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Abstract—Unmanned aerial vehicles (UAVs) are well-known
for violating citizen’s privacy either inadvertently or deliberately.
However, UAVs could be victims of privacy violations themselves
in the sense that an adversary observing a UAV can infer
its destination. This paper proposes several privacy-preserving
mechanisms (PPMs) for protecting a UAV’s location privacy.
In particular, we address the privacy protection problem in
two major UAV applications that require significantly different
measures: (i) package delivery, and (ii) Internet of Things (IoT)
data collection. In the package delivery application, we propose
two different PPMs to randomize the UAV’s trajectory such that
the observing adversary is confused about the UAV’s destination;
we provide privacy guarantees and analyze the trade-off with
energy consumption. In the I o T  data collection scenario, the
UAV is not necessarily required to hover exactly above the IoT
device; hence, we propose a different PPM according to which
the UAV chooses a random spot around the IoT device for data
collection. Then, considering a minimum mean squared error
(MMSE) criterion, we obtain the privacy leakage to the adversary.
We also analyze the mean peak age of information (PAoI) of
the network and show that the proposed method does not
degrade the mean PAoI significantly. Finally, considering the
limitations of the MMSE approach for some applications, we
also develop a differential privacy (DP)-based counterpart for
this PPM. We observe that the mean PAoI degrades significantly
in Laplacian DP but is acceptable in Gaussian DP.

Index Terms—Privacy, Internet of Things (IoT), age-of-
information (AoI), differential privacy, unmanned aerial vehicles
(UAV), data collection.

I . INTRODUC T I ON AND BAC K G RO U N D

Due to their low cost and agile movement ability, unmanned
aerial vehicles (UAVs) are promising alternatives for a number
of applications. However, they are often envisioned as com-
promising privacy by allowing access to areas that could not
be observed in other manners. Different privacy-preserving
mechanisms (PPMs) have been proposed to combat the privacy
violations of UAVs in the sense that UAVs violate citizen’s
privacy [2]–[8]. For example, in [2], [3], an algorithm was
developed based on the physical stimulus and the corresponding
change in the channel traffic in order to determine whether a
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point of interest (PoI) is being video streamed illegitimately.
A  central management system was proposed in [4] where,
given the restrictions and UAV’s applications, it is in charge of
permission to the applications as well as monitoring the drone
in order to detect and handle violations at runtime.

What is considered less often is that the privacy of UAV
users can itself be compromised by observations of UAV flight
patterns. In this regard, [9] proposed privacy-preserving path
design algorithms for a UAV while there is an adversary trying to
infer the UAV ’s destination from its path. The authors in [9]
consider two scenarios: the adversary can and cannot see the
destinations, and they propose path planning algorithms to hide
the destinations from the adversary.

In this paper, we consider two compelling scenarios where
UAV user privacy can be compromised and consider privacy-
utility tradeoffs for metrics and PPMs matched to each case.
First, we consider privacy in delivery applications which, for
example, have been under development by Amazon Prime Air
delivery since 2013 [10]. Importantly, the UAVs might not only
deliver commercial packages but also provide emergency and
health-related services at the destinations [11], hence making
privacy preservation critical.

Next, we consider the privacy of users employing UAVs in
an Internet of Things (IoT) data collection application [12] that
addresses the limited power capacity and therefore short-range
communication of IoT devices [13]. Privacy leakage of the IoT
location can help the adversary to easily find the IoT device
[14] for the sake of his benefit, i.e., either take it or destroy it.
Location privacy in IoT networks has been investigated widely
in the literature by developing different anonymization and
obfuscation methods [15]. For example, perfect location privacy
was introduced in [16] using anonymization. A  differential
privacy (DP)-based mechanism for IoT data location privacy
was proposed in [17]. Also, decentralized mechanisms based on
a blockchain for the location privacy-preserving problem were
developed in [18], [19] for a mobile crowdsensing framework.
Recently, a model-free obfuscation to combat pattern-matching
attacks was introduced in [20].

However, it is worth noting that the aforementioned studies,
along with similar ones, aim to ensure privacy by protecting
“data” against adversarial attempts. For instance, in [21], al-
though a privacy-preserving mechanism was proposed through
UAV path-planning, the objective is to protect “data” from
potential eavesdropping. In other words, a significant difference of
our work is that the primary objective is to ensure privacy of the
users’ locations rather than users’ data.

Therefore, this paper aims at providing PPMs for UAVs



in two major applications: package delivery and IoT data
collection. In particular, in the first scenario, we consider a
UAV that is delivering packages or providing health services to
residents, and its trajectory is observed by an adversary. In this
scenario, the adversary tries to identify the UAV’s destination
based on observing the UAV ’s trajectory. Hence, the goal is to
manipulate the trajectory in a randomized way so that the
adversary would not be able to easily infer the destination, and
we employ the minimum mean squared error (MMSE) of the
adversary as the privacy metric. Applying a privacy mechanism
always comes with costs in terms of utility. In the context of
a delivery application where the UAV changes its trajectory to
confuse the adversary, the energy consumption undesirably
increases and will be employed as our utility measure.

In the second scenario, first, using the same privacy metric,
we consider the privacy problem for a UAV collecting data
from an IoT device while being observed by an adversary. In
this scenario, the adversary aims at inferring the IoT’s location by
observing the UAV’s location while collecting data. To the best
of our knowledge, IoT privacy leakage from a UAV’s location
has not been considered in the literature despite its potential
risks. We propose a different PPM from that of the package
delivery scenario. In the package delivery scenario, the UAV
needs to fly and hover exactly above the destination to
accomplish its mission, but in the IoT data collection, this
limiting condition is no longer necessary as the UAV can still
collect data via wireless transmission while it is not hovering
exactly above the destination.

Although the MMSE approach demonstrates promising
results in the second scenario, employing MMSE as the privacy
criterion requires knowledge of the a priori distributions of IoT
devices. In other words, it cannot be used when the a priori
distribution of the IoT’s location is not available. To address
this problem, we also propose a differential privacy (DP)-based
PPM for the IoT locations’ privacy.

The costs of applying a PPM are even more critical in the
second scenario, i.e., IoT data collection. In particular, for
IoT data utility, the age-of-information (AoI) has been widely
recognized as a metric to assess the freshness of the updated
data. Hence, from its advent in [22], a rich state-of-the-art
has been developed towards analyzing the optimal tradeoffs
with other performance metrics in different system models,
e.g., [23]–[27]. Specifically, AoI analysis in UAV-aided IoT
networks has been considered, for example, in [28]–[39], where
typically IoT data AoI minimization is considered to obtain an
optimal trajectory design for the UAVs as the data collector.

Therefore, considering AoI as the IoT data utility metric,
the applicable question is whether applying a PPM to a data
collection framework significantly increases the AoI of the
collected data or not. If yes, this could be a substantial drawback
as fresh update information from IoT devices and sensors to the
destinations is vital due to the increasing demand for real-time
applications [40], [41]. However, by analyzing the mean PAoI
of the network, we will see that the mean PAoI is similar to the
case where there is no privacy. In other words, the proposed
PPM does not have a significant cost in terms of mean PAoI.

UAV applications rely heavily on wireless technology com-
ponents to enable seamless communication. Hence, depending

on the specific use case, different wireless technologies can
be employed, such as Zigbee [42], LoRa [43], and Global
Positioning System (GPS) [44] which are mostly used for
applications that require low data rates, and communication
protocols such as LT E  [45] and 5G [46] suitable for applications
with high data rates requirements. In this paper, for the package
delivery application, we assume the UAV is equipped with a
GPS module for delivery positioning. Furthermore, for the IoT
data collection application, low data rates technologies such as
Zigbee and LoRa can handle the data collection, in addition to
utilizing a GPS module for precise positioning.

While UAVs have different hardware components in terms of
the airframe, payload, power supply, communication module,
computer system, etc. [47], it is important to mention that
the UAV examined in the system models described in this
paper can encompass a diverse range of models as long as
they satisfy two key requirements: (1) they are capable of
transporting packages for delivery purposes, and (2) they
possess a communication module equipped with positioning
capabilities for both applications. Finally, for both applications,
employing a rotary-wing UAV (rotorcraft) is essential due to
its hovering capabilities, in contrast to fixed-wing UAVs, which
are primarily designed for sustained forward flight rather than
stationary hovering.

A. Contributions and Organization
In this paper, we develop several PPMs matched to the

metrics of two compelling UAV applications and analyze
the trade-offs between privacy and utility. In particular, the
contributions of this paper are:

• We propose PPMs for a UAV in the package delivery
application considering different UAV’s maneuverabilities.
We then obtain a privacy guarantee as well as an energy
consumption guarantee for the proposed PPMs and analyze
the existing trade-offs between them. The system model
of this part is different from [9] in several ways: (1) we
do not consider any safe zone; hence, the adversary is
able to observe the UAV ’s entire trajectory, and (2) we
propose PPMs based on a single destination scenario
where, independent of the number of other destinations,
one can assure a privacy guarantee.

• We propose a PPM for a UAV in the IoT data collection
application. In this scenario, assuming that the IoT devices
are initially distributed according to a Gaussian distribution
and considering the MMSE of the adversary, we obtain a
privacy guarantee for the proposed PPM.

• We analyze the mean PAoI of the IoT data collected by
the UAV and obtain the trade-off between privacy and
mean PAoI.

• To deal with the limitations of the MMSE metric in some
scenarios, we also provide a DP-based PPM considering
both Laplacian and Gaussian methods.

This paper is organized as follows: In Section II, we describe
the system model for the package delivery application and
the corresponding PPMs. The IoT data collection application
is more complicated and thus covered in multiple sections.
In Section III, we provide the system model for the IoT
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speed, i.e., E0 =  E (d =  1). With this definition, the energy
consumption of a path with length di is E i  =  diE0. Besides
the energy on the linear path, we also define an energy unit for
a turning point. In this regard, we assume that the drone
consumes ζ  amount of energy when it changes its direction.
Therefore, the total amount of energy in a path with n different
line segments is obtained as

N N − 1 N
!

ET = diE0 + ζE0 =  E0 di +  ( N  −  1)ζ .

Figure 1: A  general representation of a UAV’s maneuverability
in Scenario I-A where it only flies along linear segments.

data collection application, and in Section I V  we provide
the proposed PPM. We provide a DP-based PPM for IoT in
Section V. Finally, Section V I  presents the numerical results,
and Section VI I  concludes the paper.

Notations: Note that throughout this paper, ||.|| is the L 2

norm, P(.) is the probability, and E[.] is the expectation operator.
Random variables are shown in bold letters.

I I . S C E NA R I O I : PPMS F O R PA C K A G E D E L I V E R Y

In this section, we provide system models for the package
delivery UAV application and their corresponding PPMs. We
consider two types of maneuverability for each of which we
propose a PPM.

A. UAV with Only Linear Trajectory
We assume a system model in which there is a UAV aiming

to deliver a package to a destination. There is also an adversary
who is observing the UAV trajectory to infer the location of
the destination. Below, we describe the assumptions on the
UAV’s mobility, the adversary, and the UAV’s energy
consumption in detail.

1) UAV’s Trajectory Model: We assume that the UAV’s
trajectory is a combination of linear segments. In this regard,
the drone can fly with a constant speed in a piecewise linear
path with segments of different lengths denoted by di , i =
1, 2, . . . , N, as shown in Figure 1.

2) Adversary Model: We assume that the adversary can
observe the entire path. However, he cannot observe the
UAV ’s speed. We also assume that the adversary has no
prior knowledge about the destinations. In other words, before
observing the path, from the adversary’s point of view, the
destination is distributed uniformly in the area that includes the
entire path. This assumption will be relaxed in the next part.
Finally, the adversary knows the randomization mechanism
along with its parameters, l, m which are explained in detail
in the next section.

3) Energy Consumption Model: The goal is to design
privacy-preserving trajectories that guarantee energy efficiency
as well and analyze the tradeoff between the two performance
metrics. Therefore, in this model, in order to analyze the energy
consumption, we first define the energy consumption for a
distance unit as E0. In other words, E0 is the energy consumed
by the drone when traveling a distance unit with a constant

i = 1 j = 1 i = 1

Now assume that the drone is supposed to travel from a
source X  to the destination Y on a single straight line of
length d. In this scenario, the energy consumption of the UAV
for a round trip is simply E =  (2d +  ζ ) E0. In this case, the
adversary can easily infer the exact location of Y . Hence,
Y =  Y , where Y is the adversary’s inference of Y . In the next
section, we propose privacy-preserving path planning for this
scenario.

B. Package Delivery PPM I: Fly a Random Triangle

Figure 2 shows the schematic model for this scenario. The
UAV intends to deliver a package from source X  to destination
Y . Normally, the UAV would choose the shortest path, which is
the green arrow with length d in Fig. 2. However, for the sake
of Y ’s privacy, we randomize the trajectory. To do so, we define
the random variable θ � arcsin U as a deviation angle from the
path X  −  Y , where U  is a discrete uniform random variable
with the following range:

Range(U ) =
md

, j  =  −m, − (m −  1), . . . , m −  1, m     ,

where 0 <  l ≤  dmin, and dmin     =  mini di , i =  1, . . . , N in a
multi-destination scenario. Also, m � N is another
randomization parameter that shows the number of potential
destinations on the line A  −  B  in Fig 2. As shown in this
figure, instead of the path X  −  Y −  X ,  the drone goes along
the path X  −  A  −  B  −  X .  Intuitively, as the θ increases, the
path becomes longer which increases the privacy. On the other
hand, the energy consumption increases as well.

In the next theorem, we obtain the privacy and energy
consumption guarantees as a function of l and m. The privacy
guarantee is defined as

Gp =  Inf E||Y −  Y  ||2,

where Inf is taken over all estimators of Y  . We also define
the energy consumption guarantee as

Ge =  P  p     ≥  1 +  δ =  0,
Opt

where E p is the energy consumption of the proposed privacy-
preserving path, EOpt     is the optimal energy consumption
obtained when the drone travels through the X  −  Y −  X
path, and δ is a parameter to be determined below. Now we
state the following theorem.
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Figure 2: The optimal path and the privacy-preserving path: in
the optimal path the UAV flies from X  to the destination
located at Y directly as shown by the green arrow, whereas in
the privacy-preserving path it flies from X  to A  and B ,
respectively, as shown by the red arrows. In this figure, l is the
randomization parameter and θ is the deviation angle obtained as
θ =  arcsin (U ).

Theorem 1. For the proposed PPM, the privacy and energy
consumption guarantees can be obtained as

−ᵅ�

B

Figure 3: Given an observation of the UAV’s path, ψ, there
are 2m +  1 points uniformly distributed across the line that
the adversary considers for his estimation of the destination.
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respectively, where δ =  2 d + ζ  .

Proof. For the proof of (1), we first note that given the
adversary’s observation denoted by ψ =  X  −  A  −  B  −  X ,
Y  has a discrete uniform distribution over the line A  −  B ,
i.e., Y  |ψ =  X  −  A  −  B  −  X  � U [A, B]. This essentially
resulted from the proposed distributions for θ and U . In
fact, given ψ =  X  −  A  −  B  −  X ,  the adversary has
2m + 1 potential destinations according to the set Range(U ) =

md , j  =  −m, − (m −  1), . . . , m −  1, m , where each of the
elements times d are the distance of Y  to the middle of the
line. Figure 3 shows these potential points that the adversary
considers for his estimation. To show this mathematically, we
can write

P(Y =  Yj|ψ =  X  −  A  −  B  −  X )
P(Y =  Yk|ψ =  X  −  A  −  B  −  X )

P(ψ =  X  −  A  −  B  −  X |Y =  Y j ) f Y  (Yj )
P(ψ =  X  −  A  −  B  −  X |Y =  Y k ) f Y  (Yk )

=  1, �j  =  k,

where (a) comes from: (1) f Y  (Yj )  =  f Y  (Yk ), since the prior
information of the adversary is that the destination is uniformly
distributed in the area, and (2) �j  =  −m, . . . , m, given Y  =  Yj

the probability that the line A  −  B  is selected is actually
the probability that the corresponding θ is selected uniformly
amongst the 2m +  1 values for θ. In other words, given Y  =
Yj , the probability that X  −  A  −  B  −  X  is selected is 2 m + 1

ᵅ�1

Figure 4: Given Y  =  Yj , there can be different lines passing
from Yj . In fact, there is a line corresponding to each value
that θ can take which is 2m +  1. The orange line shows the
real path, the dashed lines show the selected θs, and the solid
lines l1, l2, l3, show the possible lines corresponding to the θs.

which gives us the posterior probability as P(Y =  Yj|ψ =
X  −  A  −  B  −  X )  =  2 m + 1  (See Fig. 4).

Now considering the MMSE criterion, the best estimator is
the mean value and the least estimation error is the variance,
i.e., �m � N

E||Y −  Y  ||2 =  
2m

2 
1 

0 +  
m2 +  

(2l)2 
+  · · · +  

(ml)2  
2l2

m(m +  1)(2m +  1)
m2(2m +  1) 6
(m +  1)l2

3m

≥  
l2 

.

To prove (2), we obtain the upper bound for E p        and the
corresponding δ. To do so, we note that in the worst-case
scenario, Y  is exactly in the middle of A  −  B  and the energy
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Figure 5: The extended PPM I for a 4-destination scenario.
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consumption is
p

E p  =  Ep =  2     d2 +  l2 +  2l +  2ζ .

Therefore,

Ep 2
√

d2 +  l2 +  2l +  2ζ
EOpt                             2d +  ζ

2 d2 +  l2 +  2dl +  2l +  2ζ
2d +  ζ

2d +  ζ  +  4l +  ζ
2d +  ζ
4l +  ζ
2d +  ζ

=  1 +  δ.

with

4l +  ζ
2d +  ζ

and (2) is concluded.

Equations (1) and (2) represent a tradeoff between the privacy
guarantee and energy consumption as a function of l: the larger
that l is, the tighter the privacy guarantee becomes. However,
this increases the upperbound of the energy efficiency, i.e., 1
+  δ, which is undesired. Hence, one needs to determine l
such that a given privacy and energy guarantee are met.

We can extend the proposed PPM I  to a multi-destination
scenario where the UAV follows a trajectory similar to Figure
1. The difference is that, after completing its mission, the
UAV moves toward the next destination through another
privacy-preserving path from B  in Figure 2 instead of
returning to the origin X .  Figure 5 shows the optimal and the
extended PPM applied to a 4-destination scenario.

C. UAV with Linear and Arc Trajectory
In this section, we provide the second PPM for the package

delivery application. In the following, we provide the assump-
tions for this scenario in detail.

1) UAV’s Trajectory Model: We assume that the drone can
use any of the following two possible movements at each
segment of its trajectory: (1) flying at a constant speed vl on
a linear line segment, or (2) flying at a constant speed vc on a
circular path by which we mean an arc of a circle. It is
assumed that vc and vl are given and are potentially determined
to ensure an optimal operation.

2) Adversary Model: We assume that the adversary can
observe the entire path. However, he cannot observe changes in
the drone’s speed. Hence, he cannot infer if the drone stops at a
location. The adversary also has no prior/side information about
the direction of the destination. Specifically, assuming a polar
coordinate for the destination point denoted by X ,  i.e., X  =
(R, θX ) ,  he has no information about θX .  This means that
before observing the path, from the adversary’s perspective, θ X  is
distributed uniformly in [0, 2π).

3) Energy Consumption Model: To model the energy con-
sumption of the proposed system, as before we define E0 as
the energy consumed by the drone when traveling a unit of
distance on a straight line with the assumed constant speed, i.e.,
E0 =  E (d =  1). With this definition, the energy consumption
of a path with length di is Ei =  diE0. We also define the
energy consumption for the arc path. In particular, for an arc
with angle θ and radius R ,  we model the energy consumption
as below

Ep(R, θ) =  θRkE0,

where k ≥  1 is due to the excess energy consumption resulting
from the nonzero centripetal acceleration and a potential
difference between vl and vc.

Without loss of generality, we assume that the drone is
initially located at location O(0, 0) and is supposed to deliver
a package to the destination at X .  From the energy consumption
perspective, the optimal way would be to travel from the source
O to the destination X  on a single straight line (length R).
Hence, in this scenario, the energy consumption is simply
EOpt =  2RE0.

D. Package delivery PPM II: Fly a Random Arc
Similar to PPM I, the idea here is to deviate the UAV ’s

trajectory randomly from its original shortest path. This is
shown in Figure 6 where the privacy-preserving path of the
proposed scheme is illustrated by red arrows. According to
this mechanism and as shown in Figure 6, instead of the path
O − X −O ,  the drone goes along the path O − A − B − O .  In this
mechanism, ω is a uniform random variable, i.e., ω � U (0,Θ),
where Θ is the design parameter. Intuitively, as Θ increases, the
path becomes longer which improves the privacy but increases
the energy consumption undesirably.

In the next theorem, we obtain the privacy and energy
consumption guarantees as a function of Θ. The privacy
guarantee is defined as

G ′ =  Inf E||X −  X||2.
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and

P
E p     >  1 +  δ =  0, (4)
Opt

respectively, where δ =  k 2 , and sinc(x) � sin(x) .

B

Figure 6: The shortest path and the privacy-preserving path
for the UAV with linear and arc maneuverability: in the
shortest path the UAV flies from O to the destination located at
X  directly as shown by the green arrow, whereas in the
privacy-preserving path, it flies from O to A  and B ,
respectively, as shown by the red arrows. In this figure, Θ is
the randomization parameter and ω is the deviation angle
obtained as ω � U (0,Θ).
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Estimation Error:
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Figure 7: The privacy-preserving path for the UAV with linear
and arc trajectory and the corresponding parameters: Θ is the
randomization parameter, ω is the deviation angle, and a is
the adversary’s estimation of the destination.

To obtain an energy consumption guarantee, similar to the
first scenario, we require that

G ′ =  P
 
E p     ≥  1 +  δ

 
=  0, Opt

Proof. Let ψ be the observation of the adversary, that is, the
path O −  A  −  B  −  O. For the proof of (3), we note that the
adversary knows R  based on his observation, ψ. Hence, given
ψ, the phase of X  has a uniform distribution over (− Θ ,  Θ ).
In other words, X |ψ  =  (R, ϕ  � U (− Θ ,  Θ )).  This essentially
resulted from the proposed privacy-preserving mechanism
where we have assumed that ω � U (0,Θ). Therefore, with the
MMSE criterion, the best estimator for X  in polar coordinates
is

X  =  E [X |ψ ] =  (E(R|ψ), 0)
=  (E [R cos ϕ] , 0).

Therefore, X  is estimated in polar coordinates as X  =  (a, 0),
where a =  E [R cos ϕ] and is obtained as

Z Θ

a =  R  
2

cosϕdϕ
− Θ

=  2R
sin 2

=  R sinc 
2 

.

From Figure 7 we can obtain E||X −  X||2 using the right
triangle rule as

E||X −  X||2 =  E[R 2  −  a2]

=  R 2  −  R 2  sinc2 Θ

 =
R 2        1 −  sinc2 

2      
,

which completes the proof.
To obtain the energy efficiency’s upperbound, we first note

that the energy consumption for the proposed PPM is

Ep =  2RE0 +  ΘRkE0.

Therefore, we can write the following equations:

Ep 2RE0 +  ΘRkE0

EOpt                        2RE0

=  1 +  
Θk

=  1 +  δ,

where E p is the energy consumption of the proposed privacy-
preserving path, EOpt     is the optimal energy consumption
obtained when the drone travels through the O −  X  −  O
path, and δ is determined below.

where

δ =  k 
2 

.
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where the UAV randomly chooses a point (spot) associated
with each device. The set of these random points or privacy-
preserving spots associated with devices is represented by
W =  {W1 , W2 , . . . , WN }  where W i  =  (x ′ , y ′ , H )  and we
assume that the UAV chooses the same random spot whenever it
returns to D i .  The randomization process according to which a
random spot is chosen is explained in detail in the next
section. After locating the privacy-preserving spots, the UAV
collects the data from the sensor and continues this process
until all of the devices are visited, after which it flies back to
the data center. Finally, the distance between the UAV at W i

and device D i  is obtained as

di = ( x i  −  x ′ ) 2  +  (y i  −  y ′ )2  +  H 2 .
Figure 8: IoT data collection system model. The UAV flies at
altitude H  from D 0  to the IoT devices with respect to their
index. Instead of hovering exactly above the devices, the UAV
chooses a random spot around each device. The adversary can
observe the entire path but cannot see the locations of IoT
devices.

It can be seen from Theorem 2 that increasing Θ improves
G ′ , while at the same time, it degrades energy efficiency by
increasing δ. Hence, one should consider this trade-off to
balance the performance of both guarantees as desired.

It is important to highlight that the values ϵ0, ζ , and k can be
determined based on the specific hardware configuration of a
given UAV. Finally, we note that employing the proposed
privacy-preserving mechanism does not substantively increase
the computation cost as it is based on adding a random number
selection to the non-private operation. This applies to the IoT
data collection application as well.

I I I . S C E N A R I O I I : I OT DATA C O L L E C T I O N A P P L I C AT I O N

A. Network Model and Metrics
Figure 8 shows a typical IoT data collection system model

where there are N  IoT devices1 in the network. We denote the
set of IoT devices by D  =  {D1 , D2 , . . . , DN }  where D i  is the
indicator of the i− th  device. There is a UAV in the network as
the IoT data collector that starts flying from the data center,
denoted by D0 , to the set of sensors through a predetermined
trajectory. The set of 2-D locations corresponding to set D  are
represented by U =  {U1 , U2 , . . . , UN } ,  where U i  =  (x i , y i )  is
the 2-D location of device D i .  Also, x i  and y i  are assumed to be
independent and distributed according to a Gaussian
distribution. In other words, U i  � N (µ U  , Σ U  ), where µU  � R2

and Σ U  � R 2 × 2  are the mean vector and the covariance matrix,
respectively.

The UAV flies at a fixed height H  over the region. Without
considering IoT location privacy, the UAV hovers exactly
above its intended sensor which favorably minimizes data
collection time due to the minimum transmission range and
the likely existence of a LoS link. However, for the sake of
privacy, here a randomization mechanism is exploited

1Throughout this paper, the terms IoT devices and sensors are used
interchangeably.

1) Privacy Guarantee: For this scenario, we define the
privacy guarantee as:

GP =  Inf E||U −  U||2,

where the Inf is taken over all possible estimators. In the
following section, we obtain the lower bound of the privacy
guarantee.

2) AoI Analysis: At each time instant t, the AoI of D i , i  =
1, . . . , N, is defined as [22]

∆ i ( t )  =  t −  δi ,

where δ i  is the time stamp at which data has been generated and is
ready to be transmitted to the UAV. In this paper, we analyze the
mean PAoI for the proposed PPM in the IoT network which is
defined as the average of the mean peak AoI of the IoT
devices. Mathematically speaking, if we denote the peak AoI of
D i  by ∆max , the mean PAoI of N  IoT devices, denoted by ∆max

is defined as

∆max =  
1 X

E [∆m a x ] .
i = 1

We first consider a single-device scenario and then extend the
analysis to an IoT network with multiple devices.

B. Adversary Model And Privacy Mechanism
1) Adversary Model: We assume that the adversary can

observe the entire path, and we do not consider edge effects in
the network. He is also assumed to know the number of IoT
devices, N . Furthermore, we assume that the adversary knows
the privacy-preserving mechanism and its parameters. However,
he does not know the realizations of the randomizations.

2) Privacy-Preserving Mechanism: In order to provide
location privacy for the IoT devices in the network, we apply a
different randomization mechanism from that of the package
delivery application. This is due to the fact that in the package
delivery application, the UAV is required to fly over the
destination. However, in the IoT data collection application,
we take advantage of the fact that the UAV is not necessarily
required to fly exactly over the destination. Hence, the proposed
randomization is as follows: for each device, D i  and given
Σ Q  � R2 × 2 ,  let Q i  =  (xq  , yq ), where Q i  � N ( 0 , ΣQ )  is
independent of Ui ,  be the noise vector random variable in

7
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which x q      and yq     are assumed to be independent. Now, the
UAV ’s privacy-preserving destination, W i  =  (x ′ , y ′ , H )  is
obtained as:

Now considering a minimum mean-squared error (MMSE)
estimator for (x i , y i ) , i  =  1, 2, . . . , N , the adversary’s estimate
denoted by U i  =  ( x̃ i , ỹ  )  is the conditional expected value:

W i  =  U i  +  Q i . (5)

Hence, for each D i ,  W i  is a Normal random variable with the
mean µ W      =  µU      and covariance Σ W      =  Σ U  +  Σ Q      as W i  is
the sum of two independent Normal random variables. Thus, we
have

f W i  (wi ) =  N  (µ U i  , Σ U i  +  Σ Q i  ) ,

We can write (5) in terms of x  and y in the Cartesian basis as:

U i  =  ( x̃ i , ỹ  )
=  (E (x i |x ′  =  x ′

i ) , E (yi |y ′  =  y ′
i ))

2 2

=
σ2 +  σ2

q

x i  + σ2 +  σ2
q !

µ x ,

σy  +  σy q

yi + σy  +  σy q µ
y , (8)

where (8) is concluded from (6) and (7).

I V. P R I VA C Y  GUA R A N T E E AND AO I A N A LY S I S

x i  =  x i  +  x q i  ,
y i  =  y i  +  y q i  .

Now let the adversary’s observation be denoted by ψ. Given
ψ, the adversary’s estimation of D i ’s  location denoted by
U i  =  ( x̃ i , ỹ  )  can exploit knowledge of the a priori distribution of
(x i , y i )  to employ Bayesian estimation.

In fact, considering the a priori Normal distribution for the
IoT devices, the PDF of Ui|ψ can be obtained as below:

fUi |ψ (ui |ψ) =  f U i | W i  (ui|wi)
f W i | U i  (wi |ui )fU i  (ui )

f W i  (wi )

=  
f Q i  (wi −  u i ) f U i  (ui ) .

W i ( w i )

The posterior distribution in terms of x i  and y  are obtained
in the following lemma:

Proposition 1. The posterior distributions of x i  and y  , i =
1, 2, . . . , N, given ( x́i , ý  ), can be obtained as:

f x i | x́ i  (x i |x́i )
� �� � � 2 �         ��2

�     
�x i −�� 

σ x + σ x q  
�x́ i + � 

σ x + σ x q  
�µ x ��     

�
� 2 σ x i | x́ i �

=  √ e , (6)
x i | x́i

and

f y  | ýi  (yi|ý )
� �� 2 � � 2 �        ��2
� �� � � �        ��

� σ y + σ y q σ y + σ y q �
� 2 σ y i | ý i �

=  √ e , (7)
y i | ýi

A. Privacy Guarantee:
Lemma 1. For the MMSE estimator discussed above, the
privacy guarantee of D i ,  denoted by G P i  is lower bounded as:

2 2 2 2

G P i  ≥  
σ2

i 
+  σ2

q i  

+  
σ2

i 
+  σ2

q i

(9)

Proof. Since the MMSE is the optimal estimator in terms of
the mean-squared error (MSE), it is sufficient to obtain the
MSE value of this estimator, as every other estimator will
result in a greater MSE. Finally, since we have an independent
error in a two dimension plane, we add the MSE of the two
dimensions to obtain the overall MSE.

Intuitively, for the sake of protecting privacy, one may
increase the lower bound in (9) to make sure that the adversary
makes larger errors in his estimation. Therefore, to better
protect privacy, one needs to increase the added noise variance.
However, it is crucial to analyze the effect of this added noise on
other performance metrics. In this paper, we consider the AoI
of the IoT data.

B. AoI Analysis
1) Single Sensor scenario: We obtain the mean PAoI for a

network with a single IoT device in the following lemma.

Lemma 2. Let the time the UAV needs to hover over D i  to
collect its data be τ i .  Then, the mean PAoI for the proposed
PPM in a single-sensor IoT network is obtained as

r  q                    2 2     !
∆max =  2E[τ i ]  +  

v 2
σ2 +  σ2 L 1

2(σ2 +  σ2)
,

where we assume that σu  =  σ x      =  σy      and σq =  σ x =  σy       .
Also, L n ( x )  is the Laguerre polynomial and can be calculated
as

L n ( x )  = 1  F1  (−n; 1; x) ,

where 1 F1 (−n; 1; x) is the confluent Hypergeometric function
of the first kind.

respectively, where σ x i | x́i
= √

σ 2
q  

+ σ 2          and σ y i | ýi
=

√
σ y q  + σ y      

are the corresponding variances.

Proof. If we denote the flight time from the data center to D i

by t i  and assume that after delivering the data to the data center
the UAV will turn back to the device to recollect updated
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data, then the maximum AoI of for a single device is obtained
as

∆max =  2τ i  +  3ti .

Figure 9 shows the AoI trend for a single device scenario
(i =  1).

Lemma 3. The mean PAoI of the multi IoT device network,
∆max , is obtained as

N − 1  

∆max =  
v 

i = 1

1 +  
N

E[l i ]  +  
v

E[ r N  ] +  
v

E[r1 ]

+  
X  

1 +  
i

E[τ i ], (10)
i = 1

Δ1 ᵆ�

2ᵰ�1 + 3ᵉ�1

where
q        2

E[l i ]  = π σ
u

 +  σq L 1
4(σu +  σq )

, (11)

ᵰ�1 + ᵉ�1

ᵰ�1 ᵰ�1
ᵆ�

ᵉ�1                             ᵉ�1                     ᵉ�1

1 2 3 4

r  q
E[r1 ] =

2
σ

u

 +  σq L
2

r  q
E [ r N  ] = 2

σ
u

 +  σq L
2

and ν i  is given in (14).

− ( µ x 1  +  µy 1  )
!

2(σu +  σq )

− ( µ x N  +  µ y N  )
!

2(σu +  σq )

(12)

(13)

Figure 9: AoI trend for D 1  in a single device scenario.
Assuming that the UAV has already delivered data, the
minimum AoI is τ1 +  t1, and the explanation for the time
intervals are as follows: (1): The UAV goes to D1 , (2): The
UAV collects new data, (3): The UAV returns to the data center,
(4): The UAV goes back to D 1  for a new data collection.

Now we note that for a privacy-preserving spot associated
with D i  located at ( x́i , ý  ), we have

t i  =         x́ i  +
 
ý

 
 ,

where we remember that x́ i  � N ( µ x i  , σ x́     
 =  σ x i  +  σ2

q )
and ý  � N (µ y i  , σ ýi      

=  σ y
i

 
+  σ y q i  

). Therefore, assuming σ2

=  σ2     =  σ2 +  σ2, we can conclude that r i  = x́2  +  ý2

has a Rician distribution as:
!

f r i  ( r i )  =  
σu i  +  σqi 

exp    
 
−

2
 
σ 2

+  ν
σ2

I0 σ
u

 +  σq
,

q
where ν = µ2

i +  µ2
i . Then, we have

E[r i ]  =  
r  

2

q
σ 2

 
+  σ2 L 1

2(σ 
i  

+  σ 2 )
)

!

.

This completes the proof.

2) Multi Sensor Scenario: For a scenario where the UAV
collects data from multiple IoT devices, we assume that the
UAV flies to the devices in the order of their indices, i. In
other words, starting from the data center it flies to D 1  then
flies to D2 , D3 , and so on. In this setup, the mean PAoI is
obtained in the following lemma.

Proof. Let the distance between the privacy-preserving
s ots be denoted by l i      =  l i→ i + 1      =  ||Wi+1 −  Wi|| =

( x́i + 1  −  x́i ) 2  +  ( ý  + 1  −  ý  )2, i  =  1, . . . , N −  1. Hence,
the PDF of l i  is obtained as

2 2  f l i

( l i )  =  
σ2 exp −  

2σ2            I0          σ2         ,

where
q

ν i  = ( µ x i + 1  −  µ x i  )2 +  ( µ y i + 1  −  µy i  )2, (14)

and σ2 =  σ2
i + σ 2

q      + σ x i + 1  + σ x q =  σ y i  + σ y q      + σ 2
i + 1  +

σ2
q assuming that σ2

i     =  σ2
i     =  σ2 , and σ2

q       =  σ2
q       =

σ2, i =  1, 2, . . . , N . Hence, σ2 =  2(σ2 +  σ2).
Figure 10 shows the AoI trend for a multi-device scenario. In

this figure, t1 =  v  , ti  =  v  , i =  2, . . . , N − 1, and t N  =  v  
 
 .

Δᵅ� ᵆ�

Δmax

Δmax

Δmax

Δmin

Δmin

Δmin

ᵆ�

ᵉ�1     
ᵰ�1         ᵉ�2       

ᵰ�2 ᵰ�ᵄ� ᵉ�ᵄ�         ᵉ�1     
ᵰ�1         ᵉ�2       

ᵰ�2 ᵰ�ᵄ� ᵉ�ᵄ�

Figure 10: AoI trend in a multi-device scenario. The green line
shows the AoI trend for D1 , the blue line shows the AoI trend
for D2 , . . . , and the purple line shows the AoI for trend for D N  .
Note that we do not need the values of ∆min , i =  1 :, . . . , N
in our analysis.
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¯
1∆ =

 
u q 1

x y
2 2σ +  σ L .

¯ max∆ =
X

v N v v
1 + E[ l  ] +      E [ r  ] +      E [ r  ].

¯
N

¯
N

N − 1X i
v v v 2

q

q
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∆
q q 2σ2

� σ 2
 0 B

0
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2

¯
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X
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+ �τ ,

q

q

Now the PAoI for each device i  =  1, 2, . . . , N can be          3) Case 3: τ i  as a function of σ2: In this case, we consider
obtained as as                                                                                           the case where the data collection time from the IoT device to

N − 1                                                           N                                                    the UAV is a function of noise added for privacy protection. In
∆max = 2 l  +  2r     +  r +  2 τ other words, given σ2, we can obtain τ . We have the following

i = 1 i = 1 proposition:
1 N − 1 N

Proposition 2. Suppose that σ2      =  σ2      =  σ2. Then, there
2               v                  i            1               N             1                               i             1               exists a time τ for which the IoT data is collected completely

by the UAV with a high probability. Mathematically, we have:

.
N − 1

!
N N − 1

� ϵ0 >  0, σ2
q , σ

2
q        where σ2

q =  σ2
q =  σ2, �τ� :

∆max = l i  +  2 r N
 +  r1 +  2 τ i  − τ i . �t >  τ , P [tB log2 (1 +  γ) ≥  Ω] ≥  1 −  ϵ0, (16)

i = 1 i = 1 i = 1 where B  is the bandwidth, γ is the signal-to-noise ratio (SNR),
Therefore, the mean PAoI is obtained as                                            and Ω is the IoT data size in bits.

∆max =  E
1 X

∆ m a x To obtain τ , first we compute the probability in (16) as:

"  i = 1  
N − 1                                                                       

!         
N                              

# P [τ B  log2 (1 +  γ) ≥  Ω]

= E ( N  +  i ) l i  +  2 N r N  +  N r 1 + ( N  +  i ) τ i = P τ log2       1 + σ2B d ≥  B
i = 1 i = 1

=  
1 N − 1

( N  +  i)E[ l i ]  +  2 N E [ r N  ] +  N E [ r 1 ] +
=  P

"
1 +  

σ 2 B
d−α  ≥  2 τ �B

#
i = 1 2 α

N =  P d ≤ 2 τ �B  −  1
+ E ( N  +  i ) τ i "

0
#

N − 1  
i = 1

=  P ζ  ≤
σ2 B     

2 τ �B  −  1
α  

−  H 2

=  
v

1 +  
N

E[l i ]  +  
v

E[ r N  ] +  
v

E[r1 ]      
0

N  
=  1 −  exp −

2σ2 , (17)
+ 1 + E[τ  ]. (15)

i = 1 where α is the path-loss exponent, ζ  =  x 2  +  y2 � exp(  1 ),
 2

q

and Z  =  
p

              
 2 τ �B  −  1 −  H 2 . From (17) and (16),

C. Privacy Guarantee and AoI Trade-off
we obtain

1) Case 1: Negligible data collection time (τ =  0): In τ� ≥  − α  . (18)

this scenario, we assume that the collection time is negligible 2 σ 0 B q 0

in comparison to the flight time. Hence, for a single-sensor Therefore, given σq , the mean PAoI can be obtained as

max  3
r
π q  

2 2 −(µ2  +  µ2 )
!

∆max ≥  
1 N − 1  

1 +  
i  

E[ l i ]  +  
2

E [r N  ] +  
1

E[r1 ] v
2                        2              2(σu +  σq)                                                 

3N
1

+ 1
Similarly, for the multi-device scenario, we obtain 2

1 N − 1  i  2 1 where the last term is obtained from the last sum in (15).
N i N 1 4) Case 4: τ i  as a function of σ2 and fading: In this case,

i = 1 we consider the case where the collection time is a function
2) Case 2: Constant collection time (τi     =  c): In this of noise and fading. In other words, we take into account the

scenario, we consider the case where τ i  =  c, and c is chosen effect of both σ2 and the fading on τ . We assume a Rayleigh
such that one can make sure the data is received at the UAV channel model for the link between the IoT device and the
completely. In fact, we assume that the data collection time is UAV. Hence, to obtain τ�, the minimum value of τ , similar to
small enough that we can choose c arbitrarily large to make Case 3, we first calculate the probability term in (16) as below.
sure the IoT data is received. Hence, ∆max is obtained as

∆max =  
1 

i = 1  

1 +  
N  

E[l i ]  +  
2

E [r N  ] +  
1

E[r1 ] +  
3N +  1

c,

where the last term is obtained from the last sum in (15).
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A ( ú ) ( S )

p h
2σ B

2
0

p h Ω
"

σ 0B  Ω
α

#

"
σ 0B  Ω

2

2

#

2σ2
Z

α

∆
2σ2

�

2σ  B
0p h

 Ω

q q
− α

1
� H

2

= 2σ2
q 2

 Ω
�

α

ϵ2

´

´

2
q

ϵ δ

0.45                

0 
= 10-3

0.4                0 
= 10-4

0 
= 10-5

0.35

0.3

0.25

0.2

the form of geo-indistinguishability which has received great
attention ever since [49]–[51]. We consider two cases for the
DP-based PPM: The Laplacian mechanism and the Gaussian
mechanism.

A. Laplace Mechanism
Definition 1. Given ϵ and for all locations u and ú, a
randomized mechanism A  satisfies geo-indistinguishability iff
[48]

0.15 d P (A(u) , A(ú) )  ≤  ϵd(u, ú), (21)

0.1

0.05
0 500 1000 1500 2000 2500 3000 3500 4000

2 (m2)

where d P (A(u), A(ú) )  is the multiplicative distance between
two distributions A(u)  and A ( ú)  on some set S  defined as
d P (A(u) , A(ú) )  =  sup

S

�S | ln A ( u ) ( S ) |,  and d(u, ú) is the

Euclidean distance between u and ú.

Figure 11: The value of τ� with respect to σ2 in (18) for
different values of ϵ0.

P [τ�B log2 (1 +  γ) ≥  Ω]
=  P τ �B log2      1 +      0       d − α        ≥  Ω

0

=  E h P  log2      1 +  
σ

0

B
d−α ≥  

τ �B 
| h  =  h

 2 −  1

=  E h P  d ≤
p0h

2 τ �B  −  1 | h  =  h

2                          − α

=  E h P  ζ  ≤
p0h

2 τ �B  −  1 −  H  | h  =  h

=  E h      1 −  exp −
Z ( h )

(19)
q

=  1 −  η1  

∞  

e − ( h +η 2 h  
2  

)dh (20)
0

where     ζ = x 2      +  y 2 � exp(  1 ),     Z ( h ) =
 2

q
2

     0               
 2 τ �B  −  1 −  H 2  in (19), and in (20), η =  e 2 σ q

� � 2

and η2 
�  1  �  P 0 � . Note that the integral in σ 0 B  2 τ      B

− 1

(20), is obtained by assuming h  � exp(1). Unfortunately, the
integral in (20) is not analytically solvable, and therefore we
present the results through simulations.

V. D I FF E R E N T I A L P R I VA C Y

As mentioned earlier, the PPM based on the MMSE estimator
developed in the previous part requires knowledge about the
prior distribution of IoT devices. Therefore, for the cases where
the prior distribution is not Gaussian or it is not known at all,
we propose a DP-based PPM. In particular, in this section, we
introduce a similar PPM based on a DP framework and
investigate the trade-off between privacy and AoI. The notation
of DP in location privacy has been introduced in [48] in

Equation (21) can be equivalently written as

A(u)(w) ≤  eϵd( u , ú) A(ú)(w),

for w � W , and W is the set of possible outcomes.
To apply the Laplace mechanism, the noise added to u is

derived from the following PDF:

fϵ ,u (w) =  
2π

e−ϵd(u,w) . (22)

The PDF in (22) implies that the probability of selecting
w decreases exponentially with increasing the distance from
u, i.e., d(u, w). Substituting ϵ with ϵ/d0, where d0 is the
desired indistinguishability distance, the mechanism provides
a (d0, ϵ)-location privacy [52]. Adopting the same procedure
for generating Laplacian noise from [48], we can apply the
Laplacian mechanism to the IoT data collection scenario. The
mean PAoI of the network then can be obtained through
simulation presented in the next section.

B. Gaussian Mechanism
For two neighboring datasets Z  and Z  and any output result

T of a randomized mechanism M ,  the Gaussian mechanism of
DP, also known as (ϵ, δ)-DP or approximate DP, where δ =  0,
is defined as [53]

P ( M ( Z )  � T )  ≤  e ϵP(M(Z )  � T )  +  δ. (23)

To achieve (23), the sufficient condition is that an ϵ-DP is
guaranteed with probability 1 −  δ. In other words, with
probability δ, ϵ−privacy is no longer guaranteed [53].

The Gaussian mechanism applied to location privacy is
similar. In particular, applying the same procedure in [53], we
can see that for any location u and ú and given ||u−ú||2 ≤  d0, a
Gaussian noise Q  � N (0, σq ) provides an (ϵ, δ) differential

privacy if σq ≥  d0 2 ln 2 . The proof is presented in an
Appendix at the end of the paper. We will provide the AoI and
the Gaussian mechanism trade-off in the next section.

V I . N U M E R I C A L R E S U LT S

In this section, we provide the numerical results for the
privacy of the proposed PPMs and mean PAoI trade-offs. The
parameters values are listed in Table I.
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TA B L E  I: Simulation Parameters

Parameter Value
Number of IoT devices                                           N  =  5

IoT Transmit power                                         p0 =  1 mW
Bandwidth                                                 B  =  1 MHz

Thermal noise density σ2 =  −174 dBm/Hz
UAV’s altitude                                               H  =  20 m

Data size Ω =  2 Mb
Pathloss attenuation coefficient                                  α =  2, 4

UAV’s velocity v =  15 m/s
IoT devices location variance                              σ2 =  1000m2

310
Privacy guarantee(m2)

2000

AoI(s)

300 1000

A. MMSE-based PPM
In this section, we provide the results for the MMSE-based

PPMs. Figure 12a shows the AoI and privacy guarantee trade-
off for N  =  5 IoT devices in Case 1 where τ =  0. In this
case, AoI is only due to the time it takes the UAV to complete
the data collection. The trade-off is also shown in Figure 12b.
From the two figures, it can be seen that, for example, for
a noise variance of σ2 =  4000 m2, a privacy of 1600 m2 is
obtained for the adversary’s mean squared estimation error.
This is true for Cases 2 and 3 as well. Furthermore, we see
that providing privacy comes with little cost. In particular, for
σ2 =  4000, which gives us a root mean squared (Rms) privacy
of 40 m, we have only a 2.5% increase in AoI.

Figure 13a shows the trade-off in Case 2, where we assume
a fixed data collection time. For simulation, we consider the
least value of τ that would be needed for all values of σ2. That
is, assuming ϵ0 =  0.001, we can consider τ ≥  0.35 seconds.
However, the AoI is increased by almost the very same 2.5%.
Again, obtaining privacy has little cost on AoI. The achievable
range is shown in the green shaded area in Figure 13b.

Figures 14a and 14b show the same trade-off for Case 3,
where we consider τ as a function of σ2, i.e., (18). In this
case, and assuming ϵ0 =  0.001, it can be seen that the AoI is
increased by almost 3% for σq =  4000.

However, Case 4 is a little different as we recall that first, in
this case, τ changes according to the fading as well as σ2. And
second, the adversary not only observes the UAV’s location
but also the time duration the UAV spends at each privacy-
preserving point, τ . This leads to additional privacy leakage.
Figure 15 shows the privacy leakage due to the observation of
τ by the adversary. The point is that since the adversary only
observes τ and has no idea about the channel power gains, h,
(note that he knows σ2), there is some error in his
observations. For example, the adversary may infer that the
IoT device is located at a distance d1 from the UAV’s
location by simply observing τ . However, the IoT device is
in fact at a distance of d2 =  d1 due to the presence of channel
power gain. In this case, Figures 16a and 16b show the AoI
and privacy trade-off. It can be seen that the best Rms privacy
guarantee of 40 m is decreased by 3.2% and the AoI is
increased by 2.3%.

B. DP-based PPM

Now, we provide the results for the DP-based PPMs.
Figure 17a shows the AoI-privacy trade-off for a Laplacian
mechanism DP. Note in DP that smaller ϵ corresponds to
larger privacy. Hence for the smaller values of ϵ and for a
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(a) AoI and privacy guarantee trends.

305

304

303

302

301

300

299

298
0 200 400 600 800 1000 1200 1400 1600

Privacy Guarantee(m2).

(b) AoI and privacy guarantee trade-off in Case 1. The green-
shaded area shows the achievable region.

Figure 12: Privacy and AoI trade-offs in Case 1 (τ =  0).

geo-indistinguishability of d0 =  10 m, we observe an almost
20% increase and for d0 =  20 m a 60% increase in AoI,
respectively.

Finally, Figure 17b shows the AoI-privacy trade-off for the
Gaussian-based DP which results in approximate DP. Assuming δ
=  0.001, it can be seen that the AoI increase is negligible
even for d0 =  20 m.

V I I .  CO NC L U S I O N

This paper proposed privacy-preserving mechanisms (PPMs)
for UAVs in package delivery and IoT data collection applica-
tions. In the former, we proposed two PPMs for a UAV in which
the goal is to confuse an adversary who is observing the UAV
about the UAV’s destination. This is accomplished through two
randomization mechanisms. We obtained privacy guarantees
along with energy efficiency guarantees for the proposed PPMs
and analyzed the trade-offs. Then, we proposed a PPM for a
UAV in the IoT data collection setting. The PPM is based on
adding noise to the UAV’s optimum location for data collection.
We analyzed the privacy guarantee of the proposed PPM along
with the AoI of the network. We showed that the proposed PPM
has a negligible drawback on the AoI performance. Considering
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Figure 13: Privacy and AoI trade-offs in Case 2 (τ =  c).

the limitations of the proposed PPM in some applications, we
also provided DP-based counterparts for the proposed PPM
and analyzed privacy trade-offs with the AoI.

There can be several avenues for future work: One can
consider optimization problems for the proposed PPMs and
other performance metrics such as UAV energy consumption,
IoT energy harvesting, maximum coverage of devices, etc.
Another direction can be considering stronger adversaries. In
particular, in the IoT data collection scenario, by observing τ
and having side information on the channel gains (Cases 3 and
4), an adversary is able to estimate the IoT device’s distance
from the UAV to the IoT device accurately. Therefore, it is
essential to design stronger PPMs for this problem. Finally,
in the package delivery scenario, one can design PPMs for a
strong adversary where he can observe the UAV ’s speed as
well as the UAV’s trajectory.

AP P E N D I X

Here we show the proof of how the noise variance is obtained
in the (ϵ, δ)-DP. Assume that x  � R2 , y � R2  are two arbitrary
points with independent elements for which we define v =  x − y
and ||v||2 =  d0. Let x ′  =  x  +  n,  where n  � R2  is a Gaussian

(b) AoI and privacy guarantee trade-off in Case 3. The green-
shaded area shows the achievable region.

Figure 14: Privacy and AoI trade-offs in Case 3 (τ (σ2)), ϵ0 =
0.001.

noise n  � N (0, σ2), be the noisy version of x  and y ′  be the
noisy version of y. The privacy loss random variable is defined
as κ  =  ln f

x
′  ( x )  . We have

�
||n||2        �

κ  =  ln
f

x ′  

( x  +  n )
=  ln� √

2 π σ       
| | n + v | | 2  

�

2πσ
2 σ

=  ln e 2 σ 2  (||n||2−||n+v||2 )

2

= 2 2vk nk  +  v2, k = 1

where (a) comes from the fact that x́  � N (x, σ2 ) and
ý  � N (y, σ2). It can be shown that κ  � N (  d 

2  , d
2 ).

Now, according to the definition of the approximate DP, we
require that the probability of the privacy loss being larger
than ϵ maintains below δ, i.e., P [|κ| ≥  ϵ] ≤  δ. After a few
manipulations, we have

P [|κ| ≥  ϵ] ≤  δ =  P [z >  z] ≤  
δ
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Figure 15: Privacy leakage when the adversary observes τ .

where z  � N (0, 1), and z =  σϵ . Using the tail bound P [z

>  z] ≤  e −  2        and a few more manipulations, we conclude that σ
≥  ϵ 2 ln δ is sufficient.
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