, supplies spatially59

resolved SSU data suitable for pattern-based fingerprint studies60

and has merged SSU data with AMSU-A data (AMSU-A also61

samples the S25−50 layer). Merging allows extension of SSU62

data beyond 2006 (27), yielding a continuous record of mid-63

to upper stratospheric temperature change from 1986 to the64

present.† We refer to this merged product as “SSU”. Merged65

MSU and AMSU data, which sample the troposphere and66

lower stratosphere, are referred to as “MSU”.67

Here we expand upon earlier fingerprint studies that relied68

solely on MSU data for estimating latitude-height profiles of69

atmospheric temperature change (23). We leverage the avail-70

ability of improved SSU and MSU data sets and of newer71

simulations (32) performed with models with higher tops,72

which permits calculation of synthetic SSU temperatures from73

simulation output. We analyze atmospheric temperature sig-74

nals from a multi-model ensemble of historical simulations75

(HISText) that have been extended after 2014 with results76

from a specific climate change scenario. We also rely on an77

ensemble of pre-industrial control runs with no year-to-year78

changes in human or natural external factors. The control79

runs provide multi-model estimates of the “noise” of natu-80

ral internal variability. Model signal and noise estimates are81

essential ingredients of fingerprint studies (23, 33, 34).82

It is not obvious a priori how incorporating the mid- to83

upper stratosphere will affect signal-to-noise (S/N) ratios and84

the detectability of an anthropogenic fingerprint. While model85

and observed cooling signals in S25−50 are ≈ 1-2◦C over the86

satellite era (8, 31, 35), the noise of natural internal variabil-87

ity can be appreciable on monthly timescales, partly due to88

the impact of sudden stratospheric warming events on S25−5089

temperatures over the Arctic (36). Additionally, it must be90

determined whether human-caused signals and natural vari-91

ability have similar temperature-change patterns in the S25−5092

layer – a situation which would be unfavorable for signal identi-93

fication (37). Although previous investigations have compared94

simulated and observed global-mean temperature changes in95

the S25−50 layer (8, 31, 35), our study is the first to perform96

pattern-based fingerprinting with temperature changes extend-97

ing from the lower troposphere to the upper stratosphere.98

∗This agreement does not necessarily signify that observational uncertainties in SSU data are trivially
small. The process of identifying and adjusting for complex non-climatic factors is ongoing and
benefits from the involvement of multiple independent scientific groups.

†The SSU record commences in 1979, but several SSU channels have data gaps prior to 1986 (29).

We rely on satellite data from three groups and on model 99

data from phase 6 of the Coupled Model Intercomparison 100

Project (CMIP6) (32). Our focus is on temperature changes 101

in six atmospheric layers: SSU channels 3, 2, and 1 and 102

MSU retrievals for the lower stratosphere (TLS), the total 103

troposphere (TTT), and the lower troposphere (TLT). The 104

approximate peaks of the weighting functions for these six 105

layers are at 45, 38, 30, 19, 5.6, and 3.1 km above Earth’s 106

surface (respectively). Further details of all data sets and 107

analysis methods are given in the Materials and Methods and 108

the Supporting Information (SI) Appendix. 109
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Global Mean Temperature Changes in Model and Observed SSU and MSU Data

A   SSU3
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E   MSU TTT

F   MSU TLT

Pinatubo

Fig. 1. Observed and simulated changes in global-mean monthly-mean temperature
in six atmospheric layers. Results are temperatures from channels 3, 2, and 1 of the
Stratospheric Sounding Unit (SSU; panels A-C) (27), lower stratospheric temperature
from the Microwave Sounding Unit (MSU TLS; panel D), MSU total tropospheric
temperature (TTT; panel E) and MSU lower tropospheric temperature (TLT; panel
F) (25). The peaks of the weighting functions for these six layers are at ca. 45, 38,
30, 19, 5.6, and 3.1 km above Earth’s surface (respectively). Results are anomalies
relative to climatological monthly means over 1986 to 2022. Model simulations are
from nine different CMIP6 models and a total of 32 realizations of historical climate
change (see Methods and SI).

Global-mean changes 110

Consistent with the early Manabe and Wetherald predictions 111

of the atmospheric temperature response to CO2 increase (1), 112

both the satellite data and simulations performed with state- 113

of-the-art Earth System Models (ESMs) show tropospheric 114

warming and stratospheric cooling over 1986 to 2022 (Fig. 1) 115

(31, 35, 38, 39). Other common features in models and satellite 116

data include amplification of cooling with increasing height in 117

the stratosphere (8, 31, 35), short-term stratospheric warming 118

after the 1991 Pinatubo eruption (with warming decreasing in 119

amplitude with increasing stratospheric height), longer-term 120
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tropospheric cooling following Pinatubo (40), and a roughly121

11-year solar signal in the SSU channels (8, 35).122

Noticeable model-versus-observed differences include overes-123

timated model-average stratospheric cooling and larger model-124

average tropospheric warming trends (Fig. 2). The latter125

discrepancy is due to multiple factors, including model-versus-126

observed differences in the phasing of multidecadal Pacific127

internal variability (41), model forcing and response errors128

(42–44), and the relatively limited ensemble size of HISText129

runs available here (41). Residual errors in observed satellite130

data are also a possible contributory factor (39).131

In the three SSU channels, the stratospheric cooling trends132

over 1986 to 2022 in satellite data and HISText runs are over133

an order of magnitude larger than control run estimates of134

the natural internal variability of 37-year atmospheric tem-135

perature trends (Figs. 2A-C). The amplitudes of forced and136

unforced trends are more similar in the lower stratosphere and137

troposphere, although all satellite and HISText TLS, TTT,138

and TLT trends are still clearly separated from their respective139

control run distributions (Figs. 2D-F). These results indicate140

that at the global-mean level, the S/N properties of the S25−50141

layer are highly favorable for anthropogenic signal detection.142

The analysis in Fig. 2 is over 1986 to 2022 only – the period143

of continuous coverage of SSU and MSU temperature measure-144

ments. This period samples both the pronounced depletion145

of stratospheric ozone in the last three decades of the 20th146

century and the gradual recovery of stratospheric ozone in the147

early 21st century (28, 45). In addition to ozone, other atmo-148

spheric constituents can also show important time variations149

in radiative forcing (46–49). It is of interest here to consider150

the impact of such variations on simulated temperature-change151

profiles, and to explore how S/N properties changes as the net152

anthropogenic forcing changes.153

Figure 3 shows simulated global-mean temperature changes154

in the HISText runs. Results are for four different 25-year155

time windows: 1950-1974, 1975-1999, 2000-2024, and 2025-156

2049. The second and third periods sample times influenced by157

ozone depletion and ozone recovery (respectively) (28, 45); the158

fourth period has substantially larger net anthropogenic forcing159

than the first. As in Fig. 2, control run trend distributions160

provide information on the magnitude of unforced atmospheric161

temperature changes. This information is valuable for assessing162

the significance of the forced temperature trends in the HISText163

simulations.164

Consider the troposphere first. In TLT and TTT, each suc-165

cessive 25-year period has larger ensemble-mean tropospheric166

warming and greater separation from the mean of the sam-167

pling distribution of unforced trends (i.e., higher S/N levels).168

This progressive warming is consistent with increasing positive169

forcing by anthropogenic greenhouse gases. The early 1950-170

1974 period has large, time-increasing negative anthropogenic171

sulfate aerosol forcing (49), which helps to explain why the172

ensemble-mean HISText tropospheric temperature trends over173

this period are close to zero. Anthropogenic sulfate aerosol174

forcing decreases nonlinearly in the three subsequent analysis175

periods (49, 50), yielding a decrease in sulfate aerosol-induced176

tropospheric cooling. Although these pronounced temporal177

changes in anthropogenic sulfate aerosol forcing influence TLT178

and TTT, they have minimal effect on simulated stratospheric179

temperature trends.180

In the three SSU channels, stratospheric cooling occurs in181

each of the four analysis periods and in every HISText real- 182

ization (Figs. 3A-D). As in the case of the 1986-2022 period, 183

cooling in the HISText runs amplifies with increasing height 184

and is invariably significantly larger than 25-year trends aris- 185

ing from internal variability. One key difference relative to the 186

tropospheric results in Figs. 3E,F is that stratospheric cooling 187

does not increase monotonically as the 25-year analysis window 188

advances. The effect of the large stratospheric ozone depletion 189

over 1975-1999 is to augment CO2-induced stratospheric cool- 190

ing. As a result, the ensemble-mean HISText cooling of each 191

SSU channel (and of TLS) is larger over 1975-1999 than in 192

the subsequent 2000-2024 period. By 2025-2049, the primarily 193

CO2-driven cooling of the S25−50 layer exceeds the CO2 and 194

ozone-driven S25−50 cooling over 1975-1999. 195

Figure 3 shows that despite important changes over time 196

in the relative contributions of ozone and GHG forcing, the 197

simulated global-mean temperature change profile in response 198

to anthropogenic forcing is remarkably robust over 1950 to 199

2049. The temperature-change contrasts between tropospheric 200

warming and cooling of the mid- to upper stratosphere gen- 201

erally increase with time and with larger net anthropogenic 202

forcing and become easier to discriminate from natural internal 203

variability. The exception is in the lower stratosphere, where 204

forced temperature changes become less significant in the sec- 205

ond half of the 21st century. This is due to two factors. First, 206

lower stratospheric cooling due to GHG increases is partly 207

offset by warming arising from the recovery of stratospheric 208

ozone (28, 45). Second, the TLS weighting function receives 209

a small contribution from CO2-induced warming of the trop- 210

ical upper troposphere (51). As tropical upper tropospheric 211

warming increases over time (and as the height of the tropical 212

tropopause increases), this contribution becomes larger. 213

Latitude-height trend patterns 214

Latitude-height patterns of atmospheric temperature trends 215

are shown in Figs. 4A-L. In all nine models and in observa- 216

tions, tropospheric warming is hemispherically asymmetric, 217

with larger warming over the Arctic than over the Antarctic. 218

This asymmetry has multiple causes, including reduction in 219

atmospheric burdens of anthropogenic aerosols, feedbacks as- 220

sociated with substantial changes in Arctic sea ice extent over 221

the satellite era (52, 53), and hemispheric differences in ocean 222

circulation and heat uptake (54). 223

In satellite data, stratospheric cooling over 1986 to 2022 224

is also asymmetric, with larger cooling over the Arctic and 225

upward extension of a reduced cooling signal over the Antarctic 226

(Figs. 4K, L). Some models capture aspects of this upward 227

extension at mid- to high southern latitudes (Figs. 4B, C, F, G, 228

H, and I), but most models lack the observed south-to-north 229

decrease in S25−50 and the maximum Arctic cooling in S25−50. 230

The observed global-scale cooling of the S25−50 layer is 231

noticeably larger over 1986 to 2000 than over 2001 to 2022 232

(SI Figs. S1A, B). Larger stratospheric cooling in the ear- 233

lier period is partly due to recovery from Pinatubo-induced 234

stratospheric warming (Figs. 1A-D). The CMIP6 multi-model 235

average captures time-evolving behavior similar to that in the 236

satellite data, but lacks the prominent observed Arctic cool- 237

ing of S25−50 over 1986 to 2000 (SI Figs. S1C, D). As in the 238

case of model-versus-observed stratospheric cooling differences 239

over the longer 1986 to 2022 period, this discrepancy over the 240

Arctic is likely related to multiple factors (see Conclusions). 241
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Global Mean Temperature Changes in Model and Observed SSU and MSU Data
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Fig. 2. Total global-mean atmospheric temperature changes over 37-year periods. Results are for six different atmospheric layers, arranged vertically by height of the layer with
respect to Earth’s surface (panels A-F). The total temperature change is the least-squares linear trend per year × 37 years, calculated over 1986 to 2022 for the HISText

realizations and satellite observations and over 37-year non-overlapping segments of pre-industrial control runs. The latter provide estimates of the natural internal variability of
atmospheric temperature trends inferred from nine different CMIP6 models. The same nine models were used to calculate the multi-model average synthetic SSU and MSU
atmospheric temperature trends from 32 realizations of HISText runs with anthropogenic and natural external forcing. Trends from individual HISText realizations are also
shown. See SI for details of control run trend distributions and sources of observed data. The y-axis location of the HISText trends and observed trends is arbitrary.

Fingerprint results242

We use a standard pattern-based fingerprint method (23, 33,243

55). This yields S/N ratios as a function of L, the timescale244

in years. The fingerprint F is estimated from the multi-model245

average latitude-height temperature changes in the HISText246

simulations. The signal S is a measure of the pattern similarity247

between F and time-varying patterns of temperature changes248

in observations or in individual HISText simulations. The249

noise N provides information on the similarity between F250

and time-varying patterns of natural internal variability in251

model control runs (see Methods and SI). If S/N ratios are252

larger than 3, it is unlikely that the time-increasing similarity253

between F and the satellite data could be due to internal254

variability alone (55).255

Since our interest is in exploring the impact of temperature256

changes from different atmospheric layers on S/N properties,257

we show the signals calculated with fingerprints for four dif-258

ferent spatial domains (Fig. 5A). We refer to these domains259

subsequently as TROP, SSU, MSU, and SSU+MSU. They260

comprise the two tropospheric layers in Fig. 1, the three SSU 261

channels, the three MSU layers, and all six layers (respectively). 262

Fingerprints estimated from the multi-model average atmo- 263

spheric temperature changes for these four domains are shown 264

in the left column of Fig. 6. The fingerprints are dominated 265

by anthropogenic external forcing (see SI). 266

Consistent with the size of the global-mean temperature 267

changes in Fig. 2, the largest signals in Fig. 5A are for the 268

two domains (SSU and SSU+MSU) that include the large 269

temperature changes in the mid- to upper stratosphere; the 270

smallest signals are for MSU and TROP. This ordering of signal 271

strength holds for the simulations and for the observations. 272

The model spread in S(L) is greater for smaller values of L, 273

reflecting the larger noise of internal variability on shorter 274

timescales (56). On longer multidecadal timescales, the main 275

drivers of spread in S(L) are inter-model forcing and response 276

differences (57). 277

Values of S(L) decrease for analysis periods ending in 1991, 278

gradually recovering over the following 4-5 years (Fig. 5A). 279

This decrease in S(L) is due to the short-term stratospheric 280
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Global Mean Temperature Changes in Model SSU and MSU Data
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Fig. 3. Sensitivity of global-mean atmospheric temperature changes to the choice of analysis period. The total temperature change is the least-squares linear trend per year ×
25 years, calculated over four different periods for the HISText realizations (1950-1974, 1975-1999, 2000-2024, and 2025-2049) and over 25-year non-overlapping segments of
CMIP6 pre-industrial control runs. See Fig. 2 for analysis details and the SI for details of control run trend distributions. The y-axis location of the HISText trends is arbitrary.

warming and tropospheric cooling caused by the 1991 Pinatubo281

eruption – temperature changes that are of opposite sign to282

the searched-for anthropogenic fingerprints (see Figs. 6A, D,283

G, and J). For the SSU+MSU and SSU domains, stratospheric284

cooling during the recovery from the Pinatubo eruption aug-285

ments the gradual anthropogenically induced stratospheric286

cooling and produces a rapid increase in signal strength over287

1992 to 1997.288

For all four atmospheric regions, the noise N decreases as289

L increases (Fig. 5B). Values of N are largest for TROP and290

MSU and smallest for SSU+MSU and SSU – the reverse of291

the ordering for signal strength in Fig. 5A. Dividing S(L) by292

the respective value of N(L) yields the signal-to-noise ratio293

SN(L) in Fig. 5C. This ratio is markedly smaller for TROP and294

MSU than for SSU and SSU+MSU. In the three satellite data295

sets, SN(L) for the 37-year signal trend over the 1986 to 2022296

period varies between 4.6 and 6.6 for TROP, 6.7 and 9.0 for297

MSU, and 37.3 and 38.7 for SSU+MSU. For the SSU domain,298

SN(L) over the full analysis period is 49.3 in the only available299

satellite data set (27). In all four latitude-height domains, the300

model-predicted fingerprints in Fig. 6 are identifiable with301

high statistical confidence (at or above the 1% level) in each of302

the 32 HISText realizations and in each of the three observed 303

data sets.‡ 304

One of the key inferences from Fig. 5C – and a central find- 305

ing from our study – is that extending vertical fingerprinting 306

from “MSU space” to combined “SSU+MSU space” amplifies 307

signal-to-noise ratios in satellite data by a factor of ≈ 5 for 308

SN(L) calculated over the full 1986 to 2022 period. The in- 309

clusion of temperature changes in S25−50 is therefore useful in 310

discriminating between anthropogenically driven atmospheric 311

temperature change and internally generated variability. This 312

enhancement of SN(L) in SSU+MSU is partly due to the large 313

amplitude of the signal and the relatively low noise amplitude 314

in S25−50 (Fig. 2). Signal-to-noise enhancement also reflects 315

relative differences in the spatial similarity between the finger- 316

print F and the leading patterns of natural internal variability 317

in the SSU and MSU domains (see below). 318

Patterns of signal and noise modes 319

In the fingerprint for each of the four domains considered here, 320

temperature changes for individual satellite sounding channels 321

‡We note, however, that the three observational data sets are not independent for the SSU or
SSU+MSU domains – all share the same STAR SSU data.
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Fig. 4. Simulated and observed latitude-height profiles of atmospheric temperature trends over 1986 to 2022 (in ◦C/decade). Trends were calculated from zonal-mean
temperatures for the six atmospheric layers in Fig. 1. Trends are plotted at the approximate heights of the maxima of each weighting function peak and were smoothly
interpolated in the vertical. Model results are for HISText simulations performed with nine different CMIP6 models (panels A-I). If more than one HISText realization was
available for an individual model, the result in panels A-I is for the ensemble-mean trends. The CMIP6 multi-model average is also shown (MMA; panel J). Satellite observations
are for SSU data combined with two different observed MSU data sets (panels K and L; see Methods). Stippling in panel J denotes latitude bands and layers at which the local
S/N ratio exceeds 2 – i.e., where the CMIP6 MMA trend is two times greater than the between-model standard deviation of the trend. The stippling indicates that at each
latitude and for each of the six atmospheric layers, the MMA temperature trends are large relative to the between-model standard deviation of trends. The sole exception is in
TLS over the Arctic, where there are noticeable inter-model trend differences.

vary with latitude but remain either positive or negative across322

all latitudes (see left column of Fig. 6). In terms of vertical323

structure, the fingerprints for the MSU and SSU+MSU do-324

mains are characterized by a reversal with height in the sign325

of temperature change (Figs. 6D and J), consistent with the326

large tropospheric warming and stratospheric cooling signals327

common to the models analyzed here (see Figs. 4A-I). Other328

prominent fingerprint features include Arctic amplification of329

low-latitude warming in TROP and amplification of strato-330

spheric cooling with increasing height in the SSU domain331

(Figs. 6A and G, respectively).332

In contrast to the fingerprint patterns, the leading multi-333

model noise modes in the middle and right columns of Fig. 6334

display smaller-scale variability with pronounced meridional335

structure. For a given sounding channel, no noise mode has336

temperature changes with uniform sign at all latitudes. In the337

TROP domain, the leading noise mode reveals internal variabil-338

ity that is anticorrelated between the tropics and midlatitudes339

(Fig. 6B). This behavior is consistent with temperature fluc-340

tuations associated with the El Niño/Southern Oscillation341

(ENSO) (41). For the SSU domain, the variability in the lead-342

ing noise mode is strongly anticorrelated between the tropics343

and extratropics (Fig. 6H), likely due to tropical upwelling344

and polar downwelling driven by the shallow branch of the345

Brewer-Dobson circulation (BDC). The noise modes for the346

MSU and SSU+MSU domains capture aspects of both ENSO-347

and BDC-induced internal variability. 348

To quantify the spatial similarity between fingerprint and 349

noise patterns in Fig. 6, we calculated r{F:N1} and r{F:N2}, the 350

uncentered pattern correlations between F and the first two 351

noise modes of the concatenated control runs (37). Values of 352

r{F:N1} and r{F:N2} are smallest for the SSU and SSU+MSU 353

domains and largest for TROP and MSU (see SI Fig. S2). 354

This difference in pattern similarity across domains holds 355

for fingerprints calculated from individual CMIP6 HISText 356

realizations, the HISText multi-model average, and satellite 357

data sets. The small r{F:N1} and r{F:N2} values for the SSU 358

and SSU+MSU domains help to explain their large S/N ratios 359

in Fig. 5C – the fingerprints for these two domains are more 360

effective in filtering out internal variability noise. 361

For individual spatial domains, the clustering of points with 362

similar correlation values in SI Fig. S2 implies that the finger- 363

prints estimated from individual model results or individual 364

observational data sets are spatially similar. We show this 365

fingerprint similarity for the specific case of the SSU+MSU 366

domain (SI Fig. S3). The fingerprints in SI Fig. S3 are the lead- 367

ing Empirical Orthogonal Function (EOF) of the individual 368

model HISText simulations and the satellite data sets. 369

It is likely that higher-order EOFs capture additional forced 370

components of atmospheric temperature change, such as the 371

nonlinear TLS response to time-evolving forcing by lower 372

stratospheric ozone depletion (28, 58). This is illustrated by 373
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Signal, Noise, and S/N Ratios in CMIP6 Models and Satellite Data
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Fig. 5. Signal, noise, and S/N ratios in model and observed SSU and MSU data.
Signals were calculated by projecting temperature data for different sets of atmo-
spheric layers onto four fingerprints (SSU+MSU, TROP, MSU, and SSU) estimated
from CMIP6 HISText simulations, and then fitting trends of increasing length L years
to the resulting projection time series (panel A). CMIP6 control run temperature data
were projected onto the same four fingerprints, yielding the projection time series
Nctl(t). The noise σctl(L) is estimated by fitting non-overlapping L-year trends to
Nctl(t) and calculating the standard deviation of the L-year trend distribution (panel
B). The S/N ratio is the L-year signal in panel A divided by the respective values
of σctl(L) in panel B (see Methods and SI). Model signals are from 32 HISText

realizations; model noise is from 4,050 years of control run data. Signals and S/N
ratios in which observed temperature data are used are plotted with symbols and
dashed lines. The dashed horizontal line in panel C is the 1% significance level.

the spatial similarity between key features of the second EOF374

of the satellite data and certain CMIP6 HISText simulations,375

particularly the common negative loadings in the stratosphere376

at high latitudes of the Southern Hemisphere (see SI Fig. S4).377

Sensitivity tests378

We performed three sensitivity tests. The first explores the379

impact on fingerprint results of removing global-mean tempera-380

ture signals. The second test considers the effect of accounting381

for large differences in the mass of the six atmospheric layers382

analyzed here. The third test examines whether S/N results383

are biased by overlap between the weighting functions used to384

sample the temperatures of these six layers (59).385

In the first test, we find that removal of overall global-386

mean stratospheric cooling and tropospheric signals does not387

negate confident identification of an anthropogenic fingerprint388

in the vertical structure of atmospheric temperature change (SI389

Figs. S5 and S6). However, removing global-mean temperature390

changes in each of the six individual atmospheric layers –391

thereby removing information about vertical temperature-392

change gradients – markedly reduces S/N ratios and fingerprint393

detectability (see Methods and SI).394

The second and third sensitivity tests are described in the 395

Methods and SI. Although both tests reduce S/N values (see SI 396

Figs. S7 and S8), the model-predicted SSU+MSU fingerprint 397

can still be consistently identified in each of the individual 398

HISText realizations and satellite data sets. 399

Conclusions 400

Our results illustrate that including information from the mid- 401

to upper stratosphere (S25−50) substantially enhances the 402

detectability of an anthropogenic fingerprint on Earth’s atmo- 403

spheric temperature. This enhancement holds for observations 404

and for individual model HISText realizations. Extending 405

latitude-height fingerprints from the lower stratosphere to the 406

S25−50 layer samples a region of the atmosphere where the 407

direct radiative signature of CO2 is prominent (1, 2, 8), the 408

temperature signal driven by CO2 increase is large, and the 409

noise of natural internal variability is low. 410

The SSU+MSU vertical fingerprint extends from the lower 411

troposphere to roughly 50 km above the surface. Signal-to- 412

noise (S/N) ratios for the SSU+MSU domain consistently 413

exceed 38 in the satellite data analyzed here. This value is 414

virtually impossible to obtain by chance alone if our model- 415

based estimates of signal and noise are realistic (55). In the 416

satellite data sets, the S/N ratios for the SSU+MSU domain 417

are roughly a factor of five larger than in the case of the “MSU 418

only” vertical fingerprint, which truncates at an altitude of 419

approximately 20-25 km (Fig. 5C). 420

The larger S/N values for the SSU+MSU fingerprint arise 421

not only from the large cooling signal in the mid- to upper 422

stratosphere, but also from the low internal variability noise in 423

the S25−50 layer (Fig. 2) and the distinct differences between 424

S25−50 signal and noise spatial patterns (SI Fig. S2). As a 425

result, including the S25−50 layer in the SSU+MSU vertical 426

fingerprint more effectively damps the noise of natural internal 427

variability. A mass-weighted fingerprint analysis diminishes 428

the contribution of stratospheric cooling and is less effective at 429

separating signal and noise, but does not negate identification 430

of the SSU+MSU fingerprint. 431

One issue revealed by this study warrants further attention. 432

In the CMIP6 models analyzed here, model-predicted strato- 433

spheric cooling over 1986 to 2022 is significantly larger than 434

in the SSU data (Figs. 2A-C). Multiple factors are likely to 435

contribute to this discrepancy. These factors include model 436

errors in the imposed anthropogenic and natural external forc- 437

ings (42, 43, 60), in the simulated response to these forcings, 438

and in the properties of internal variability. Mismatches in 439

the random phasing of simulated and observed variability may 440

also be relevant (41, 44), along with residual errors in satellite 441

temperature data sets (25, 27, 61). 442

In the troposphere, accounting for model-versus-observed 443

differences in the phasing of Pacific decadal variability im- 444

proves agreement between simulated and observed temper- 445

ature trends over the satellite era (44). The magnitude of 446

decadal internal variability is smaller in the mid- to upper 447

stratosphere than in the troposphere (Fig. 1). It is unlikely, 448

therefore, that either phasing differences or model errors in 449

the amplitude of decadal variability could fully explain why 450

the simulated cooling of the S25−50 layer is significantly larger 451

than observed (Figs. 2A-C). Forcing errors appear to be a 452

more plausible explanation for this discrepancy, particularly 453

in view of the substantial (and ongoing) evolution of forcing 454
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estimates between CMIP5 and CMIP6 (39, 42, 60).455

The challenge in interpreting differences between simulated456

and observed temperature trends lies in reliably quantifying457

the relative contributions of the multiple factors mentioned458

above. Such work will benefit from systematic exploration459

of uncertainties in radiative forcing (42, 60, 62, 63). It is460

also important to perform rigorous model-data comparisons of461

decadal variability for stratospheric temperature, as has been462

done for tropospheric temperature (55, 64).§463

Model-based decadal variability estimates are an integral464

part of our fingerprint study. The reliability of these estimates465

underpins the credibility of our S/N ratios (Fig. 5). We note,466

however, that the CMIP6 models analyzed here would have to467

underestimate the observed (but uncertain) natural internal468

variability of stratospheric temperature by more than an order469

of magnitude in order to negate identification of an anthro-470

§Such comparisons are hampered by the relatively short length of the observations and by the
availability of only a single manifestation of forced and unforced temperature changes.

pogenic fingerprint in the SSU and SSU+MSU domains. We 471

find no evidence that such an error exists (see Fig. 1). 472

In summary, the warming of the troposphere and cooling 473

of the stratosphere across all latitudes is a unique fingerprint 474

of greenhouse gas forcing. If tropospheric warming were solely 475

due to solar activity, warming rather than cooling of the upper 476

stratosphere would be expected (15, 23, 65). Alternatively, if 477

stratospheric cooling and tropospheric warming at all latitudes 478

– sustained over decades – were caused by internal variability 479

alone, then similar patterns should sometimes emerge in the 480

many long control runs of global models. This is not the 481

case. Thus the ability to examine the vertical structure of 482

atmospheric temperature changes is a powerful tool for sepa- 483

rating human and natural effects on climate. Extending the 484

reach of “vertical fingerprinting” from the lower troposphere 485

to the upper stratosphere provides incontrovertible evidence 486

of anthropogenic impact on Earth’s climate. 487
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Materials and Methods488

Satellite data. We rely on satellite data from three groups: Remote489

Sensing Systems (RSS) (66), the Center for Satellite Applications490

and Research (STAR) (61, 67), and the University of Alabama491

at Huntsville (UAH) (26). STAR is the only current source of492

spatially resolved temperature data for SSU channels 1, 2, and 3493

(27). STAR, RSS, and UAH each supply MSU-based measurements494

of the temperatures of the lower stratosphere (TLS) and the mid-495

to upper troposphere (TMT). We apply a standard regression-based496

method to adjust TMT for the influence it receives from lower497

stratospheric cooling (68, 69), thereby obtaining the temperature of498

the total troposphere (TTT; see SI). Only RSS and UAH provide499

MSU estimates of the temperature of the lower troposphere (TLT).500

We “pair” STAR SSU data with UAH and RSS MSU data to501

generate two observed data sets spanning the lower troposphere to502

the upper stratosphere. Pairing STAR SSU, TLS, and TTT data503

with UAH TLT data yields a third observed data set (see SI).504

Model data. The model synthetic SSU and MSU temperatures ana-505

lyzed here are from phase 6 of the Coupled Model Intercomparison506

Project (CMIP6) (32). “Synthetic” indicates that the model re-507

sults were calculated with weighting functions that facilitate direct508

comparison between satellite and model temperature changes (see509

SI).510

The synthetic SSU and MSU temperatures are from three differ-511

ent types of numerical experiment: 1) Simulations with estimated512

historical changes in natural and anthropopogenic external forcings,513

which typically commence from January 1850 and end in December514

2014; 2) Scenario runs with post-2014 changes in anthropogenic515

external forcings that are specified according to a Shared Socioe-516

conomic Pathway which reaches radiative forcing of 8.5 W/m2 by517

2100 (SSP5-8.5); and 3) Pre-industrial control integrations with no518

year-to-year changes in external forcings.519

The CMIP6 historical and scenario simulations consider not only520

the effects of CO2 increases, but also include the radiative effects of521

changes in other greenhouse gases (70), anthropogenic aerosols, and522

solar and volcanic forcing. Temperatures from historical simulations523

and corresponding scenario runs were spliced together to permit524

comparison of model and observational results over 1986 to 2022.525

We refer to these as extended historical runs (HISText; see SI).526

The CMIP6 model historical and SSP5-8.5 simulations used in our527

study are identified in Table S1. The control runs required for noise528

estimation are listed in Table S2. We analyzed a total of 32 HISText529

realizations performed with nine different models and control runs530

generated with the same nine models.531

Fingerprint and signal trends. We project zonal-mean annual-mean532

atmospheric temperature onto a searched-for fingerprint pattern533

F (x, p) estimated from the multi-model average temperature534

changes in the HISText simulations. This yields the projection535

time series Z(t), a measure of uncentered spatial covariance (see536

SI). The indices x, p, and t are over latitude, atmospheric layer, and537

time (respectively). The T (x, p, t) temperature data projected onto538

F (x, p) are either from satellite observations or individual HISText539

realizations. Z(t) is a measure of the evolving pattern similarity540

between F (x, p) and T (x, p, t) at each year t. We compute L-year541

least-squares linear trends in Z(t), starting in 1986, the beginning542

of continuous SSU records. The first trend length L is five years,543

corresponding to the period 1986 to 1990; L is increased in one-year544

increments, with L = 37 corresponding to 1986 to 2022. The signal545

S(L) is the least-squares trend in Z(t). Large S(L) trends denote546

time-increasing similarity between the latitude-height temperature547

changes in T (x, p, t) and the fingerprint pattern.548

Noise trends. To determine whether and when the values of S(L)549

in Fig. 5A achieve statistical significance, we compare S(L) with550

null distributions in which we know a priori that natural internal551

variability is the only explanation for trends in pattern similarity.552

We use control runs with no year-to-year changes in external forcing553

to generate these “no signal” distributions. We project a total of554

4,050 years of atmospheric temperature data from nine CMIP6 pre-555

industrial control runs onto the TROP, SSU, MSU, and SSU+MSU556

fingerprints, resulting in a projection time series Nctl(t) for each557

fingerprint. Non-overlapping L-year trends in Nctl(t) are then558

calculated for each value of L considered (i.e., for L = 5, 6, . . . 37 559

years). For the L = 37-year analysis period, there are 109 individual 560

samples of trends in Nctl(t). The standard deviation of these L-year 561

noise trend distributions, σctl(L), is shown in Fig. 5B and is the 562

denominator of the S/N ratios in Fig. 5C. 563

Global-mean removal. To determine whether our S/N results are 564

solely driven by large global-mean temperature changes (21, 39), we 565

compared the baseline case in Fig. 5 (Case 1, which includes global- 566

mean changes) with two additional cases. In Case 2, the global- 567

mean temperature change in each of the six layers was removed 568

from each latitude band of each layer. Removal is performed for 569

each year t and each model and observational data set. Case 3 570

is analogous to Case 2, but the subtraction involved the overall 571

global-mean stratospheric temperature change (the average of the 572

global-mean changes in the three SSU channels and TLS) and the 573

overall global-mean tropospheric temperature change (the average 574

of the global-mean changes in TTT and TLT). These sensitivity 575

tests are described in the SI and are shown in SI Figs. S5 and S6 576

for the six-layer SSU+MSU domain. 577

ACKNOWLEDGMENTS. We acknowledge the World Climate Re- 578

search Programme’s Working Group on Coupled Modelling, which is 579

responsible for CMIP, and we thank the climate modeling groups for 580

producing and making available their model output. For CMIP, the 581

U.S. Department of Energy’s Program for Climate Model Diagnosis 582

and Intercomparison (PCMDI) provides coordinating support and 583

led development of software infrastructure in partnership with the 584

Global Organization for Earth System Science Portals. B.D.S was 585

supported by the Francis E. Fowler IV Center for Ocean and Cli- 586

mate at Woods Hole Oceanographic Institution (WHOI). Research 587

at Lawrence Livermore National Laboratory (LLNL) was performed 588

under the auspices of U.S. Department of Energy Contract DE- 589

AC52-07NA27344. S.P. and K.E.T. were supported through the 590

PCMDI Project, which is funded by the Regional and Global Model 591

Analysis Program of the Office of Science at the US Department of 592

Energy. C.-Z.Z. was supported by the NOAA Joint Polar Satellite 593

System (JPSS) Proving Ground and Risk Reduction (PGRR) Pro- 594

gram under NOAA grant NA19NES4320002 (Cooperative Institute 595

for Satellite Earth System Studies-CISESS) at the University of 596

Maryland/ESSIC. C.-Z.Z. was also funded by the National Centers 597

for Environmental Information (NCEI) Climate Data Record (CDR) 598

Program. Q.F. was supported by NSF Grant AGS-2202812. S.S. 599

was partly funded by NSF AGS grant 1848863. D.W.J.T. was sup- 600

ported by the NSF Climate and Large-Scale Dynamics division. For 601

C.-Z.Z., the views, opinions, and findings contained in this paper 602

are those of the authors and should not be construed as an official 603

NOAA or U.S. Government position, policy, or decision. Jia-Rui 604

Shi (WHOI) provided helpful comments on the manuscript. 605

1. S Manabe, RT Wetherald, Thermal equilibrium of the atmosphere with a given distribution of 606

relative humidity. J. Atmos. Sci. 24, 241–259 (1967). 607

2. HF Goessling, S Bathiany, Why CO2 cools the middle atmosphere – a consolidating model 608

perspective. Earth Syst. Dynam. 7, 697–715 (2016). 609

3. SB Fels, JD Mahlman, MD Schwarzkopf, RW Sinclair, Stratospheric sensitivity to perturbations 610

in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci. 37, 2265–2297 611

(1980). 612

4. DJ Karoly, et al., An example of fingerprint detection of greenhouse climate change. Cli. Dyn. 613

10, 97–105 (1994). 614

5. U Langematz, An estimate of the impact of observed ozone losses on stratospheric tempera- 615

ture. Geophys. Res. Lett. 27, 2077–2080 (2000). 616

6. SM Rosier, KP Shine, The effect of two decades of ozone change on stratospheric temperature 617

as indicated by a general circulation model. Geophys. Res. Lett. 27, 2617–2620 (2000). 618

7. V Ramaswamy, MD Schwarzkopf, Effects of ozone and well-mixed gases on annual-mean 619

stratospheric temperature trends. Geophys. Res. Lett. 29, 21–1–21–4 (2002). 620

8. DWJ Thompson, et al., The mystery of recent stratospheric temperature trends. Nature 491, 621

692–697 (2012). 622

9. AH Oort, H Liu, Upper-air temperature trends over the globe, 1958-1989. J. Clim. 6, 292–307 623

(1993). 624

10. DE Parker, et al., A new global gridded radiosone temperature data base and recent tempera- 625

ture trends. Geophys. Res. Lett. 24, 1499–1502 (1997). 626

11. RW Spencer, JR Christy, Precision and radiosonde validation of satellite gridpoint temperature 627

anomalies. Part II: A tropospheric retrieval and trends during 1979-1990. J. Clim. 5, 858–866 628

(1992). 629

12. FJ Wentz, M Schabel, Effects of orbital decay on satellite-derived lower-tropospheric tempera- 630

ture trends. Nature 394, 661–664 (1998). 631

13. CZ Zou, et al., Recalibration of microwave sounding unit for climate studies using simultaneous 632

nadir overpasses. J. Geophys. Res. 111, D19114 (2006). 633

Santer et al. PNAS | March 10, 2023 | vol. XXX | no. XX | 9



DRAFT

14. E Kalnay, et al., The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77,634

437–471 (1996).635

15. BD Santer, et al., A search for human influences on the thermal structure of the atmosphere.636

Nature 382, 39–46 (1996).637

16. KY Vinnikov, A Robock, RJ Stouffer, S Manabe, Vertical patterns of free and forced climate638

variations. Geophys. Res. Lett. 23, 1801–1804 (1996).639

17. SFB Tett, JFB Mitchell, DE Parker, MR Allen, Human influence on the atmospheric vertical640

temperature structure: Detection and observations. Science 274, 1170–1173 (1996).641

18. PW Thorne, et al., Assessing the robustness of zonal mean climate change detection. Geo-642

phys. Res. Lett. 29 (2002).643

19. FC Lott, et al., Models versus radiosondes in the free atmosphere: A new detection and644

attribution analysis of temperature. J. Geophys. Res. Atmos. 118, 2609–2619 (2013).645

20. V Ramaswamy, et al., Anthropogenic and natural influences in the evolution of lower strato-646

spheric cooling. Science 311, 1138–1141 (2006).647

21. BD Santer, et al., Influence of satellite data uncertainties on the detection of externally forced648

climate change. Science 300, 1280–1284 (2003).649

22. BD Santer, et al., Human and natural influences on the changing thermal structure of the650

atmosphere. Proc. Nat. Acad. Sci. 110, 17235–17240 (2013).651

23. BD Santer, et al., Identifying human influences on atmospheric temperature. Proc. Nat. Acad.652

Sci. 110, 26–33 (2013).653

24. C Mears, FJ Wentz, P Thorne, D Bernie, Assessing uncertainty in estimates of atmospheric654

temperature changes from MSU and AMSU using a Monte-Carlo technique. J. Geophys. Res.655

116, D08112 (2011).656

25. C Mears, FJ Wentz, Sensitivity of satellite-derived tropospheric temperature trends to the657

diurnal cycle adjustment. J. Clim. 29, 3629–3646 (2016).658

26. RW Spencer, JR Christy, WD Braswell, UAH version 6 global satellite temperature products:659

Methodology and results. Asia-Pac. J. Atmos. Sci. 53, 121–130 (2017).660

27. CZ Zou, H Qian, Stratospheric temperature climate record from merged SSU and AMSU-A661

observations. J. Atmos. Ocean. Tech. 33, 1967–1984 (2016).662

28. S Solomon, et al., Mirrored changes in Antarctic ozone and stratospheric temperature in the663

late 20th versus early 21st centuries. J. Geophys. Res. 122, 8940–8950 (2017).664

29. CZ Zou, H Qian, W Wang, L Wang, C Long, Recalibration and merging of SSU observations665

for stratospheric temperature trend studies. J. Geophys. Res. 119, 13180–13205 (2014).666

30. J Nash, R Saunders, A review of stratospheric sounding unit radiance observations for climate667

trends and reanalyses. Q. J. Roy. Met. Soc. 141, 2103–2113 (2015).668

31. AC Maycock, et al., Revisiting the mystery of recent stratospheric temperature trends. Geophys.669

Res. Lett. 45, 9919–9933 (2018).670

32. V Eyring, et al., Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)671

experimental design and organization. Geosci. Mod. Dev. 9(5), 1937–1958 (2016).672

33. K Hasselmann, On the signal-to-noise problem in atmospheric response studies. (Roy. Met.673

Soc., London), pp. 251–259 (1979).674

34. GC Hegerl, et al., Detecting anthropogenic climate change with an optimal fingerprint method.675

J. Clim. 9, 2281–2306 (1996).676

35. MC Casas, et al., Understanding model-observation discrepancies in satellite retrievals of677

atmospheric temperature using GISS ModelE. J. Geophys. Res. 128, e2022JD037523 (2022).678

36. J Rao, CI Garfinkel, CMIP5/6 models project little change in the statistical characteristics of679

sudden stratospheric warmings in the 21st century. Environ. Res. Lett. 16, 034024 (2021).680

37. BD Santer, et al., Signal-to-noise analysis of time-dependent greenhouse warming experi-681

ments. Cli. Dyn. 9, 267–285 (1994).682

38. DM Mitchell, YTE Lo, WJM Seviour, L Haimberger, LM Polvani, The vertical profile of recent683

tropical temperature trends: Persistent model biases in the context of internal variability. Env.684

Res. Lett. 15, 1040b4 (2020).685

39. BD Santer, et al., Using climate model simulations to constrain observations. J. Clim. 34,686

6281–6301 (2021).687

40. BD Santer, et al., Volcanic contribution to decadal changes in tropospheric temperature. Nat.688

Geosci. 7, 185–189 (2014).689

41. S Po-Chedley, et al., Natural variability drives model-observational differences in tropical690

tropospheric warming. Proc. Nat. Acad. Sci. 118, e2020962118 (2021).691

42. JC Fyfe, V Kharin, BD Santer, RNS Cole, NP Gillett, Significant impact of forcing uncertainty692

in a large ensemble of climate model simulations. Proc. Nat. Acad. Sci. 118, e2016549118693

(2021).694

43. JT Fasullo, et al., Spurious late historical-era warming in CESM2 driven by prescribed biomass695

burning emissions. Geophys. Res. Lett. 49, e2021GL097420 (2022).696

44. S Po-Chedley, et al., Internal variability and forcing influence model-satellite differences in the697

rate of tropical tropospheric warming. Proc. Nat. Acad. Sci. 119, e2209431119 (2022).698

45. S Solomon, et al., Emergence of healing in the Antarctic ozone layer. Science 353, 269–274699

(2016).700

46. V Ramaswamy, MD Schwarzkopf, WJ Randel, Fingerprint of ozone depletion in the spatial701

and temporal pattern of recent lower-stratospheric cooling. Nature 382, 616–618 (1996).702

47. P Forster, et al., Changes in Atmospheric Constituents and in Radiative Forcing in Climate703

Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth704

Assessment Report of the Intergovernmental Panel on Climate Change, eds. S Solomon, et al.705

(Cambridge University Press), pp. 129–234 (2007).706

48. G Myhre, et al., Anthropogenic and natural radiative forcing in Climate Change 2013: The707

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the708

Intergovernmental Panel on Climate Change, eds. TF Stocker, et al. (Cambridge University709

Press), pp. 659–740 (2013).710

49. C Bonfils, et al., Human influence on joint changes in temperature, rainfall and continental711

aridity. Nat. Clim. Chang. 10, 726–731 (2020).712

50. K Riahi, et al., The Shared Socioeconomic Pathways and their energy, land use, and green-713

house gas emissions implications: An overview. Glob. Env. Chang. 42, 153–168 (2017).714

51. Q Fu, P Lin, S Solomon, DL Hartmann, Observational evidence of strengthening of the715

Brewer-Dobson circulation since 1980. J. Geophys. Res. 120, 10214–10228 (2015).716

52. N Feldl, S Po-Chedley, HKA Singh, S Hay, PJ Kushner, Sea ice and atmospheric circulation717

shape the high-latitude lapse rate feedback. npj. Clim. Atmos. Sci. 41 (2020). 718

53. M Rantanen, et al., The Arctic has warmed nearly four times faster than the globe since 1979. 719

Commun. Earth. Environ. 3 (2022). 720

54. J Marshall, et al., The ocean’s role in polar climate change: asymmetric Arctic and Antarctic 721

responses to greenhouse gas and ozone forcing. Phil. Trans. Roy. Soc. A 372 (2014). 722

55. BD Santer, et al., Robust anthropogenic signal identified in the seasonal cycle of tropospheric 723

temperature. J. Clim. 35, 6075–6100 (2022). 724

56. BD Santer, et al., Separating signal and noise in atmospheric temperature changes: The 725

importance of timescale. J. Geophys. Res. 116, D22105 (2011). 726

57. E Hawkins, R Sutton, The potential to narrow uncertainty in regional climate predictions. Bull. 727

Amer. Met. Soc. 90, 1095–1108 (2009). 728

58. WJ Randel, AK Smith, F Wu, CZ Zou, H Qian, Stratospheric temperature trends over 729

1979–2015 derived from combined SSU, MLS, and SABER satellite observations. J. Clim. 29, 730

4843–4859 (2016). 731

59. A Steiner, et al., Observed temperature changes in the troposphere and stratosphere from 732

1979 to 2018. J. Clim. 33, 8165–8194 (2020). 733

60. LA Rieger, WJ Randel, AE Bourassa, S Solomon, Stratospheric temperature and ozone 734

anomalies associated with the 2020 Australian New Year fires. Geophys. Res. Lett. 48, 735

e2021GL095898 (2021). 736

61. CZ Zou, H Xu, X Hao, Q Liu, Mid-tropospheric layer temperature record derived from satellite 737

microwave sounder observations with backward merging approach. J. Geophys. Res. 128, 738

e2022JD037472 (2023). 739

62. R Pincus, PM Forster, B Stevens, The Radiative Forcing Model Intercomparison Project 740

(RFMIP): Experimental protocol for CMIP6. Geosci. Mod. Dev. 9, 3447–3460 (2017). 741

63. NP Gillett, et al., The detection and attribution model intercomparison project (DAMIP v1.0) 742

contribution to CMIP6. Geosci. Mod. Dev. 9, 3685–3697 (2016). 743

64. J Pallotta, BD Santer, Multi-frequency analysis of simulated versus observed variability in 744

tropospheric temperature. J. Clim. 33, 10383–10402 (2020). 745

65. GC Hegerl, et al., Understanding and Attributing Climate Change in Climate Change 2007: 746

The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report 747

of the Intergovernmental Panel on Climate Change, eds. S Solomon, et al. (Cambridge 748

University Press), pp. 663–745 (2007). 749

66. C Mears, FJ Wentz, A satellite-derived lower-tropospheric atmospheric temperature dataset 750

using an optimized adjustment for diurnal effects. J. Clim. 30, 7695–7718 (2017). 751

67. CZ Zou, MD Goldberg, X Hao, New generation of U.S. satellite microwave sounder achieves 752

high radiometric stability performance for reliable climate change detection. Sci. Adv. 4, 753

eaau0049 (2018). 754

68. Q Fu, CM Johanson, SG Warren, DJ Seidel, Contribution of stratospheric cooling to satellite- 755

inferred tropospheric temperature trends. Nature 429, 55–58 (2004). 756

69. Q Fu, CM Johanson, Stratospheric influences on MSU-derived tropospheric temperature 757

trends: A direct error analysis. J. Clim. 17, 4636–4640 (2004). 758

70. B Govindasamy, et al., Limitations of the equivalent CO2 approximation in climate change 759

simulations. J. Geophys. Res. 106, 22593–22603 (2001). 760

10 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Santer et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


1

Supporting Information for2

Exceptional Stratospheric Contribution to Human Fingerprints on Atmospheric Temperature3

Benjamin D. Santer et al.4

Corresponding Author: Benjamin D. Santer.5

E-mail: bensanter1289@gmail.com6

This PDF file includes:7

Supporting text8

Figs. S1 to S89

Tables S1 to S210

SI References11

Benjamin D. Santer et al. 1 of 20



Supporting Information Text12

Materials13

Additional information on satellite data. We rely on estimates of the temperature of the lower stratosphere (TLS), mid-14

troposphere (TMT), and lower troposphere (TLT) derived from satellite-borne Microwave Sounding Units (MSU) and Advanced15

Microwave Sounding Units (AMSU). These data sets are produced by Remote Sensing Systems (RSS) (1) and the University of16

Alabama at Huntsville (UAH) (2). We also use TLS and TMT data from the Center for Satellite Applications and Research17

(STAR) (3, 4). STAR does not currently provide TLT data.18

Information on temperature changes in the mid- to upper stratosphere is available from channels 1, 2, and 3 of the19

Stratospheric Sounding Unit (SSU). The SSU temperature data are from STAR (5). We use the most recent versions of the20

MSU/AMSU and SSU/AMSU-A data:21

• RSS 4.0 and UAH 6.0 for TLS, TMT, and TLT;22

• STAR 5.0 for TLS and TMT;23

• STAR 3.0 for SSU1, SSU2, and SSU3.24

Version 3 of the STAR SSU data merged the version 2 SSU data set (6) with 8 channels of AMSU-A observations. Merging25

extends the SSU time series from 2006 to present (5). MSU data are merged with AMSU data after 1998. We refer to these26

merged products subsequently as “SSU” and “MSU”.27

We employed a standard regression-based method to adjust TMT for the influence it receives from lower stratospheric28

cooling (7). This adjustment yields TTT, the temperature of the “total” troposphere (see SI section “Method for correcting29

TMT data”).30

Our fingerprint analysis employs zonally averaged temperature changes for SSU3, SSU2, SSU1, TLS, TTT, and TLT. The31

approximate peaks of the weighting functions for these layers are 45, 38, 30, 19, 5.6, and 3.1 km, respectively.32

All satellite temperature data sets analyzed here are in the form of monthly means on the same 2.5◦× 2.5◦ latitude/longitude33

grid. At the time this analysis was performed, satellite temperature data for full 12-month years were available for the34

528-month period from January 1979 to December 2022 for TLS, TTT, and TLT and for the 444-month period from January35

1986 to December 2022 for SSU3, SSU2, and SSU1. We use the latter period here since we require non-missing temperature36

data over a common time window for all six layers of interest.37

As noted above, STAR does not have a TLT product. To include STAR MSU data in our study, we first calculated TTT38

from STAR TLS and TMT data, and then generated data sets in which the STAR SSU, TLS and TTT data were “paired”39

with either RSS TLT or UAH TLT:40

STAR1 = STAR SSU3/2/1 + STAR TLS/TTT + RSS TLT
STAR2 = STAR SSU3/2/1 + STAR TLS/TTT + UAH TLT

Relative to STAR1, S/N ratios obtained with STAR2 data are approximately 30% smaller for the TROP case (because the41

lower tropospheric warming is smaller in UAH than in RSS; see main text Fig. 2). This means that for the TROP domain,42

S/N ratios estimated with STAR2 data are more conservative. Nevertheless, the model-predicted TROP fingerprints can be43

identified at the 1% level in both the STAR1 and STAR2 observational temperature data sets.44

Whether we use STAR1 or STAR2 has minimal impact on S/N results for the SSU+MSU and MSU domains. This lack of45

sensitivity is due the fact that the TLT layer is only one-sixth and one-third of the SSU+MSU and MSU domains (respectively).46

In the main text (in Fig. 5) and in Figs. S2, S5, S7, and S8) we show STAR2 results only.47

Additional information on model data. We analyze synthetic SSU3, SSU2, SSU1, TLS, TTT, and TLT data from simulations48

performed under phase 6 of the Coupled Model Intercomparison Project (CMIP6) (8). “Synthetic” denotes the calculation of a49

vertically weighted average of atmospheric temperature in order to facilitate the comparison of simulations and satellite SSU or50

MSU data (see SI section “Calculation of synthetic satellite temperatures”). The synthetic SSU and MSU temperatures are51

from three different types of numerical experiment:52

1. Simulations with estimated historical changes in natural and anthropopogenic external forcings, which typically commence53

from January 1850 and end in December 2014.54

2. Scenario runs with post-2014 changes in anthropogenic external forcings that are specified according to a Shared55

Socioeconomic Pathway (SSP). The SSP used here is referred to as SSP5-8.5 (or as SSP5) because it reaches radiative56

forcing of 8.5 W/m2 by 2100. We adopt the SSP5 nomenclature here (9).57

3. Preindustrial control integrations with no year-to-year changes in external forcings.58

Each historical simulation was spliced together with a companion SSP5 run initiated from the end of the historical run.59

This extension of the historical run allows us to compare simulated and observed atmospheric temperatures over the full period60

with continuous availability of monthly-mean MSU and SSU data (1986 to 2022; see SI section “Additional information on61

satellite data”). We refer to these subsequently as HISText runs.62
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To calculate synthetic SSU data, we require simulation output from CMIP6 models with sufficient vertical resolution in the63

mid- to upper stratosphere. We follow the recommendations of Thompson et al. here (10) and require models with a top located64

at 0.1 hPa or higher in order to compute synthetic temperatures for all three SSU channels. Output fulfilling this requirement is65

available from models participating in the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) (11). Here,66

we use the AerChemMIP “plev39” data with zonal-mean monthly-mean atmospheric temperatures at 39 standard pressure67

levels.∗68

In addition to the requirement of a sufficiently high top, there were three further requirements for inclusion of a CMIP6 model69

in the fingerprint analysis. First, given the large warming signatures of major volcanic eruptions on stratospheric temperatures70

(10, 12), only models that explicitly included the full radiative effects of volcanic aerosols were considered (13). Neglecting the71

large effect of the 1991 Pinatubo eruption would bias comparisons between simulated and observed stratospheric temperature72

changes over 1986 to 2022. Second, any model with spurious variability in stratospheric temperature was excluded.†
73

Finally, we required that the data for computing synthetic MSU temperatures had to exist for the same simulations74

from which we had calculated synthetic SSU temperatures. These three requirements were satisfied in 32 different HISText75

realizations performed with 9 different CMIP6 models. We analyzed control integrations from the same 9 models. Details of76

the model HISText and control simulations are given in Tables S1 and S2, respectively.77

Methods78

Calculation of synthetic satellite temperatures. We used a local weighting function method developed at RSS to calculate79

synthetic MSU temperatures from the CMIP6 HISText and preindustrial control runs (15). At each grid-point, simulated80

temperature profiles were convolved with local weighting functions. Weights depend on the grid-point surface pressure, the81

surface type (land, ocean, or sea ice), and the selected satellite channel (TLS, TMT, or TLT).82

Because the influence of topography on weighting functions is not important in the mid- to upper stratosphere, use of a83

local weighting function method is not necessary for calculating synthetic SSU temperatures. We applied weighting functions84

available from STAR (5) to the zonal-mean monthly-mean plev39 atmospheric temperature data (see SI section “Additional85

information on model data”) in order to derive synthetic SSU1, SSU2, and SSU3 data.86

Method for correcting TMT data. Trends in TMT estimated from microwave sounders receive a substantial contribution from the87

cooling of the lower stratosphere (7). This contribution hampers reliable interpretation of the warming of the free troposphere –88

which is why most analysts adjust satellite TMT measurements and model simulations of TMT for the influence of stratospheric89

cooling (14–21).90

An additional complication in comparing and interpreting uncorrected TMT results is that stratospheric cooling can vary91

appreciably in different observational data sets (22) and in different climate models (14, 15). In models, this is often due to92

large differences in stratospheric ozone forcing over the satellite era (13), or to systematic changes in stratospheric ozone forcing93

between different generations of CMIP models (14, 23).94

Adjustment of TMT using the regression-based method introduced by Fu et al. (7) simplifies the interpretation of data-data,95

model-model, and model-data comparisons of tropospheric temperature change.‡ This method has been validated with both96

observed and model atmospheric temperature data (16, 24, 25).97

In the following, we refer to adjusted TMT as total tropospheric temperature (TTT). It is calculated as follows:98

TTT = a24TMT + (1 − a24)TLS [1]99

We compute two different versions of total tropospheric temperature: TTT1 and TTT2. TTT1 was first used for adjusting100

tropical averages of TMT, with a24 = 1.1 at each latitude (17). In TTT2, a24 = 1.1 between 30◦N and 30◦S, and a24 = 1.2101

poleward of 30◦.102

The advantage of TTT2 is that lower stratospheric cooling makes a larger contribution to unadjusted TMT trends at mid-103

to high latitudes. The latitudinally varying regression coefficients in TTT2 remove more of this extratropical cooling. We use104

TTT2 throughout the main text and the SI, and do not use the subscript “2” to identify TTT2.105

In practice, whether we use TTT1 or TTT2 has minimal influence on our S/N results.106

We note that TTT2 is calculated in the same way in all simulations and observations and for all months. This ensures that107

model-versus-observed temperature comparisons of TTT2 are not affected by the application of regression coefficients that108

differ in the CMIP6 simulations and in satellite data.109

Fingerprint analysis. Detection methods generally require an estimate of the true but unknown climate-change signal in response110

to an individual forcing or set of forcings (26). This is often referred to as the fingerprint, which we denote here by F (x, p),111

where x is an index over latitude and p is an index over atmospheric layers.112

Fingerprints can be defined in different ways. Here, F (x, p) is the first Empirical Orthogonal Function (EOF) of the113

multi-model ensemble-mean change in temperature across the CMIP6 HISText simulations.114

∗The plev39 levels (in hPa) are 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 170, 150, 130, 115, 100, 90, 80, 70, 50, 30, 20, 15, 10, 7, 5, 3, 2, 1.5, 1, 0.7, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.07, 0.05, and
0.03. For further details, see https://cmip6dr.github.io/Data_Request_Home/Documents/CMIP6_pressure_levels.pdf

†This is the case with CanESM5, which “exhibits anomalous aperiodic 1–2-month lower-stratospheric warming events in certain ensemble members” (14).
‡For example, differences between simulated and observed trends in unadjusted TMT could arise from the combined effects of model climate sensitivity errors (which would affect tropospheric temperature)

and from unrelated model errors in stratospheric ozone forcing (which would primarily affect lower stratospheric temperature). Use of adjusted TMT reduces the contribution of stratospheric ozone forcing
errors to model-versus-data differences in tropospheric temperature trends.
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Let Thst(i, j, x, p, t) represent the temperature anomaly for the ith HISText realization of the jth CMIP6 model, where:115

116

i = 1, . . . Nr(j) (no. of HISText realizations for the jth model)
j = 1, . . . Nmod (no. of CMIP6 models used in the fingerprint analysis)
x = 1, . . . Nx (no. of latitude bands with zonal-mean temperatures)
p = 1, . . . Np (total no. of SSU and MSU atmospheric layers)
t = 1, . . . Nt (time in years)

117

Here, Nr(j) varies from 1 to 10 realizations and Nmod = 9. After transforming synthetic MSU temperature data from each118

model’s native grid to a common 5◦× 5◦ latitude/longitude grid and calculating zonal averages, Nx = 36 latitude bands.119

Synthetic SSU data (which are already in zonal-mean form; see SI section “Additional infoprmation on model data”) are120

transformed to the same 36 latitude nodes. Np varies from 2 to 6 layers (see below). Fingerprint estimation is over the period121

of common coverage in SSU and MSU (1986 to 2022), so Nt is 37 years.122

Anomalies in Thst(i, j, x, p, t) were defined relative to climatological annual means over 1986 to 2022. The multi-model123

ensemble-mean change, Thst(x, p, t), was calculated by first averaging over the Nr(j) individual realizations in the jth model124

and then averaging over all Nmod models. The fingerprint F (x, p) is the first EOF of Thst(x, p, t). The time period used for125

determining Tobs(x, p, t), the change in zonal-mean annual-mean atmospheric temperature in a selected combination of observed126

SSU and MSU data sets, is the same as used for calculating the fingerprint (1986 to 2022).127

We estimate one fingerprint for each of the four different sets of the six atmospheric layers considered here:128

1. SSU+MSU (six layers; SSU3, SSU2, SSU1, TLS, TTT, and TLT);129

2. TROP (two layers; TTT and TLT);130

3. MSU (three layers; TLS, TTT, and TLT);131

4. SSU (three layers; SSU3, SSU2, and SSU1).132

The TROP and SSU cases provide information on the S/N properties of satellite era temperature changes in the troposphere133

and in the mid- to upper stratosphere (respectively). Comparison of S/N results for the MSU and SSU+MSU domains yields134

insights into the impact of extending previous “vertical fingerprint” studies to the upper stratosphere. Previous studies were135

conducted using MSU information only (27) and were therefore restricted to the troposphere and lower stratosphere.136

For each of these four different sets of atmospheric layers, we seek to determine whether the pattern similarity between137

F (x, p) and Tobs(x, p, t) shows a statistically significant increase over time. We also consider whether there is a significant138

increase in pattern similarity between the fingerprint and each individual HISText realization – i.e., between F (x, p) and139

Thst(i, j, x, p, t).140

To address these two questions, we require control run estimates of internally generated variability in which we know a141

priori that there is no expression of the fingerprint, except by chance. We obtain such variability estimates from control runs142

performed with the same nine CMIP6 models used to estimate F (x, p). Layer-average atmospheric temperatures from each143

control run are regridded to the same 5◦× 5◦ latitude/longitude grid used for fingerprint estimation. After regridding and144

calculation of zonal averages, layer-average atmospheric temperature anomalies are defined relative to climatological annual145

means computed over the full length of each control run.146

Because the length of the nine CMIP6 control runs varies by a factor of approximately 2 (see Table S2), models with longer147

control integrations could have a disproportionately large impact on our noise estimates. To guard against this possibility, we148

rely on the last 450 years of each model’s pre-industrial control run. Use of the last 450 years reduces the contribution of149

initial residual drift and guarantees that each model is given equal weight in calculating the denominator of our S/N ratios.150

Concatenation yields 9 × 450 = 4,050 years of control run atmospheric temperature output.151

Use of the last 450 years of each control run may not fully remove non-physical residual drift, which can inflate and bias152

S/N estimates (28). Here, we assume that drift behavior can be well-approximated by a least-squares linear trend and the drift153

is removed at each latitude band and for each atmospheric layer. Drift removal is performed over the last 450 control run years154

only (since only the last 450 years are concatenated).155

In processing the observations, layer-average atmospheric temperature data from STAR, RSS, and UAH are first regridded156

to the same target 5◦× 5◦ latitude/longitude grid used for the model HISText simulations and control runs. Observations are157

then zonally averaged and expressed as anomalies relative to climatological annual means over 1986 to 2022. The observed158

temperature anomaly data, Tobs(x, p, t), are then projected onto F (x, p), the time-invariant fingerprint:159

Zobs(t) =
Nx∑
x=1

Np∑
p=1

Tobs(x, p, t) F (x, p)

t = 1, . . . , 37.

[2]160
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This projection is equivalent to a spatially uncentered covariance between the Tobs(x, p, t) and F (x, p) patterns at year t. The161

signal time series Zobs(t) provides information on the fingerprint strength in the observations. If Tobs(x, p, t) is becoming162

increasingly similar to F (x, p), Zobs(t) should increase over time.163

The projection of an individual HISText realization onto F (x, p) is defined analogously:164

Zhst(i, j, t) =
Nx∑
x=1

Np∑
p=1

Thst(i, j, x, p, t) F (x, p)

i = 1, . . . , Nr(j); j = 1, . . . , Nmod ; t = 1, . . . , 37.

[3]165

To assess the significance of the changes in Zobs(t) or in Zhst(i, j, t), we compare trends in Zobs(t) and in Zhst(i, j, t) with a166

null distribution of trends. To generate a suitable null distribution, we require a case in which Tobs(x, p, t) or Thst(i, j, x, p, t) is167

replaced by a record in which we know a priori that there is no expression of the fingerprint, except by chance. Here, we use a168

concatenated multi-model noise data set, Tctl(x, p, t), which has been regridded and detrended as described above.§ The noise169

time series Nctl(t) is the projection of Tctl(x, p, t) onto the fingerprint:170

Nctl(t) =
Nx∑
x=1

Np∑
p=1

Tctl(x, p, t) F (x, p)

t = 1, . . . , Nt{ctl}.

[4]171

where Nt{ctl} is 4,050, the total number of years in the multi-model noise estimate.172

As in our previous work (29, 30), we fit least-squares linear trends of increasing length L years to Zobs(t). This yields Sobs(L).173

We then form the signal-to-noise ratios SNobs(L) by dividing Sobs(L) by σctl(L), the standard deviation of the distribution174

of non-overlapping L-length noise trends in Nctl(t). Signal trends in Zhst(i, j, t) are treated analogously – i.e., we calculate175

Shst(i, j, L) from Zhst(i, j, t), divide Shst(i, j, L) by σctl(L), and obtain SNhst(i, j, L).176

We assess statistical significance by comparing these calculated S/N ratios with a Gaussian distribution, as in (31). This177

assumes that L-year trends in Nctl(t) have a Gaussian distribution. This assumption is reasonable for multi-model estimates of178

internal variability given the large sample sizes that we have here. Signal detection is stipulated to occur at the trend length179

Ld for which the S/N ratio first exceeds some stipulated significance level (typically 1% here) and then remains above that180

level for all values of L > Ld. The test is one-tailed.181

Empirical estimates of the significance of our S/N ratios yield very similar results. These estimates are based on comparisons182

of signal trends with the actual distributions of L-year noise trends obtained from Nctl(t).183

The start date for fitting linear trends to Zo(t) is 1986, the first complete year of common continuous temporal coverage of184

the observational SSU and MSU data. We use a minimum trend length of 5 years, so the first S/N ratio (and the earliest185

possible detection time) is for 5-year trends ending in 1990. The analysis period increases in increments of one year, i.e., L = 5,186

6, 7, . . . , 37. The L = 37 case corresponds to the full satellite era (1986 to 2022).187

Finally, we note that all model and observational temperature data used in the fingerprint analysis are appropriately188

area-weighted. Weighting involves multiplication by the square root of the cosine of the grid node’s latitude (32). For visual189

display purposes only, the EOFs shown in Fig. 6 of the main text and in Figs. S3, S4, and S6 are unweighted (i.e., the grid-point190

values of each EOF are divided by the square root of the cosine of the grid node’s latitude). There is no weighting of the191

individual atmospheric layers – each layer has equal weight. Mass-weighted fingerprint results are discussed below (see SI192

section on “Mass and area weighting”).193

The S/N analysis described in the main text relies on the HISText fingerprints of zonal-mean annual-mean atmospheric194

temperature change. The CMIP6 HISText simulations involve combined anthropogenic and natural external forcing. Because195

anthropogenic forcing is substantially larger than natural external forcing over 1986 to 2022, the HISText fingerprints are very196

similar to fingerprint patterns obtained from integrations with anthropogenic forcing only (33). The HISText fingerprint patterns197

primarily reflect the tropospheric warming in response to human-caused changes in greenhouse gases and the stratospheric198

cooling caused by anthropogenic CO2 increases and stratospheric ozone depletion (33).199

For the SSU+MSU and SSU domains, the timescale-dependent S/N ratios in Fig. 5C of the main text show strong correlations200

across individual HISText realizations, despite the fact that the internal variability in each realization should not be correlated201

(except by chance). The explanation for this correlation across realizations is that the Shst(i, j, L) signals for the SSU+MSU202

and SSU domains are very large relative to the amplitude of the σctl(L) noise for these domains (compare Figs. 5A and B in203

the main text). This is why relatively small “noise” in the decay of σctl(L) as a function of increasing L, arising from our use204

of non-overlapping trends to estimate σctl(L), has large impact on SN(L) values and imparts correlation to SN(L) across the205

32 HISText realizations.206

§Unlike Thst(i, j, x, p, t), Tctl(x, p, t) has no index over i or over j. This is because there is typically only one realization of each control run and because the noise data from each of the 9 models
have been concatenated.
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Removal of spatial means. In comparing simulated and observed patterns of atmospheric temperature change and interpreting207

S/N results, we are interested in assessing contributions to S/N ratios from global- and from sub-global spatial scales. Our208

“baseline” fingerprint analysis in Fig. 5 of the main text relies on an uncentered spatial covariance statistic which retains the209

spatial means of the two fields that are being compared. The baseline case, therefore, incorporates both the global- and the210

sub-global components of temperature change.211

As in our previous fingerprint work (34), it is of interest to determine whether large global-mean tropospheric warming212

and stratospheric cooling signals are the main driver of our consistent identification of model-predicted F (x, p) fingerprints in213

satellite observations and in individual model HISText realizations (see Fig. 5C in main text). We address this question by214

comparing S/N ratios for the baseline case (Case 1, which includes global-mean temperature changes at each atmospheric level)215

with S/N results from two additional types of calculation:216

1. For each of the Np layers, Nx latitude bands, and Nt years, we remove the global-mean atmospheric temperature change217

for that layer, latitude band, and year (Case 2);218

2. The overall global-mean tropospheric temperature change in year t (the average of the global-mean temperature changes219

for TTT and TLT in year t) is removed from the individual TTT and TLT layers. A similar subtraction is performed220

for each of the four stratospheric layers (SSU3, SSU2, SSU1, and TLS) using the overall global-mean stratospheric221

temperature change in year t (Case 3).222

For example, for the observational zonal-mean annual-mean atmospheric temperature change used in Case 2:223

<Tobs(p, t)> =
Nx∑
x=1

Tobs(x, p, t) W (x) /

Nx∑
x=1

W (x)

p = 1, . . . , Np; t = 1, . . . , 37.

[5]224

where <Tobs(p, t)> is the global-mean temperature change for layer p and year t, the angle brackets denote a spatial average,225

and W (x) are area weights for each latitude band. Subtraction of the global-mean temperature change yields:226

Tobs(x, p, t)∗ = Tobs(x, p, t) − <Tobs(p, t)>

x = 1, . . . , Nx; p = 1, . . . , Np; t = 1, . . . , 37.

[6]227

where ∗ denotes departures from the global-mean.228

In Case 3, < Tobs{STRAT}(t) > and < Tobs{TROP}(t) > are the overall global-mean temperature changes for the four229

stratospheric layers and the two tropospheric layers, respectively. These are removed from the individual stratospheric and230

tropospheric layers as follows:231

Tobs(x, p, t)∗∗ = Tobs(x, p, t) − <Tobs{STRAT}(t)>

x = 1, . . . , Nx; p = 1, . . . , 4; t = 1, . . . , 37.

Tobs(x, p, t)∗∗ = Tobs(x, p, t) − <Tobs{TROP}(t)>

x = 1, . . . , Nx; p = 5, 6; t = 1, . . . , 37.

[7]232

where it is assumed that the ordering of layers is from the highest layer to the lowest layer and that the ordering of layers is233

identical in each data set, i.e., p = 1 is SSU3, p = 2 is SSU2, p = 3 is SSU1, p = 4 is TLS, p = 5 is TTT, and p = 6 is TLT.234

The double asterisk notation denotes a departure from the overall stratospheric or tropospheric global-mean (c.f. the single235

asterisk notation for Case 2).236

While equations (5) though (7) are for observations, the processing is similar for HISText and for control simulations. In237

each model HISText or control run data set processed, we remove the global-mean temperature change for layer p from each238

latitude band of that layer (Case 2), or we remove the overall global-mean stratospheric temperature change from each latitude239

of each stratospheric layer and we subtract the overall global-mean tropospheric temperature change from each latitude of each240

tropospheric layer (Case 3).241

For the HISText runs, these two different global-mean subtraction methods yield the multi-model ensemble means Thst(x, p, t)∗
242

(Case 2) and Thst(x, p, t)∗∗ (Case 3). The Case 2 fingerprint shown in Fig. S6B is F (x, p)∗, the leading EOF of Thst(x, p, t)∗.243

The Case 3 fingerprint in Fig. S6C is F (x, p)∗∗, the leading EOF of Thst(x, p, t)∗∗.244

The key difference between Case 2 and Case 3 is that in the latter, we retain global-scale signals of interest in the observations245

and HISText runs, such as the increase in the size of stratospheric cooling with increasing altitude in the stratosphere (35) and246

the amplification of tropical tropospheric warming in TTT relative to TLT (20, 36). These global-scale signals are removed in247

Case 2.248
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Mass and area weighting. The focus of our study is on the value of including the mid- to upper stratosphere in climate249

fingerprinting. We seek to determine whether including temperature information from the S25−50 layer aids in separating250

anthropogenic climate change from natural internal variability. To address this question, each of the six atmospheric layers251

considered here was assigned a vertical weight of 1 in the fingerprint analysis. With uniform vertical weighting, including the252

S25−50 layer significantly enhances our ability to discriminate between human-caused climate change and internal variability253

(see Fig. 5C in the main text).254

To explore the impact of mass weighting on our fingerprint results, we require a set of suitable weights that reflect the255

sampling of atmospheric mass by the weighting functions of each of the six layers we consider (SSU3, SSU2, SSU1, TLS, TTT,256

and TLT).257

Our calculation relies on the vertical profile of atmospheric density from the U.S. standard atmosphere and on the publicly258

available values of the weighting functions for the three SSU and three MSU layers. The mass weights β(p) are defined as259

follows for each of the Np layers:260

β(p) =
∫ zp(TOP)

zp(BOT)
ρ(z) V (p, z) ∆(z)

p = 1, . . . , Np.

[8]261

where ρ(z) is the density of the standard atmosphere as a function of the height z (in meters), V (p, z) is the SSU or MSU262

weighting function for the pth atmospheric layer, ∆(z) is the vertical resolution to which ρ(z) and V (p, z) have been interpolated263

(z =100 meters here), and Np = 6. The vertical integration is from the height of the lowest layer of the pth weighting function,264

zp(BOT), to the height of the top layer of the pth weighting function, zp(TOP). Realistic land topography is used in the265

calculation of the density ρ(z).266

For each layer, therefore, β(p) is the vertical integration of air density weighted by the SSU or MSU weighting function. We267

normalize each value of β(p) by β(TOT), the sum of the six individual β(p) values:268

β(p)′ = β(p) / β(TOT)

p = 1, . . . , Np.

[9]269

where the ′ denotes a normalized quantity.270

The values of the normalized mass weights (expressed as percentages of the total atmospheric mass sampled by the six271

sounding channels) are listed below:272

273

1 SSU3 = 0.4%
2 SSU2 = 0.9%
3 SSU1 = 2.1%
4 TLS = 6.6%
5 TTT = 39.4%
6 TLT = 50.6%

In the case of “no mass weighting” shown in Figs. 5 and 6 of the main text and in Figs. S3-S8, all input model and274

observational latitude-height temperature data sets are multiplied by
√

W (x), the square root of the area weights for each275

latitude band. In the “mass weighting” case in Fig. S7, all input temperature data sets are multiplied by γ(x, p), the square276

root of the combined area and mass weights:277

γ(x, p) =
√

W (x) β(p)′

x = 1, . . . , Nx; p = 1, . . . , Np

[10]278

The three SSU layers, therefore, sample less than 3.5% of the total mass of the atmosphere. Weighting all input model and279

observed data sets with the atmospheric mass sampled by individual SSU and MSU layers markedly damps the influence of280

stratospheric cooling and emphasizes tropospheric warming. In a mass-weighted fingerprint analysis of the SSU+MSU domain,281

signal strength decreases, noise is amplified, and S/N is reduced by a factor of roughly 4 relative to the case of uniform vertical282

weights (see Fig. S7).This reduction in S/N is due to multiple factors: the down-weighting of the large global-mean cooling283

signals in the three SSU channels and TLS, and the reduced impact of the quasi-orthogonality between the signal and noise284

patterns in the S25−50 layer (Fig. S2).285

Despite this large reduction in S/N, the mass-weighted fingerprints are still identifiable at the 1% level in each of the 32286

individual CMIP extended historical runs and in each of the three observational data sets (Fig. S7).287
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Weighting function overlap. In all four atmospheric domains considered here (TROP, MSU, SSU, and SSU+MSU; see SI section288

“Fingerprint analysis”) there is overlap between the individual weighting functions used to sample atmospheric temperature289

changes (22). This overlap can introduce correlation between temperature changes in different atmospheric layers. Of particular290

concern here is the question of whether S/N results for the six-layer SSU+MSU domain are biased by our use of TTT and291

TLT (which provide overlapping information about tropospheric temperature change) and by our inclusion of three SSU layers292

(which provide overlapping information about temperature change in the mid- to upper stratosphere).293

We address this question by performing a sensitivity test in which the fingerprint analysis is repeated with three layers only:294

SSU3, TLS, and TLT. Our choice of these three layers reduces the substantial overlap between weighting functions in the295

six-layer SSU+MSU case. We refer to the three-layer reduced-space representation of signal, noise, and observations as RED,296

and we compare fingerprint results in the RED and SSU+MSU cases. This comparison is performed without removal of the297

global-mean temperature changes in individual atmospheric layers and without any mass weighting of individual layers (see SI298

sections on “Removal of spatial means” and “Mass and area weighting”, respectively).299

Results are given in Fig. S8. Relative to the SSU+MSU case, RED systematically reduces signal strength. This reduction300

occurs because certain signal attributes present in SSU+MSU are absent in RED, such as the amplification of lower tropospheric301

temperature changes in tropical TTT. Additionally, RED downweights the amplification of cooling in the mid- to upper302

stratosphere by including results from only one of the three SSU channels used in the six-layer SSU+MSU case.303

Figure S8B reveals that the noise amplitude is smaller in RED than in SSU+MSU. This result is partly due to the fact that304

the noise amplitude is larger in the troposphere than in the stratosphere (see Fig. 5B in the main text). Because RED includes305

information from only one tropospheric channel (rather than from the two tropospheric channels that are used in SSU+MSU),306

the noise contribution from the troposphere is smaller in RED than in SSU+MSU.307

Additionally, the fingerprint and leading noise modes are spatially more similar in the troposphere than in the mid- to308

upper stratosphere (compare the TROP and SSU cases in Fig. S2). This pattern similarity contributes to the higher noise in309

the TROP case in Fig. 5B of the main text – the TROP fingerprint is less successful than the MSU, SSU, and SSU+MSU310

fingerprints in filtering out internal variability variability. By removing TTT from RED, we are reducing the pattern similarity311

between tropospheric signal and noise modes, thereby enhancing the effectiveness of noise filtering in RED.312

S/N ratios are very similar in the SSU+MSU and RED cases (see Fig. S8C). This similarity occurs because of the313

compensating effects described above: relative to SSU+MSU, RED has reduced signal strength but also has reduced noise.314

The RED sensitivity test shows that a simple way of accounting for weighting function overlap – by selectively reducing the315

number of layers considered in the fingerprint analysis – has a systematic impact on signal and noise, but has relatively little316

effect on S/N ratios. In both the SSU+MSU and RED cases, S/N ratios by the end of the full 37-year analysis period (1986 to317

2022) invariably exceed 35. This holds for fingerprint identification in the three satellite data sets and in all 32 individual318

CMIP6 HISText realizations. We conclude, therefore, that the SSU+MSU fingerprint results presented in the main text are319

unlikely to be biased by weighting function overlap.320

Other statistical analysis details. The sampling distributions of unforced trends in atmospheric temperature shown in Figs. 2321

and 3 of the main text were calculated from non-overlapping 37-year and 25-year chunks (respectively) of the same nine CMIP6322

pre-industrial control runs used in the fingerprint analysis (see Table S2). While the fingerprint analysis used only 450 years of323

each control run to ensure that S/N ratios were not biased by models with longer control runs (see SI section “Fingerprint324

analysis”), the control run trend distributions in Figs. 2 and 3 of the main text were generated using the full length of each325

control run. The reason for this decision is that unlike in the fingerprint analysis, the “no signal” trend distributions in Figs. 2326

and 3 are not being used for statistical significance testing: their primary use is simply to provide visual information regarding327

differences in the magnitude of forced and unforced trends.328

The histograms in Figs. 2 and 3 were plotted with the Matplotlib pyplot.hist function with arrays of weights and with the329

“density=True” option. This option ensures that “each bin will display the bin’s raw count divided by the total number of330

counts and the bin width... so that the area under the histogram integrates to 1”.¶ The array of weights is defined as:331

w(j, k) = 1/Nchunk(j)

j = 1, . . . , Nctl; k = 1, . . . , Nchunk(j)
[11]332

where j is an index over the number of pre-industrial control runs, k is an index over the number of non-overlapping 37-year or333

25-year least-squares linear trends, and Nchunk(j) is the total number of non-overlapping 37-year or 25-year least-squares linear334

trends in the jth control run.335

¶https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.hist.html
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Table S1. Basic information relating to the start dates, end dates, and lengths (Nm, in months) of the 32 CMIP6 historical and SSP5-8.5
simulations used in this study. EM is the “ensemble member" identifier.

Model EM HIST HIST HIST SSP5-8.5 SSP5-8.5 SSP5-8.5

Start End Nm Start End Nm

1-2 CESM2 r10i1p1f1, r11i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

3-5 CESM2-WACCM r1i1p1f1-r3i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

6-8 HadGEM3-GC31-LL r1i1p1f3–r3i1p1f3 1850-01 2014-12 1980 2015-01 2100-12 1032

9 IPSL-CM6A-LR r1i1p1f1 1950-01 2014-12 780 2015-01 2300-12 3432

10 IPSL-CM6A-LR r2i1p1f1 1950-01 2014-12 780 2015-01 2100-12 1032

11-12 IPSL-CM6A-LR r3i1p1f1, r4i1p1f1 1950-01 2014-12 780 2015-01 2054-12 480

13 IPSL-CM6A-LR r6i1p1f1 1950-01 2014-12 780 2015-01 2100-12 1032

14 MIROC-ES2L r1i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

15-16 MPI-ESM-1.2-HR r1i1p1f1, r2i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

17-26 MPI-ESM-1.2-LR r1i1p1f1–r10i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

27 MRI-ESM2.0 r1i1p1f1 1850-01 2014-12 1980 2015-01 2300-12 3432

28-31 UKESM1.0-LL r1i1p1f2–r4i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

32 UKESM1.0-LL r8i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032
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Table S2. Start dates, end dates, and lengths (Nm, in months) of the nine CMIP6 pre-industrial control runs used in this study. EM is the
“ensemble member” identifier.

Model EM Start End Nm

1 CESM2 r1i1p1f1 1-01 1301-12 14400

2 CESM2-WACCM r1i1p1f1 1-01 499-12 5988

3 HadGEM3-GC31-LL r1i1p1f1 1850-01 2349-12 6000

4 IPSL-CM6A-LR r1i1p1f1 1850-01 3049-12 14400

5 MIROC-ES2L r1i1p1f2 1850-01 2349-12 6000

6 MPI-ESM-1.2-HR r1i1p1f1 1850-01 2349-12 6000

7 MPI-ESM-1.2-LR r1i1p1f1 1850-01 2849-12 12000

8 MRI-ESM2.0 r1i1p1f1 1850-01 2550-12 8412

9 UKESM1.0-LL r1i1p1f2 1960-01 2709-12 9000
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Fig. S1. Trends in zonal-mean annual-mean atmospheric temperature in satellite data and observations. Results are least-squares linear trends over 1986 to 2000 (left column)
and over 2001 to 2022 (right column). These two periods are characterized (respectively) by depletion and recovery of observed lower stratospheric ozone concentrations over
Antarctica (5, 37, 38). The earlier period is also affected by recovery from the large stratospheric warming signal caused by the 1991 eruption of Pinatubo (see Figs. 1A-D in
main text). Observations (panels A, B) are from STAR for the three SSU channels (SSU3, SSU2, and SSU1) (5) and from RSS for MSU TLS, TTT, and TLT (1). Model results
(panels C, D) are the multi-model average synthetic SSU and MSU atmospheric temperature trends calculated from 32 realizations of HISText runs performed with nine
different CMIP6 models. In all panels, global-mean temperature changes are retained for each of the six atmospheric layers considered. The black dots in panels C and D
denote latitude bands and layers with local S/N ratios ≥ 2: i.e., locations where the multi-model average trend over the analysis period is at least a factor of two larger than the
standard deviation of individual model trends. Black dots are plotted at the approximate peaks of the three SSU and three MSU weighting functions.
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Fig. S2. Values of the uncentered pattern correlations between the fingerprint F and the first two noise modes in CMIP6 simulations. Results are for four spatial domains:
SSU+MSU, TROP, MSU, and SSU. For each domain, F was estimated from three sources: the 32 individual model HISText realizations performed with 9 different CMIP6
models (filled circles), the multi-model average HISText atmospheric temperature changes (filled diamonds), and the satellite data (unfilled symbols). The first two noise
Empirical Orthogonal Functions (EOFs) were calculated using 4,050 years of concatenated pre-industrial control run data. Pattern correlations between F and noise EOFs 1
and 2 are plotted on the x-axis and y-axis (respectively). Noise EOFs 1 and 2 are shown in the middle and right columns of Fig. 6 of the main text; the fingerprints estimated
from the CMIP6 multi-model average HISText data are in the left column of Fig. 6. For the SSU+MSU domain, the F patterns for selected individual HISText realizations are
displayed in Figs. S3A-I and the F patterns for the two satellite data sets are given in Figs. S3K and L. In calculating fingerprints and noise EOFs, global-mean temperature
changes were retained for each of the six atmospheric layers considered. The data used for computing EOFs were area-weighted but not mass-weighted. Since the signs of
the fingerprints and noise EOFs are arbitrary, we show the absolute value of the pattern correlation.
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Fig. S3. Fingerprint pattern of zonal-mean annual-mean atmospheric temperature change in simulations and observations for the SSU+MSU domain. Results are the first
Empirical Orthogonal Function (EOF) of HISText simulations in individual CMIP6 models (panels A-I) and in the CMIP6 multi-model average (panel J). The leading EOF for two
satellite data sets is also shown (panels K, L). EOFs are calculated over 1986 to 2022 using temperature changes for six atmospheric layers (SSU3, SSU2, SSU1, TLS, TTT,
and TLT). For models with multiple HISText realizations in panels A-I, results are for the first realization only. In all EOF calculations, global-mean temperature changes are
retained for each of the six atmospheric layers considered. The dotted horizontal grey lines are plotted at the approximate peaks of the three SSU and three MSU weighting
functions. The explained variance of each EOF is indicated in the panel title (in parentheses). The data used for computing EOFs were area-weighted but not mass-weighted.
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Fig. S4. As for Fig. S3 but for EOF 2.
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Fig. S5. Signal, noise, and S/N ratios (panels A-C, respectively) in model and observational SSU and MSU data. Results are for the six-layer SSU+MSU case (SI section
“Fingerprint analysis”). The latitude-height temperature changes for these six layers are used in three sets of calculations. In Case 1, the global-mean temperature change
over time is retained in each layer. In Case 2, each layer’s global-mean temperature-change is removed. Case 3 is similar to Case 2, but involves subtraction of the
stratospheric-average global-mean change from each individual stratospheric layer and the tropospheric-average global-mean change from each individual tropospheric layer
(see SI section “Removal of spatial means”). As in Figs. 5A and C of the main text, all signals and S/N ratios in which observed temperature data are used for signal calculation
are plotted with symbols and dashed lines. “Model only” results are plotted with solid lines. The dashed horizontal line in panel C is the 1% significance level. The data used for
computing EOFs were area-weighted but not mass-weighted.
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Fig. S6. Fingerprints and leading noise modes in CMIP6 simulations. Results are for the SSU+MSU domain. The fingerprint (row 1) is EOF 1 of the multi-model average
atmospheric temperature changes computed from 32 realizations of HISText runs performed with nine CMIP6 models. The first two noise EOFs (rows 2 and 3) were calculated
from concatenated pre-industrial control runs with the same nine models. Fingerprints and noise EOFs are for Cases 1, 2, and 3 (columns 1-3). These three cases consider the
impact of different decisions regarding removing or retaining global-mean temperature changes (see SI section “Removal of spatial means”). The data used for computing EOFs
were area-weighted but not mass-weighted. The dotted horizontal gray lines are plotted at the approximate peaks of the SSU and MSU weighting functions. The noise modes in
Cases 1, 2, and 3 are highly similar because their patterns are dominated by variability at smaller spatial scales, and are therefore relatively unaffected by removal or inclusion
of the global-mean temperature changes in Cases 2 and 3. The prominent latitudinally coherent maximum at TLS level in panel C is due to the fact that the global-mean cooling
of TLS over 1986 to 2022 is at least a factor of three smaller than the global-mean cooling in the three SSU channels (see Fig. 2 in the main text).
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Fig. S7. Sensitivity of signal, noise, and S/N ratios to vertical weighting (panels A-C, respectively). Results are for the six-layer SSU+MSU domain; the global-mean temperature
changes are included for each layer. The annual-mean latitude-height temperature changes for these six layers are used in two different sets of calculations. In the “no mass
weighting” case, each of the six individual layers is given equal weight in the fingerprint analysis. Results for this case are identical to the results shown for the SSU+MSU case
in Fig. 5 of the main text. In the “mass weighting” case, weights representative of the atmospheric mass sampled by each of the SSU and MSU weighting functions are applied
to the temperature changes in each layer (see SI section “Mass and area weighting”). Mass weighting is performed for each model and observational data set. As in Figs. 5A
and C of the main text, all signals and S/N ratios in which observed temperature data are used for signal calculation are plotted with symbols and dashed lines. “Model only”
results are plotted with solid lines. The dashed horizontal line in panel C is the 1% significance level.
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Fig. S8. Sensitivity of signal, noise, and S/N ratios to the degree of overlap between weighting functions (panels A-C, respectively). Results are for two different cases:
SSU+MSU and RED. SSU+MSU comprises annual-mean latitude-height temperature-change information from six atmospheric layers (the three SSU channels and MSU TLS,
TTT, and TLT). There is substantial overlap between the weighting functions for these six layers (22), leading to overlap in the portions of the atmosphere that the weighting
functions sample. RED reduces this overlap by using information from three selected layers only: SSU3, TLS, and TLT (see SI section “Weighting function overlap”). Both
SSU+MSU and RED include global-mean temperature changes for each layer considered. As in Figs. 5A and C of the main text, all signals and S/N ratios in which observed
temperature data are used for signal calculation are plotted with symbols and dashed lines. “Model only” results are plotted with solid lines. The dashed horizontal line in panel
C is the 1% significance level. The data used for computing EOFs were area-weighted but not mass-weighted.
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