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Abstract

Nonclassical bending deformation in two foams was investigated using holographic inter-
ferometry. Sigmoid bulge deformation of the lateral surface of square cross section bars was
observed. Cosserat elastic constants inferred are consistent with values obtained via size effect
experiments for dense polyurethane foam. For open cell copper foam, both bulge measurements
and size effects implied a large Cosserat characteristic length and a large coupling number. Lim-
itations of the available fourth order bending analysis were encountered in this regime of strong
effects.

Mathematics Subject Classification. 74A60, 74A35, 74Q15.

1 Introduction

Heterogeneous materials such as foams, composites and lattices often exhibit substantial deviations
from classical elasticity. Cosserat elasticity provides sufficient freedom to represent much of the
observed behavior. Classical elasticity [1] incorporates translation of points and force per area
(stress). Cosserat elasticity [2] also called micropolar (with an inertia term) [3] elasticity allows
more freedom than classical elasticity. Specifically, points can rotate as well as translate and
there is a moment per area as well as the usual force per area. There are six elastic constants,
two of which can be expressed as characteristic lengths as explained below. Cosserat elasticity
is manifested in well known size effects in bending and torsion as predicted by analysis [4]. Size
effects have been observed experimentally in foams [6] [7] [8] and in rib lattices [9, 10]; also in
plates with a periodic array of holes [11]. One can determine from size effect measurements all
six of the Cosserat elastic constants of an isotropic solid. The Cosserat characteristic length was
determined in a two dimensional honeycomb [12]. The characteristic length was found to be zero
in experiments on a composite containing stiff particles in a compliant matrix [4]. This result is
consistent with theoretical predictions [5]. Homogenization analyses have confirmed an independent
rotation variable [13] in chiral negative Poisson’s ratio lattices [14].

There are also effects on the deformation field. Stress concentration factors are predicted to be
reduced [15] in Cosserat solids in comparison with classical solids. Warp in torsion of square cross
section bars is reduced [16] [17] in Cosserat solids. This leads to a reduction in strain concentration
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Figure 1: Classical bending deformation. Moments are applied at the flat ends in the y direction.

as has been observed in bone [18]. The warp reduction effects have been demonstrated experimen-
tally in bone and in foams via holography [19, 20]. Asymmetry of the stress is revealed by nonzero
stress and strain at the corner of the cross section. In bending of square cross section bars, the
lateral surfaces bulge from Cosserat effects [21] in addition to the tilt expected [1] classically.

The constitutive equations for linear isotropic Cosserat elasticity [3] are:

Oij = QGEU + )\ekkéij + Heijk(?"k — gbk) (1)
mij = adp k0ij + Bij + vPji (2)

The moment due to the asymmetric stress o;; is balanced by the couple stress, m;; or moment
per area. There are six independent elastic constants. G is the shear modulus in the absence of
gradients; A also has the same meaning as in classical elasticity. Sensitivity to gradients of local or
micro rotation ¢ is provided by «, 3, 7. The coupling between macro rotation r; = %eklmuml and
micro rotation fields is quantified by k.

Technical elastic constants, beneficial for physical insight, are: Young’s modulus £ = 2G(3A+26)

22+2G
shear modulus GG, Poisson’s ratio v = 2(++G)’ characteristic length, torsion ¢; = 4/ ’82%, character-
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The characteristic lengths govern the length scale at which nonclassical effects become promi-
nent. A bar of thickness 20 times the characteristic length will exhibit observable size effects [4] in
torsion or bending or both. The coupling number N has a range from zero to one. It governs the
magnitude of size effects and the magnitude of reductions in stress concentration. The polar ratio
¥ influences size effects in torsion.

In the present research, nonclassical bulge in bending is explored via holographic interferometry.
The inferred bulge is then interpreted in terms of Cosserat elastic constants, and these are compared
with constants obtained via size effect studies.

istic length, bending ¢, = ,/%, coupling number N = , /ﬁ, and polar ratio ¥ =

2 Analysis

The classical three-dimensional displacement field solution [1] [21] for pure bending of prismatic
bars in isotropic linear elasticity is

2 2 2
22+ vaxt—vy xy xz
— ;R )’ uy = —y—j uz = -, (3)
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in which R is the principal radius of curvature of bending and with v as Poisson’s ratio. Anti-
clastic and bend curve are in u,. The component u, contains the classical tilt of lateral surfaces due
to Poisson’s ratio. The z axis is the long axis so u, represents longitudinal bending deformation.
Figure 1 shows the bending configuration.

The nonclassical Cosserat bulge that contributes to u, is of sigmoid shape approximated as a
cubic [21]. The bulge contribution is normalized to a dimensionless quantity U as follows. The
magnitude of the bulge deformation is

ugoss =Uae (4)

with the surface strain as e = Ma/EI in which F is Young’s modulus in the absence of gradients, a
is the bar half width; M is the applied moment and [ is the area moment of inertia. It depends on
the Cosserat elastic constants in a complicated way [21]. There is no sigmoid bulge of the lateral
surfaces if 8/y = —v.

Size effects for 5/y = —v with v as Poisson’s ratio are given [21] by

The size effect ratio is @ = M R/EI with E as the true Young’s modulus in the absence of strain
gradients. In comparison, an exact solution for bending of a round rod of a Cosserat solid [22] has
the same form for 3/y = —v but with a factor 32 rather than 24. For other /v the size effect
equation is considerably more complicated for both round and square cross sections.

3 Methods

Two cellular solids were studied. A dense closed cell polymer foam was studied earlier in the
context of size effects [6] [8]. There is a range of cell size from about 0.05 mm to about 0.15 mm
in diameter. The density was 340 kg/m?. For the present study, a square cross section specimen
of the same foam was 20 mm wide and 14.2 cm long. It was clamped at one end and was oriented
horizontally. Bending was achieved by dead weight load applied 41 cm from the fixed end, using a
stalk attached to the free end of the specimen. The purpose was to obtain essentially pure bending
in the region of observation.

%

Figure 2: Copper foam. Scale bar: 2 mm.

An open cell copper foam was also studied. This was of a type previously studied [23] in the
context of Poisson’s ratio. The specimen was a square cross section bar 10.3 cm long by 2.4 cm
by 2.4 cm wide. The mass was 24.25 g so the density is 0.41 g/cc. The corresponding relative
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density (foam density divided by density of solid copper) is 0.046. Inspection of a photograph of
the foam (Figure 2) indicates the cells are about 1 mm across. This specimen was cemented in
vertical orientation to a massive base. Bending was achieved by dead weight load upon the end of
a horizontal stalk cemented to the top of the specimen. This configuration allowed a compression
test to be done as well by applying the load at the top of the specimen.

Holographic interferograms were made using photopolymer material (Litiholo) illuminated using
a green laser with a wavelength of 532 nm. The laser beam was spread using a beam spreader lens
of short focal length and was collimated using a large lens. The holographic plate was fixed to the
center of the bar specimen via high intensity rare earth magnets. A magnet was cemented to the
specimen at its center line and the plate was attached with another magnet. The purpose is to
optically subtract the classical tilt deformation of the lateral surface. The center of the magnet
corresponds to zero relative motion between the specimen and the holographic plate.

The experimental configuration is illustrated in Figure 3. This is the Denisyuk method which
generates a reflection hologram viewable in laser light or white light. Optical components were
supported on an optical table with air based vibration isolation. Two exposures were made, one of
the deformed bar and one of the undeformed bar, on the same holographic plate. Holograms were
then illuminated with laser light at the same wavelength as that used for exposure.
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Figure 3: Bending configuration.

The static holographic fringe interpretation equation [24] is expressed in Equation 6,
nA=u- (kobs - hillum) (6)

in which u is the displacement vector, ks is the observation unit vector, A is the wavelength,
n is the fringe order and hyj,, is the illumination unit vector. In the experiments, h;j, = j and
kops is chosen to reveal either u, or u,. In this static method, interpretation can be done using a
photograph of the hologram. The nonclassical bulge in u, contributes in either case, for all angles
of view. From the theoretical plots (Figure 4), hyperbolae due to u, are centered if the material
is classical, shifted off center and skewed due to bulge if it is Cosserat. Straight fringes due to u,
become curved if there is Cosserat bulge (Figure 5).

Expressing the displacements in terms of the maximum strain e, and considering the direction
cosines &, n and ¢ of the observation vector ks,

n\ = ae[%(é)%osf + U(Sin(%n) - E))(1 + cosn) + SZCOSC] (7)

a
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An angle of 45 degrees was used in interpretation of the experiments for which the cosine expressions
are 0.71, 1.71, 0.71.

The tilt in u, due to the Poisson effect does not appear because the holographic plate was
attached to the specimen and tilts with its surface.

The bulge is here represented as a sinusoid for which the cubic in [21] represents the first two
terms. Because the holographic plate was fixed to the center of the bar specimen, it was tangent
to the bar center. A linear term added to the sinusoid includes the relative displacement between
plate and specimen.

The nonclassical normalized bulge U is obtained from the curvature of fringes via the deviation
An, from straight fringe shape evaluated at the bar surface = a. The bulge obtained from fringe
order contributions n, and An,, is

2o (3)
Uz

in which A = $(2)2cos¢ and B = (sin(ZX) — Z))(1+ cosn). The order n, is the fringe count at
the center of the cross section in which there is no contribution from bulge and An, is determined
at the edge of the cross section from the nonclassical curve of the fringes.

Similarly, the normalized bulge U is obtained from the hyperbolic fringes observed in the zy
plane (angle ¢ rather than &) by observing the shift An, in the fringe pattern at the bar edge. The
oblique angle of view necessitates incorporating ¢ in the inference of shift.

Theoretical fringe patterns are illustrated in Figures 4 and 5.
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Figure 4: Theoretical fringe patterns for sensitivity in the yz plane. Left, classical; right, Cosserat.
The vertical straight line through the origin represents zero displacement.
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Figure 5: Theoretical fringe pattern for sensitivity in the xz plane. Left, classical; right, Cosserat.

Compression of the copper foam was done by applying a weight to the top of the specimen and
was interpreted using the dynamic fringe interpretation method [24],

An/\ =u- (kl - kg) (9)
)



The observation direction was changed from k; to ko and a point on the object was observed. The
change An of the fringe order was recorded and the component of displacement u was inferred.
The bending modulus was determined from the static fringe pattern in the yz plane as follows.
The maximum strain at the surface x = a is € = Ma/EI with E as the bending modulus, M as
the moment and a as the bar half width. The strain is expressed as € = %= in which the increment

z along the long axis is obtained from the spacing of the fringe pattern at the bar surface and u,
is obtained from Equation 6 and the known angle of observation.

4 Results

4.1 Dense polymer foam
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Figure 6: Experimental fringe pattern, dense polyurethane foam, sensitivity in the xz plane. The
block is the magnet holding the holographic plate. Classically the fringes would be straight.

Holographic fringes for sensitivity in the xz plane are curved as shown in Figure 6, indicating
a nonclassical bulge effect. Analysis of the fringe curvature for bulge contribution to u, in dense
polyurethane foam indicate the normalized bulge is U = 0.008 £ 0.0035. The fourth fringe at the
bar edges was used for interpretation which limited the resolution. Fringes closer to the center point
of zero relative motion (the center of the magnet), though they had more curvature as anticipated
had loops that were difficult to interpret. Therefore the fourth fringe was used for interpretation.
Measurement of the fifth fringe yielded results similar to those from the fourth. The shift of the
hyperbola pattern corresponding to u, provided lesser resolution.

From prior size effect measurements on this kind of polymer foam [8], £, = 0.456 mm, so ¢}, / a
~ 0.5/10 = 0.05 in which a is the bar half width. With N = 0.2, then via [21], U = 0.005. In view
of the resolution, this is considered a satisfactory correspondence. These size effect studies, as a
result of surface layers for different shapes, admit N = 0.15 to 0.2. This does not obtrude in the
interpretation for the following reason. For small £, in relation to the specimen width as is the case
here, the predicted effect of coupling number N on the normalized bulge U is weak. For example,
for N = 0.15, U = 0.0042; for N = 0.20, U = 0.0048; and for N = 1, U = 0.0065. So in this
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regime of large specimen size in relation to characteristic length £;, one cannot easily discriminate
among N values from bulge measurements. A smaller specimen would allow such discrimination.
It is notable that even though the cell size (0.05 - 0.15 mm) is much smaller than the specimen
thickness (20 mm), nonclassical effects in the bulge are observable.

4.2 Copper foam

Figure 7: Experimental fringe pattern, copper foam, sensitivity in the yz plane.

Figure 8: Experimental fringe pattern, copper foam, sensitivity in the zz plane. Classically the
fringes would be straight.

Bulge of the copper foam was inferred from the observed shift of the hyperbola pattern shown in
Figure 7 corresponding to u, as follows. Recall that the point of zero relative motion is the center of
the magnet used to attach the holographic plate to the specimen. The normalized bulge determined
from Equation 8 referred to the zz plane is U = 0.11 + 0.03. The inferred shift incorporates a
correction for shift due to the refraction of light through the 2.2 mm thick glass holographic plate
via Snell’s law. For the angle of view used, refraction shifts the relative position of the fringes with
respect to the attached magnet. The correction was about 1/3 of the total shift.

Bulge is revealed also in the curvature of fringes observed with sensitivity in the zz plane as
shown in Figure 8. From the curvature of the third fringe, U = 0.14 &£ 0.03 for an average with the
value from the hyperbola pattern of U = 0.125 £ 0.03. The fourth fringe yielded similar results.
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The theory for the Cosserat bulge does not provide a unique value for each elastic constant from
bulge results from a single size specimen. Prior experience with open cell foams of similar structure
suggests a large value of coupling number N and a characteristic length ¢, larger than the cell size.
For N = 0.7, v = 0.3, and /vy = 0.94, % = 0.4 corresponding to £, = 5 mm, theory predicts U
= 0.1. Bulge theory predicts that U increases with §/~; there is no bulge if 8/v = - v. In the
present region of strong effects, increases in N above 0.7 actually reduce the predicted bulge. It is
likely that effects are sufficiently strong that an exact solution rather than a fourth order solution
is called for.

Size effect measurements allow inference of the characteristic length ¢, which contributes to
the normalized bulge U. Comparison of the modulus in compression with the effective modulus in
bending allows an estimate of size effects, hence £;. The inferred bending modulus was 330 MPa,
and the inferred compression modulus was 93 MPa. The size effect ratio is {2 = 3.6 via Equation 5
from which S—Z = 0.39 corresponding to a characteristic length £, = 9 mm. Size effect measurements
display scatter of points, so an inference from two points has considerable uncertainty but suffices
to provide an order of magnitude. Also we do not have §/~ = - v for this material and attempts to
use the fourth order solution were not successful. There are limitations when £, is large in that the
analysis over-predicts the reduction in size effect such that the rigidity goes negative. Therefore the
elementary form was used. An exact solution would be beneficial for the regime of strong effects
observed here.

Detailed experimental results based on size effects are not available for this copper foam, but a
polymer open cell foam [7] of cell size 0.4 mm had a bending characteristic length ¢, that was 5.5
times the cell size. The structure is, however, not the same as that of the copper foam.

Maximum strain levels, 5 x10~% for polymer foam and 10~ for copper foam, were well within
the linear range of behavior, so linear interpretation is justified.

Experiments with more applied load were done to obtain more fringes hence better resolution
but fringe quality suffered, especially for the copper foam. Non-affine deformation is known in these
foams [26]. Such deformation gives rise to grainy fringe patterns and so impairs the visibility of
fringes at higher strain levels. Resolution is therefore limited.

5 Discussion

The nonclassical bulge effect in bending [21], as with the warp effect [16] [17] in torsion, is a full
field effect upon the distribution of deformation. These effects are in contrast to size effects which
pertain to torsion and bending rigidity. Both bulge and warp effects admit null experiments in
which classical response is zero and Cosserat response is nonzero. In torsion of square cross section
bars, Cosserat effects reduce the warp in comparison with the classical prediction. The classical
strain at the corner of the cross section is exactly zero as a result of the symmetry of the stress. Any
nonzero corner strain is nonclassical. In bending of square cross section bars, the lateral surfaces
tilt as a result of Poisson effects but there is no bulge. Cosserat elasticity introduces a sigmoid
shaped bulge. Any observed bulge reveals nonclassical behavior. Such nonclassical effects in warp
[19, 20], strain [18] and bulge [21] have been observed.

A single measurement of sigmoid bulge in bending suffices to demonstrate nonclassical behavior
and to infer a combination of ¢,, 3/ and N but not to infer ¢, and N individually. Study of
specimens of several sizes is required for that.

Recall that there is no sigmoid bulge of the lateral surfaces if /v = —v. For normal Poisson’s
ratios near 1/3, that means a negative 3/ is needed for zero bulge deformation. This is permissible
because the lower bound is -1. If the lower bound is approached, the torsion characteristic length



becomes small: ¢; << /{3, a condition not found in materials studied thus far. Instead, 5/y — 1
corresponding to a substantial torsion characteristic length ¢; and substantial bulge for Poisson’s
ratio near 1/3. In that vein, future studies of negative Poisson’s ratio materials will be of interest.

The bulge measurement method offers high sensitivity as illustrated by the results for the dense
polymer foam. The largest cells were a factor of 130 smaller than the bar width, and the smallest
cells were a further factor of 3 smaller yet. Even so, nonclassical bulge effects were observed and
were consistent with values anticipated via elastic constants obtained from prior size effect studies.

For open cell copper foam, bulge measurements and size effects implied a large Cosserat char-
acteristic length and a large coupling number. Limitations of the available fourth order bending
analysis were encountered in this regime of strong effects. An exact solution for the square bar
would be helpful for such interpretation.

6 Conclusions

Sigmoid bulge deformation is observed in the lateral surface of square cross section bars of foams.
For dense polyurethane foam, Cosserat elastic constants inferred are consistent with values obtained
via prior size effect experiments. The bulge method allows observation of nonclassical effects even
if the size of the microstructure is much smaller than the specimen size. Strong nonclassical effects
were observed in both bulge and size effects in open cell copper foam.

The author gratefully acknowledges support of this research by the National Science Foundation
via Grant No. CMMI -1906890.
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