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AbstractÐTemporal point processes have many applications,
from crime forecasting to modeling earthquake aftershocks se-
quences. Due to the flexibility and expressiveness of deep learning,
neural network-based approaches have recently shown promise
for modeling point process intensities. However, there is a lack of
research on the robustness of such models in regards to adversar-
ial attacks and natural shocks to systems. Precisely, while neural
point processes may outperform simpler parametric models on
in-sample tests, how these models perform when encountering
adversarial examples or sharp non-stationary trends remains
unknown. Current work proposes several white-box and black-
box adversarial attacks against temporal point processes modeled
by deep neural networks. Extensive experiments confirm that
predictive performance and parametric modeling of neural point
processes are vulnerable to adversarial attacks. Additionally, we
evaluate the vulnerability and performance of these models in
the presence of non-stationary abrupt changes, using the crimes
dataset, during the Covid-19 pandemic, as an example.

Index TermsÐPoint process, Adversarial attacks, Deep learn-
ing, Nonparametric modeling

I. INTRODUCTION

Temporal point processes utilized in sensitive fields and

security-related tasks such as analyzing electronic transaction

records [1], forecasting earthquake aftershocks [2], mitigating

the spread of fake news [3], and allocating police to crime

hot spots [4]. Considering the deep learning approaches’ high

success rate and influence in various domains, neural network-

based approaches to modeling point processes have recently

received attention from the research community [5]±[7] to

capture real event patterns better than parametric models.

However, deep learning approaches risk over-parameterizing

models and overfitting real-world, noisy data despite their suc-

cess. Furthermore, there is a lack of research into how robust

such models are to natural shocks to systems, e.g., pandemic

and adversarial attacks impact deep point process forecasts of

crime. Moreover, adversarial samples can be transferable from

one deep learning network to another and become a black-box

attack which is a more elevated risk. Such research is crucial

for security purposes and understanding deep learning models

to make machine learning models trustworthy.

A. Contribution

Despite the remarkable success of deep neural networks

(DNN)s, they suffer from severe vulnerabilities to adversarial

attacks. Vulnerability’s examination of DNN in computer

vision and natural language processing has received attention

recently. However, to the best of our knowledge, we are the

first to explore the adversarial methods for point processes

modeled by DNN and examine their performance. In partic-

ular, I) We propose several adversarial methods to generate

white-box and black-box adversarial attacks on point processes

modeled by DNN. II) We show how adversarial attacks can

disturb underlying parameters of point processes which are

considered a threat to parametric modeling. Furthermore, III)

We illustrate how susceptible deep point processes are to

natural shocks and non-stationary changes in data.

B. Organization

The rest of the paper is organized as follows: Section II

revisits some basic definitions in point processes and discuss

the related work in recurrent neural networks (RNNs), adver-

sarial attacks of deep learning models, and the robustness of

such models. Section III sets up the problem and formalizes

the algorithm for crafting adversarial examples. Section IV

discusses the utilized datasets. Section V presents our results

and discusses various attacks by comparing the models per-

formance, and the last section concludes the paper.

II. RELATED WORK

Temporal point processes are practical mathematical tools

for modeling event data in which the inter-event times as

a random variable are modeled. Therefore, there is no re-

quired time window to aggregate events, which may cause

discretization errors; this is the main difference between point

process models and the discrete-time representation utilized

in time series analysis [8]. Moreover, point processes can be

deterministic or stochastic, and non-stationary Poisson, self-

correcting, and Hawkes process are stochastic point processes

that we have utilized in the current work.

As a result of advances in deep learning techniques, re-

searchers have proposed RNN to model the intensity function

of point processes [5], [9]. Most of the proposed methods uti-
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lize Long-Short Term Memory (LSTM) [10]; that we reiterate

its formulation as follows

it = σ(Wixt + Uiht−1 + Vict−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ),

ct = ftct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + Voct + bo),

ht = ot ⊙ tanh(ct)

(1)

where ⊙ is element-wise multiplication, and σ is the logistic

sigmoid function. The above system can be abstract as an

LSTM equation as (ht, ct) = LSTM(xt, ht−1 + ct−1) [5].

Such a model can encode a nonlinear link between the

predicted transient occurrence intensity of different types of

events with the history of participator events, which is more

expressive, and it can model more complexity in data than

previous parametric or non-parametric models [11].

The RNN-based model proposed in [5] provides a black-box

approach to model the intensity while both background and

effect of history are considered. In their modeling, presented

in (2) below, the background intensity is modeled by an RNN

as a time series with its units aligned with time series indexes,

{yt}
T
t=1, while another RNN handles the historical events

whose units are aligned with asynchronous events to capture

the long-range dynamics, {zi, ti}
N
t=1.

(hy
t , c

y
t ) = LSTMy(yt, h

y
t−1 + c

y
t−1),

(hz
t , czt ) = LSTMz(zt, hz

t−1 + czt−1),

et = tanh(Wf [h
y
t , hz

t ] + bf ),

Ut = softmax(WUet + bU ),

ut = softmax(Wu[et,Ut] + bu),

st = Wset + bs,

(2)

In (2), the subscripts U and u indicate the primary- and

secondary-type of events, and s is the timestamp of each event.

Besides achievements in neural networks and their applica-

tions, recent research has revealed that neural network models

in practice are vulnerable to misclassifying adversarial samples

that have been crafted by adding an imperceptible additive

perturbation to the data samples. In deep learning models, such

a vulnerability was assumed to be explained by nonlinearity

and overfitting. However, [12] argues such an assumption and

shows deep learning models are vulnerable because of the

linearity of adversarial perturbations, which can be analyzed

as a property of high-dimensional dot products. On the other

hand, neural networks, e.g., ReLUs, and LSTMs networks, are

overly linear to oppose linear adversarial perturbation. In their

work, they have suggested fast methods to generate adversarial

samples, such as the fast gradient sign method (FGSM) [12],

and claimed in adversarial sample creation, the perturbation’s

direction is more important than the specific point in space.

In addition to security concerns, research in the robustness

of deep learning models are showing study of adversarial

examples crafted under limited situations is helpful since

it provides new insight into the geometrical characteristics

and behavior of models in high-dimensional space; e.g., the

characteristics of adversarial images close to the decision

boundaries can help describe the boundaries’ shape [13].

Recent research experiments have shown the amount of

perturbation to fool deep learning models can be extremely

limited, as [14] proposed a low cost, black-box attack to

fool visionary deep learning models, where the only available

information is the probability labels and only one pixel can

be modified based on differential evolution (DE). One critical

property of such attacks is their flexibility; they can attack

different networks regardless of their differentiability.

Generally, adversarial attacks are not limited to visionary,

and speech-to-text systems are also exposed to misclassifying

adversarial samples. Reference [15] examines the adversarial

attacks in the audio domain using the Connectionist Temporal

Classification Loss Function (CTCLF) as an attack mecha-

nism and PCA as an attack and defense mechanism. In this

experiment, CTCLF and PCA, as black-boxed approaches,

have successfully attacked DeepSpeech1. In contrast, PCA as

a defense mechanism does not improve the performance of

DeepSpeech against adversarial attacks.

Point processes and viral processes are confirmed to be

sensitive to changes in network structure. Reference [16] has

shown the evolution of viral processes on a network is highly

sensitive to the structural features of the network. They have

discussed that assortativity and degree distribution cannot fully

explain the variance in the spread of viruses; instead, graphlet

distribution can explain such a variance.

Additionally, Hawkes process is used in anomaly detection.

For example, reference [17] proposes a framework using the

multivariate Hawkes process and reinforcement learning as

a fake news mitigation framework on networks. The point

process defines ªmitigationº in this work on the network, and

finding the optimal mitigation strategy is the objective that

determines how to adjust the exogenous intensity of the few

mitigator nodes on the network.

Adversarial attacks on time series models are another related

work. In [18], the authors propose adversarial attacks on

deep learning time series classifiers using the fast gradient

sign method (FGSM), and the basic iterative method (BIM)

[19], [20]. However, their methods are considered black-box

since adversarial samples are crafted using the gradient of

ResNet [21], rather than the targeted network. Lastly, [22]

proposes adversarial attacks on Convolutional Neural Network

(CNN), LSTM, and Gated Recurrent Unit (GRU) networks

as multivariate time series regressions where the adversarial

samples are crafted using FGSM and BIM.

III. METHODOLOGY

The robustness of neural point processes to natural shocks

and adversarial attacks remains an open problem to date. We

leverage existing research on adversarial attacks in vision and

signal processing and extend such methods, when possible,

to temporal point processes. We additionally examine the

transferability of attacks and compare their performance in

1Speech-to-text neural network implemented by Mozilla
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transferred black-box settings. We especially believe methods

developed for time series data will be applicable to point

processes since they share common characteristics such as

sequential and noisy data; the difference is that point processes

model discrete events using a continuous intensity and time

series bin events or other variables in time.

A. Models

This work is limited to three type of point processes,

non-stationary Poisson, self-correcting, and Hawkes processes,

where the main focus is Hawkes processes. In non-stationary

Poisson process, unlike regular Poisson process, the average

rate of events is allowed to change by time. Non-stationary

Poisson has all properties of a Poisson process, except for the

fact that the intensity is a function of time, i.e. λ = λ(t),
instead of being fixed.

A point process N is called self-correcting if

cov(N(s, t), N(t, u)) < 0 for s < t < u. In this formulation,

cov denotes the co-variance of the two quantities [23].

Intuitively, due to the negative correlation, past points’

occurrence, inhibits the future points’ occurrence [24].

Lastly, in Hawkes processes [25], [26], the event rate is

not fixed, but is dependent on some random inputs, including

the history of the process. Hawkes process is a self-exciting

process, each arrival increases the rate of future arrivals for

some time and is determined by a background Poisson process

λ0(t), which reflects spontaneous events and at each event

in the history a Poisson process g is centered at that event

reflecting the increase in the intensity in near future. In

summary, the intensity of the Hawkes process can be modeled

as follows

λ(t) = λ0(t) +
∑
ti<t

g(t− ti), (3)

where λ(t) donates the event rate at time t.
In this work, we explore the performance of two deep

neural networks-base point processes. For the exponential

hazard (EXP) model as proposed by the authors of [9] and

followed by [6], the inter-event time, xi = (ti − ti−1) is

fed into a the RNN and the hidden unit of RNN is updated

by hi = f(Whhi−1 + W xxi + bh). Here f represents the

activation function, and Wh, W x, and bh are the recurrent

weight matrix, input weight matrix, and bias term, respectively

[9]. The conditional intensity is a function of the elapsed time

from the latest event and the hidden state of the RNN, as:

λ(t|Ht) = ϕ(t− ti|hi), and ϕ is a non-negative function that

is the hazard function with the following form as assumed by

[9]:

ϕ(τ |hi) = exp(wtτ + vϕ.hi + bϕ) (4)

τi = ti+1 − ti is the inter-event interval.

The other examined model is the fully neural network-

based (NN) model for general temporal point process [27], that

relaxes the constraints on the time course for hazard functions

of point processes while they are modeled using RNNs. In this

model, the cumulative intensity function is modeled by the

integral of intensity function and the instantaneous intensity is

obtained by taking the derivative of the cumulative intensity

function. Such a model allows us to have flexible and general

intensity function with exact evaluation. Formally, instead of

modeling the hazard function ϕ, in this model the cumulative

hazard function Φ(τ, hi) is modeled where;

Φ(τ, hi) =

∫ τ

0

ϕ(s, hi)ds (5)

And, one can achieve the hazard function by;

ϕ(τ, hi) =
∂Φ(τ, hi)

∂τ
(6)

In this setting, hi is the hidden state of the RNN and τi =
ti+1 − ti is the inter-event interval [27].

B. Adversarial attacks

In this section, we present adversarial attacks for point

process models. In regression problems, adversarial attacks can

be defined based on numerical instability of the models. The

numerical (in-)stability of an algorithm is defined based on the

extent to which a function’s output changes with changes in

the input [28] and adversarial attacks are toward increasing the

instability of the model where defense mechanisms decrease

it. Formally, considering a neural regression model T (x, θ),
where T : R

N0 → R
Nm has N0 scalar inputs and Nm

scalar outputs, the objective of T (x, θ) for x ∈ R
N0 and

corresponding target y ∈ R
Nm is [29]

argmin
θ

l(T (x, θ), y) (7)

Then given T (x, θ), in the adversarial attack setting, the

objective of adversary with budget ϵ is to maximize the

instability of T (x, θ), which is mathematically formulated

below
argmax

||xadv−x||p≤ϵ

l(T (xadv, θ), y) (8)

where p = 1, 2, or ∞. Notice that the optimal solution, xadv ,

to the above optimization problem is not unique.

Furthermore, depending on the algorithm utilized in adver-

sarial attack generation and the degree of provided information

to the attacker, attacks can be white-box or black-box attacks.

For white-box attacks, the attacker is fully aware of the

internals of the target model and its weights (θ) and uses

the model’s gradient to find the vulnerable regions of the

input space that affects the model’s output drastically. In a

black-box setting, no information about the attacked network

is provided to the attacker. However, the attacker can compose

transferable adversarial perturbations to the target model using

an alternate model. In existing work, we have crafted the

adversarial samples by strategies presented in the following

to attack temporal point processes.

1) Fast Gradient Sign Method (FGSM) : FGSM [12] is

a bounded attack initially proposed for the visionary. Here,

we extend it to point process regression, and the adversarial

sample is formed by using perturbations in the direction of the
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gradient. The adversarial sample generated by the FGSM can

be formulated as:

Xadv = clip(X + ϵ · sign(∇xJ (θ,X)),min(X),max(X))
(9)

where J (θ,X)) is the required training’s cost of the neural

network, ϵ is the perturbation factor, and clip(·, a, b) function

squeezes its input to the range of [a, b].

2) Iterative Fast Gradient Sign Method (iFGSM): ifGSM,

also known as Basic Iterative Method (BIM) [19], [20], is an

iterative form of FGSM that, instead of one single step, k steps

attack with a budget α is applied iteratively as presented in

(10).

Xadv0 = X

Xadvt+1 = Xadvt + α · sign(∇xJ (θ,X
advt))

Xadvt+1 = clip(Xadvt+1 , Xadvt+1 − ϵ,Xadvt+1 + ϵ)

Xadv = Xadvk

(10)

3) Projected Gradient Descent (PGD): PGD attack as pre-

sented by [20] without random start, is a more potent iterative

version of FGSM. Here, we apply PGD as a generalization of

iFGSM with random initialization.

Xadv0 = X + clip(N (0d, Id),−ϵ,+ϵ)

Xadvt+1 = Xadvt + α · sign(∇xJ (θ,X
advt))

Xadvt+1 = clip(Xadvt+1 , Xadvt+1 − ϵ,Xadvt+1 + ϵ)

Xadv = Xadvk

(11)

4) Momentum Iterative Fast Gradient Sign Method

(miFGSM): miFGSM [30] is a transformation of iFGSM such

that, before applying FGSM with a budget α, the gradient of

the previous t steps with a decay factor µ is employed to

update the gradient at step t+ 1. In this approach, the update

directions are stabilized, and the algorithm skips poor regional

maxima during the iterations. Therefore, the crafted adversarial

samples are more transferable. However, despite the high cost

of miFGSM attack, as we see in section V, it is not generating

more transferable samples in comparison to previous single

step and iterative attacks.

Xadv0 = X, g0 = 0

gt+1 = µ · gt +
∇xJ (θ,X

advt)

|∇xJ (θ,Xadvt)|1

Xadvt+1 = Xadvt + α · sign(gt+1)

Xadvt+1 = clip(Xadvt+1Xadvt+1 − ϵ,Xadvt+1 + ϵ)

Xadv = Xadvk

(12)

5) RAND+FGSM (R+FGSM): R+FGSM has been pro-

posed by [31] to attack the adversarially trained neural net-

works. Here, in one step, a small random perturbation with size

α is applied to the input before applying FGSM of (ϵ−α) cost.

R+FGSM is a randomized, single-step and computationally

efficient form of PGD.

6) Saliency Map (SM): A saliency map in computer vision

indicates the level of significance of a pixel to the human visual

system that has application in region-of-interest extraction,

image cropping, image captioning, and beyond [32], [33].

Similarly, we propose another single step, low cost adversarial

attack where we first identify the important events, depending

on the gradient of the neural network at a particular event,

within the input sequence and then perturb identified events by

the adversarial saliency map approach to achieve the adversary

sample. Formally, we propose the following attack strategy

Xadv = X

Xadv
i = Xi + ϵ · sign(∇xJ (θ,Xi))

Xadv
j = Xj − ϵ · sign(∇xJ (θ,Xj))

(13)

where event i maximizes ∇xJ (θ,X) and event j minimizes

it w.r.t. the input event sequence.

7) Gradient descent (GD): In the proposed gradient descent

adversarial attack, an adversarial event time within interval of

first and last event of the sequence is added to the sequence,

using the procedure presented in Algorithm 1.

Algorithm 1 Gradient descent adversarial attack procedure

procedure GDADVERSARIAL(X , ϵ, α)

Xadv ← X ▷ Initialization

event← genRandomVal[min(Xadv),max(Xadv)]
idx← genRandomInt[0, length(Xadv)]
Xadv.pop(0)
Xadv .insert(idx, event)
while (∇xJ (θ,X

adv
idx ) is changing) and α < ϵ do

event← event+ (α · ∇xJ (θ,X
adv
idx ))

Xadv[idx]← event
idx← getIdx(Xadv, event)

end while

return Xadv

end procedure

8) Time manipulation (TM): In point process applications,

e.g., crime forecasting based on reported crimes to the police

departments, one can easily report a fake crime to mislead

the point process algorithm. Following the same context, we

propose a time manipulation attack. Here, we remove the first

event in the event sequence and add a random event within

the interval of the first and last event’s time regardless of the

model weight and architecture. Therefore, we consider TM as

a black-box version of the GD attack since it is independent

of the network architecture and the loss function.

C. Transferability and transferable black-box setting

Regardless of the adversarial attacks’ strength against deep

learning models, the transferability of adversarial samples has

raised concerns in literature [12], [34], [35] where adversarial

samples between two independent trained models are trans-

ferred. In the current work, we study this phenomenon by

proposing transferable adversarial attacks, i.e., we craft the

adversarial instances using the presented white-box attacks on
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a model with similar architecture and more trainable parame-

ters. Then, the adversarial samples are employed to attack the

target model. Attackers can have more neural network layers,

RNN units, or hidden neural network units such that,

• RNN units: Means the number of units in an RNN layer.

• Network depth (layers): Means the number of hidden

layers of the cumulative hazard function network.

• Hidden neural network (NN) units: The number of units

in each hidden layer of NN model [27].

D. Baseline and Metrics

Baseline corresponds to the standard case when a model is

built without any adversarial assumptions. We will compare

each potential adversarial attack’s performance when under

attack to the baseline and its performance when no attack has

occurred. Our metrics in this comparison are:

• Mean Negative Log Likelihood

• Mean Absolute Error

• Fooling Error

FE =
1

K

K∑
k=1

||T (xadv
k )− T (xk)||q (14)

• Symmetric Mean Accuracy Percentage Error [29]

SMAPE =
2

K+

K+∑
k=1

||T (xadv
k )− yk||q − ||T (xk)− yk||q

||T (xadv
k )− yk||q + ||T (xk)− yk||q

(15)

Where q norm in FE and SMAPE metrics, must match the lp
norm employed in generating adversarial attacks and SMAPE

is limited to the K+ positive elements in the summation.

IV. DATA

Similar to [9], [27], experiments are run on the following

point process datasets. We split each dataset into train and

test sets. The train set is then used to estimate the model’s

parameters in the training phase, and the model’s performance

on the test set is quantified by the evaluation metrics.

• Hawkes Process In this work, we have simulated [26]

100,000 event times from the Hawkes process with the

sum of exponentials kernel, and the conditional intensity

function is given by:

λ(t|Ht) = µ+Σti<tΣ
M
j αjβj exp{βj(t− ti)}, (16)

where M = 1, µ = 0.2 , α1 = 0.8, and β1 = 1.0. The

ratio α
β

is known as branching ratio and is the declaration

of the Hawkes process regime and if the Hawkes process

explodes (super-critical regime and α
β
> 1), or not [26].

• Self-correcting Process For Self-correcting process,

100,000 event times are simulated by the conditional in-

tensity function that is given as λ(t|Ht) = exp(t−
∑
ti<t

1).

• Non-stationary Poisson Process (N-Poisson) Finally for

non-stationary Poisson dataset, 100,000 events time are

simulated from the following conditional intensity func-

tion λ(t|Ht) = 0.99 sin( 2πt
20000

)+ 1 as suggested by [27].

• Crimes and Covid-19 To assess the performance of

models concerning non-stationary changes, such as the

effect of the Covid-19 pandemic on reported crimes in

Chicago, we use the reported crimes to the Chicago police

department from 2016 to 2018 as training, and crimes in

2019 and 2020 as test set, separately2.

V. RESULTS AND DISCUSSION

This section presents the results of our adversarial attacks

on the deep point process models on the specified datasets.

We present the predictive performance-related experiments on

all point process datasets. In adversarial attacks on regression

models, we expect some changes in response for any changes

in the input. In this situation, the adversary aims for a dramatic

change in output for a small change in input [28]. According to

the experiments, to have high effect, the perturbation factor (ϵ)
needs to be large enough, although with ϵ = 0.1, the change in

performance is statistically significant yet. In all of our attacks,

ϵ is set to 0.1, and for iterative attacks, k = 10 and α = ϵ/10.

We see that the choice of metric is a critical factor in

evaluating adversarial attacks’ effectiveness. Specifically, we

illustrate that MAE is the least expressive evaluation metric

in an adversarial setting. Furthermore, through extensive ex-

periments, we see our proposed PGD can be considered as

a ªuniversal first-order attackº such that by first-order, we

mean the adversarial attacks solely depend on the gradient

of the neural network as suggested by [19]. However, our

results reveal that such a generalization is limited to first-order

adversarial attacks utilizing the entire gradient vector.

From the results, iFGSM has the best overall performance in

white-box attacks against both fully neural network (NN) and

exponential kernel (EXP) models. Furthermore, similar to [19],

our results suggest that the transferability of attacks decreases

as the power of attack increases, and single-step attacks have

more transferability in comparison to iterative attacks.

We discuss adversarial attacks manipulating the parameters

and branching ratio of the Hawkes process. Finally, we investi-

gate the effect of non-stationary abrupt changes on the models’

performance, using the crimes dataset during the Covid-19 era.

In Fig. 1, we present two adversarial samples along with the

conditional intensity values for each sequence and simulation

of the model prediction for the real and adversarial input. From

the examples, it can be inferred that unlike their intensity,

the adversarial samples are close to the real sample in time

space. In Table I, the performance of the fully neural network

model on the specified datasets as well as the most effective

white-box and black-box attacks are presented. Consecutively,

in Table II, we present the performance of exponential hazard

model on the same datasets and attacks.

From Table I and Table II, against the EXP model, iFGSM

is not as effective as the NN model, but it still increases the

predictive uncertainty (MNLL).

In Fig. 2, we compare all attacks for both the NN and the

EXP models on Hawkes process dataset. As illustrated, with

2https://data.cityofchicago.org/Public-Safety/Crimes-Map
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TABLE III: Adversarial attack’s Macro effect on fully neural

network (NN) and exponential hazard (EXP) models w.r.t.

Hawkes process parameters, µ, α, and β.

Fully neural network Exponential hazard

µ
(e-02)

α
(e-01)

β
(e-01)

µ
(e-02)

α
(e-01)

β
(e-01)

Test set 1.29 8.74 9.11 1.29 8.74 9.11

First-order attacks 99.8 10.0 13.0 99.8 10.0 13.0

GD 99.6 9.9 9.08 99.6 9.9 10.2

TM 99.6 9.99 11.5 99.6 9.99 11.0

Prediction in presence of adversarial attacks

No Attack 1.25 8.79 8.43 1.32 8.70 9.43

PGD 1.20 8.82 7.94 1.32 8.71 9.19

iFGSM 1.17 8.84 7.77 1.32 8.71 9.16

R+ FGSM 1.18 8.83 7.84 1.32 8.72 9.11

miFGSM 1.18 8.84 7.80 1.32 8.71 9.15

FGSM 1.18 8.83 7.83 1.32 8.71 9.24

SM 1.23 8.81 8.19 1.32 8.70 9.35

GD 1.12 8.88 7.372 1.23 8.81 8.20

TM 2.73 7.30 53.5 1.54 8.41 10.00

In Fig. 3 and Fig. 4 we represent the effect of adversarial

attacks on Hawkes parameters. As presented, all first-order

white-box attacks, PGD and surrounded gray area, both against

the NN model and the EXP model, share the underlying

parameters, µ, α, and β and agree on their Macro effects.

Additionally, although all adversarial events have a greater

intensity range in comparison to real events, but both neural

models are successful in maintaining the range of predicted

intensity, even in presence of adversarial attacks. However, if

the adversarial sets, e.g., PGD, be fed to a parametric model,

the parametric model will failed in modeling them.

Considering single-point attacks, e.g., GD, they are not fol-

lowing the rest of adversarial attacks, but are more proximate

to each other. The algorithm responsible for generating GD

samples can explain the shift in parameters and intensity func-

tions of TM and GD since the GD attack can be considered

as a steady version of TM. To evaluate the transferability

of white-box attacks against NN and EXP models, for each

attack, we perform attacks against independently trained larger

networks, more complexity, and then deploy the adversarial set

to our original targeted models. To increase the complexity, we

try hyper-parameters as discussed in the transferability section

III-C. For the exponential hazard model, the ºRNN unitsº is

the only available hyper-parameter. In Fig. 5, transferability

power of attacks against our models is shown. Transferability

investigation implies the susceptibility of both models to

iFGSM adversarial attack, the strongest attack w.r.t. predictive

performance, is not increased in transferring. For the EXP

model, to have an single-step effective attack, the adversarial

samples require to be crafted in a white-box setting. Still, for

the NN model, the adversarial goal is feasible in both black-

box (transferred) and white-box settings.

Finally, in Table IV, models’ performance regarding non-

stationary abrupt changes, Covid-19 pandemic’s impact on

reported crimes to Chicago Police Department in 2020, is

reported. According to the results, fully neural network model

performs better in modeling crimes, but the exponential hazard

Fig. 3: Adversarial attack’s Macro effect on the fully neural

model (NN) parametric modeling performance. Top: Condi-

tional intensity of real events (Blue), predicted events (Green),

and adversarial events generated by PGD attack (Red), GD

(Gray), and TM (Purple), respectively. Bottom: Enlarged view.

Note that adversarial events’ intensity, λ(t|H), range is far

from the real and predicted events. Here, λ(t|H) of all

other first-order attacks and corresponded predictions have

been presented in ºlight grayº as they are tight to PGD.

Additionally, we present λ(t|H) of GD and predicted event

arrivals in the presence of GD in ºOliveº. The same for TM

attack is shown in ºIndigoº.

Fig. 4: Adversarial attack’s Macro effect on the exponential

hazard (EXP) parametric modeling performance.

model is more robust (% of change in MNLL) against non-

stationary abrupt changes, although it’s still sensitive.

VI. CONCLUSION

We have proposed and studied several white-box and black-

box adversarial attacks on two state-of-the-art deep learning

point processes that provide non-parametric modeling of tem-

poral point processes, and investigate the transferability of

proposed adversarial attacks. Adversarial samples creation is a

critical step, especially when the prediction from such models

is utilized in safety and cost-critical applications. Moreover,

we have studied the performance of the models facing non-

stationary abrupt changes such as Covid-19. Finally, we have

examined how Hawkes process’s parameters, are vulnerable to

adversarial attacks. According to experimental results, one can

attack both predictive and parameter-estimation performance

of neural point processes with a small perturbation. Addition-
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