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Quantum computers have the potential to efficiently simulate large-scale quantum systems for
which classical approaches are bound to fail. Even though several existing quantum devices now
feature total qubit numbers of more than one hundred, their applicability remains plagued by the
presence of noise and errors. Thus, the degree to which large quantum systems can successfully
be simulated on these devices remains unclear. Here, we report on numerical results of physics-
motivated variational Ansatzes, as well as cloud simulations performed on several of IBM’s super-
conducting quantum computers to simulate ground states of spin chains having a wide range of
system sizes up to one hundred and two qubits. Our numerical analysis shows that our the accuracy
of the ground-state energy and ődelity improves substantially by increasing the number of layers
used in the Ansatzes. From the cloud experiments, we őnd that the ground-state energies extracted
from realizations across different quantum computers and system sizes reach the expected values
to within errors that are small (i.e., on the percent level), including the inference of the energy
density in the thermodynamic limit from these values. We achieve this accuracy through a com-
bination of physics-motivated variational Ansatzes, and efficient, scalable energy-measurement and
error-mitigation protocols, including the use of a reference state in the zero-noise extrapolation. By
using a 102-qubit system, we have been able to successfully apply up to 3186 CNOT gates in a
single circuit when performing gate-error mitigation. Our accurate, error-mitigated results for ran-
dom parameters in the Ansatz states suggest that a standalone hybrid quantum-classical variational
approach for large-scale XXZ models considered in this work is feasible.

I. INTRODUCTION.

The notion of quantum computers traces back to the
works of Benioff [1], Mannin [2], and Feynman [3]. In
particular, Feynman suggested using quantum comput-
ers to simulate other quantum systems instead of using
classical computers, giving rise to the notion of a uni-
versal quantum simulator [4]. A critical breakthrough
was made by Shor, whose quantum factoring algorithm
outperforms classical algorithms almost exponentially
faster [5]. Experimental progress has come a long way,
leading to the burgeoning of quantum devices, with the
total qubit number now exceeding one hundred in the
best cases. However, these devices are still regarded as
noisy intermediate-scale quantum (NISQ) processors [6],
not yet suitable for full-scale quantum error correction
and fault-tolerant quantum computation. On the other
hand, there are concurrent efforts to develop error miti-
gation techniques [7ś15] and algorithms [16] for NISQ de-
vices to realize their potential quantum advantage [17].
Recent notable experimental achievements include ran-
dom quantum circuits of around 50 qubits [18, 19], bo-
son sampling with large numbers of photons [20, 21],
Hartree-Fock method implementation for quantum chem-
istry with 12 qubits [22], realization of the toric-code
state with 31 qubits [23], and quantum walks on a 62-
qubit processor [24].

Despite all this effort and accomplishment, the cen-
tral question remains of whether NISQ computers can
be of practical use for the simulation of large quantum

systems and to extract accurate observable values, such
as the energy of the simulated quantum states. So far,
most experiments with quantitatively accurate results
have been limited to small numbers of qubits, around ten
or below [9ś12, 22], with a few others reaching beyond
twenty [15, 23]. None of them has demonstrated accurate
results over a wide range of system sizes with the same
model and across different devices. There are also chal-
lenges to overcome for large-scale experiments (around or
over one hundred qubits) with useful outcomes, includ-
ing the need for high-ődelity gates and readout as well
as scalable and efficacious approaches to mitigating the
effects of noise and errors on the measured observables.

In this work, we have designed a family of physics-
motivated variational Ansatzes and analyzed their accu-
racy for the Heisenberg and XXZ spin chains. For small
numbers of qubits, our Ansatzes can reach exact ground-
state wave functions and for larger number of qubits, the
accuracy of the ground-state energy and ődelity improves
substantially by increasing the number of layers used in
the Ansatzes. For example, with six layers and N = 50
qubits in the Heisenberg model, the ődelity of our Ansatz
with the ground-state wave function is above 0.9 and the
accuracy in the ground-state energy is above 99.75%. In
order for potential realization, we have also developed ef-
őcient approaches for measuring energies, including the
use of Bell measurement. Moreover, we have also im-
proved scalable mitigation methods to extract accurate
GS energy values for large systems, despite the presence
of noise and errors in the gates and the readout. We
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Figure 1. Variational Ansatz and the layout of a 102-qubit quantum computer. (a) The variational Ansatz structure, (b) the
layout of the 127-qubit ibm_washington backend, where a chain of 102 qubits is illustrated by the thick, shaded line.

have also introduced a reference state in the zero-noise
extrapolation (rZNE) to further improve the accuracy of
the results.

To demonstrate that noisy quantum processors can
still be used to provide accurate results, we have utilized
nine distinct cloud quantum computers, and carried over
40 different sets of cloud experiments for the Heisenberg
model (see Tables I, S.2, and S.3) and over 48 sets of
them for the XXZ model (see Figs. 7, S.2, and S.3). We
present realizations of approximate ground states (GS) of
these spin chains having nineteen different system sizes,
ranging from 4 to 102 qubits. To distinguish our work
from experiments performed on in-house devices or cus-
tomized physical apparatuses, we shall refer to our use of
third-party hardware as ‘cloud experiments’, as well as
to make a distinction from numerical simulations. We re-
port the extracted GS energies, accurate to within a few
percent level of error, including the inference of the en-
ergy density in the thermodynamic limit from these val-
ues. We emphasize that these cloud experiments are not
equivalent to numerical simulations, as the actual devices
have substantial noise and errors and devices’ condition
can drift over time, and sometimes the same submitted
jobs can fail. Nevertheless, cloud-based experiments of-
fer a new paradigm for research and development. In
addition, we have used our procedure to measure the en-
ergies of several Ansatz states that have randomly cho-
sen parameters, and obtained accurate mitigated energy
values. Our work thus establishes a simpleśyet substan-
tially improvedśquantum variational protocol with miti-
gation, and paves the way for massive use of large NISQ
computers for fundamental physics studies of many-body
systems, as well as for practical applications, including
optimization problems.

The remaining structure of the paper is as follows. In

Sec. II, we discuss the motivation that leads to our fam-
ily of Ansatzes for the Heisenberg and XXZ spin chains
and give the decomposition of the Ansatz gates in terms
of elementary ones. In Sec. II, we analyze our Ansatzes
numerically and present results for various numbers of
qubits and layers in the Ansatz, including cases of both
open and periodic conditions. In Sec. IV, we discuss
scalable methods to measure energy and mitigate mea-
sured energy values and present cloud experimental re-
sults from real devices. In Sec. V, we present results of
numerical analysis of our Ansatz on a two-leg ladder. We
conclude in Sec. VI.

II. HEISENBERG AND XXZ MODELS AND

THE ANSATZ FOR GROUND STATES.

Quantum spin systems, such as the Heisenberg [25]
and XXZ models [26, 27], have sparked analytical devel-
opment and understanding of quantum phases and also
served as a testbed for numerical techniques. The Hamil-
tonian of the spin-1/2 XXZ spin chain with the open
boundary condition reads

ĤXXZ(∆) =
N−1
∑

j=1

ĥ
[j,j+1]
XXZ (∆) (1)

=
N−1
∑

j=1

(

σ[j]
x σ[j+1]

x + σ[j]
y σ[j+1]

y +∆σ[j]
z σ[j+1]

z

)

,

where ∆ represents the anisotropy in the coupling. For
∆ = 1, the model reduces to the isotropic antiferromag-
netic Heisenberg chain. The model is known to possess
three distinct quantum phases: (i) a ferromagnetic phase
for ∆ < −1, where classical states, such as | ↑↑ . . . ⟩ and
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| ↓↓ . . . ⟩, are ground states; (ii) a gapless, critical phase,
for −1 < ∆ < 1; and (iii) an antiferromagnetic phase for
∆ > 1. We will mainly focus on the range of ∆ > −1
with nontrivial ground states.

In the following, we explain how we use adiabatic
connection [28] to arrive at a physics-motivated Ansatz,
schematically shown in Fig. 1a, and justify its validity by
considering the gap structure through the adiabatic con-
nection, as illustrated in Fig. 2. We also analyze how well
the Ansatz performs and how its accuracy is improved by
increasing the number of layers.

A. Gap structure of the interpolated Hamiltonian

and the Ansatz structure from adiabatic evolution

For the XXZ interaction ĥ
[j,j+1]
XXZ (∆) on a bond involv-

ing two nearest-neighbor qubits, the singlet pair |Ψ−⟩ =
(|01⟩ − |10⟩)/

√
2 has an energy value −2−∆, the triplet

|Ψ+⟩ = (|01⟩ + |10⟩)/
√
2 has energy 2 − ∆, and both

|00⟩ and |11⟩ (or equivalently the two entangled triplets

|Φ±⟩ = (|00⟩ ± |11⟩)/
√
2) have energy ∆. Note that we

have used the notation |0/1⟩ to replace | ↑ / ↓⟩, the eigen-
states of the Pauli Z operator σz. Thus, the singlet is the
ground state of the simple two-qubit XXZ interaction for
∆ > −1. This means that the following Hamiltonian
with interaction only on odd numbers of bonds only even
N ,

Ĥodd =

N/2−1
∑

j=1

(

σ[2j−1]
x σ[2j]

x + σ[2j−1]
y σ[2j]

y

+∆σ[2j−1]
z σ[2j]

z

)

, (2)

has its unique ground state being the product of singlets
over these odd bonds, i.e., a linear chain of valence-bond
state,

|ψsinglets⟩ =
1√
2N/2

N/2
∏

j=1

(|01⟩ − |10⟩)2j−1,2j . (3)

We then expect that |ψsinglet⟩ is adiabatically connected
to the ground state of the XXZ model, by connecting
Ĥodd to the full XXZ Hamiltonian ĤXXZ via the following
linear interpolation,

Ĥ(s) = (1− s)Ĥodd + s ĤXXZ = Ĥo(s) + Ĥe(s). (4)

We regroup it into interaction terms on even and odd
bonds, denoted collectively by Ĥo(s) and Ĥe(s), respec-

tively, and it is straightforward to see that Ĥo(s) = Ĥodd,
but

Ĥe(s) = s

N/2−1
∑

j=1

(

σ[2j]
x σ[2j+1]

x + σ[2j]
y σ[2j+1]

y

+σ[2j]
z σ[2j+1]

z

)

, (5)

is a rescaled version of the XXZ model on even bonds.
We check the spectral properties of this Hamiltonian

for small N and őnd that Ĥ(s) is gapped in the range
s ∈ [0, 1] for ∆ > −1; see Fig. 2 for two different
∆ values using 8 qubits. This means that the prod-
uct of singlets |ψsinglet⟩ is adiabatically connected to
the ground state of the XXZ model via the evolution

|ψ(1)⟩ = Uevo|ψsinglets⟩ = e−i
∫ 1
s=0

ds Ĥ(s)|ψsinglets⟩. Dis-
cretizing the evolution operator Uevo, we have the fol-
lowing Trotterized approximation

Uevo ≈
NL
∏

l=1

e−iĤ(sl)δs ≈
NL
∏

l=1

(

e−iĤe(sl)δse−iĤo(sl)δs
)

,

(6)
whereNL is the number of discretized time steps or layers
and δs = 1/NL is the dimensionless step size. To allow
for ŕexibility, we turn the discretized evolution into a
variational form and arrive at the structure of the Ansatz
shown in Fig. 1a with gates in the l-th layer being

U
(l)
even/odd({θ}) =

⊗

j∈even/odd

(7)

[

e
−iθ

(l)

e/o,x
σ[j]
x σ[j+1]

x −iθ
(l)

e/o,y
σ[j]
y σ[j+1]

y −iθ
(l)

e/o,z
σ[j]
z σ[j+1]

z
]

,

where {θ}′s are a set of variational parameters, the sub-
scripts e/o denote the association with even and odd
bonds, respectively. Therefore, we arrive at the following
NL-layer variational Ansatz state

|ψansatz({θ})⟩ (8)

=

NL
⊗

l=1

[

U (l)
even({θe})U

(l)
odd({θo})

]

|ψsinglets⟩.

We remark that our construction from the adiabatic
connection is similar to how the Quantum Approxi-
mate Optimization Algorithm (QAOA) Ansatz originates
from discretizing the Ising interaction and the transverse
őeld [28]. But they differ in the goal: the QAOA aims to
minimize the energy of a classical Ising Hamiltonian us-
ing the transverse-őeld part as a driver, whereas our goal
is to optimize the energy of a quantum Hamiltonian as a
whole. We note that a similar Ansatz for the Heisenberg
mode on the kagome lattice was also studied numerically
in Ref. [29].

B. Creation of singlets

Each singlet pair in |ψsinglets⟩ can be created from |00⟩
by simple single-qubit gates (the Hadamard H and the
Pauli X gates) followed by a CNOT gate,

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩) = Usinglet|00⟩

=
|0⟩ X H •

|0⟩ X

(9)
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Figure 2. The energy gap of 8-qubit XXZ model with open-boundary condition in the Hamiltonian interpolation Ĥ(s) from
one with interaction on odd bonds only to one with interaction on all bonds, for (a) ∆ = 1, i.e. the Heisenberg model, and (b)
the XXZ model at ∆ = −0.8.

and, thus, the product of such singlet pairs can be created
in parallel with these circuits,

|ψsinglets⟩ = Uinit|0 . . . 0⟩ =
N/2
⊗

i=1

U
[i]
singlet|0 . . . 0⟩, (10)

with the superscript i denoting the pair of qubits for the
singlet creation. We note that the reverse of the latter
part corresponds to Bell measurement,

• H (11)

which can be used to measure the energy contribution of
a pair of qubits; see below.

C. Gate decomposition

Let us deőne the essential two-qubit Rxyz gate that we
need,

Rxyz(θx, θy, θz) (12)

≡ e−i(θx/2)σx⊗σx−i(θy/2)σy⊗σy−i(θz/2)σz⊗σz ,

where a factor of 1/2 is inserted in the deőnition of the
Rxyz gate to match the convention of single-qubit rota-
tion and we have used the tensor product notation ‘⊗’
to emphasize the two-qubit structure in the gate. We
present a decomposition of the Rxyz gate that has a
minimum number of CNOTs [30] (which is three) in the
decomposition,

Rxyz(θx, θy, θz) =

Rz(θz) Rz(−θy) H • S H

• H Rz

(

θx + π
2

)

• S† H

=

Rz(θz) Rz(−θy) Rx

(

π
2

)

• H Rz

(

θx + π
2

)

• H • Rx

(

−π
2

)

(13)

where H is the Hadamard gate, Rα(θ) = e−iθσα/2 is
the single-qubit rotation around α-axis (α = x, y, z)
by an angle θ, and S is the one-qubit phase gate S =
eiπ/4Rz(π/2). The gate Ueven/odd(θ) = Rxyz(2θ, 2θ, 2θ)
will be used for the Heisenberg model, and for the XXZ

model, due to the ZZ anisotropy, we will allow θz = 2θ2
parameter to be independent from θx = θy = 2θ1, and
thus Rxyz(2θ1, 2θ1, 2θ2) is needed.

Note that as the circuit action is symmetric with re-
spect to swapping the two qubits, one can ŕip the circuit
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N θ∗even θ∗odd E∗

ansatz Egs ϵ f Eexp error

4 0.151748 0.215765 -6.464102 -6.464102 0 1.0000 -6.5(1.6) 0.56%
6 0.141671 0.216088 -9.880996 -9.974309 0.94% 0.9923 -9.9(1.9)∗ 0.19%
8 0.138569 0.216093 -13.299823 -13.499730 1.48% 0.9796 -13.2(2.2) 2.22%
10 0.13710 0.216102 -16.719307 -17.032141 1.84% 0.9639 -16.7(1.3)∗ 1.95%
12 0.136248 0.216110 -20.139037 -20.568363 2.09% 0.9462 -20.3(2.1) 1.30%
14 0.135688 0.216115 -23.558885 -24.106899 2.27% 0.9271 -23.6(1.8) 2.10%
16 0.135293 0.216120 -26.978800 -27.646949 2.42% 0.9072 -25.8(1.6)∗ 6.68%
18 0.134999 0.216123 -30.398756 -31.188044 2.53% 0.8867 -30.7(0.7)∗ 1.56%
20 0.134773 0.216126 -33.818738 -34.729893 2.62% 0.8659 -33.0(0.5)∗ 4.98%
30 0.134132 0.216134 -50.918850 -52.445423 2.91% 0.7614 -50.2(2.0)∗ 4.28%
40 0.133832 0.216139 -68.019098 -70.165893 3.06% 0.6629 -68.5(2.0)∗ 2.34%
50 0.133658 0.216141 -85.119397 -87.888441 3.15% 0.5737 -85.0(2.8)∗ 3.29%
60 0.133544 0.216143 -102.219721 -105.612060 3.21% 0.4946 -99(4) 6.26%
70 0.133464 0.216144 -119.320058 -123.336305 3.26% 0.4253 -125(7) 1.35%
80 0.133405 0.216145 -136.420403 -141.060947 3.29% 0.3649 -138.5(2.5) 1.82%
90 0.133359 0.216146 -153.520754 -158.785857 3.32% 0.3126 -153(5) 3.64%
98 0.133329 0.216146 -167.201038 -172.965924 3.33% 0.2760 -168.1(2.6) 2.81%
100 0.133323 0.216146 -170.621109 -176.510957 3.34% 0.2675 -173(9) 1.99%
102 0.133316 0.216146 -174.041180 -180.055995 3.34% 0.2592 -177.5(2.7) 1.42%

Table I. Results related to the open-chain Heisenberg model. The numerical calculation was done with the MPS method using
a bond dimension χ = 64. The ‘error’ in the last column represents the relative error between the experimentally estimated
value Eexp and the exact ground-state energy Egs. ∗Note that these values were obtained by averaging results over different
backends and/or different groups of physical qubits; see Tables S.2 and S.3 for the complete list of results.

in the last line to őt the desired or natural direction of
the CNOT gate. One can also replace the Hadamard
gate H by a combination of the square root of X gate
(or equivalentlyRx(π/2), which is among the native gates
in IBM Quantum Computers), and the phase gate S via
the identity H = SRx(π/2)S. Note that S is equivalent
to Rz(π/2) up to an irrelevant global phase factor, and,
therefore, the circuit can be expressed entirely in terms
of IBM Q’s native gate set: {Rz, SX , CNOT, X}, where
SX is the square root of X.

III. ANALYSIS OF THE ANSATZ

We have explained how we arrive at a physics-
motivated Ansatz,

|ψansatz({θ})⟩ = U({θ})|0 . . . 0⟩ (14)

=

NL
⊗

l=1

[

U (l)
even({θe})U

(l)
odd({θo})

]

Uinit|0 . . . 0⟩,

schematically shown in Fig. 1a, where we have used Uinit

to denote the initialization step that takes |0 . . . 0⟩ ≡ | ↑
. . . ↑⟩ to a product of singlets or Bell pairs |ψsinglets⟩ in
Eq. (10).

Variational Ansatzes and trial wavefunctions are com-
monly used in physics. Well-known examples include
the BCS wave function for superconductivity [31] and
the Laughlin wave function for the fractional quantum

Hall effect [32]. Despite not exactly representing the GS,
they capture the essential physical properties. To analyze
how well our Ansatzes simulate the GS wave functions
and their energy, we minimize Eansatz({θ}) to obtain the
optimal parameters {θ∗} and then compute the GS ő-
delity [33] f ≡ |⟨ψgs|ψansatz({θ∗})⟩| and the error in the
GS energy ϵ ≡ |Eansatz({θ∗}) − Egs|/|Egs|, where |ψgs⟩
denotes the GS and Egs its exact energy. In particular,
we őnd that for N = 4 and N = 6, one- and two-layer
Ansatzes already can reach exact ground states for a wide
range of ∆ and three-layer Ansatzes achieve the exactness
for all ∆ > −1 [34]. That variational Ansatzes contain
the exact ground states is a desired feature, as it can
ascertain optimality of variational parameters.

In Table I, we show the optimized parameters, energy,
and overlap with MPS diagonalized ground-state wave
function using one layer of our Ansatz for the Heisen-
berg model. We check that the results agree with the
exact computation for the qubit number N ≤ 12. As ex-
pected, the ődelity decreases with the number of qubits,
but much slower than exponentially. In contrast, the ap-
proximate ground-state energy seems to reach about 3%
of error even for large chains using just one layer in the
Ansatz (e.g. 3.33% even for N = 100).

Using one to six layers in the Ansatz, we compare the
ődelity and energy error vs. N in Fig. 3ab for the open
chain. For large systems, we use matrix product states
(MPS) [35ś38] for these calculations. The results improve
substantially with increasing layers: with six layers and
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Figure 3. Simulation results of the Ansatz. (a) the ődelity of the optimal Ansatz state with the ground state of the open-chain
Heisenberg model vs. the total number of qubits N for one to six layers in the Ansatz; (b) the corresponding relative error
in the GS energy. (c) The ődelity and (d) relative energy error of the optimal Ansatz state and the exact ground state of the
periodic-boundary-condition Heisenberg model with the total number of qubits N for one to six layers in the Ansatz.

N = 50, the ődelity is above 0.9 and the accuracy in
the GS energy is above 99.75%. For the periodic chain,
given our Ansatz breaks the translation invariance (down
to two sites), it will take a few layers to approximately
restore the invariance. Overall, we do see general im-
provement in both quantities as the number of layers in
the Ansatz increases.

IV. CLOUD EXPERIMENTS, RZNE AND

RESULTS.

We have performed cloud experiments by creating the
(one-layer) Ansatz states and measuring their energies
on nine different backends of IBM Q, which contain 27,
65 and 127 qubits on three types of layouts (see Fig. S.1
and Table S.1 in the Appendix). The cloud experimen-

tal results of the 19 different sizes (ranging from 4 to
102 qubits) of Heisenberg chains are also summarized in
Table I; their relative errors with the ground-state en-
ergy values are within a few percentages. We will explain
below how the experimental results and their mitigated
values were obtained. For the purpose of demonstration,
we mostly use the numerically optimized parameters to
run the state creation circuits. But still, we also test the
feasibility of the hybrid quantum-classical approach by
performing cloud experiments with random parameters
below.

We őrst discuss different approaches to measure the
total energy and then the readout-error and gate-error
mitigation methods to extract estimated values from ex-
periments. In particular, we will introduce a reference
state in doing the gate-error mitigation.
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A. Measuring energy: several approaches

Here we describe three approaches that we have used
to measure the energy expectation value. Ideally the
three approaches should give the same results and we
have indeed tested all three experimentally and veriőed
that they give the same results within a few percentages
of errors for small systems; see Fig. S.2 in the Appendix.

(1) Tomography-based approach. For the models
we consider, the Hamiltonian terms are of the form

σ
[j]
α σ

[j+1]
α , where j is the site number and α is the spin

direction (x, y or z). Naively, if we can obtain the
reduced density ρj,j+1 matrix for the pair (j, j + 1)
then we can calculate the energy contribution from

Tr(ρj,j+1σ
[j]
α σ

[j+1]
α ). But this requires state tomography

and seems to need to run 9Nbond different circuits for the
total energy, where Nbond is the number of nearest pairs
or bonds, e.g. N − 1 for an open chain and N for a peri-
odic one. However, we can improve the efficiency by per-
forming the state tomography in parallel. Doing so, we
just need two sets of state tomography circuits (for even
and odd bonds respectively) to obtain the reduced den-
sity matrices of neighboring pairs of qubits. We will later
discuss the measurement mitigation on pairs of qubits
associated with bonds in order to extract reliable energy
contribution. Doing the tomography in parallel reduces
the number of circuits to measure to 9×2, which is inde-
pendent of the model size. The beneőt of this is that any
one- and two-qubit observables are readily available, such
as the local spin observables and the concurrence which
quantiőes nearest-neighbor entanglement, and it applies
to all nearest-neighbor interacting spins. (Extension to
őnite-ranged interaction is straightforward but requires
more sets of measurements and multi-qubit state tomog-
raphy.) For our cloud experimental results on measuring
the concurrence in a 8-qubit XXZ chain, see Fig. S.3 in
the Appendix.

(2) XYZ measurement. The second, slightly reduced
measurement method is to measure separately the two
neighboring qubits on each bond in basis α and then aver-

age over the classical results σ
[k]
α σ

[k+1]
α , treating σα = ±1

from the measurement outcome assignment. This naively
requires 3Nbond different circuits for the total energy.
But a much simpliőed implementation is to measure all

qubits in α basis and calculate the average σ
[k]
α σ

[k+1]
α for

all bonds. This only requires 3 different measurement
settings to obtain the total energy. Such simpliőcation is
applicable for the same reason mentioned in the previous
approach (1).

(3) Bell measurement. There is another method
that uses Bell-state measurement on all bonds. It ex-
ploits the speciőc form of ĥ

[j,j+1]
XXZ (∆), for which |Ψ−⟩ ≡

(|01⟩ − |10⟩)/
√
2 has energy −2 −∆, the triplet |Ψ+⟩ ≡

(|01⟩ + |10⟩)/
√
2 has energy 2 − ∆, and both |00⟩ and

|11⟩ (or equivalently |Φ±⟩ ≡ (|00⟩ ± |11⟩)/
√
2) have en-

ergy ∆. We can identify the Bell state on a particular

bond with Bell measurement. The energy contribution
of that bond is the energy corresponding to the Bell state
obtained from the measurement outcome. The total en-
ergy can be calculated by adding up every bond’s energy
contribution. In practice, the Bell measurement requires
a short circuit including a CNOT gate, and the effect of
its error can be mitigated; see below.

Naively, this approach of measuring energy requires
Nbond different measurement patterns appended at the
end of state creation as readout for the total energy if
each bond is measured separately. However, we can di-
vide the bonds into even and odd groups, as above, and
can perform the Bell measurement in parallel within each
group. Then we only need to perform two different sets
of measurements. This turns out to be the approach we
used to perform large-system (up to N = 102 qubits)
cloud experiments on real devices to obtain the total en-
ergy.

We mainly use the Bell-state approach to measure the
system’s energy, as it requires the least resource com-
pared to two other approaches.

B. Error mitigation

Here we describe the approaches we have used to im-
plement error mitigation on of readout and gate errors.
For additional information, see Appendix C, and for ex-
ample codes, see the Supplemental Materials.

Measurement/Readout Error Mitigation. For su-
perconducting qubits, the readout error can be as large
as 10% or more and it is therefore crucial to mitigate
the measurement error in order to calculate the correct
energy of the created state on the real device. Due to
the expanding deployment of cloud quantum computers,
the interest in the issue of state preparation and readout
error has recently been rekindled [39ś44]. The key idea is
to őrst characterize the measurement pattern dependent
on the state input, such as from the detector tomogra-
phy or simply measuring the probability matrix M that
relates the input states to the measured outcomes, i.e.

P⃗measured = MP⃗ideal, where P⃗measured and P⃗ideal repre-
sent respectively the measured and ideal probability dis-
tribution. By properly inverting the relation with the
constraint that the outcome distribution Pideal be non-
negative, one can obtain the mitigated distribution to
evaluate the observables.

For N qubits, the complete matrix M is of size 2N×2N

and requires preparation of 2N computational states,
thus is not efficient and is only doable for a small num-
ber of qubits. As the models we consider here contain
only nearest-neighbor interactions, we are mainly con-
cerned with measurement mitigation for pairs of qubits in
a bond, i.e., involved in the interacting Hamiltonian, and
such simpliőcation allows us to deal with large systems
in a practical way. We can perform readout mitigation
pairwise for the nearest-neighbor two qubits on all bonds.
Similar to the energy measurement, this can be reduced
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to two sets of mitigation, i.e., on pairs of even and odd
bonds, respectively. Each mitigation requires 4 different
inputs from all two-qubit computational basis and mea-
surement in the same basis gives rise to a 4 × 4 matrix
M, which we can then use to infer the ideal two-qubit
measurement distribution so as to obtain the mitigated
energy contribution.

Bell-measurement Mitigation. In our cloud experi-
ments with large numbers of qubits, the local energy for
a pair of qubits is obtained by measuring in the Bell-
state basis, which uses an inverse circuit for Bell-state
preparation and involves CNOT gates. To mitigate po-
tential errors caused by imperfect CNOT gates, we adopt
the above readout mitigation for the Bell measurement.
Speciőcally, for each pair in the bonds, we prepare the
four Bell states and then immediately measure qubits
pairwise in the Bell-state basis, such as the circuit shown
previously, to obtain a 4×4 Bell-state assignment matrix
MBell for each pair. With this we can mitigate the out-
come distribution and hence the energy value obtained
from the Bell-state measurement.

Gate Error Mitigation. By doing readout mitigation
we are probing the properties of the state actually cre-
ated on the quantum devices. However, the observable
expectation is affected by gate errors as well that prevent
us from obtaining the idealized value. In order to esti-
mate the latter, prior works have considered pulse and
gate error mitigation by extrapolating to the zero-error
limit [7ś9], and this is an extrapolation of the physical
observables, not the actual observable values associated
with the quantum states created. Nevertheless, it is still
important to see how well quantum computers can esti-
mate these values despite the noise and errors, especially
in the regime where direct classical calculations might
not be feasible.

However, in order to perform accurate gate mitigation,
one needs to have substantial access to the hardware
performing pulse-level optimization and operations [9],
which is still not practical for dealing with a large num-
ber of qubits. (Note that recent experiments have been
carried on 26 qubits using pulse-level zero-noise extrapo-
lation [15].) Instead, we will use the gate-level zero-noise
extrapolation (ZNE) approach discussed in Refs. [10ś
13]. In particular, our approach builds on the idea in
Ref. [13] and we prepare the circuits to create |ψn⟩ =
U(U−1

U)n|0...0⟩, where n is a non-negative integer and
U = Uvar({θ})Uinit, as in Eq. (14) of the main text, de-
notes the circuit to prepare the Ansatz state from the
őducial state |0 . . . 0⟩, i.e., |ψansatz⟩ = U({θ})|0 . . . 0⟩,
and then use several forward-backward repetitions in U

to evaluate the observable On = ⟨ψn|Ô|ψn⟩, as a func-
tion of n. Ideally, different n should give the same state
and hence the same value for the observable Ô. How-
ever, noise and errors spoil this and the state with larger
n should be noisier. The extrapolation to the gate-
level zero-noise limit is done by a őtting to On with
m = 2n+ 1 → 0 limit.

Reference-state Gate Error Mitigation. Building

on this, we propose to use a reference state (or possibly
multiple ones), which is contained in the Ansatz family,
for example, the product of Bell pairs that we use be-
low (via setting all θ’s to zero, i.e. |ψsinglets⟩ = U({θ} =
0)|0 . . . 0⟩), with a known exact energy value, to improve
the extrapolation of the energy value or other observ-
ables. Running the energy cloud experiment for this
reference state with the above gate-level mitigation, we
obtain the naively-extrapolated experimental value and
hence the possible mismatch with the exact value. Using
such knowledge for the reference state as a calibration,
we can estimate the expected value of the Ansatz state
from the naive experimental value. Combining both gate
and readout error mitigation, we are able to reach the
accuracy of the extrapolated energy with a few percent-
ages of the exact value for all ranges of the qubit number
that we have tested on real devices. We expect that this
reference-state ZNE (rZNE) may be applied to the gen-
eral VQE platform. It does not require additional circuits
from randomized compiling, as done, e.g. in Ref. [12, 14],
but averaging the results from these randomized circuits
can be used to further improve the accuracy.

C. Cloud experimental results: Reference-state

zero-noise extrapolation applied

From the 102-qubit Heisenberg-chain experimental
data in Fig. 4ab, we őt the total energy of the opti-
mal Ansatz state and Bell pairs to a form fE(m) =
a exp(−bm) + c and obtain their respective ZNE val-
ues -199.2 and -169.8. The energy of Bell pairs with
N qubits is known exactly, −(2 +∆)N/2, which is −153
when N = 102 and ∆ = 1. The two values for the Bell
pairs enable us to naively correct the Ansatz state energy
from −199.2 to −199.2/(169.8/153) ≈ −179, close to the
numerical MPS value −174.04.

The noise in real devices is very complex, but a sim-
pliőed model on neighboring two qubits is a depolar-
izing channel: ρ2 → (1 − pm)ρ2 + pmI ⊗ I/4. One
naively expects that pm = 1−e−bm and this implies that
fE(m) = Ee−bm. But in our őtting above, we observe
a nonzero residual value c. This means that we should
rescale only the drop (i.e., a) from m = 0 to m → ∞.
To be more precise, the rescale factor r is obtained via
aB · r + cB = Ebell, where Ebell is the exact Bell pairs
energy and the subscript B in a and c denotes the pa-
rameters obtained from őtting the cloud experiments for
Bell pairs. Assume the cloud experiments for the opti-
mal Ansatz experience similar noise and errors, as their
circuit structure and depth are identical (except the ro-
tation parameters), we obtain the extrapolated experi-
mental Ansatz energy to be Eexp = aE · r + cE , where
the subscript E denotes the parameters obtained from
őtting the cloud experiments for the Ansatz. Applying
this to the 102-qubit cloud experiment, we obtain almost
the same result (up to rounding): Eexp = −179.1 ± 3.1.
This is how all the other reported data were obtained.
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Figure 4. Zero-noise gate-error extrapolation for cloud experimental realizations of optimal Ansatz states of Heisenberg spin
chains, along with the use of Bell pairs. The data points presented were already processed by measurement-error migitation.
(a) & (b) a 102-qubit Heisenberg chain on ibm_washington for the optimal Ansatz state and Bell pairs, respectively; (c) &
(d), similarly for a 50-qubit Heisenberg chain on ibmq_brooklyn; (e) & (f): results for two 40-qubit random Ansatz states on
ibmq_brooklyn. In (e), the parameters [θeven, θodd] = [3.5, 0.7] were used and the exact Ansatz energy is −16.0669. In (f),
parameters [0.3, 1.7] were used and the exact Ansatz energy is -48.0625. Separate cloud experiments (results not shown in
plots) with 40-qubit Bell pairs gives a naive extrapolation of the Bell pairs energy to be -67.0(4.0), whose ideal value is −60.
The migtigated values with the reference state for (e) and (f) are −15.4± 0.7 and −46.1± 2.4, respectively.
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Figure 5. Approximated ground-state energy per site vs.
the total number N in the spin chain obtained from cloud
experiments performed on various IBM Q backends using the
one-layer variational Ansatz. The dashed line is a őt from
the data: −1.713 + 0.393/N and the approximated ground-
state energy at the N → ∞ limit is −1.713± 0.046, which is
compared to the exact result from the Bethe Ansatz solution
4(ln 2− 1) ≈ −1.773.

From our experience, the results obtained this way do
not differ much from the naive rescaling in most of our
cloud experiments.

We note that in this set of cloud experiments, the max-
imal CNOT depth is 63 and the maxmial total number of
CNOTs used is 3186. Similar experimental results on 50
qubits in ibmq_brooklyn are shown in Fig. 4cd. We also
note that, in Ref. [12], |00 . . . 0⟩ was used as a reference
state in a circuit that is used to extract the depolarizing
rate. Additional randomized instances (e.g. 448 copies)
of each main circuit were needed for averaging [12], in
addition to tripling and quintupling all CNOT gates for
ZNE [11].

a. Cloud experimental results for the Heisenberg
model on various sizes. Table I has a summary of cloud
experimental results of Heisenberg chains with 19 differ-
ent sizes (ranging from 4 to 102 qubits) and some were
averaged over several different sets of qubits or different
devices. We refer to Tables S.2 and S.3 for a comprehen-
sive list of 39 mitigated results on nine different backends.
These backends possess different qubit numbers, quan-
tum volumes, and noise and error rates (see Table S.1),
but the success across all these backends (with varying
numbers of qubits used) demonstrates the utility of such
a simple and scalable rZNE approach. With these re-
sults, we can, for example, extract the energy per site in
the thermodynamic limit (see also Fig. 5), which yields a
value of −1.713± 0.046 that agrees with the exact Bethe
Ansatz calcuation, 4(ln 2−1) ≈ −1.773 [27], within 3.4%
of deviation.

b. Results using random parameters. To illustrate a
proof-of-principle demonstration of the potential hybrid

quantum-classical approach, we have also performed ad-
ditional cloud experiments on 40 qubits with random pa-
rameters in the Ansatz, and our rZNE method gives en-
ergy values agreeing well with the numerically calculated
values; see Fig. 4ef. This demonstrates that it is feasi-
ble to use quantum devices to extract mitigated expecta-
tion values accurately, and, based on these, estimate the
next iteration of the variational parameters by classical
computers. Hence, there is no need to know the opti-
mal variational parameters in advance, and the rZNE-
mitigated variational algorithm can potentially become
practical for large-scale NISQ devices.

c. Results for the XXZ model. As constructed, our
approach works equally well for the XXZ model, and in
Fig. 6, we present the two sets of cloud experimental re-
sults for a wide range of ∆ ∈ [−0.8, 1.4] with N = 40
and N = 80 spins, respectively, carried out on two sep-
arate backends, ibmq_brooklyn and ibm_washington.
The mitigated values agree well with the anticipated
Ansatz values. (The results for additional experiments
with N = 8 chain are shown in Fig. S.2).

V. BEYOND ONE DIMENSION.

We expect that our protocol can be generalized to two-
dimensional structures. As a concrete example beyond
the strict 1D, we consider a two-leg ladder of the XXZ
model (see Fig. 7). We őrst prepare all vertical pairs
of qubits in singlets, and apply the XXZ Anastz gates
to all horizontal odd bonds, even bonds, and then all
vertical bonds. This constitutes a one-layer Ansatz and
can be repeated for multiple layers. We have performed
numerically simulations and found that for N = 6 (total
number of spins in the ladder), the two-layer Ansatz can
achieve the exact ground state for ∆ > −1 up to machine
precision. It is likely that for larger N , exact ground
states can be achieved by using more layers. Our Ansatz
achieves very high GS ődelity, exceeding 0.95 even for
N = 50 with just three layers, as well as high acurracy in
the GS energy; see Fig. 8. There is an interesting phase
diagram from this two-leg model [45, 46], including a
Haldane phase, which could potentially be implemented
on a digital quantum processor.

VI. SUMMARY.

In this work, we have analyzed physics-motivated
Ansatzes for the Heisenberg and the XXZ spin chains
and showed their potential use to simulate the ground-
state wave function and extract the ground-state energy.
The accuracy improves substantially by increasing the
Ansatz layers. We have also developed efficient and scal-
able methods for measuring the energy and mitigated
the experimentally measured values. By carrying out the
cloud realization and measurement of the Ansatz states,
we have demonstrated that short-depth variational cir-
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Figure 6. The mitigated energy results for XXZ spin chains. (a) A 40-qubit XXZ chain on ibmq_brooklyn and (b) an 80-qubit
XXZ chain on ibm_washington. The information about which physical qubits were used is listed in the Appendix.

Figure 7. The Anastz for the two-leg ladder. (a) We initialize
the state in a product of singlets which are formed between the
upper spins and the lower spins. One layer Ansatz includes
(b), (c) and (d), where the gates are indicated by shaded
rectangles.

cuits could be applied to large systems of qubits, with up
to 102 qubits performed on real devices. Despite the pres-
ence of substantial noise and errors in current devices,
we have been able to improve and implement efficient er-
ror mitigation schemes to deduce accurate ground-state
energy from experiments on large systems. For exam-
ple, from the data obtained from our cloud experiments,
we were able to exact the estimated ground-state energy

density value that agrees with the exact Bethe Ansatz
solution to within 4% of error. We note that for our
Heisenberg and XXZ models, the reference state is cho-
sen to be a product of singlet pairs. For other models,
the choice of the reference states may be important.

Our work thus opens up the potential practical use
of error mitigated VQE on large quantum comput-
ing backends for improved accuracy. One őrst applies
our rZNE (combining readout mitigation and possibly
further mitigation) to obtain the extracted observable
value(s) and/or its gradients from quantum devices, then
uses classical computers to search for variational parame-
ters to be used in the subsequent iteration of experiments
with mitigation. The procedure is then iterated until the
mitigated observable value(s) converge to within certain
accuracy. Such an error-mitigated, rZNE VQE approach,
though not yet practical for large systems in the cur-
rent cloud-based setting, due to limited allocated time
and long job queues, seems plausible in dedicated exper-
iments. Our cloud experiments using randomly chosen
parameters already demonstrated agreement with the ex-
pected Ansatz energy. To enter a regime where quantum
advantage may be realized, we will likely need to go be-
yond one dimension, e.g., two dimensions, where classical
simulations of quantum many-body systems become in-
tractable as the system size increases. Toward this goal,
we have also analyzed a two-leg ladder and showed the
applicability of our Ansatz.

Acknowledgements. We thank Paul Goldbart and Do-
minik Schneble for comments on the manuscript and
We Joris Kattemölle for communicating his results on
the exact Heisenberg Ansatz. This work was supported
by the National Science Foundation under Grant No.
PHY 1915165 (T.-C.W.), in particular, the part concern-
ing properties of the model and the toolkit for extract-
ing them, and by the U. S. Department of Energy, Of-
őce of Science, National Quantum Information Science



12

(a) (b)

10 20 30 40 50
N

0.75

0.80

0.85

0.90

0.95

1.00

G
S 

Fi
de

lit
y

1 layer
2 layers
3 layers

10 20 30 40 50
N

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e 

Er
ro

r i
n 

G
S 

En
er

gy

1 layer
2 layers
3 layers

Figure 8. The ődelity (a) and relative energy error (b) of the optimal Ansatz state and the exact ground state of the two-leg Heisenberg
model with the total number of qubits N using one to three layers in the Ansatz. The bond dimension we used in the MPS is χ = 64.

Research Centers, Co-design Center for Quantum Ad-
vantage (C2QA) under contract number DE-SC0012704
(H.Y. and T.-C.W.), in particular, the design and analy-
sis of the variational algorithm. This research also used
resources of the Oak Ridge Leadership Computing Facil-

ity, which is a DOE Office of Science User Facility sup-
ported under Contract DE-AC05-00OR22725, and the
Brookhaven National Laboratory operated IBM-Q Hub.
The results presented in this work do not reŕect the view
of IBM and its employees.

[1] P. Benioff, The computer as a physical system: A micro-
scopic quantum mechanical Hamiltonian model of com-
puters as represented by Turing machines. Journal of Sta-
tistical Physics, 22, 563‘Ă‘Ş591 (1980).

[2] Y. I. Manin, Vychislimoe i nevychislimoe [Computable
and Noncomputable] (in Russian). Sovetskoe Radio
(1980).

[3] R. P. Feynman, Simulating physics with comput-
ers. International Journal of Theoretical Physics, 21,
467‘Ă‘Ş488 (1982).

[4] S. Lloyd, Universal Quantum Simulators. Science 273,
1073-1078 (1996).

[5] P. W. Shor, Algorithms for quantum computation: Dis-
crete logarithms and factoring. In Proceedings 35th An-
nual Symposium on Foundations of Computer Science
(pp. 124ś134). IEEE (1994).

[6] J. Preskill, Quantum Computing in the NISQ era and
beyond. Quantum 2, 79 (2018).

[7] S. Endo, S. C. Benjamin, Y. Li, Practical Quantum Error
Mitigation for Near-Future Applications. Phys. Rev. X 8,
031027 (2018).

[8] K. Temme, S. Bravyi, J. M. Gambetta, Error Mitigation
for Short-Depth Quantum Circuits. Phys. Rev. Lett. 119,
180509 (2017).

[9] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo,
J. M. Chow, J. M. Gambetta, Error mitigation extends
the computational reach of a noisy quantum processor.
Nature, 567, 491‘Ă‘Ş495 (2019).

[10] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R.
Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J.

Dean, P. Lougovski, Cloud Quantum Computing of an
Atomic Nucleus. Phys. Rev. Lett. 120, 210501 (2018).

[11] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Mor-
ris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, M.
J. Savage, Quantum-classical computation of Schwinger
model dynamics using quantum computers. Phys. Rev.
A 98, 032331 (2018).

[12] M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C.
W. Bauer, W. A. de Jong, Mitigating Depolarizing Noise
on Quantum Computers with Noise-Estimation Circuits.
Phys. Rev. Lett. 127, 270502 (2021).

[13] T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, W. J.
Zeng, Digital zero noise extrapolation for quantum error
mitigation. Preprint at http://arXiv.org/abs/2005.10921
(2020).

[14] J. J. Wallman, J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling. Phys.
Rev. A 94, 052325 (2016).

[15] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel,
J. M. Gambetta, K. Temme, and A. Kandala, Scal-
able error mitigation for noisy quantum circuits pro-
duces competitive expectation values. Preprint at
https://arxiv.org/abs/2108.09197 (2021).

[16] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S.
Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S.
Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek,
A. Aspuru-Guzik, Noisy intermediate-scale quantum al-
gorithms. Rev. Mod. Phys. 94, 015004 (2022).

[17] J. Preskill, Quantum computing and the entanglement
frontier, Preprint at https://arxiv.org/abs/1203.5813



13

(2012).
[18] F. Arute et al. Quantum supremacy using a pro-

grammable superconducting processor. Nature 574, 505-
510 (2019).

[19] Y. Wu et al. Strong Quantum Computational Advantage
Using a Superconducting Quantum Processor. Phys. Rev.
Lett. 127, 180501 (2021).

[20] H.-S. Zhong et al. Quantum computational advantage
using photons. Science 370, 1460-1463 (2020).

[21] L. S. Madsen et al. Quantum computational advantage
with a programmable photonic processor. Nature 606,
75‘Ă‘Ş81 (2022).

[22] F. Arute et al. Hartree-Fock on a superconducting qubit
quantum computer. Science 369, 1084-1089 (2020).

[23] K. J. Satzinger et al. Realizing topologically or-
dered states on a quantum processor. Science 374,
1237‘Ă‘Ş1241 (2021).

[24] M. Gong et al. Quantum walks on a programmable two-
dimensional 62-qubit superconducting processor. Science
372, 948-952 (2021)

[25] W. Heisenberg, Zür Theorie des Ferromagnetismus (On
the theory of ferromagnetism). Zeitschrift für Physik 49.
619‘Ă‘Ş636 (1928).

[26] P. W. Kasteleijn, The lowest energy state of a linear an-
tiferromagnetic chain. Physica 18, 104-113 (1952).

[27] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quan-
tum Inverse Scattering Method and Correlation Func-
tions, Cambridge University Press (Cambridge, UK,
1993).

[28] E. Farhi, J. Goldstone, S. Gutmann, A Quantum
Approximate Optimization Algorithm Applied to a
Bounded Occurrence Constraint Problem. Preprint at
https://arXiv.org/abs/1412.6062 (2014).

[29] J. Kattemölle, and J. van Wezel, Variational quantum
eigensolver for the Heisenberg antiferromagnet on the
kagome lattice, preprint arXiv:2108.02175 (2021).

[30] F. Vatan, C. Williams, Optimal Quantum Circuits for
General Two-Qubit Gates. Phys. Rev. A 69, 032315
(2004).

[31] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory
of Superconductivity. Phys. Rev. 108 (5), 1175‘Ă‘Ş1204
(1957).

[32] R. B. Laughlin, Anomalous Quantum Hall Effect: An In-
compressible Quantum Fluid with Fractionally Charged
Excitations. Phys. Rev. Let. 50 (18), 1395‘Ă‘Ş1398
(1983).

[33] M. Nielsen, I. Chuang, Quantum Computation and
Quantum Information (Cambridge Univ. Press, 2000).

[34] For larger N , such as 8 and 10, exact ground states can
be achieved with more layers. We thank Joris Kattemölle
for communicating his results.

[35] F. Verstraete, J. I. Cirac, V. Murg, Matrix Product
States, Projected Entangled Pair States, and variational
renormalization group methods for quantum spin sys-
tems. Adv. Phys. 57, 143 (2008).

[36] S. Östlund, S. Rommer, Thermodynamic Limit of Den-
sity Matrix Renormalization. Phys. Rev. Lett. 75, 3537
(1995).

[37] M. Fannes, B. Nachtergaele, R. F. Werner, Finitely cor-
related states on quantum spin chains. Commun. Math.
Phys. 144, 443 (1992).

[38] S. R. White, Density matrix formulation for quantum
renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

[39] A. C. Keith, C. H. Baldwin, S. Glancy, E. Knill, Joint
quantum-state and measurement tomography with in-
complete measurements. Phys. Rev. A 98, 042318 (2018).

[40] Y. Chen, M. Farahzad, S. Yoo, T.-C. Wei, Detector To-
mography on IBM 5-qubit Quantum Computers and Mit-
igation of Imperfect Measurement, Phys. Rev. A 100,
052315 (2019).

[41] M. R. Geller, M. Sun, Efficient correction of multiqubit
measurement errors. Quantum Sci. Technol. 6, 025009
(2021).

[42] F. B. Maciejewski, Z. Zimborás, M. Oszmaniec, Mitiga-
tion of readout noise in near-term quantum devices by
classical post-processing based on detector tomography.
Quantum 4, 257 (2020).

[43] S. Bravyi, S. S. Sheldon, A. Kandala, D. C. Mckay, J. M.
Gambetta, Mitigating measurement errors in multi-qubit
experiments. Phys. Rev. A 103, 042605 (2021).

[44] P. D. Nation, H. Kang, N. Sundaresan, J. M.
Gambetta, Scalable mitigation of measure-
ment errors on quantum computers. Preprint at
https://arXiv.org/abs/2108.12518 (2021).

[45] S. S. Roy, H. S. Dhar, D. Rakshit, A. Sen(De), U. Sen,
Detecting phase boundaries of quantum spin-1/2 XXZ
ladder via bipartite and multipartite entanglement tran-
sitions. Journal of Magnetism and Magnetic Materials
444, 227-235 (2017).

[46] P. Sompet, S. Hirthe, D. Bourgund, T. Chalopin, J. Bibo,
J. Koepsell, P. Bojović, R. Verresen, F. Pollmann, G.
Salomon, C. Gross, T. A. Hilker, I. Bloch, Realising the
Symmetry-Protected Haldane Phase in Fermi-Hubbard
Ladders. Preprint at https://arXiv.org/abs/2103.10421
(2021).

[47] J. Zhang, T.-C. Wei, and R. Laŕamme, Experimen-
tal Quantum Simulation of Entanglement in Many-Body
Systems. Phys. Rev. Lett. 107, 010501 (2011).

Appendix A: Exact 4-qubit ground state for the

open chain

For four-qubit XXZ model with the open-boundary
condition, we could assume the ground state to be of
the form

|ψ0⟩ = a
1√
2
(|0101⟩+ |1010⟩) + b

1√
2
(|0011⟩+ |1100⟩)

+c
1√
2
(|1001⟩+ |0110⟩), (A1)

and evaluate the energy, giving

⟨ψ0|HXXZ |ψ0⟩ = 4a(b+ 2c) + (b2 − c2 − 3a2)∆. (A2)

In order to minimize the energy with the constraint that
a2+b2+c2 = 1, we can introduce a Lagrange multiplier to
enforce the constraint to the optimization of a quadratic
function of a, b and c. It can be formulated as solving an
eigenvalue problem for a 3 × 3 matrix, and we őnd that
the exact ground-state energy E0(∆) can be obtained
from the lowest real root of a third-order polynomial,

(12∆− 3∆3)− (20 + ∆2)x+ 3∆x2 + x3 = 0. (A3)
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(a)

(b)

(c)

Figure S.1. Illustration of the layout of some backends used in this work: (a) the layout of 27-qubit machines, such as
ibm_auckland, ibm_cairo, ibm_hanoi, ibmq_kolkata, ibmq_montreal, ibmq_mumbai, and ibm_toronto; (b) the 65-qubit layout
of ibmq_brooklyn; and (c) the 127-qubit layout of ibm_washington. An edge between two qubits indicates that a direct CNOT
gate can be executed between them. See Table S.1 for certain properties of these backends.

The coefficients (a, b, c) in the ground-state wavefunction
can be obtained as follow,

ã(∆) = (−∆+ E0(∆))/2, (A4)

b̃(∆) = 1, (A5)

c̃(∆) = (−4− 3∆2 + 2∆E0(∆) + E0(∆)2)/8, (A6)

with (a, b, c) = (ã, b̃, c̃)/
√

2(ã2 + b̃2 + c̃2).

One can also write down the equation for the param-
eters in the one-layer ansatz to arrive at the above four-
qubit state (A1), up to a global phase, and in principle
solve for the optimal parameters for the ground state.
However, we could not őnd a closed form expression for
the parameters.

For the periodic boundary condition, one can use the
anastz,

|ψ0⟩ = a
1√
2
(|0101⟩+ |1010⟩) + b

1

2
(|0011⟩+ |0110⟩

+|1100⟩+ |1001⟩), (A7)

and the problem reduces to solving a 2×2 matrix, which
was previously presented in the supplemental materials
of Ref. [47], and the analytic expression for the four-qubit
ground state is available there. Given that we know from

numerics that the one-layer ansatz contains the exact
ground-state wave function, we can similarly solve for the
optimal parameters by identifying the ansatz and exact
wave functions.

Appendix B: Properties of quantum backends and

the choice of qubits

The average properties of the nine quantum backends
of IBM are listed in Table S.1 and there are three differ-
ent layouts, as illustrated in Fig. S.1. Seven of the back-
ends have 27 qubits, the backend ibmq_brooklyn has 65
qubits, and ibm_washington has 127 qubits, with the
last also shown in Fig. 1b. As it is not possible to list all
the detailed information in this appendix, we have down-
loaded complete device properties for individual qubits,
as well gate errors and readout errors in the Supplemental
Materials. Before cloud experiments were performed, we
examined the detailed error rates reported on the service
website and chose a path with a desired total number of
sites along those connected qubits so as to avoid CNOT
links with high error rates. For large system sizes, it is
inevitable that we encounter a few CNOT links that may
have somewhat higher error rates than others. We note
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that the detailed noise and error rates may drift over
time as the devices are regularly calibrated and this im-
pact large paths more than small ones. For example, in
order to perform the 80-qubit XXZ model cloud experi-
ments in Fig. 6b, we had to use a different path from the
one used previously for the Heisenberg model (reported
in Table S.2) to avoid certain CNOT links with large
error rates.

Appendix C: Data analysis

1. Measurement mitigation

In the main text, we have described details of mea-
surement/readout mitigation, including the standard one
and our Bell-state measurement mitigation. In the Sup-
plemental Materials, we have provided a Python note-
book that implements the Bell-measurement mitigation,
as well as an exemplary data output from an actual cloud
experiment. With sufficient repetitions of energy mea-
surements (see Tables S.2 and S.3 for the numbers, rang-
ing from 25 to 146 on different selections of qubits and
backends), we can then estimate the average and uncer-
tainty of the energy.

2. Zero-noise extrapolation

In őtting the energy data (e.g. after measurement mit-
igation is applied), as described in the main text, we use
an exponential function

fE(m) = a exp(−bm) + c, (C1)

where m = 2n + 1 is the total number of U or U
−1 in

the circuit to prepare the Ansatz state. For most experi-
ments we used n from 0 to 4; for some we had n from 0 to
5. In all the experiments we did, the uncertainty from ex-
trapolations is signiőcantly larger than the statistical un-
certainty from the energy measurements. The error bars
from the extrapolated values are estimated from the ex-
treme őt parameters values within the 68.27% conődence
interval, corresponding to one sigma standard deviation.
In the Supplemental Materials, we have provided a Math-
ematica notebook that illustrates the analysis.

3. Reference-state Gate Error Mitigation

After we get the őtted energy curves for both experi-
ment energy fe(m) and reference-state energy fr(m)

fe(m) = ae exp(−bem) + ce, (C2)

fr(m) = ar exp(−brm) + cr, (C3)

we use the theoretically known value of the reference-
state energy Eref to calibrate the ‘experimental’ energy

Eexp,

Eexp = ae
Eref − cr

ar
+ ce, (C4)

where the uncertainty of the Eexp comes from combining
the uncertainties of all the őt parameters in the equation.
In the same Mathematica notebook, we also implement
this analysis for two different sets of data.

Appendix D: Additional cloud experimental results

Results on Heisenberg chains. The nine IBM Q back-
ends we use have three different layouts, as illustrated
in Fig. S.1. The complete list of the results from the
cloud experiments for the Heisenberg model on various
backends and with various number of qubits is shown in
Tables S.3 and S.2. These were carried out using the
Bell-measurement approach.

Results on XXZ chains. We have also performed cloud
experiments for 8-qubit XXZ model on ibmq_montreal,
with ∆ ranging from -0.8 to 1.4, and use two different
measurement methods to calculate the energy, as shown
in the Fig. S.2. The two methods of the XYZ measure-
ment and of the Bell measurement agree with each other.
In addition, we have also used quantum state tomography
to measure the total energy at two different values of ∆
(0 and 1); the energy values obtained from tomography
also agree with the other two approaches. In particu-
lar, the energy results from the state tomography give
−13.46± 0.31 at ∆ = 1 and −9.3± 0.8 at ∆ = 0 .

Concurrence results. With the tomography approach,
we have obtained additionally the concurrence for all
the bonds, and the cloud experimental results are com-
pared to those of the Ansatzes and the exact solution
in Fig. S.3. Due to the open boundary condition, the
concurrence alternates from large to small between odd
and even bonds. The entanglement on all even bonds
is identically zero for the one-layer Ansatz. This is due
to the initial state being product of singlet pairs on odd
bonds and the one-layer entangling operation on even
bonds is not strong enough to make the pairs on even
bonds entangled. For odd bonds, the concurrence val-
ues inferred from the clound experiments are {0.890372,
0.767076, 0.683096, 0.768255} at ∆ = 1 and {0.850059,
0.663988, 0.648982, 0.812279} at ∆ = 0. As the quan-
tum phase transition at the Heisenberg point ∆ = 1 is
inőnite-order, the concurrence does not exhibit singular-
ity across the transition, so we did not perform cloud ex-
periments for the concurrence over a wide of ∆, but only
for ∆ = 0&1 as an illustration. These concurrence values
were obtained by use our rZNE approach with the naive
extrapolation using Bell pairs as the reference. In doing
ZNE, we had to repeat (UU

−1) several times, but the
resulting reduced density matrices become unentanlged
for n ≥ 2 and this makes a őtting not possible. The error
bar is thus not directly accessible, but can be estimated
from the energy curves.



16

(a) (b)

−1.0 −0.5 0.0 0.5 1.0 1.5
Δ

−16

−14

−12

−10

−8

−6

−4

−2

0

En
er
gy

Ansatz
Exact
Experiment

−1.0 −0.5 0.0 0.5 1.0 1.5
Δ

−16

−14

−12

−10

−8

−6

−4

−2

0

En
er
gy

Ansatz
Exact
Experiment

Figure S.2. The energy results for an 8-qubit XXZ chain on ibmq_montreal. (a) The energy is obtained using the Bell-
measurement approach on physical qubits [15,12,13,14,16,19,22,25]; (b) The energy is obtained using the XYZ measurement
approach on physical qubits [11,14,16,19,22,25,24,23]. We have also performed energy measurement using quantum state
tomography for ∆ = 0 and 1. The three methods for measuring energy agree very well in our cloud experiments.

Backend
(Q. volume)

Ntot Processor type
Average
frequency

Average
CNOT error

Average
readout error

Average
T1 time

Average
T2 time

ibm_auckland (64) 27 Falcon r5.11 4.97 GHz 1.042×10−2 1.439×10−2 178.38 µs 152.09 µs
ibmq_brooklyn (32) 65 Hummingbird r2 5.13 GHz 2.842×10−2 2.928×10−2 74.35 µs 77.66 µs
ibm_cairo (64) 27 Falcon r5.11 5.13 GHz 7.969×10−2 1.352×10−2 101.71 µs 132.51 µs
ibm_hanoi (64) 27 Falcon r5.11 5.00 GHz 4.444×10−2 1.357×10−2 151.26 µs 116.79 µs
ibmq_kolkata (128) 27 Falcon r5.11 5.10 GHz 4.801×10−2 1.556×10−2 118.67 µs 96.82 µs
ibmq_montreal (128) 27 Falcon r4 5.00 GHz 1.943×10−2 3.426×10−2 119.39 µs 102.78 µs
ibmq_mumbai (128) 27 Falcon r5.1 4.89 GHz 7.984×10−2 2.665×10−2 135.78 µs 117.56 µs
ibmq_toronto (32) 27 Falcon r4 5.09 GHz 8.680×10−2 6.050×10−2 115.84 µs 104.92 µs
ibm_washington (64) 127 Eagle r1 5.07 GHz 4.734×10−2 2.789×10−2 94.38 µs 90.82 µs

Table S.1. Properties of various IBM Q backends used in this work, data taken in late June, 2022. Our cloud experiments were performed
during the span from March 2022 to June 2022. (Detailed information of these on speciőc dates when an job was run could be obtained
in the Supplemental Materials). Q. volume is the quantum volume and Ntot is the total number of qubits in the backend. The basis gate
set of these backends includes CX, ID, RZ, SX, and X, where CX denotes the CNOT gate, ID is the identity gate, RZ is the z-rotation
gate, and SX is the square root of the Pauli X gate. The volume of the detailed device information, such as properties of individual qubits
and individual gate and readout errors, is too large to list in the table here. Moreover, the device properties may have shifted over time.
We have included such detailed device properties in the Supplemental Materials.

Information for Fig. 6 in the main text. (a) A 40-
qubit XXZ chain on ibmq_brooklyn with physical qubits
being [38,41,42,43,52,56,57,58,59,60,53,47,46,45,39,31,
30,29,24,15,16,17,11,4,5,6,7,8,12,21,20,19,25,33,34,35,40,
49,50,51]. (b) An 80-qubit XXZ chain on
ibm_washington, with physical qubits being
[97,96,95,94,90,75,76,77,71,58,57,56,52,37,38,39,33,20,21,
22,23,24,25,26,27,28,29,30,31,32,36,51,50,49,48,47,46,45,
44,43,42,41,53,60,61,62,63,64,65,66,67,68,69,70,74,89,88,
87,93,106,107,108,112,126,125,124,123,122,111,104,103,
102,101,100,110,118,117,116,115,114].

Appendix E: Quantum observable depth

In őtting the energy data, we use an exponential func-
tion fE(m) = a exp(−bm) + c, where m = 2n + 1 is the
total number of U or U−1 in the circuit to construct the
state. We note that each U contains 7 layers of CNOT
gates. When such an exponential-decay őtting works,
the quantity 7/b, roughly speaking, represents the de-
cay depth in the quantum circuit for the total energy,
which we will refer to as the quantum observable depth
(QOD), with the observable being the total energy here.
It basically provides a practical way to measure how the
experimental observable value degrades with the number
of CNOT layers (as CNOT gates have the largest error
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Figure S.3. Ground-state entanglement propertyÐconcurrenceÐfor a chain of 8-spin XXZ model with the open-boundary
condition: (a) ∆ = 1 and (b) ∆ = 0. The concurrence is calculated for two neighboring qubits (j, j + 1) on j-th bond
(j ∈ [1, 7]) using quantum states obtained from optimizing one-layer, two-layer, and three-layer Ansatzes, as well as from exact
diagonalization of the XXZ Hamiltonian and from the cloud experiment done on ibmq_montreal with the one-layer Ansatz.
Note that with just one layer, the concurrence on the even bonds is zero. From these we observe that the entanglement is
decreasing from the 1-layer optimal Ansatz to 2- and to the 3-layer one, towards the exact solution. The reason is that the
initial state of the Ansatz is a product of singlet Bell states on odd bonds, which possesses a very high global entanglement.
The gates on even bonds act to decrease the entanglement of Bell states (on odd bonds) to increase the entanglement on even
bonds.
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Figure S.4. The decay coefficient b from extracting the
Ansatz energy (bE) and from the Bell pairs energy (bB) vs. the
anisotropy parameter ∆ in the 80-qubit XXZ model, performed
in ibm_washington. The QOD is related to the decay rate b as
QOD = 7/b.

rates in basis gate set). From the Ansatz energy data of
the 102-qubit cloud experiment on ibm_washington, we
obtain its b parameter to be bE = 0.567±0.03 and hence
about 12.3±0.7 value of the QOD. For the Bell pairs data,

we extract that its b parameter to be bB = 0.53 ± 0.05
and hence a value of 13.1± 1.2 for the QOD. These two
values seem to agree and we average them to yield a QOD
of 12.7 ± 0.7. (The other set of 102-qubit cloud experi-
ments gives a QOD of 12.59± 0.34.) The QOD depends
on the qubits used in the cloud experiment and possi-
bly on the number of qubits as well. The 50-qubit cloud
experiments on ibmq_brooklyn give a QOD of 18.7(1.5).
Among all the cloud experiments carried out on the back-
end ibm_washington, we őnd the cloud experiment us-
ing the 10 qubits [30,31,32,36,51,50,49,48,47,35] gives the
best QOD value of 44±7. For the QOD from other cloud
experiments and other backends, see Tables S.2 and S.3.
The QOD serves as a quality measure of those qubits in
the quantum processor involved in the benchmark, anal-
ogous to but different from the metrics, such as the ran-
domized benchmarking and the quantum volume. We
note the QOD will depend on the choice of the observable
and the model used, in particular, its value varies across
different values of ∆ in the XXZ model; see e.g. the de-
cay coefficient b extracted for the 80-qubit XXZ model
in Fig. S.4. Moreover, the form of the őtting function
may be different; e.g. for some prior cloud experiments
with small number of qubits, both linear and quadratic
őts were used in the CNOT-gate mitigation [10ś12]. In
these cases, we may need to use other quantities (such as
the slope) to deőne the notion similar to the QOD.
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N Eexp ϵans ϵgs QOD qubits used shots rep.

10 -16.9(3.4) 1.08% 0.78% 44(7) [30,31,32,36,51,50,49,48,47,35] 40K 50
10 -16.5(1.4) 1.31% 3.12% 31(4) [32,36,51,50,49,48,47,35,28,29] 40K 25

20 -33.8(1.4) 0.055% 2.67% 20.3(1.0)
[50,51,36,32,31,30,29,28,35,47,
48,49,55,68,69,70,74,89,88,87]

40K 25

30 -51.1(2.3) 0.36% 2.57% 19.6(1.1)
[115,116,117,118,110,100,101,102,
92,83,84,85,73,66,67,68,55,49,50,
51,36,32,31,30,29,28,27,26,16,8]

40K 50

40 -69.2(1.6) 1.74% 1.38 12.1(0.8)
[2,1,0,14,18,19,20,33,39,38,37,52,56,57,

58,59,60,61,62,72,81,82,83,92,102,103,104,
105,106,93,87,86,85,73,66,67,68,55,49,48]

40K 50

50 -86.9(1.8) 2.09% 1.12% 13.19(0.28) list of 40 qubits + [47,35,28,27,26,25,24,23,22,15] 40K 25

60 -99(4) 3.15% 6.26% 11.28(0.34)

[3,2,1,0,14,18,19,20,33,39,38,37,52,56,57,58,59,
60,53,41,42,43,34,24,25,26,27,28,29,30,31,32,36,
51,50,49,48,47,46,45,54,64,63,62,72,81,82,83,92,
102,103,104,105,106,107,108,112,126,125,124]

40K 50

70 -125(7) 4.76% 1.35% 13.1(0.8)

[3,2,1,0,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
36,51,50,49,48,47,46,45,54,64,65,66,67,68,69,70,74,89,
88,87,93,106,105,104,111,122,121,120,119,118,110,100,
101,102,92,83,82,81,80,79,91,98,97,96,95,94,90,75,76,77]

40K 50

80 -138.5(2.5) 1.52% 1.82% 12.79(0.23)

[3,2,1,0,14,18,19,20,33,39,38,37,52,56,57,58,59,60,
53,41,42,43,34,24,25,26,27,28,29,30,31,32,36,51,50,
49,55,68,69,70,74,89,88,87,93,106,105,104,111,122,
121,120,119,118,110,100,101,102,92,83,84,85,73,66,

65,64,63,62,72,81,80,79,91,98,97,96,95,94,90,75]

40K 50

90 -153(5) 0.34% 3.64% 12.5(0.4)

[3,2,1,0,14,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,36,51,50,49,48,47,46,45,44,43,42,41,40,
39,38,37,52,56,57,58,59,60,61,62,63,64,65,66,67,
68,69,70,74,89,88,87,86,85,84,83,82,81,80,79,78,
77,76,75,90,94,95,96,97,98,99, 100,101,102,103,
104,105,106,107,108,112,126,125,124,123,122]

40K 25

98 -168.1(2.6) 0.54% 2.81% 12.32(0.27)

[3,2,1,0,14,18,19,20,33,39,40,41,42,43,34,
24,23,22,15,4,5,6,7,8,16,26,27,28,29,30,31,

32,36,51,50,49,48,47,46,45,54,64,63,62,61,60,59,58,
71,77,76,75,90,94,95,96,97,98,91,79,80,81,82,
83,84,85,73,66,67,68,69,70,74,89,88,87,93,106,

107,108,112,126,125,124,123,122,111,
104,103,102,101,100,110,118,117,116,115,114]

40K 75

100 -173(9) 1.39% 1.99% 11.9(0.14)

[3,2,1,0,14,18,19,20,21,22,15,4,5,6,7,8,16,26,
27,28,29,30,31,32,36,51,50,49,48,47,46,45,44,
43,42,41,40,39,38,37,52,56,57,58,59,60,61,62,
63,64,65,66,67,68,69,70,74,89,88,87,86,85,84,

83,82,81,80, 79,78,77,76,75,90,94,95, 96,97,98,
99,100,101,102,103,104,105,106,107,108,112,
126,125,124,123,122,121,120,119,118,117,116]

40K 50

102 -177.5(2.7) 1.99% 1.42% 12.23(0.17) list of 100 qubits +[115,114] 40K 75

Table S.2. Various Heisenberg spin-chain cloud experiments performed on the 127-qubit ibm_washington backend/device of
IBM Q.
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Backend

N Eexp ϵans ϵgs QOD qubits used shots rep.

ibm_auckland

20 -34.3(1.3) 1.42% 1.24% 13.4(0.5) [13,12,10,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18] 100K 50

ibm_cairo

16 -27.5(2.5) 1.93% 0.53% 13.5(1.1) [1,2,3,5,8,11,14,16,19,22,25,24,23,18,15,12] 100K 50
18 -28.9(1.3) 4.93% 7.34% 13.4(0.4) [1,2,3,5,8,11,14,16,19,22,25,24,23,18,15,12] 100K 50
18 -32.3(1.1) 6.25% 3.57% 13.51(1.1) [6,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18] 100K 50
20 -32.8(1.1) 3.01% 5.56% 12.47(0.35) [6,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18,15,12] 100K 50

ibm_hanoi

20 -32.3(1.3) 4.49% 7.00% 17.0(0.7) [5,3,2,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8] 100K 100

ibmq_kolkata

20 -33.5(1.2) 0.94% 3.54% 18.6(0.8) [26,25,22,19,16,14,11,8,5,3,2,1,4,7,10,12,15,18,21,23] 40K 25

ibmq_montreal

6 -9.9(1.6) 0.75% 0.19% 13.1(0.6) [20,19,22,25,24,23] 32K 100
20 -31.7(1.7) 6.26% 8.72% 13.0(0.5) [12,10,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18,17] 32K 50

ibmq_mumbai

4 -6.5(1.6) 0.56% 0.56% 37(9) [12,15,18,17] 8192 146
6 -9.9(3.5) 0.19% 0.75% 64(11) [7,10,12,15,18,17] 8192 146
8 -13.2(2.2) 0.75% 2.22% 36(5) [1,4,7,10,12,15,18,21] 8192 146
10 -16.6(3.3) 0.71% 2.54% 38(7) [0,1,4,7,10,12,15,18,21,23] 8192 100
12 -20.3(2.1) 0.80% 1.30% 14.0(1.4) [8,5,3,2,1,4,7,10,12,15,18,21] 8192 100
14 -23.6(1.8) 0.17% 2.10% 14.1(1.0) [8,5,3,2,1,4,7,10,12,15,18,21,23,24] 8192 100
16 -24.0(2.1) 10.1% 7.42% 12.1(0.8) [8,5,3,2,1,4,7,10,12,15,18,21,23,24,25,22] 8192 100
18 -29.7(1.3) 2.30% 4.77% 16.7(0.7) [8,5,3,2,1,4,7,10,12,15,18,21,23,24,25,22,19,16] 8192 100
20 -31.6(2.3) 6.56% 9.01% 14.2(1.0) [8,5,3,2,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11] 8192 100

ibm_toronto

18 -32.1(1.7) 5.60% 2.92% 13.1(0.6) [0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8] 16K 50
-32.3(1.4) 4.49% 7.00% 13.0(0.5) [0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8,5,3] 32K 50

ibmq_brooklyn

10 -16.8(1.6) 0.48% 1.36% 24.0(2.1) [53,47,48,49,40,35,34,33,25,19] 100K 50
20 -33.4(0.9) 1.24% 3.83% 22.7(0.7) [9,8,7,6,5,4,3,2,1,0,10,13,14,15,16,17,18,19,25,33] 100K 50
20 -34.0(3.1) 0.54% 2.10% 27.4(3.4) [0,1,2,3,4,5,6,7,8,12,21,20,19,18,17,16,15,24,29,28] 20K 80

30 -49.3(3.3) 3.18% 6.00% 18.4(1.1)
[43,52,56,57,58,59,60,53,47,48,49,40,35,34,
33,32,31,30,2,24,15,16,17,11,4,5,6,7,8,9]

100K 50

40 -68(4) 0.028% 3.09% 20.6(1.3)
[63,62,61,60,53,47,46,45,39,31,32,33,25,19,

18,17,16,15,14,13,10,0,1,2,3,4,5,6,7,8,
12,21,22,23,26,37,36,35,40,49]

100K 50

50 -83(5) 2.49% 5.56% 18.7(1.5)
[43,52,56,57,58,59,60,61,62,63,64,54,51,50,49,
40,35,36,37,26,23,22,21,12,8,7,6,5,4,3,2,1,0,10,

13,14,15,16,17,18,19,25,33,32,31,39,45,46,47,48]

100K 50

Table S.3. Heisenberg spin-chain cloud experiments performed on all available 27-qubit backends/devices and the 65-qubit
ibmq_brooklyn of IBM Q.
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