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Abstract—In this paper, we design and implement a fire
detection algorithm using an unmanned aerial vehicle (UAV). In
particular, we consider a scenario where a UAV is employed to
find a fire spot where the fire is in its early stages. To this end,
we first propose a path planning algorithm where the goal is to
make sure that the UAV finds the fire in the shortest amount
of time. During this stage, the UAV visits different parts of the
area, takes an image from each part, and sends the image to the
control center for further image processing. Then, we deploy a
machine learning (ML) model, which is a residual neural network
(ResNet), to process the image and determine whether a fire
is detected or not. The ML algorithm has been trained using
images taken by the drone and images from the Internet. Through
experimental results, we show that the proposed path-planning
algorithm along with the ML model can detect fire efficiently.
The problem and the proposed solution in this paper can be also
applied to a search and rescue scenario, where for example, a
hiker is missing in a remote area.

Index Terms—Unmanned aerial vehicles, Machine learning,
Computer vision, Fire detection, Uniform network coverage.

I. INTRODUCTION

The global community, particularly regions like Australia and
California, has observed the severe environmental, economic,
and life-disrupting consequences of devastating wildfires [1]—
[4]. According to the USDA research data archive, nearly 85% of
wildfires are caused by human activities such as camping,
arson, and smoking [5].

Several technologies have been used for fire detection
and monitoring including ground sensors or satellite imaging.
However, these methods are not yet able to offer a fast and
reliable solution for wildfire detection and monitoring. Some
drawbacks of the current technologies include: i) delayed fire
detection due to missing small fires at early stages, ii) relatively
long time lag for satellites to overpass the field, and iii) in-
feasibility of deploying sensors with limited sensing distance
ranges (e.g., chemical-based smoke detectors). For instance,
smoke detectors are efficient in detecting fires at early stages,
but they suffer from short distance ranges [6].

Unmanned aerial vehicles (UAVs) can be used in wildfire
detection missions as they can fly in low altitudes to detect
the fire in its early stages. They are also agile and can exhibit
autonomous behaviors at low operating costs and time-efficient
way.
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In this paper, we propose a fire detection mission using
a UAV where a fire is in its early stages. In this regard, a
path planning algorithm along with a machine learning (ML)
algorithm has been developed for the drone to find the shortest
path to the target while the target’s location is not known.
Specifically, a residual neural network (ResNet) is utilized in
which the dataset used for the training and validation is a
combination of the existing datasets as well as pictures taken
by the drone where in case of fire surveillance, mostly include
small fire spots or smoke in a rural area with other objects
around (spare). This is because the goal is to achieve an early
detection where the fire is in its initial stages. This problem and
the proposed solution can be applied to a rescue mission as well
where a hiker is missing. This scenario has been considered
in the longer version of this paper [7].

The two algorithms work in series where first the path
planning is implemented and then at each time that the UAV
visits a new section of the area, it takes an image and sends it
back to the ML algorithm at the control center. We show that
the proposed algorithms can detect a fire with a high accuracy in
the shortest amount of time.

This paper is organized as follows: In Section Il, we provide
a literature review of the related work. In Section Ill, we
explain the system model including the Camera model, the
ML model and the combined algorithms. Section IV provides
the results and Section V concludes the paper.

Il. RELATED WORK

As far as target detection is concerned, using UAVs in
wildfire detection has attracted a lot of attention as well in recent
years [8]-[18]. In [8], a detection method utilizing both color
and motion features is investigated for UAV-based fire detection.
The same authors in [9] developed a detection algorithm using
Infrared images in order to detect fire pixels. Infrared images
were also used in [10] to infer occurrence of forest fires. Using
smoke sensors, a smoke detection algorithm was proposed in
[11]. [12] uses the satellite images and infrared sensors to detect
smoke and forest fires. In [13], in order to use a smaller dataset
and reduce the computational complexity, the authors propose
to use a pretrained mobileNetV2 architecture to implement
transfer learning. An early wildfire detection mechanism was
proposed in [14] using air quality and LiDAR sensors. Thermal
infrared imaging, and oblique photogrammetry technologies
were exploited in [15] to create a 3-D land surface temperature



model of a Coal Fire. In [16], a multi-modal UAV-collected
dataset of dual-feed side-by-side videos of a prescribed fire
was developed along with a deep learning-based methodology
where the authors reached to an accuracy much higher than
the usual single-channel video feeds. Other algorithms for fire
detection such as YOLOv3 and RepVGG-YOLOvS5In were
applied in [17] and [18], respectively.

In wildfire management, a coordination problem was con-
sidered in [19] where UAVs were used along with unmanned
ground vehicles (UGVs) to fight the fire front. In [20] and
[21], the authors aim to provide a surveillance system for
monitoring high risk areas for smoke. They use a fixed-wing
drone that monitors fires at higher altitudes using an optical and
thermal camera, and a rotary-wing drone that will then verify
if the positives reported by the fixed wing drone are positive
or negative. Deep Q-learning was exploited in [22] to monitor
a wildfire front with multiple UAVs. A reinforcement learning-
based fire warning and suppression system Using surveillance
and firefighting UAVs was proposed in [23]. Furthermore,
investigating optimal UAV coalition to fully cover the area,
spectrum sharing plus cell assignment, optimal number of UAV
and loT devices for a maximum detection probability, are of the
other problems that have been considered in wildfire detections
[24]-[27].

Il. SYSTEM MODEL
A. Drone and Area Models

We consider a scenario where a UAV is employed to fly
at a fixed height H over a relatively large area to look for a
potential fire spot where the fire is in its early stages. The UAV
considered in this work is a DJI Mavic 2 Zoom [28] with a
4k camera shown in Figure 1.

FiGuRrRE 1: DJI Mavic 2 Zoom with a 4k camera.

In order to apply the path planning algorithm, we need to
partition the desired area in same-size segments. In other words,
we divide the area into cells of equal size, and at the center of
each cell, we place a hypothetical point. The UAV is assumed to
have fully covered the cell once it reaches this point. The size
of a cell is calculated from the field of view (FOV) of the camera
which is the area covered by UAV’s camera when it is flying at
an altitude H. Considering a rectangular cell with the

width w and height |, the projected area’s size can be obtained
by the following equations

= 2Ht —);
w an(z)

| = 2H tan(=);
an(z)

where and are vertical and horizontal FOV of the camera,
respectively.

The complete path is then a list of coordinates, termed as
waypoints, from which the drone moves to another until it
visits all waypoints or finds the object. To make sure that
the drone covers the area completely, projected areas must
overlap. Note that the amount of overlap can vary on each side.
The horizontal and vertical overlaps are denoted as ry and ry,
respectively.

FIGURE 2: Projected areas with overlaps. Centers of rectangles are
the path waypoints.

B. Machine Learning

The deep learning model considered in this paper is a
Residual Neural Network (RestNet) [29], which is a class of
deep neural networks with less complexity than VGG and plain
networks. ResNets are known for dealing with the vanishing
gradient problem [30]. ResNets approach the vanishing gradient
problem by adding shortcut connections to skip one or more
layers such that the input of the skipped layers is added to the
output of the skipped layers. These identity shortcut connections
add neither extra parameter nor computational complexity [29].

Data: The dataset consists of 2646 image divided into
3 classes: Fire, Smoke, and Spare which is neither Fire nor
Smoke. Out of the 2646, 987 are Fire, 781 are Smoke, and
818 are Spare. The training data consists of 289 live images
captured by the drone at heights of 15-30m as well as images
carefully and manually selected from the Internet. The drone
images are captured at different locations for the training and
test processes. All images are then resized to 256 512 3 for
height, width, and channels, respectively.

Model: The details of the ResNet model are highlighted in
Figure 3. The designed ResNet has 6 convolution and 3 residual
blocks. In other words, it consists of 12 convolutional layers, 12
activation layers, and 6 pooling layers. The convolutional layers
consist of 33 kernels. Also, each convolutional block consists of
a sequential and ordered arrangement of a convolutional
layer, a batch normalization layer, a rectified linearity activation
(ReLU) layer, and a maximum pooling layer. Finally, a residual
block consists of two sequential convolutional blocks that are
added to the input of the first convolutional blocks.
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FIGURE 3: ResNet architecture. There are 6 convolutional blocks and 3 residual blocks. The convolutional block consists of a convolutional
layer, a batch normalization layer, and a ReLU activation layer. Each Residual Block consists of two convolutional blocks added to the output the
previous convolutional block. Visualization has been created using [31].

FIGURE 4: Data Normalization is applied on the input images to
highlight the key features in the images. This image of the Fire class is
part of the training data from the web.

Training: The model is trained for 8 epochs using an Adam
Optimizer with the Cross Entropy Loss Function. Training is
further executed with maximum learning rate of 0:0005, a
weight decay of 10 4, and a gradient clipping of 0:1. A lower
learning rate is compatible with the nature of the data as it can be
seen that a larger learning rate will cause jumps around the
global minima. The data is also preprocessed as follows:

— Data Normalization: The image tensors are normalized
by subtracting the mean and dividing by the standard
deviation, both of which are calculated separately. Data
normalization highlights the essential elements of the input
image, making it easier for the machine learning model
to classify it. Examples of data normalization is shown
in Figures 4 and 5.

Data Augmentation: The size of the dataset is smaller
than many of the widely available datasets. In order to
avoid overfitting and ensuring that the model generalizes
well to the real world, the apparent size of the dataset is
increased using data augmentation where the images are
padded on the right, randomly cropped, and then flipped

FicuRE 5: Data Augmentation is applied to the training data in order to
increase the apparent size of the data by showing the ML model new
images in each epoch. This image of the Smoke class is part of the
training data clicked by the drone.

with a fixed probability. Since this is done with every
epoch, the model observes new images with each epoch
of training and hence the size of the dataset is increased
artificially. An example of the data augmentation is shown
in Figure 5.

Batch Normalization: Batch normalization takes the same
principle as the data normalization and applies it to each
layer in the neural network in order to further extract the
features in the outputs of each layer before feeding it into
the next layer [32].

C. Integrated Model

In order to integrate the model, the timeline mission feature in
combination with inheritance of DJIActions from the DJI SDK is
used. Timeline Missions enable the developer to schedule any
combination of missions and actions, going beyond the
predefined components provided in the package to create
custom actions that make the UAV perform any required task.

A special action is created by inheriting the DJIAction class.
The purpose of this action is to receive an image as an input
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FIGURE 6: Training and Validation plots for the model over 30 seeds.
The average values are plotted with the first standard deviation as
confidence intervals.

Algorithm 1 Custom Machine Learning Action.

Input: Signal from Timeline to start execution. Call to the run() function
Result: Execution of the action with call to Mission Control
class result of ML Recognition. Global variable
image Null if Fetch Camera then
if Set Media Download Mode then
if Download Media List then
image required image from list
if Run ML Recognition then
result 0—1—2 Fire—Smoke—Spare
return Tell Mission Control that Execution was successful
end
else return ML Action Error to Mission Control ;

end
else return Media Download Error to Mission Control ;

end
else return Set Media Mode Error to Mission Control ;

end
else return Camera Fetch Error to Mission Control ;

and generate a probability distribution across the 3 classes.
DJI specific details of this custom machine learning action are
highlighted in Algorithm 1.

Once these machine learning actions are created, the timeline
mission needs to be scheduled in order to create the custom
trajectory, as detailed in Algorithm 2.

IV. EXPERIMENT AND SIMULATION RESULTS
A. Simulation Results

To ensure entire area is surveyed while keeping the distance
traveled by the drone within the expected range, certain
assumptions are made when designing the path planning:

1) The Earth at the location of testing (Amherst, Mas-
sachusetts) is assumed to be a sphere, and the radius
of the earth for calculations is selected according to the

latitude. The selected radius is 6378137m [33] which is
obtained using the following equation
s

(a2cos’)2 + (b2sin’)2

(acos’)2+ (bsin’)2

R(") = (1)
where R(’) is the geocentric radius of geocentric latitude,
", and a and b are the equatorial and polar radii,
respectively.

2) An accuracy of 90% is assumed using the Haversine
formula [34] in order to estimate the calculations. While
the goal is to remain slightly under the expected distance,

Input: Path P = fp1; p2;:::png the path to be followed. Each point is a
Latitude, Longitude pair
Input: Altitude h of the mission

will be executed by the Mission Control
T 5
for point 2 Path P do
Waypoint Mission w new WaypointMission
w.add(point)&w.point1.height h
T T[w
MLAction ML

T T[ ML
end

return T
// Set up action listeners to the Timeline
while Timeline T do
if action = ML Action then
if action:result == Fire then
Clear Timeline T in Mission Control
Hotpoint Mission hp new HotpointMission
hp.add(currLocation)&hp.point.height h
// Optional: Circle the Fire with Hotpoint
T TI[ hp
end

new MLAction

end

end

the overlap between grids is minimized to still ensure
maximum area coverage.

The accuracy of these assumptions has been tested in the
DJI simulator which is available as part of the DJI Assistant for
Mavic 2 software. The software provides the drone’s location
correct up to 10 decimal points in the simulator. The euclidean
distances traveled by the drone were compared to the expected
distances at 30 different heights, ranging between 10m to 70m at
intervals of 2. At each height, 15 waypoints were recorded and
the experiment was repeated 3 times to get a total of 90 tests
and 1350 waypoints.

The average accuracy of the distance moved by the drone
can be summarized in table I.

TABLE |: Accuracy of the distances moved.

Longitudinal  Latitudinal
Accuracy 99.48% 99.86%
Standard Deviation 3.7% 1.7%
Variance 0.14% 0.01%

B. Experiment Results

We have used 360 images taken by the drone including
120 images for each class. The images were tested at heights
between 10m to 20m. The test images were taken at two
separate locations each of which were different from the
training and validation images locations. Depending on the
availability and nature of the area surrounding the fire spot, a
disturbance level was added to the testing images. As an
example, during the Fire or Smoke tests, the drone camera
settings were modified to include either half or the entire



surrounding tree in the frame. This was done to intentionally
perplex the ML algorithm and make it difficult to discern
whether the image captured represented Smoke or Spare. This
testing was conducted for varying amounts of environmental
disturbance. Figure 7 shows this operation.
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FIGURE 7: Smoke detection at a height of 35m at two different test
sites. The green color from the trees in the bottom image is intentional to
distract the ML model from detecting smoke.

It has been observed that the largest distance for detecting

Fire is 20.2m for the fire pit and 28m for the controlled fire,
while the highest distance for detecting Smoke is 35m.

TABLE |l: Classification metrics on the test data.

Precision  Recall  F1-Score  Support
Fire 0.99 0.74 0.85 120
Smoke 0.91 0.95 0.93 120
Spare 0.82 0.99 0.90 120
Accuracy 0.89 360

We present the classification performance in Table II. For
this table, the accuracy of each Fire, Smoke, and Spare class
is obtained as 74.3%, 94.2%, and 98.3%, respectively, which
shows that Fire has the lowest accuracy. This is due to the
nature of the fire that the tests were conducted on. In fact, for
the sake of safety and in accordance with the Massachusetts
state laws, small size of fire pits were used. This made the
fire detection from heights larger than 15m and above difficult.
Another reason is that when viewing the fire vertically from
the above, it is difficult to see the flames as it is covered by
sticks and logs.

From Table IlI, it can be seen that the Fire class has the
highest precision. This is due to the fact that extremely few
false positives have been observed. The Smoke dataset had
fewer false positives as well, and hence had a precision of
0.91%. The Spare class, on the other hand, has the lowest
precision since many misclassifications in the Fire testing were
classified as Spare when the flames were not visible, giving
rise to a larger number of false positives. A highest precision
for Fire and Smoke is advantageous as it is indicative of low
number of false positives. The Fire class has a lower Recall,
while the Smoke and Spare classes have a significantly higher
recall which implies that the Fire class has a larger number of
False Negatives while the Smoke and Spare classes do not.

Note that it is more feasible to test Smoke rather than Fire
due to the possibility of generating larger amounts of smoke
with less restrictions. Therefore, since more feasible tests were
conducted on Smoke rather than fire, the testing represented an
early forest fire, and this led to the results of getting a 94.2%
accuracy with a maximum detection height of 35m.

The spare dataset reported the highest accuracy with a value
of 98.3%, which only misclassified two images in the 120
images. The Spare class gives a better performance due to the
presence of spare data everywhere. Some of the objects on
which the test was conducted are: trees, grass, leafless trees,
mulch, cars, houses, chairs and tables, and porches amongst
others.

Finally, to deal with the assumption that the lower accuracy
of the Fire was caused due to less visible flames, a significantly
larger controlled burn was conducted in open burning season.
Therefore, to boost the flame slightly at the moment of testing,
a low-power leaf blower and combustible pine needles were
used. The new results are shown in Table IlI.

TABLE Ill: Classification metrics of the modified testing for the
Fire class.
Precision  Recall  F1-Score  Support
Fire 0.99 0.93 0.96 100
Smoke 0.97 0.95 0.96 120
Spare 0.92 0.99 0.96 120
Accuracy 0.96 360

According to Table |1l it can be seen that the metrics are
improved. With a higher accuracy reported with more visible
flames, the prediction is that on an early forest fire, which is
significantly larger than a campfire, the results will be more
accurate. Figure 8 shows a boosted campfire.

V. CONCLUSION

This paper suggests a UAV-driven system to address the early
fire detection. In particular, a scenario was considered in which
the objective is to detect a potential fire in a given area. The
proposed solution involves devising a path planning algorithm
and an ML model. The ML model which is a residual neural
network, has been trained, validated and tested using new
image dataset captured by the drone for the early fire images,
as well as the existing ones from the Internet. The results are
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FIGURE 8: Fire detection from a height of 22m and 28m in the top

and

bottom pictures, respectively. The top picture is the smaller

campfire with flames of 1.5ft, and the bottom picture is the controlled

fire

boosted by a leaf blower to heights > 3ft.

verified through simulation and implementation where it has
been observed that the proposed method can efficiently detect

the
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fire at the early stages with high accuracy and precision.
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