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In 1967, scientists used a simple climate model to predict that human-
caused increases in atmospheric CO2 should warm Earth’s tropo-
sphere and cool the stratosphere. This important signature of an-
thropogenic climate change has been documented in weather bal-
loon and satellite temperature measurements extending from near-
surface to the lower stratosphere. Stratospheric cooling has also
been confirmed in the mid- to upper stratosphere, a layer extending
from roughly 25 to 50 km above Earth’s surface (S25_50). To date,
however, S25_50 temperatures have not been used in pattern-based
attribution studies of anthropogenic climate change. Here we perform
the first such “fingerprint” study with satellite-derived patterns of
temperature change that extend from the lower troposphere to the
upper stratosphere. Including S25_50 information increases signal-
to-noise ratios by a factor of five, markedly enhancing fingerprint
detectability. Key features of this global-scale human fingerprint
include stratospheric cooling and tropospheric warming at all lati-
tudes, with stratospheric cooling amplifying with height. In contrast,
the dominant modes of internal variability in S25_50 have smaller-
scale temperature changes and lack uniform sign. These pronounced
spatial differences between S25_50 signal and noise patterns are ac-
companied by large cooling of S25_50 (1-2°C over 1986 to 2022) and
low S25_50 noise levels. Our results explain why extending “vertical
fingerprinting” to the mid- to upper stratosphere yields incontrovert-
ible evidence of human effects on the thermal structure of Earth’s
atmosphere.

climate change detection and attribution | stratospheric temperature |

satellite data |

I n simulations performed with a simple radiative convective
climate model in 1967, Manabe and Wetherald progressively
doubled levels of atmospheric CO2 from 150 to 300 to 600
parts per million (1). This yielded increasing warming of
the troposphere and increasing cooling of the stratosphere
(2), with cooling predicted to amplify with greater height
above the tropopause. The vertical profile of temperature
change predicted by Manabe and Wetherald was subsequently
confirmed by more complex models and by observations (3-8).

By the early 2000s, measurements of multidecadal changes
in the thermal structure of the atmosphere were available from
weather balloon networks (9, 10), satellite-based microwave
sounders (11-13), and reanalyses (14). All three sources pro-
vided adequate spatial coverage for estimating observed pat-
terns of zonal-mean temperature change (5-7, 15) and for
comparing these patterns with vertically resolved temperature
changes obtained from General Circulation Model simulations.

Early comparisons of this type noted that the observed

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

latitude-height patterns were distinctly different from esti-
mated patterns of natural internal variability, but consistent
with the profile of atmospheric temperature change predicted
by Manabe and Wetherald in response to CO; increases (4, 16).
This early research relied on weather balloon datasets with
coverage extending from the near-surface to the lower strato-
sphere, roughly 20 to 25 km above the surface.

Building on this pioneering work, quantitative “fingerprint”
studies revealed that model-predicted latitude-height patterns
of anthropogenic influence were statistically identifiable in
weather balloon temperature data (15, 17). This finding has
been confirmed repeatedly by subsequent investigations with
newer models and improved weather balloon data sets (18, 19).
The primary anthropogenic influences identified in weather
balloon atmospheric temperature data are external forcings
associated with increases in well-mixed greenhouse gases, the
depletion and recovery of stratospheric ozone, and changes in
particulate pollution (18-20).

Anthropogenic fingerprints have also been identified in at-
mospheric temperature measurements obtained from satellite-
based Microwave Sounding Units and Advanced Microwave
Sounding Units (MSU and AMSU) (21-23). As in the case
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of fingerprint studies with weather balloon data, the early
fingerprint work with satellite-derived atmospheric temper-
atures relied on data sets that did not extend higher than
approximately 25 km above Earth’s surface (24-27).

In consequence, all previous pattern-based studies seeking
to discern a human fingerprint in weather balloon and satellite
atmospheric temperature data have neglected the mid- to
upper stratosphere (S25-50), where the temperature signal of
COq increase is expected to be considerably larger than in the
troposphere or the lower stratosphere (1, 8). In searching for an
anthropogenic CO2 signal, the Sz5_50 layer has the additional
advantage that it is less affected than lower atmospheric layers
by particulate pollution and by human-caused changes in
stratospheric ozone (28).

Satellite-based Stratospheric Sounding Units (SSU) provide
temperature changes for the Sas5_50 layer (29). Initial SSU-
based temperature-change estimates obtained by two different
groups diverged markedly (8) but are now in closer agreement
(27, 30, 31)." Only one group, however, supplies spatially
resolved SSU data suitable for pattern-based fingerprint studies
and has merged SSU data with AMSU-A data (AMSU-A also
samples the Sos5_50 layer). Merging allows extension of SSU
data beyond 2006 (27), yielding a continuous record of mid-
to upper stratospheric temperature change from 1986 to the
present.” We refer to this merged product as “SSU”. Merged
MSU and AMSU data, which sample the troposphere and
lower stratosphere, are referred to as “MSU”.

Here we expand upon earlier fingerprint studies that relied
solely on MSU data for estimating latitude-height profiles of
atmospheric temperature change (23). We leverage the avail-
ability of improved SSU and MSU data sets and of newer
simulations (32) performed with models with higher tops,
which permits calculation of synthetic SSU temperatures from
simulation output. We analyze atmospheric temperature sig-
nals from a multi-model ensemble of historical simulations
(HISTcs:) that have been extended after 2014 with results
from a specific climate change scenario. We also rely on an
ensemble of pre-industrial control runs with no year-to-year
changes in human or natural external factors. The control
runs provide multi-model estimates of the “noise” of natu-
ral internal variability. Model signal and noise estimates are
essential ingredients of fingerprint studies (23, 33, 34).

It is not obvious a priori how incorporating the mid- to
upper stratosphere will affect signal-to-noise (S/N) ratios and
the detectability of an anthropogenic fingerprint. While model
and observed cooling signals in Sa5_50 are &~ 1-2°C over the
satellite era (8, 31, 35), the noise of natural internal variabil-
ity can be appreciable on monthly timescales, partly due to
the impact of sudden stratospheric warming events on Sa5_50
temperatures over the Arctic (36). Additionally, it must be
determined whether human-caused signals and natural vari-
ability have similar temperature-change patterns in the So5_50
layer — a situation which would be unfavorable for signal identi-
fication (37). Although previous investigations have compared
simulated and observed global-mean temperature changes in
the S25_50 layer (8, 31, 35), our study is the first to perform
pattern-based fingerprinting with temperature changes extend-
ing from the lower troposphere to the upper stratosphere.

*This agreement does not necessarily signify that observational uncertainties in SSU data are trivially
small. The process of identifying and adjusting for complex non-climatic factors is ongoing and
benefits from the involvement of multiple independent scientific groups.

The SSU record commences in 1979, but several SSU channels have data gaps prior to 1986 (29).
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We rely on satellite data from three groups and on model
data from phase 6 of the Coupled Model Intercomparison
Project (CMIP6) (32). Our focus is on temperature changes
in six atmospheric layers: SSU channels 3, 2, and 1 and
MSU retrievals for the lower stratosphere (TLS), the total
troposphere (T'TT), and the lower troposphere (TLT). The
approximate peaks of the weighting functions for these six
layers are at 45, 38, 30, 19, 5.6, and 3.1 km above Earth’s
surface (respectively). Further details of all data sets and
analysis methods are given in the Materials and Methods and
the Supporting Information (SI) Appendix.
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Fig. 1. Observed and simulated changes in global-mean monthly-mean temperature
in six atmospheric layers. Results are temperatures from channels 3, 2, and 1 of the
Stratospheric Sounding Unit (SSU; panels A-C) (27), lower stratospheric temperature
from the Microwave Sounding Unit (MSU TLS; panel D), MSU total tropospheric
temperature (TTT; panel E) and MSU lower tropospheric temperature (TLT; panel
F) (25). The peaks of the weighting functions for these six layers are at ca. 45, 38,
30, 19, 5.6, and 3.1 km above Earth’s surface (respectively). Results are anomalies
relative to climatological monthly means over 1986 to 2022. Model simulations are
from nine different CMIP6 models and a total of 32 realizations of historical climate
change (see Methods and SlI).

Global-mean changes

Consistent with the early Manabe and Wetherald predictions
of the atmospheric temperature response to CO2 increase (1),
both the satellite data and simulations performed with state-
of-the-art Earth System Models (ESMs) show tropospheric
warming and stratospheric cooling over 1986 to 2022 (Fig. 1)
(31, 35, 38, 39). Other common features in models and satellite
data include amplification of cooling with increasing height in
the stratosphere (8, 31, 35), short-term stratospheric warming
after the 1991 Pinatubo eruption (with warming decreasing in
amplitude with increasing stratospheric height), longer-term
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tropospheric cooling following Pinatubo (40), and a roughly
11-year solar signal in the SSU channels (8, 35).

Noticeable model-versus-observed differences include overes-
timated model-average stratospheric cooling and larger model-
average tropospheric warming trends (Fig. 2). The latter
discrepancy is due to multiple factors, including model-versus-
observed differences in the phasing of multidecadal Pacific
internal variability (41), model forcing and response errors
(42-44), and the relatively limited ensemble size of HIST cq+
runs available here (41). Residual errors in observed satellite
data are also a possible contributory factor (39).

In the three SSU channels, the stratospheric cooling trends
over 1986 to 2022 in satellite data and HIST ., runs are over
an order of magnitude larger than control run estimates of
the natural internal variability of 37-year atmospheric tem-
perature trends (Figs. 2A-C). The amplitudes of forced and
unforced trends are more similar in the lower stratosphere and
troposphere, although all satellite and HIST.,: TLS, TTT,
and TLT trends are still clearly separated from their respective
control run distributions (Figs. 2D-F). These results indicate
that at the global-mean level, the S/N properties of the S25_50
layer are highly favorable for anthropogenic signal detection.

The analysis in Fig. 2 is over 1986 to 2022 only — the period
of continuous coverage of SSU and MSU temperature measure-
ments. This period samples both the pronounced depletion
of stratospheric ozone in the last three decades of the 20th
century and the gradual recovery of stratospheric ozone in the
early 21st century (28, 45). In addition to ozone, other atmo-
spheric constituents can also show important time variations
in radiative forcing (46-49). It is of interest here to consider
the impact of such variations on simulated temperature-change
profiles, and to explore how S/N properties changes as the net
anthropogenic forcing changes.

Figure 3 shows simulated global-mean temperature changes
in the HIST.;; runs. Results are for four different 25-year
time windows: 1950-1974, 1975-1999, 2000-2024, and 2025-
2049. The second and third periods sample times influenced by
ozone depletion and ozone recovery (respectively) (28, 45); the
fourth period has substantially larger net anthropogenic forcing
than the first. As in Fig. 2, control run trend distributions
provide information on the magnitude of unforced atmospheric
temperature changes. This information is valuable for assessing
the significance of the forced temperature trends in the HIST ¢+
simulations.

Consider the troposphere first. In TLT and TTT, each suc-
cessive 25-year period has larger ensemble-mean tropospheric
warming and greater separation from the mean of the sam-
pling distribution of unforced trends (i.e., higher S/N levels).
This progressive warming is consistent with increasing positive
forcing by anthropogenic greenhouse gases. The early 1950-
1974 period has large, time-increasing negative anthropogenic
sulfate aerosol forcing (49), which helps to explain why the
ensemble-mean HIST.,; tropospheric temperature trends over
this period are close to zero. Anthropogenic sulfate aerosol
forcing decreases nonlinearly in the three subsequent analysis
periods (49, 50), yielding a decrease in sulfate aerosol-induced
tropospheric cooling. Although these pronounced temporal
changes in anthropogenic sulfate aerosol forcing influence TLT
and TTT, they have minimal effect on simulated stratospheric
temperature trends.

In the three SSU channels, stratospheric cooling occurs in

Santer etal.

each of the four analysis periods and in every HIST.,; real-
ization (Figs. 3A-D). As in the case of the 1986-2022 period,
cooling in the HIST.,;; runs amplifies with increasing height
and is invariably significantly larger than 25-year trends aris-
ing from internal variability. One key difference relative to the
tropospheric results in Figs. 3E,F is that stratospheric cooling
does not increase monotonically as the 25-year analysis window
advances. The effect of the large stratospheric ozone depletion
over 1975-1999 is to augment CO2-induced stratospheric cool-
ing. As a result, the ensemble-mean HIST.,: cooling of each
SSU channel (and of TLS) is larger over 1975-1999 than in
the subsequent 2000-2024 period. By 2025-2049, the primarily
COz-driven cooling of the S25_50 layer exceeds the CO2 and
ozone-driven Sgs_5¢ cooling over 1975-1999.

Figure 3 shows that despite important changes over time
in the relative contributions of ozone and GHG forcing, the
simulated global-mean temperature change profile in response
to anthropogenic forcing is remarkably robust over 1950 to
2049. The temperature-change contrasts between tropospheric
warming and cooling of the mid- to upper stratosphere gen-
erally increase with time and with larger net anthropogenic
forcing and become easier to discriminate from natural internal
variability. The exception is in the lower stratosphere, where
forced temperature changes become less significant in the sec-
ond half of the 21st century. This is due to two factors. First,
lower stratospheric cooling due to GHG increases is partly
offset by warming arising from the recovery of stratospheric
ozone (28, 45). Second, the TLS weighting function receives
a small contribution from COz-induced warming of the trop-
ical upper troposphere (51). As tropical upper tropospheric
warming increases over time (and as the height of the tropical
tropopause increases), this contribution becomes larger.

Latitude-height trend patterns

Latitude-height patterns of atmospheric temperature trends
are shown in Figs. 4A-L. In all nine models and in observa-
tions, tropospheric warming is hemispherically asymmetric,
with larger warming over the Arctic than over the Antarctic.
This asymmetry has multiple causes, including reduction in
atmospheric burdens of anthropogenic aerosols, feedbacks as-
sociated with substantial changes in Arctic sea ice extent over
the satellite era (52, 53), and hemispheric differences in ocean
circulation and heat uptake (54).

In satellite data, stratospheric cooling over 1986 to 2022
is also asymmetric, with larger cooling over the Arctic and
upward extension of a reduced cooling signal over the Antarctic
(Figs. 4K, L). Some models capture aspects of this upward
extension at mid- to high southern latitudes (Figs. 4B, C, F, G,
H, and I), but most models lack the observed south-to-north
decrease in Sa5_50 and the maximum Arctic cooling in Sa5_50.

The observed global-scale cooling of the S25_50 layer is
noticeably larger over 1986 to 2000 than over 2001 to 2022
(SI Figs. S1A, B). Larger stratospheric cooling in the ear-
lier period is partly due to recovery from Pinatubo-induced
stratospheric warming (Figs. 1A-D). The CMIP6 multi-model
average captures time-evolving behavior similar to that in the
satellite data, but lacks the prominent observed Arctic cool-
ing of Sa5_50 over 1986 to 2000 (SI Figs. S1C, D). As in the
case of model-versus-observed stratospheric cooling differences
over the longer 1986 to 2022 period, this discrepancy over the
Arctic is likely related to multiple factors (see Conclusions).
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Fig. 2. Total global-mean atmospheric temperature changes over 37-year periods. Results are for six different atmospheric layers, arranged vertically by height of the layer with
respect to Earth’s surface (panels A-F). The total temperature change is the least-squares linear trend per year x 37 years, calculated over 1986 to 2022 for the HIST ..+
realizations and satellite observations and over 37-year non-overlapping segments of pre-industrial control runs. The latter provide estimates of the natural internal variability of
atmospheric temperature trends inferred from nine different CMIP6 models. The same nine models were used to calculate the multi-model average synthetic SSU and MSU
atmospheric temperature trends from 32 realizations of HIST ...+ runs with anthropogenic and natural external forcing. Trends from individual HIST ...+ realizations are also
shown. See S| for details of control run trend distributions and sources of observed data. The y-axis location of the HIST ..., trends and observed trends is arbitrary.

Fingerprint results

We use a standard pattern-based fingerprint method (23, 33,
55). This yields S/N ratios as a function of L, the timescale
in years. The fingerprint F' is estimated from the multi-model
average latitude-height temperature changes in the HIST ¢,
simulations. The signal S is a measure of the pattern similarity
between F' and time-varying patterns of temperature changes
in observations or in individual HIST.,: simulations. The
noise N provides information on the similarity between F
and time-varying patterns of natural internal variability in
model control runs (see Methods and SI). If S/N ratios are
larger than 3, it is unlikely that the time-increasing similarity
between F' and the satellite data could be due to internal
variability alone (55).

Since our interest is in exploring the impact of temperature
changes from different atmospheric layers on S/N properties,
we show the signals calculated with fingerprints for four dif-
ferent spatial domains (Fig. 5A). We refer to these domains
subsequently as TROP, SSU, MSU, and SSU+MSU. They

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

comprise the two tropospheric layers in Fig. 1, the three SSU
channels, the three MSU layers, and all six layers (respectively).
Fingerprints estimated from the multi-model average atmo-
spheric temperature changes for these four domains are shown
in the left column of Fig. 6. The fingerprints are dominated
by anthropogenic external forcing (see SI).

Consistent with the size of the global-mean temperature
changes in Fig. 2, the largest signals in Fig. 5A are for the
two domains (SSU and SSU+MSU) that include the large
temperature changes in the mid- to upper stratosphere; the
smallest signals are for MSU and TROP. This ordering of signal
strength holds for the simulations and for the observations.
The model spread in S(L) is greater for smaller values of L,
reflecting the larger noise of internal variability on shorter
timescales (56). On longer multidecadal timescales, the main
drivers of spread in S(L) are inter-model forcing and response
differences (57).

Values of S(L) decrease for analysis periods ending in 1991,
gradually recovering over the following 4-5 years (Fig. 5A).
This decrease in S(L) is due to the short-term stratospheric
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Fig. 3. Sensitivity of global-mean atmospheric temperature changes to the choice of analysis period. The total temperature change is the least-squares linear trend per year x
25 years, calculated over four different periods for the HIST. .., realizations (1950-1974, 1975-1999, 2000-2024, and 2025-2049) and over 25-year non-overlapping segments of
CMIP6 pre-industrial control runs. See Fig. 2 for analysis details and the SI for details of control run trend distributions. The y-axis location of the HIST...; trends is arbitrary.

warming and tropospheric cooling caused by the 1991 Pinatubo
eruption — temperature changes that are of opposite sign to
the searched-for anthropogenic fingerprints (see Figs. 6A, D,
G, and J). For the SSU+MSU and SSU domains, stratospheric
cooling during the recovery from the Pinatubo eruption aug-
ments the gradual anthropogenically induced stratospheric
cooling and produces a rapid increase in signal strength over
1992 to 1997.

For all four atmospheric regions, the noise N decreases as
L increases (Fig. 5B). Values of N are largest for TROP and
MSU and smallest for SSU+MSU and SSU — the reverse of
the ordering for signal strength in Fig. 5A. Dividing S(L) by
the respective value of N (L) yields the signal-to-noise ratio
SN(L) in Fig. 5C. This ratio is markedly smaller for TROP and
MSU than for SSU and SSU+MSU. In the three satellite data
sets, SN(L) for the 37-year signal trend over the 1986 to 2022
period varies between 4.6 and 6.6 for TROP, 6.7 and 9.0 for
MSU, and 37.3 and 38.7 for SSU+MSU. For the SSU domain,
SN(L) over the full analysis period is 49.3 in the only available
satellite data set (27). In all four latitude-height domains, the
model-predicted fingerprints in Fig. 6 are identifiable with
high statistical confidence (at or above the 1% level) in each of
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the 32 HIST.,: realizations and in each of the three observed
data sets.}

One of the key inferences from Fig. 5C — and a central find-
ing from our study — is that extending vertical fingerprinting
from “MSU space” to combined “SSU+MSU space” amplifies
signal-to-noise ratios in satellite data by a factor of ~ 5 for
SN(L) calculated over the full 1986 to 2022 period. The in-
clusion of temperature changes in Sa5_50 is therefore useful in
discriminating between anthropogenically driven atmospheric
temperature change and internally generated variability. This
enhancement of SN(L) in SSU+MSU is partly due to the large
amplitude of the signal and the relatively low noise amplitude
in S25—50 (Fig. 2). Signal-to-noise enhancement also reflects
relative differences in the spatial similarity between the finger-
print F' and the leading patterns of natural internal variability
in the SSU and MSU domains (see below).

Patterns of signal and noise modes

In the fingerprint for each of the four domains considered here,
temperature changes for individual satellite sounding channels

j;We note, however, that the three observational data sets are not independent for the SSU or
SSU+MSU domains — all share the same STAR SSU data.
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Fig. 4. Simulated and observed latitude-height profiles of atmospheric temperature trends over 1986 to 2022 (in °C/decade). Trends were calculated from zonal-mean
temperatures for the six atmospheric layers in Fig. 1. Trends are plotted at the approximate heights of the maxima of each weighting function peak and were smoothly
interpolated in the vertical. Model results are for HIST.,+ simulations performed with nine different CMIP6 models (panels A-l). If more than one HIST.,; realization was
available for an individual model, the result in panels A-l is for the ensemble-mean trends. The CMIP6 multi-model average is also shown (MMA; panel J). Satellite observations
are for SSU data combined with two different observed MSU data sets (panels K and L; see Methods). Stippling in panel J denotes latitude bands and layers at which the local
S/N ratio exceeds 2 —i.e., where the CMIP6 MMA trend is two times greater than the between-model standard deviation of the trend. The stippling indicates that at each
latitude and for each of the six atmospheric layers, the MMA temperature trends are large relative to the between-model standard deviation of trends. The sole exception is in

TLS over the Arctic, where there are noticeable inter-model trend differences.

vary with latitude but remain either positive or negative across
all latitudes (see left column of Fig. 6). In terms of vertical
structure, the fingerprints for the MSU and SSU+MSU do-
mains are characterized by a reversal with height in the sign
of temperature change (Figs. 6D and J), consistent with the
large tropospheric warming and stratospheric cooling signals
common to the models analyzed here (see Figs. 4A-I). Other
prominent fingerprint features include Arctic amplification of
low-latitude warming in TROP and amplification of strato-
spheric cooling with increasing height in the SSU domain
(Figs. 6A and G, respectively).

In contrast to the fingerprint patterns, the leading multi-
model noise modes in the middle and right columns of Fig. 6
display smaller-scale variability with pronounced meridional
structure. For a given sounding channel, no noise mode has
temperature changes with uniform sign at all latitudes. In the
TROP domain, the leading noise mode reveals internal variabil-
ity that is anticorrelated between the tropics and midlatitudes
(Fig. 6B). This behavior is consistent with temperature fluc-
tuations associated with the El Nifio/Southern Oscillation
(ENSO) (41). For the SSU domain, the variability in the lead-
ing noise mode is strongly anticorrelated between the tropics
and extratropics (Fig. 6H), likely due to tropical upwelling
and polar downwelling driven by the shallow branch of the
Brewer-Dobson circulation (BDC). The noise modes for the
MSU and SSU+MSU domains capture aspects of both ENSO-
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and BDC-induced internal variability.

To quantify the spatial similarity between fingerprint and
noise patterns in Fig. 6, we calculated r{F:N1} and r{F:N2}, the
uncentered pattern correlations between F' and the first two
noise modes of the concatenated control runs (37). Values of
r{F:N1} and r{F:N2} are smallest for the SSU and SSU+MSU
domains and largest for TROP and MSU (see SI Fig. S2).
This difference in pattern similarity across domains holds
for fingerprints calculated from individual CMIP6 HIST ¢x:
realizations, the HIST¢,; multi-model average, and satellite
data sets. The small r{F:N1} and r{F:N2} values for the SSU
and SSU+MSU domains help to explain their large S/N ratios
in Fig. 5C — the fingerprints for these two domains are more
effective in filtering out internal variability noise.

For individual spatial domains, the clustering of points with
similar correlation values in SI Fig. S2 implies that the finger-
prints estimated from individual model results or individual
observational data sets are spatially similar. We show this
fingerprint similarity for the specific case of the SSU+MSU
domain (SI Fig. S3). The fingerprints in SI Fig. S3 are the lead-
ing Empirical Orthogonal Function (EOF) of the individual
model HIST.,; simulations and the satellite data sets.

It is likely that higher-order EOFs capture additional forced
components of atmospheric temperature change, such as the
nonlinear TLS response to time-evolving forcing by lower
stratospheric ozone depletion (28, 58). This is illustrated by
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Fig. 5. Signal, noise, and S/N ratios in model and observed SSU and MSU data.
Signals were calculated by projecting temperature data for different sets of atmo-
spheric layers onto four fingerprints (SSU+MSU, TROP, MSU, and SSU) estimated
from CMIP6 HIST. .+ simulations, and then fitting trends of increasing length L years
to the resulting projection time series (panel A). CMIP6 control run temperature data
were projected onto the same four fingerprints, yielding the projection time series
Ny (t). The noise o (L) is estimated by fitting non-overlapping L-year trends to
N (t) and calculating the standard deviation of the L-year trend distribution (panel
B). The S/N ratio is the L-year signal in panel A divided by the respective values
of 0.1 (L) in panel B (see Methods and Sl). Model signals are from 32 HIST ¢+
realizations; model noise is from 4,050 years of control run data. Signals and S/N
ratios in which observed temperature data are used are plotted with symbols and
dashed lines. The dashed horizontal line in panel C is the 1% significance level.

the spatial similarity between key features of the second EOF
of the satellite data and certain CMIP6 HIST,: simulations,
particularly the common negative loadings in the stratosphere
at high latitudes of the Southern Hemisphere (see SI Fig. S4).

Sensitivity tests

We performed three sensitivity tests. The first explores the
impact on fingerprint results of removing global-mean tempera-
ture signals. The second test considers the effect of accounting
for large differences in the mass of the six atmospheric layers
analyzed here. The third test examines whether S/N results
are biased by overlap between the weighting functions used to
sample the temperatures of these six layers (59).

In the first test, we find that removal of overall global-
mean stratospheric cooling and tropospheric signals does not
negate confident identification of an anthropogenic fingerprint
in the vertical structure of atmospheric temperature change (SI
Figs. S5 and S6). However, removing global-mean temperature
changes in each of the six individual atmospheric layers —
thereby removing information about vertical temperature-
change gradients — markedly reduces S/N ratios and fingerprint
detectability (see Methods and SI).

Santer etal.

The second and third sensitivity tests are described in the
Methods and SI. Although both tests reduce S/N values (see SI
Figs. S7 and S8), the model-predicted SSU+MSU fingerprint
can still be consistently identified in each of the individual
HIST..: realizations and satellite data sets.

Conclusions

Our results illustrate that including information from the mid-
to upper stratosphere (S2s—50) substantially enhances the
detectability of an anthropogenic fingerprint on Earth’s atmo-
spheric temperature. This enhancement holds for observations
and for individual model HIST.,: realizations. Extending
latitude-height fingerprints from the lower stratosphere to the
Sa5-_50 layer samples a region of the atmosphere where the
direct radiative signature of CO; is prominent (1, 2, 8), the
temperature signal driven by CO2 increase is large, and the
noise of natural internal variability is low.

The SSU+MSU vertical fingerprint extends from the lower
troposphere to roughly 50 km above the surface. Signal-to-
noise (S/N) ratios for the SSU+MSU domain consistently
exceed 38 in the satellite data analyzed here. This value is
virtually impossible to obtain by chance alone if our model-
based estimates of signal and noise are realistic (55). In the
satellite data sets, the S/N ratios for the SSU+MSU domain
are roughly a factor of five larger than in the case of the “MSU
only” vertical fingerprint, which truncates at an altitude of
approximately 20-25 km (Fig. 5C).

The larger S/N values for the SSU+MSU fingerprint arise
not only from the large cooling signal in the mid- to upper
stratosphere, but also from the low internal variability noise in
the Sa5_50 layer (Fig. 2) and the distinct differences between
S25-50 signal and noise spatial patterns (SI Fig. S2). As a
result, including the Sa5_50 layer in the SSU+MSU vertical
fingerprint more effectively damps the noise of natural internal
variability. A mass-weighted fingerprint analysis diminishes
the contribution of stratospheric cooling and is less effective at
separating signal and noise, but does not negate identification
of the SSU+MSU fingerprint.

One issue revealed by this study warrants further attention.
In the CMIP6 models analyzed here, model-predicted strato-
spheric cooling over 1986 to 2022 is significantly larger than
in the SSU data (Figs. 2A-C). Multiple factors are likely to
contribute to this discrepancy. These factors include model
errors in the imposed anthropogenic and natural external forc-
ings (42, 43, 60), in the simulated response to these forcings,
and in the properties of internal variability. Mismatches in
the random phasing of simulated and observed variability may
also be relevant (41, 44), along with residual errors in satellite
temperature data sets (25, 27, 61).

In the troposphere, accounting for model-versus-observed
differences in the phasing of Pacific decadal variability im-
proves agreement between simulated and observed temper-
ature trends over the satellite era (44). The magnitude of
decadal internal variability is smaller in the mid- to upper
stratosphere than in the troposphere (Fig. 1). It is unlikely,
therefore, that either phasing differences or model errors in
the amplitude of decadal variability could fully explain why
the simulated cooling of the S25_50 layer is significantly larger
than observed (Figs. 2A-C). Forcing errors appear to be a
more plausible explanation for this discrepancy, particularly
in view of the substantial (and ongoing) evolution of forcing
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Fig. 6. Fingerprints and leading noise modes in CMIP6 simulations. Results are for four different spatial domains: TROP, MSU, SSU, and SSU+MSU (rows 1-4, respectively).
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estimates between CMIP5 and CMIP6 (39, 42, 60).

The challenge in interpreting differences between simulated
and observed temperature trends lies in reliably quantifying
the relative contributions of the multiple factors mentioned
above. Such work will benefit from systematic exploration
of uncertainties in radiative forcing (42, 60, 62, 63). It is
also important to perform rigorous model-data comparisons of
decadal variability for stratospheric temperature, as has been
done for tropospheric temperature (55, 64).§

Model-based decadal variability estimates are an integral
part of our fingerprint study. The reliability of these estimates
underpins the credibility of our S/N ratios (Fig. 5). We note,
however, that the CMIP6 models analyzed here would have to
underestimate the observed (but uncertain) natural internal
variability of stratospheric temperature by more than an order
of magnitude in order to negate identification of an anthro-

SSuch comparisons are hampered by the relatively short length of the observations and by the
availability of only a single manifestation of forced and unforced temperature changes.
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pogenic fingerprint in the SSU and SSU4+MSU domains. We
find no evidence that such an error exists (see Fig. 1).

In summary, the warming of the troposphere and cooling
of the stratosphere across all latitudes is a unique fingerprint
of greenhouse gas forcing. If tropospheric warming were solely
due to solar activity, warming rather than cooling of the upper
stratosphere would be expected (15, 23, 65). Alternatively, if
stratospheric cooling and tropospheric warming at all latitudes
— sustained over decades — were caused by internal variability
alone, then similar patterns should sometimes emerge in the
many long control runs of global models. This is not the
case. Thus the ability to examine the vertical structure of
atmospheric temperature changes is a powerful tool for sepa-
rating human and natural effects on climate. Extending the
reach of “vertical fingerprinting” from the lower troposphere
to the upper stratosphere provides incontrovertible evidence
of anthropogenic impact on Earth’s climate.

Santer etal.
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Materials and Methods

Satellite data. We rely on satellite data from three groups: Remote
Sensing Systems (RSS) (66), the Center for Satellite Applications
and Research (STAR) (61, 67), and the University of Alabama
at Huntsville (UAH) (26). STAR is the only current source of
spatially resolved temperature data for SSU channels 1, 2, and 3
(27). STAR, RSS, and UAH each supply MSU-based measurements
of the temperatures of the lower stratosphere (TLS) and the mid-
to upper troposphere (TMT). We apply a standard regression-based
method to adjust TMT for the influence it receives from lower
stratospheric cooling (68, 69), thereby obtaining the temperature of
the total troposphere (T'TT; see SI). Only RSS and UAH provide
MSU estimates of the temperature of the lower troposphere (TLT).
We “pair” STAR SSU data with UAH and RSS MSU data to
generate two observed data sets spanning the lower troposphere to
the upper stratosphere. Pairing STAR SSU, TLS, and TTT data
with UAH TLT data yields a third observed data set (see SI).

Model data. The model synthetic SSU and MSU temperatures ana-
lyzed here are from phase 6 of the Coupled Model Intercomparison
Project (CMIP6) (32). “Synthetic” indicates that the model re-
sults were calculated with weighting functions that facilitate direct
comparison between satellite and model temperature changes (see
SI).

The synthetic SSU and MSU temperatures are from three differ-
ent types of numerical experiment: 1) Simulations with estimated
historical changes in natural and anthropopogenic external forcings,
which typically commence from January 1850 and end in December
2014; 2) Scenario runs with post-2014 changes in anthropogenic
external forcings that are specified according to a Shared Socioe-
conomic Pathway which reaches radiative forcing of 8.5 W/m? by
2100 (SSP5-8.5); and 3) Pre-industrial control integrations with no
year-to-year changes in external forcings.

The CMIP6 historical and scenario simulations consider not only
the effects of CO2 increases, but also include the radiative effects of
changes in other greenhouse gases (70), anthropogenic aerosols, and
solar and volcanic forcing. Temperatures from historical simulations
and corresponding scenario runs were spliced together to permit
comparison of model and observational results over 1986 to 2022.
We refer to these as extended historical runs (HISTez¢; see SI).
The CMIP6 model historical and SSP5-8.5 simulations used in our
study are identified in Table S1. The control runs required for noise
estimation are listed in Table S2. We analyzed a total of 32 HISTez+¢
realizations performed with nine different models and control runs
generated with the same nine models.

Fingerprint and signal trends. We project zonal-mean annual-mean
atmospheric temperature onto a searched-for fingerprint pattern
F(x,p) estimated from the multi-model average temperature
changes in the HIST¢;¢ simulations. This yields the projection
time series Z(t), a measure of uncentered spatial covariance (see
SI). The indices z, p, and ¢ are over latitude, atmospheric layer, and
time (respectively). The T'(z, p,t) temperature data projected onto
F(z,p) are either from satellite observations or individual HIST ¢z¢
realizations. Z(t) is a measure of the evolving pattern similarity
between F(z,p) and T'(z,p,t) at each year t. We compute L-year
least-squares linear trends in Z(t), starting in 1986, the beginning
of continuous SSU records. The first trend length L is five years,
corresponding to the period 1986 to 1990; L is increased in one-year
increments, with L = 37 corresponding to 1986 to 2022. The signal
S(L) is the least-squares trend in Z(t). Large S(L) trends denote
time-increasing similarity between the latitude-height temperature
changes in T'(x, p,t) and the fingerprint pattern.

Noise trends. To determine whether and when the values of S(L)
in Fig. 5A achieve statistical significance, we compare S(L) with
null distributions in which we know a priori that natural internal
variability is the only explanation for trends in pattern similarity.
We use control runs with no year-to-year changes in external forcing
to generate these “no signal” distributions. We project a total of
4,050 years of atmospheric temperature data from nine CMIP6 pre-
industrial control runs onto the TROP, SSU, MSU, and SSU+MSU
fingerprints, resulting in a projection time series N (t) for each
fingerprint. Non-overlapping L-year trends in Ny (t) are then
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calculated for each value of L considered (i.e., for L =5, 6, ... 37
years). For the L = 37-year analysis period, there are 109 individual
samples of trends in N4 (t). The standard deviation of these L-year
noise trend distributions, o (L), is shown in Fig. 5B and is the
denominator of the S/N ratios in Fig. 5C.

Global-mean removal. To determine whether our S/N results are
solely driven by large global-mean temperature changes (21, 39), we
compared the baseline case in Fig. 5 (Case 1, which includes global-
mean changes) with two additional cases. In Case 2, the global-
mean temperature change in each of the six layers was removed
from each latitude band of each layer. Removal is performed for
each year t and each model and observational data set. Case 3
is analogous to Case 2, but the subtraction involved the overall
global-mean stratospheric temperature change (the average of the
global-mean changes in the three SSU channels and TLS) and the
overall global-mean tropospheric temperature change (the average
of the global-mean changes in TTT and TLT). These sensitivity
tests are described in the SI and are shown in SI Figs. S5 and S6
for the six-layer SSU+MSU domain.
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Supporting Information Text
Materials

Additional information on satellite data. We rely on estimates of the temperature of the lower stratosphere (TLS), mid-
troposphere (TMT), and lower troposphere (TLT) derived from satellite-borne Microwave Sounding Units (MSU) and Advanced
Microwave Sounding Units (AMSU). These data sets are produced by Remote Sensing Systems (RSS) (1) and the University of
Alabama at Huntsville (UAH) (2). We also use TLS and TMT data from the Center for Satellite Applications and Research
(STAR) (3, 4). STAR does not currently provide TLT data.

Information on temperature changes in the mid- to upper stratosphere is available from channels 1, 2, and 3 of the
Stratospheric Sounding Unit (SSU). The SSU temperature data are from STAR (5). We use the most recent versions of the
MSU/AMSU and SSU/AMSU-A data:

¢ RSS 4.0 and UAH 6.0 for TLS, TMT, and TLT;
e STAR 5.0 for TLS and TMT;

e STAR 3.0 for SSU1, SSU2, and SSUS3.

Version 3 of the STAR SSU data merged the version 2 SSU data set (6) with 8 channels of AMSU-A observations. Merging
extends the SSU time series from 2006 to present (5). MSU data are merged with AMSU data after 1998. We refer to these
merged products subsequently as “SSU” and “MSU”.

We employed a standard regression-based method to adjust TMT for the influence it receives from lower stratospheric
cooling (7). This adjustment yields TTT, the temperature of the “total” troposphere (see SI section “Method for correcting
TMT data”).

Our fingerprint analysis employs zonally averaged temperature changes for SSU3, SSU2, SSU1, TLS, TTT, and TLT. The
approximate peaks of the weighting functions for these layers are 45, 38, 30, 19, 5.6, and 3.1 km, respectively.

All satellite temperature data sets analyzed here are in the form of monthly means on the same 2.5° x 2.5° latitude/longitude
grid. At the time this analysis was performed, satellite temperature data for full 12-month years were available for the
528-month period from January 1979 to December 2022 for TLS, TTT, and TLT and for the 444-month period from January
1986 to December 2022 for SSU3, SSU2, and SSU1. We use the latter period here since we require non-missing temperature
data over a common time window for all six layers of interest.

As noted above, STAR does not have a TLT product. To include STAR MSU data in our study, we first calculated TTT
from STAR TLS and TMT data, and then generated data sets in which the STAR SSU, TLS and TTT data were “paired”
with either RSS TLT or UAH TLT:

STARI = STAR SSU3/2/1 + STAR TLS/TTT + RSS TLT
STAR2 = STAR SSU3/2/1 4+ STAR TLS/TTT + UAH TLT

Relative to STARI1, S/N ratios obtained with STAR2 data are approximately 30% smaller for the TROP case (because the
lower tropospheric warming is smaller in UAH than in RSS; see main text Fig. 2). This means that for the TROP domain,
S/N ratios estimated with STAR2 data are more conservative. Nevertheless, the model-predicted TROP fingerprints can be
identified at the 1% level in both the STAR1 and STAR2 observational temperature data sets.

Whether we use STAR1 or STAR2 has minimal impact on S/N results for the SSU+MSU and MSU domains. This lack of
sensitivity is due the fact that the TLT layer is only one-sixth and one-third of the SSU+MSU and MSU domains (respectively).
In the main text (in Fig. 5) and in Figs. S2, S5, S7, and S8) we show STAR2 results only.

Additional information on model data. We analyze synthetic SSU3, SSU2, SSU1, TLS, TTT, and TLT data from simulations
performed under phase 6 of the Coupled Model Intercomparison Project (CMIP6) (8). “Synthetic” denotes the calculation of a
vertically weighted average of atmospheric temperature in order to facilitate the comparison of simulations and satellite SSU or
MSU data (see SI section “Calculation of synthetic satellite temperatures”). The synthetic SSU and MSU temperatures are
from three different types of numerical experiment:

1. Simulations with estimated historical changes in natural and anthropopogenic external forcings, which typically commence
from January 1850 and end in December 2014.

2. Scenario runs with post-2014 changes in anthropogenic external forcings that are specified according to a Shared
Socioeconomic Pathway (SSP). The SSP used here is referred to as SSP5-8.5 (or as SSP5) because it reaches radiative
forcing of 8.5 W/m? by 2100. We adopt the SSP5 nomenclature here (9).

3. Preindustrial control integrations with no year-to-year changes in external forcings.

Each historical simulation was spliced together with a companion SSP5 run initiated from the end of the historical run.
This extension of the historical run allows us to compare simulated and observed atmospheric temperatures over the full period
with continuous availability of monthly-mean MSU and SSU data (1986 to 2022; see SI section “Additional information on
satellite data”). We refer to these subsequently as HIST s+ runs.

2 0f 20 Benjamin D. Santer et al.



63 To calculate synthetic SSU data, we require simulation output from CMIP6 models with sufficient vertical resolution in the
e mid- to upper stratosphere. We follow the recommendations of Thompson et al. here (10) and require models with a top located
6s at 0.1 hPa or higher in order to compute synthetic temperatures for all three SSU channels. Output fulfilling this requirement is
e available from models participating in the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) (11). Here,
67 we use the AerChemMIP “plev39” data with zonal-mean monthly-mean atmospheric temperatures at 39 standard pressure
e levels.”

69 In addition to the requirement of a sufficiently high top, there were three further requirements for inclusion of a CMIP6 model
70 in the fingerprint analysis. First, given the large warming signatures of major volcanic eruptions on stratospheric temperatures
71 (10, 12), only models that explicitly included the full radiative effects of volcanic aerosols were considered (13). Neglecting the
72 large effect of the 1991 Pinatubo eruption would bias comparisons between simulated and observed stratospheric temperature
72 changes over 1986 to 2022. Second, any model with spurious variability in stratospheric temperature was excluded. '

74 Finally, we required that the data for computing synthetic MSU temperatures had to exist for the same simulations
75 from which we had calculated synthetic SSU temperatures. These three requirements were satisfied in 32 different HIST ¢+
76 realizations performed with 9 different CMIP6 models. We analyzed control integrations from the same 9 models. Details of
77 the model HIST.,: and control simulations are given in Tables S1 and S2, respectively.

 Methods

79 Calculation of synthetic satellite temperatures. We used a local weighting function method developed at RSS to calculate
s synthetic MSU temperatures from the CMIP6 HIST.,+ and preindustrial control runs (15). At each grid-point, simulated
st temperature profiles were convolved with local weighting functions. Weights depend on the grid-point surface pressure, the
&2 surface type (land, ocean, or sea ice), and the selected satellite channel (TLS, TMT, or TLT).

83 Because the influence of topography on weighting functions is not important in the mid- to upper stratosphere, use of a
s+ local weighting function method is not necessary for calculating synthetic SSU temperatures. We applied weighting functions
& available from STAR (5) to the zonal-mean monthly-mean plev39 atmospheric temperature data (see SI section “Additional
s information on model data”) in order to derive synthetic SSU1, SSU2, and SSU3 data.

sz Method for correcting TMT data. Trends in TMT estimated from microwave sounders receive a substantial contribution from the
s cooling of the lower stratosphere (7). This contribution hampers reliable interpretation of the warming of the free troposphere —
ss  which is why most analysts adjust satellite TMT measurements and model simulations of TMT for the influence of stratospheric
% cooling (14-21).

91 An additional complication in comparing and interpreting uncorrected TMT results is that stratospheric cooling can vary
%2 appreciably in different observational data sets (22) and in different climate models (14, 15). In models, this is often due to
o large differences in stratospheric ozone forcing over the satellite era (13), or to systematic changes in stratospheric ozone forcing
e between different generations of CMIP models (14, 23).

95 Adjustment of TMT using the regression-based method introduced by Fu et al. (7) simplifies the interpretation of data-data,
s model-model, and model-data comparisons of tropospheric temperature change.? This method has been validated with both
97 observed and model atmospheric temperature data (16, 24, 25).

98 In the following, we refer to adjusted TMT as total tropospheric temperature (TTT). It is calculated as follows:

99 TTT = a4 TMT + (1 — a24)TLS [1]

10 We compute two different versions of total tropospheric temperature: TTT; and TTT,. TTT; was first used for adjusting
101 tropical averages of TMT, with agsa = 1.1 at each latitude (17). In TTT2, azs = 1.1 between 30°N and 30°S, and azs = 1.2
102 poleward of 30°.

103 The advantage of TTT2 is that lower stratospheric cooling makes a larger contribution to unadjusted TMT trends at mid-
14 to high latitudes. The latitudinally varying regression coefficients in TTT2 remove more of this extratropical cooling. We use
105 TTT2 throughout the main text and the SI, and do not use the subscript “2” to identify TTT,.

106 In practice, whether we use TTT; or TTT2 has minimal influence on our S/N results.

107 We note that TTTs is calculated in the same way in all simulations and observations and for all months. This ensures that
18 model-versus-observed temperature comparisons of TTT2 are not affected by the application of regression coefficients that
109 differ in the CMIP6 simulations and in satellite data.

1o  Fingerprint analysis. Detection methods generally require an estimate of the true but unknown climate-change signal in response
11 to an individual forcing or set of forcings (26). This is often referred to as the fingerprint, which we denote here by F(z,p),
112 where z is an index over latitude and p is an index over atmospheric layers.

113 Fingerprints can be defined in different ways. Here, F(x,p) is the first Empirical Orthogonal Function (EOF) of the
112 multi-model ensemble-mean change in temperature across the CMIP6 HIST,; simulations.

*The plev39 levels (in hPa) are 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 170, 150, 130, 115, 100, 90, 80, 70, 50, 30, 20, 15, 10,7, 5,3,2,1.5,1,0.7, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.07, 0.05, and
0.03. For further details, see https://cmip6dr.github.io/Data_Request_Home/Documents/CMIP6_pressure_levels.pdf

TThis is the case with CanESMS5, which “exhibits anomalous aperiodic 1-2-month lower-stratospheric warming events in certain ensemble members” (14).

iFor example, differences between simulated and observed trends in unadjusted TMT could arise from the combined effects of model climate sensitivity errors (which would affect tropospheric temperature)
and from unrelated model errors in stratospheric ozone forcing (which would primarily affect lower stratospheric temperature). Use of adjusted TMT reduces the contribution of stratospheric ozone forcing
errors to model-versus-data differences in tropospheric temperature trends.

Benjamin D. Santer et al. 30f20



115

116

17

118

19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Let Th.: (4, j, <, p, t) represent the temperature anomaly for the i*" HIST..; realization of the j** CMIP6 model, where:

i = 1,...N.(j) (no. of HIST, realizations for the j** model)

j = 1,...Nmoa (no. of CMIP6 models used in the fingerprint analysis)
x = 1,...N, (no. of latitude bands with zonal-mean temperatures)
p = 1,...N, (total no. of SSU and MSU atmospheric layers)

t = 1,...V (time in years)

Here, N, (j) varies from 1 to 10 realizations and Np,oq = 9. After transforming synthetic MSU temperature data from each
model’s native grid to a common 5°x 5° latitude/longitude grid and calculating zonal averages, N, = 36 latitude bands.
Synthetic SSU data (which are already in zonal-mean form; see SI section “Additional infoprmation on model data”) are
transformed to the same 36 latitude nodes. N,, varies from 2 to 6 layers (see below). Fingerprint estimation is over the period
of common coverage in SSU and MSU (1986 to 2022), so N; is 37 years.

Anomalies in Ths: (3, j, , p,t) were defined relative to climatological annual means over 1986 to 2022. The multi-model

ensemble-mean change, Th,.:(z,p, t), was calculated by first averaging over the N,.(j) individual realizations in the j** model

and then averaging over all Ny,oq models. The fingerprint F(z,p) is the first EOF of Ths(x, p,t). The time period used for
determining Tops (z, p, t), the change in zonal-mean annual-mean atmospheric temperature in a selected combination of observed
SSU and MSU data sets, is the same as used for calculating the fingerprint (1986 to 2022).

We estimate one fingerprint for each of the four different sets of the six atmospheric layers considered here:

1. SSU+MSU (six layers; SSU3, SSU2, SSU1, TLS, TTT, and TLT);
2. TROP (two layers; TTT and TLT);

3. MSU (three layers; TLS, TTT, and TLT);

4. SSU (three layers; SSU3, SSU2, and SSU1).

The TROP and SSU cases provide information on the S/N properties of satellite era temperature changes in the troposphere
and in the mid- to upper stratosphere (respectively). Comparison of S/N results for the MSU and SSU+MSU domains yields
insights into the impact of extending previous “vertical fingerprint” studies to the upper stratosphere. Previous studies were
conducted using MSU information only (27) and were therefore restricted to the troposphere and lower stratosphere.

For each of these four different sets of atmospheric layers, we seek to determine whether the pattern similarity between
F(x,p) and Tops(x, p,t) shows a statistically significant increase over time. We also consider whether there is a significant
increase in pattern similarity between the fingerprint and each individual HIST ., realization — i.e., between F(z,p) and
Thst(i?j7 T, p, t)

To address these two questions, we require control run estimates of internally generated variability in which we know a
priori that there is no expression of the fingerprint, except by chance. We obtain such variability estimates from control runs
performed with the same nine CMIP6 models used to estimate F'(x,p). Layer-average atmospheric temperatures from each
control run are regridded to the same 5°x 5° latitude/longitude grid used for fingerprint estimation. After regridding and
calculation of zonal averages, layer-average atmospheric temperature anomalies are defined relative to climatological annual
means computed over the full length of each control run.

Because the length of the nine CMIP6 control runs varies by a factor of approximately 2 (see Table S2), models with longer
control integrations could have a disproportionately large impact on our noise estimates. To guard against this possibility, we
rely on the last 450 years of each model’s pre-industrial control run. Use of the last 450 years reduces the contribution of
initial residual drift and guarantees that each model is given equal weight in calculating the denominator of our S/N ratios.
Concatenation yields 9 x 450 = 4,050 years of control run atmospheric temperature output.

Use of the last 450 years of each control run may not fully remove non-physical residual drift, which can inflate and bias
S/N estimates (28). Here, we assume that drift behavior can be well-approximated by a least-squares linear trend and the drift
is removed at each latitude band and for each atmospheric layer. Drift removal is performed over the last 450 control run years
only (since only the last 450 years are concatenated).

In processing the observations, layer-average atmospheric temperature data from STAR, RSS, and UAH are first regridded
to the same target 5°x 5° latitude/longitude grid used for the model HIST ., simulations and control runs. Observations are
then zonally averaged and expressed as anomalies relative to climatological annual means over 1986 to 2022. The observed
temperature anomaly data, Toys(z,p,t), are then projected onto F(z,p), the time-invariant fingerprint:

Ny Np

Zobs(t) = ZZTobs(l‘7pa t) F($7p)

z=1 p=1

t=1,...,37.
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This projection is equivalent to a spatially uncentered covariance between the Tops(z,p, t) and F(z,p) patterns at year ¢. The
signal time series Zops(t) provides information on the fingerprint strength in the observations. If Tops(x,p,t) is becoming
increasingly similar to F(z,p), Zobs(t) should increase over time.

The projection of an individual HIST ., realization onto F'(z,p) is defined analogously:

N NP

Znst(5,5,8) = Y > Thet(is j, 2, p,t) F(,p)

z=1 p=1

i=1,...,N:(j); 7=1,...,Nmoa; t=1,...,3T.

To assess the significance of the changes in Zops(t) or in Zps:(4, 4, t), we compare trends in Zops(t) and in Zpse(i, 7,¢) with a
null distribution of trends. To generate a suitable null distribution, we require a case in which Tops(x, p,t) or Thet (i, J, z,p, t) is
replaced by a record in which we know a priori that there is no expression of the fingerprint, except by chance. Here, we use a
concatenated multi-model noise data set, Tey (z, p, t), which has been regridded and detrended as described above.S The noise
time series N¢y(t) is the projection of Tey(z, p,t) onto the fingerprint:

N, Np

thl(t) = ZZTCil(‘r7p7t) F(:L‘,p)
z=1 p=1

t=1,... 7Nt{ctl}~

where Ny(cy is 4,050, the total number of years in the multi-model noise estimate.

As in our previous work (29, 30), we fit least-squares linear trends of increasing length L years to Zops(t). This yields Sops(L).
We then form the signal-to-noise ratios SNoys(L) by dividing Sops (L) by oeu (L), the standard deviation of the distribution
of non-overlapping L-length noise trends in N¢y(¢). Signal trends in Zps:(4,7,t) are treated analogously — i.e., we calculate
Shst (3,7, L) from Znst (3, j, t), divide Skst(Z, 5, L) by ocu(L), and obtain SNpst(, 5, L).

We assess statistical significance by comparing these calculated S/N ratios with a Gaussian distribution, as in (31). This
assumes that L-year trends in N (t) have a Gaussian distribution. This assumption is reasonable for multi-model estimates of
internal variability given the large sample sizes that we have here. Signal detection is stipulated to occur at the trend length
Lg for which the S/N ratio first exceeds some stipulated significance level (typically 1% here) and then remains above that
level for all values of L > Lg4. The test is one-tailed.

Empirical estimates of the significance of our S/N ratios yield very similar results. These estimates are based on comparisons
of signal trends with the actual distributions of L-year noise trends obtained from N¢y(t).

The start date for fitting linear trends to Z,(t) is 1986, the first complete year of common continuous temporal coverage of
the observational SSU and MSU data. We use a minimum trend length of 5 years, so the first S/N ratio (and the earliest
possible detection time) is for 5-year trends ending in 1990. The analysis period increases in increments of one year, i.e., L = 5,
6, 7, ..., 37. The L = 37 case corresponds to the full satellite era (1986 to 2022).

Finally, we note that all model and observational temperature data used in the fingerprint analysis are appropriately
area-weighted. Weighting involves multiplication by the square root of the cosine of the grid node’s latitude (32). For visual
display purposes only, the EOFs shown in Fig. 6 of the main text and in Figs. S3, S4, and S6 are unweighted (i.e., the grid-point
values of each EOF are divided by the square root of the cosine of the grid node’s latitude). There is no weighting of the
individual atmospheric layers — each layer has equal weight. Mass-weighted fingerprint results are discussed below (see SI
section on “Mass and area weighting”).

The S/N analysis described in the main text relies on the HIST ¢, fingerprints of zonal-mean annual-mean atmospheric
temperature change. The CMIP6 HIST.,: simulations involve combined anthropogenic and natural external forcing. Because
anthropogenic forcing is substantially larger than natural external forcing over 1986 to 2022, the HIST .,: fingerprints are very
similar to fingerprint patterns obtained from integrations with anthropogenic forcing only (33). The HIST.,: fingerprint patterns
primarily reflect the tropospheric warming in response to human-caused changes in greenhouse gases and the stratospheric
cooling caused by anthropogenic CO2 increases and stratospheric ozone depletion (33).

For the SSU+MSU and SSU domains, the timescale-dependent S/N ratios in Fig. 5C of the main text show strong correlations
across individual HIST ., realizations, despite the fact that the internal variability in each realization should not be correlated
(except by chance). The explanation for this correlation across realizations is that the Shs:(4, 7, L) signals for the SSU+MSU
and SSU domains are very large relative to the amplitude of the o¢y (L) noise for these domains (compare Figs. 5A and B in
the main text). This is why relatively small “noise” in the decay of o (L) as a function of increasing L, arising from our use
of non-overlapping trends to estimate o (L), has large impact on SN(L) values and imparts correlation to SN(L) across the
32 HIST..: realizations.

SUnlike Thst(i, 3,2, p,t), Teyp (x, p, t) has no index over ¢ or over j. This is because there is typically only one realization of each control run and because the noise data from each of the 9 models
have been concatenated.
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Removal of spatial means. In comparing simulated and observed patterns of atmospheric temperature change and interpreting
S/N results, we are interested in assessing contributions to S/N ratios from global- and from sub-global spatial scales. Our
“baseline” fingerprint analysis in Fig. 5 of the main text relies on an uncentered spatial covariance statistic which retains the
spatial means of the two fields that are being compared. The baseline case, therefore, incorporates both the global- and the
sub-global components of temperature change.

As in our previous fingerprint work (34), it is of interest to determine whether large global-mean tropospheric warming
and stratospheric cooling signals are the main driver of our consistent identification of model-predicted F(z,p) fingerprints in
satellite observations and in individual model HIST ., realizations (see Fig. 5C in main text). We address this question by
comparing S/N ratios for the baseline case (Case 1, which includes global-mean temperature changes at each atmospheric level)
with S/N results from two additional types of calculation:

1. For each of the N, layers, N, latitude bands, and N; years, we remove the global-mean atmospheric temperature change
for that layer, latitude band, and year (Case 2);

2. The overall global-mean tropospheric temperature change in year ¢ (the average of the global-mean temperature changes
for TTT and TLT in year t) is removed from the individual TTT and TLT layers. A similar subtraction is performed
for each of the four stratospheric layers (SSU3, SSU2, SSU1, and TLS) using the overall global-mean stratospheric
temperature change in year ¢ (Case 3).

For example, for the observational zonal-mean annual-mean atmospheric temperature change used in Case 2:

<Tobs(p7 t)> = ZTobs(mupv t) W(I) /ZW(‘T) [5}

p=1,...,Np; t=1,...,3T.

where <Tops(p,t) > is the global-mean temperature change for layer p and year ¢, the angle brackets denote a spatial average,
and W (x) are area weights for each latitude band. Subtraction of the global-mean temperature change yields:

Tobs(fcvpy t)* = obs(:cvpy t) - <Tobs(p7 t)>

z=1,...,Ng; p=1,...,Np; t=1,...,37.

where * denotes departures from the global-mean.

In Case 3, < Tops{STRAT}(t) > and < Tops{TROP}(t) > are the overall global-mean temperature changes for the four
stratospheric layers and the two tropospheric layers, respectively. These are removed from the individual stratospheric and
tropospheric layers as follows:

Tobs($»p7 t)** = obS(vav t) - <T0bS{STRAT}(t)>
r=1,...,Ngz; p=1,...,4; t=1,...,37.
Tobs (@, p, 1) = Tobs (x,p,t) — < Tops{TROP}(t) >

z=1,...,Ng; p=5,6; t=1,...,37.

where it is assumed that the ordering of layers is from the highest layer to the lowest layer and that the ordering of layers is
identical in each data set, i.e., p =1 is SSU3, p = 2 is SSU2, p = 3 is SSU1, p =4 is TLS, p=51is TTT, and p = 6 is TLT.
The double asterisk notation denotes a departure from the overall stratospheric or tropospheric global-mean (c.f. the single
asterisk notation for Case 2).

While equations (5) though (7) are for observations, the processing is similar for HIST.5: and for control simulations. In
each model HIST.;; or control run data set processed, we remove the global-mean temperature change for layer p from each
latitude band of that layer (Case 2), or we remove the overall global-mean stratospheric temperature change from each latitude
of each stratospheric layer and we subtract the overall global-mean tropospheric temperature change from each latitude of each
tropospheric layer (Case 3).

For the HIST ¢, runs, these two different global-mean subtraction methods yield the multi-model ensemble means m(x, p,t)*
(Case 2) and Thet(z,p,t)™ (Case 3). The Case 2 fingerprint shown in Fig. S6B is F(z,p)”, the leading EOF of T} (z,p,t)".
The Case 3 fingerprint in Fig. S6C is F'(x,p)**, the leading EOF of m(:v,p, ).

The key difference between Case 2 and Case 3 is that in the latter, we retain global-scale signals of interest in the observations
and HIST.,: runs, such as the increase in the size of stratospheric cooling with increasing altitude in the stratosphere (35) and
the amplification of tropical tropospheric warming in TTT relative to TLT (20, 36). These global-scale signals are removed in
Case 2.
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Mass and area weighting. The focus of our study is on the value of including the mid- to upper stratosphere in climate
fingerprinting. We seek to determine whether including temperature information from the So5_5¢ layer aids in separating
anthropogenic climate change from natural internal variability. To address this question, each of the six atmospheric layers
considered here was assigned a vertical weight of 1 in the fingerprint analysis. With uniform vertical weighting, including the
Sa5-50 layer significantly enhances our ability to discriminate between human-caused climate change and internal variability
(see Fig. 5C in the main text).

To explore the impact of mass weighting on our fingerprint results, we require a set of suitable weights that reflect the
sampling of atmospheric mass by the weighting functions of each of the six layers we consider (SSU3, SSU2, SSU1, TLS, TTT,
and TLT).

Our calculation relies on the vertical profile of atmospheric density from the U.S. standard atmosphere and on the publicly
available values of the weighting functions for the three SSU and three MSU layers. The mass weights §(p) are defined as
follows for each of the N, layers:

2p(TOP)
B(p) = / p(2) V(p,2) A=) .
2p(BOT)

p=1,...,Np.

where p(z) is the density of the standard atmosphere as a function of the height z (in meters), V (p, z) is the SSU or MSU
weighting function for the p'™ atmospheric layer, A(z) is the vertical resolution to which p(z) and V(p, z) have been interpolated
(z =100 meters here), and N, = 6. The vertical integration is from the height of the lowest layer of the p** weighting function,
zp(BOT), to the height of the top layer of the p" weighting function, zp(TOP). Realistic land topography is used in the
calculation of the density p(z).

For each layer, therefore, 8(p) is the vertical integration of air density weighted by the SSU or MSU weighting function. We
normalize each value of S(p) by f(ror), the sum of the six individual §(p) values:

B(p)" = B(p) / B(ror)

p=1,...,Np.

where the ’ denotes a normalized quantity.
The values of the normalized mass weights (expressed as percentages of the total atmospheric mass sampled by the six
sounding channels) are listed below:

1 SSU3 = 0.4%
2 SSU2 = 0.9%
3 SSU1 =2.1%
4 TLS =6.6%
5 TTT =39.4%
6 TLT =50.6%

In the case of “no mass weighting” shown in Figs. 5 and 6 of the main text and in Figs. S3-S8, all input model and
observational latitude-height temperature data sets are multiplied by /W (z), the square root of the area weights for each
latitude band. In the “mass weighting” case in Fig. S7, all input temperature data sets are multiplied by ~(z,p), the square
root of the combined area and mass weights:

v(@,p) =/ W(z) B(p)
[10]
r=1,...,Nz; p=1,...,N,

The three SSU layers, therefore, sample less than 3.5% of the total mass of the atmosphere. Weighting all input model and
observed data sets with the atmospheric mass sampled by individual SSU and MSU layers markedly damps the influence of
stratospheric cooling and emphasizes tropospheric warming. In a mass-weighted fingerprint analysis of the SSU+MSU domain,
signal strength decreases, noise is amplified, and S/N is reduced by a factor of roughly 4 relative to the case of uniform vertical
weights (see Fig. S7).This reduction in S/N is due to multiple factors: the down-weighting of the large global-mean cooling
signals in the three SSU channels and TLS, and the reduced impact of the quasi-orthogonality between the signal and noise
patterns in the Sos_50 layer (Fig. S2).

Despite this large reduction in S/N, the mass-weighted fingerprints are still identifiable at the 1% level in each of the 32
individual CMIP extended historical runs and in each of the three observational data sets (Fig. S7).
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Weighting function overlap. In all four atmospheric domains considered here (TROP, MSU, SSU, and SSU+MSU; see SI section
“Fingerprint analysis”) there is overlap between the individual weighting functions used to sample atmospheric temperature
changes (22). This overlap can introduce correlation between temperature changes in different atmospheric layers. Of particular
concern here is the question of whether S/N results for the six-layer SSU+MSU domain are biased by our use of TTT and
TLT (which provide overlapping information about tropospheric temperature change) and by our inclusion of three SSU layers
(which provide overlapping information about temperature change in the mid- to upper stratosphere).

We address this question by performing a sensitivity test in which the fingerprint analysis is repeated with three layers only:
SSU3, TLS, and TLT. Our choice of these three layers reduces the substantial overlap between weighting functions in the
six-layer SSU4+MSU case. We refer to the three-layer reduced-space representation of signal, noise, and observations as RED,
and we compare fingerprint results in the RED and SSU+MSU cases. This comparison is performed without removal of the
global-mean temperature changes in individual atmospheric layers and without any mass weighting of individual layers (see SI
sections on “Removal of spatial means” and “Mass and area weighting”, respectively).

Results are given in Fig. S8. Relative to the SSU+MSU case, RED systematically reduces signal strength. This reduction
occurs because certain signal attributes present in SSU+MSU are absent in RED, such as the amplification of lower tropospheric
temperature changes in tropical TTT. Additionally, RED downweights the amplification of cooling in the mid- to upper
stratosphere by including results from only one of the three SSU channels used in the six-layer SSU+MSU case.

Figure S8B reveals that the noise amplitude is smaller in RED than in SSU4+MSU. This result is partly due to the fact that
the noise amplitude is larger in the troposphere than in the stratosphere (see Fig. 5B in the main text). Because RED includes
information from only one tropospheric channel (rather than from the two tropospheric channels that are used in SSU+MSU),
the noise contribution from the troposphere is smaller in RED than in SSU+MSU.

Additionally, the fingerprint and leading noise modes are spatially more similar in the troposphere than in the mid- to
upper stratosphere (compare the TROP and SSU cases in Fig. S2). This pattern similarity contributes to the higher noise in
the TROP case in Fig. 5B of the main text — the TROP fingerprint is less successful than the MSU, SSU, and SSU+MSU
fingerprints in filtering out internal variability variability. By removing TTT from RED, we are reducing the pattern similarity
between tropospheric signal and noise modes, thereby enhancing the effectiveness of noise filtering in RED.

S/N ratios are very similar in the SSU+MSU and RED cases (see Fig. S8C). This similarity occurs because of the
compensating effects described above: relative to SSU+MSU, RED has reduced signal strength but also has reduced noise.
The RED sensitivity test shows that a simple way of accounting for weighting function overlap — by selectively reducing the
number of layers considered in the fingerprint analysis — has a systematic impact on signal and noise, but has relatively little
effect on S/N ratios. In both the SSU+MSU and RED cases, S/N ratios by the end of the full 37-year analysis period (1986 to
2022) invariably exceed 35. This holds for fingerprint identification in the three satellite data sets and in all 32 individual
CMIP6 HIST,,: realizations. We conclude, therefore, that the SSU4+MSU fingerprint results presented in the main text are
unlikely to be biased by weighting function overlap.

Other statistical analysis details. The sampling distributions of unforced trends in atmospheric temperature shown in Figs. 2
and 3 of the main text were calculated from non-overlapping 37-year and 25-year chunks (respectively) of the same nine CMIP6
pre-industrial control runs used in the fingerprint analysis (see Table S2). While the fingerprint analysis used only 450 years of
each control run to ensure that S/N ratios were not biased by models with longer control runs (see SI section “Fingerprint
analysis”), the control run trend distributions in Figs. 2 and 3 of the main text were generated using the full length of each
control run. The reason for this decision is that unlike in the fingerprint analysis, the “no signal” trend distributions in Figs. 2
and 3 are not being used for statistical significance testing: their primary use is simply to provide visual information regarding
differences in the magnitude of forced and unforced trends.

The histograms in Figs. 2 and 3 were plotted with the Matplotlib pyplot.hist function with arrays of weights and with the
“density=True” option. This option ensures that “each bin will display the bin’s raw count divided by the total number of
counts and the bin width... so that the area under the histogram integrates to 1.7 The array of weights is defined as:

’LU(_], k) = 1/Nchunk(])
[11]
j:17~“7thl; k:17"'aNchunk(j)

where j is an index over the number of pre-industrial control runs, k is an index over the number of non-overlapping 37-year or
25-year least-squares linear trends, and Nepunk(j) is the total number of non-overlapping 37-year or 25-year least-squares linear
trends in the 5% control run.

Al https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.hist.html

8 of 20 Benjamin D. Santer et al.



Table S1. Basic information relating to the start dates, end dates, and lengths (IV,,, in months) of the 32 CMIP6 historical and SSP5-8.5
simulations used in this study. EM is the “ensemble member" identifier.

Model EM HIST HIST HIST | SSP5-8.5 | SSP5-8.5 | SSP5-8.5
Start End Ny, Start End Ny,
1-2  CESM2 r10i1p1f1, ri1i1pi1f1 1850-01 | 2014-12 | 1980 2015-01 2100-12 1032
3-5 CESM2-WACCM r1i1p1f1-r3i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
6-8 HadGEM3-GC31-LL r1i1p1f3—r3i1p1f3 1850-01 | 2014-12 | 1980 2015-01 2100-12 1032
9 IPSL-CMBA-LR r1i1p1fi 1950-01 2014-12 780 2015-01 2300-12 3432
10 IPSL-CM6A-LR r2i1p1fi 1950-01 2014-12 780 2015-01 2100-12 1032
11-12  IPSL-CM6A-LR r3i1p1f1, rdi1p1f1 1950-01 2014-12 780 2015-01 2054-12 480
13  IPSL-CM6A-LR réi1p1fi 1950-01 2014-12 780 2015-01 2100-12 1032
14 MIROC-ES2L rilp1f2 1850-01 | 2014-12 | 1980 2015-01 2100-12 1032
15-16  MPI-ESM-1.2-HR r1i1p1f1, r2itp1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
17-26  MPI-ESM-1.2-LR r1itp1f1—r10i1p1f1 1850-01 | 2014-12 | 1980 2015-01 2100-12 1032
27 MRI-ESM2.0 r1i1p1f1 1850-01 2014-12 1980 2015-01 2300-12 3432
28-31  UKESM1.0-LL rlitp1f2—r4i1pif2 1850-01 | 2014-12 | 1980 2015-01 2100-12 1032
32 UKESM1.0-LL r8i1p1f2 1850-01 | 2014-12 | 1980 2015-01 2100-12 1032
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Table S2. Start dates, end dates, and lengths (IV,,,, in months) of the nine CMIP6 pre-industrial control runs used in this study. EM is the
“ensemble member” identifier.

Model EM Start End Nm
1 CESM2 rlitp1f1 1-01 | 1301-12 | 14400
2 CESM2-WACCM rlitpif1 1-01 499-12 5988
3 HadGEM3-GC31-LL rlitp1ft | 1850-01 | 2349-12 6000
4  IPSL-CM6A-LR r1itp1f1 | 1850-01 | 3049-12 | 14400
5 MIROC-ES2L rlitp1f2 | 1850-01 | 2349-12 6000
6 MPI-ESM-1.2-HR r1ilp1f1 | 1850-01 | 2349-12 6000
7  MPI-ESM-1.2-LR r1i1p1f1 1850-01 2849-12 12000
8 MRI-ESM2.0 r1ilp1f1 | 1850-01 | 2550-12 8412
9 UKESM1.0-LL rlitp1f2 | 1960-01 | 2709-12 9000
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Satellite and Model Atmospheric Temperature Trends in SSU and MSU

A STAR SSU v3.0; RSS MSU v4.0 (1986-2000)

B STAR SSU v3.0; RSS MSU v4.0 (2001-2022)
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Fig. S1. Trends in zonal-mean annual-mean atmospheric temperature in satellite data and observations. Results are least-squares linear trends over 1986 to 2000 (left column)
and over 2001 to 2022 (right column). These two periods are characterized (respectively) by depletion and recovery of observed lower stratospheric ozone concentrations over
Antarctica (5, 37, 38). The earlier period is also affected by recovery from the large stratospheric warming signal caused by the 1991 eruption of Pinatubo (see Figs. 1A-D in
main text). Observations (panels A, B) are from STAR for the three SSU channels (SSU3, SSU2, and SSU1) (5) and from RSS for MSU TLS, TTT, and TLT (1). Model results
(panels C, D) are the multi-model average synthetic SSU and MSU atmospheric temperature trends calculated from 32 realizations of HIST ..., runs performed with nine
different CMIP6 models. In all panels, global-mean temperature changes are retained for each of the six atmospheric layers considered. The black dots in panels C and D
denote latitude bands and layers with local S/N ratios > 2: i.e., locations where the multi-model average trend over the analysis period is at least a factor of two larger than the
standard deviation of individual model trends. Black dots are plotted at the approximate peaks of the three SSU and three MSU weighting functions.
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Uncentered Pattern Correlations Between Fingerprint and Noise Modes
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Fig. S2. Values of the uncentered pattern correlations between the fingerprint F' and the first two noise modes in CMIP6 simulations. Results are for four spatial domains:
SSU+MSU, TROP, MSU, and SSU. For each domain, F' was estimated from three sources: the 32 individual model HIST.+ realizations performed with 9 different CMIP6
models (filled circles), the multi-model average HIST.... atmospheric temperature changes (filled diamonds), and the satellite data (unfilled symbols). The first two noise
Empirical Orthogonal Functions (EOFs) were calculated using 4,050 years of concatenated pre-industrial control run data. Pattern correlations between F' and noise EOFs 1
and 2 are plotted on the x-axis and y-axis (respectively). Noise EOFs 1 and 2 are shown in the middle and right columns of Fig. 6 of the main text; the fingerprints estimated
from the CMIP6 multi-model average HIST. .+ data are in the left column of Fig. 6. For the SSU+MSU domain, the F' patterns for selected individual HIST.,+ realizations are
displayed in Figs. S3A-I and the F patterns for the two satellite data sets are given in Figs. S3K and L. In calculating fingerprints and noise EOFs, global-mean temperature
changes were retained for each of the six atmospheric layers considered. The data used for computing EOFs were area-weighted but not mass-weighted. Since the signs of
the fingerprints and noise EOFs are arbitrary, we show the absolute value of the pattern correlation.
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EOF 1 in Satellite and CMIP6 SSU and MSU Temperature (1986-2022)
A CESM2 (61.2%) B CESM2-WACCM (71.8%) C_ HadGEM3-GC3.1-LL (69.7%) D IPSL-CM6A-LR (72.6%)
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Fig. S3. Fingerprint pattern of zonal-mean annual-mean atmospheric temperature change in simulations and observations for the SSU+MSU domain. Results are the first
Empirical Orthogonal Function (EOF) of HIST .+ simulations in individual CMIP6 models (panels A-l) and in the CMIP6 multi-model average (panel J). The leading EOF for two
satellite data sets is also shown (panels K, L). EOFs are calculated over 1986 to 2022 using temperature changes for six atmospheric layers (SSU3, SSU2, SSU1, TLS, TTT,
and TLT). For models with multiple HIST. .+ realizations in panels A-I, results are for the first realization only. In all EOF calculations, global-mean temperature changes are
retained for each of the six atmospheric layers considered. The dotted horizontal grey lines are plotted at the approximate peaks of the three SSU and three MSU weighting
functions. The explained variance of each EOF is indicated in the panel title (in parentheses). The data used for computing EOFs were area-weighted but not mass-weighted.
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Fig. S4. As for Fig. S3 but for EOF 2.
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Fig. S5. Signal, noise, and S/N ratios (panels A-C, respectively) in model and observational SSU and MSU data. Results are for the six-layer SSU+MSU case (Sl section
“Fingerprint analysis”). The latitude-height temperature changes for these six layers are used in three sets of calculations. In Case 1, the global-mean temperature change
over time is retained in each layer. In Case 2, each layer’s global-mean temperature-change is removed. Case 3 is similar to Case 2, but involves subtraction of the
stratospheric-average global-mean change from each individual stratospheric layer and the tropospheric-average global-mean change from each individual tropospheric layer
(see Sl section “Removal of spatial means”). As in Figs. 5A and C of the main text, all signals and S/N ratios in which observed temperature data are used for signal calculation
are plotted with symbols and dashed lines. “Model only” results are plotted with solid lines. The dashed horizontal line in panel C is the 1% significance level. The data used for
computing EOFs were area-weighted but not mass-weighted.
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Fig. S6. Fingerprints and leading noise modes in CMIP6 simulations. Results are for the SSU+MSU domain. The fingerprint (row 1) is EOF 1 of the multi-model average
atmospheric temperature changes computed from 32 realizations of HIST. ., runs performed with nine CMIP6 models. The first two noise EOFs (rows 2 and 3) were calculated
from concatenated pre-industrial control runs with the same nine models. Fingerprints and noise EOFs are for Cases 1, 2, and 3 (columns 1-3). These three cases consider the
impact of different decisions regarding removing or retaining global-mean temperature changes (see Sl section “Removal of spatial means”). The data used for computing EOFs
were area-weighted but not mass-weighted. The dotted horizontal gray lines are plotted at the approximate peaks of the SSU and MSU weighting functions. The noise modes in
Cases 1, 2, and 3 are highly similar because their patterns are dominated by variability at smaller spatial scales, and are therefore relatively unaffected by removal or inclusion
of the global-mean temperature changes in Cases 2 and 3. The prominent latitudinally coherent maximum at TLS level in panel C is due to the fact that the global-mean cooling
of TLS over 1986 to 2022 is at least a factor of three smaller than the global-mean cooling in the three SSU channels (see Fig. 2 in the main text).
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Fig. S7. Sensitivity of signal, noise, and S/N ratios to vertical weighting (panels A-C, respectively). Results are for the six-layer SSU+MSU domain; the global-mean temperature
changes are included for each layer. The annual-mean latitude-height temperature changes for these six layers are used in two different sets of calculations. In the “no mass
weighting” case, each of the six individual layers is given equal weight in the fingerprint analysis. Results for this case are identical to the results shown for the SSU+MSU case
in Fig. 5 of the main text. In the “mass weighting” case, weights representative of the atmospheric mass sampled by each of the SSU and MSU weighting functions are applied
to the temperature changes in each layer (see Sl section “Mass and area weighting”). Mass weighting is performed for each model and observational data set. As in Figs. 5A
and C of the main text, all signals and S/N ratios in which observed temperature data are used for signal calculation are plotted with symbols and dashed lines. “Model only”
results are plotted with solid lines. The dashed horizontal line in panel C is the 1% significance level.

Benjamin D. Santer et al. 17 of 20



Last year of L-year trend

1995 2000 2005 2010 2015 2020
A  Signal
@.@,7@7@,&&7&‘&%&;“ - ‘1&&&-&&—
= e B e B T T e B B e D T ]
c ]
2 ]
n ]
—2} ]
— 3 1 1 " " 1 " " 1 " " 1 " " 1 " " 1 "
5 10 15 20 25 30 35
1 1 1 1 1 1 T ] 0 . 4
B Noise
- 10.3
—— SSU+MSU (6-layer)
—— RED (3-layer) g
iy 10.2°35
] 2
- {0.1
e — i
5 10 15 20 25 30 35 0Ff
601990 1995 2000 2005 2010 2015 2020
C S/Nratio
40+
Rel
©
- 20 -
<
wn
1% significance level

20 25 730 35

Trend length L (years)

15
--{}-- 6-layer (STAR SSU, RSS MSU)

--A-- 6-layer (STAR SSU, UAH MSU)
--P>--- 6-layer (STAR SSU,TLS,TTT; UAH TLT)

--{+-- RED (STAR SSU, RSS MSU)
--/A--- RED (STAR SSU, UAH MSU)
--{>-- RED (STAR SSU,TLS,TTT; UAH TLT)

Fig. S8. Sensitivity of signal, noise, and S/N ratios to the degree of overlap between weighting functions (panels A-C, respectively). Results are for two different cases:
SSU+MSU and RED. SSU+MSU comprises annual-mean latitude-height temperature-change information from six atmospheric layers (the three SSU channels and MSU TLS,
TTT, and TLT). There is substantial overlap between the weighting functions for these six layers (22), leading to overlap in the portions of the atmosphere that the weighting
functions sample. RED reduces this overlap by using information from three selected layers only: SSU3, TLS, and TLT (see Sl section “Weighting function overlap”). Both
SSU+MSU and RED include global-mean temperature changes for each layer considered. As in Figs. 5A and C of the main text, all signals and S/N ratios in which observed
temperature data are used for signal calculation are plotted with symbols and dashed lines. “Model only” results are plotted with solid lines. The dashed horizontal line in panel
C is the 1% significance level. The data used for computing EOFs were area-weighted but not mass-weighted.
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