
International Journal of Forecasting 39 (2023) 1238–1252

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

A fully Bayesian tracking algorithm formitigating disparate
predictionmisclassification

Martin B. Short a,∗, George O. Mohler b

a Georgia Institute of Technology, United States
b Boston College, United States

a r t i c l e i n f o

Keywords:

Bayesian

Tracking algorithm

Fair algorithm

Bias reduction

Recidivism

a b s t r a c t

We develop a fully Bayesian tracking algorithm with the purpose of providing classifi-

cation prediction results that are unbiased when applied uniformly to individuals with

differing sensitive variable values, e.g., of different races, sexes, etc. Here, we consider

bias in the form of group-level differences in false prediction rates between the different

sensitive variable groups. Given that the method is fully Bayesian, it is well suited for

situations where group parameters or regression coefficients are dynamic quantities. We

illustrate our method, in comparison to others, on simulated datasets and two real-world

datasets.
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1. Introduction

Algorithmic scoring is employed in a variety of deci-

sion making situations including parole and bail (Berk,

2017; Dressel & Farid, 2018), loan approval (Mothilal,

Sharma, & Tan, 2020), and credit scoring (Wang, Hao,

Ma, & Jiang, 2011). In the case of bail decisions and the

well-known COMPAS algorithm, false positive rates are

much higher for African American defendants compared

to Caucasian defendants (Dressel & Farid, 2018). Recently,

a number of approaches have been introduced to improve

the fairness of machine learning algorithms. In Hardt,

Price, and Srebro (2016), disparate group thresholds on

logistic regression predictions are used to improve fair-

ness after model training. In Lum and Johndrow (2016),

the authors transform input features to achieve the in-

dependence of predictions from group membership. Of

particular relevance for us is the work of Zafar, Valera,

Gomez Rodriguez, and Gummadi (2017), Zafar, Valera,

Gomez-Rodriguez, and Gummadi (2019), in which a pe-

nalized loss is used in training in an effort to match false
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positive and negative rates across groups; this particular
method is discussed in more detail below.

A number of fairness-aware forecasting methods have
been introduced in the literature specifically for forecast-
ing recidivism. In Berk et al. (2017), the authors con-
sider a convex surrogate loss where the step function
representing the decision at the cutoff is replaced by a
linear approximation (simply the score itself). Fairness
can also be encouraged by post-processing forecasting
scores (Wei, Ramamurthy, & Calmon, 2020). Other work
has emphasized the interpretability of recidivism fore-
casts (for example, through super-sparse integer models),
which may be a more immediately achievable goal (Rudin,
Wang, & Coker, 2018; Ustun & Rudin, 2019). Research has
shown that recidivism forecasts utilizing limited feature
sets can underperform human decision making (Dressel
& Farid, 2018). However, algorithmic forecasts outper-
form humans when the feature set is expanded (Jung,
Goel, Skeem, et al., 2020). In all of these studies, offline
training is used and predictions are evaluated in batch
on a test set. Furthermore, these methods do not usually
quantify uncertainty in estimates of fairness or disparate
misclassification.

In this paper, we introduce a method for mitigating
disparate misclassification between groups where the dis-
tributions of covariates or other relevant parameters may
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be changing over time and need to be tracked. Under

this scenario, a fairness-aware algorithm trained offline

may deviate from fair predictions over time due to the

changing distribution of the data. We therefore propose

a Bayesian tracking method that estimates changing co-

variate and outcome probability distributions in real time

and dynamically modifies decisions to mitigate disparate

misclassification in predictions. The method has the ad-

ditional benefit of allowing for uncertainty quantifica-

tion in fairness-aware classification. To date, Bayesian

approaches to fairness have been limited to offline stud-

ies (Dimitrakakis, Liu, Parkes, & Radanovic, 2019; Simoiu,

Corbett-Davies, Goel, et al., 2017) and, to our knowledge,

this is the first to consider the Bayesian fairness tracking

problem. We also note that there has been recent research

on dynamic logistic regression with Bayesian variable se-

lection (Bakerman, Pazdernik, Korkmaz, & Wilson, 2022).

However, such research has not addressed the question of

fairness in dynamic logistic classification.

There are many possible domains where algorithmic

decisions may need to be made sequentially under

changes in the underlying distribution of the data. For

example, issues of bias and fairness may arise in other

criminal justice applications beyond recidivism, parole,

and bail decisions, such as traffic stops and hotspot polic-

ing based on spatial crime forecasts. These scenarios are

known to present complex spatial–temporal dynamics

with potential feedback (Brantingham, Valasik, & Mohler,

2018; Lum & Isaac, 2016; Mohler, Raje, Carter, Valasik, &

Brantingham, 2018). The methodology may also apply to

growth-stage technology companies that are expanding

into new geographic regions and customer segments. For

example, a peer-to-peer lending company may benefit

from a sequential Bayesian approach to predicting de-

faults on loans. Bias of lending decisions may change as

such a company grows from an early adopter customer

base into newer and larger markets. More generally, since

fair prediction algorithms are of specific importance to

social systems and applications, and societal changes can

sometimes occur rather abruptly—in the form of elections,

new laws, the rapid adoption or abandonment of fads,

etc.—it seems prudent to develop prediction algorithms

that are able to handle such changes gracefully should

they arise, while still being able to ensure the fairness of

these predictions.

Finally, it is known (Zhang, Wu, & Wu, 2017) that

classification algorithms can lead to outcomes that display

certain kinds of bias when the distribution of feature

vectors varies from one group to the next, even if the

algorithm does not explicitly include knowledge of the

group membership when making its classifications. One

could attempt to counteract this by having the algorithm

explicitly take into account the group membership of

the individual in question when making a prediction or

classification, for the purpose of removing the implicit

bias. However, this is often deemed undesirable and, in

some real-use cases, may be illegal. Instead, we develop

a tracking algorithm that need not (and probably should

not) explicitly take into account an individual’s group

membership in order to make the prediction, but instead

applies the exact same method uniformly to all individ-
uals, while nonetheless attempting to guarantee similar
statistical results across groups.

The outline of the paper is as follows. In Section 2,
we present the formulation of the problem that we study
and the details of our Bayesian algorithm. In Section 3,
we demonstrate the effectiveness of the approach on
synthetic data when the ground truth is known, and in
Section 4, we illustrate the application of the methodol-
ogy to the well-known ProPublica COMPAS dataset and
a dataset on traffic stops. We discuss our results and
directions for future research in Section 5.

2. Methodology

Our algorithm shall accept as input streaming, N di-
mensional feature data xi, where subscript i denotes the
time at which this specific data point arrives for pro-
cessing; we assume that no two individuals’ data arrive
simultaneously, so i also implicitly references individuals
as well. It is not strictly necessary that the data actually
be generated at different, well-ordered points in time.
However, as a tracking algorithm, one of the strengths
of this method is that it is built to handle data that
are dynamically evolving in some way, so we cast the
problem in this light. Since our main concern here is
providing an algorithm that is unbiased (in the sense of
matched false positive or negative rates) when applied
to data from individuals of different groups, we stipulate
that each feature vector xi is accompanied by a cate-
gorical value zi that indicates the value of a sensitive
variable (sex, race, age, etc.) for the individual i. We as-
sume that feature vectors for individuals with a specific
sensitive variable value z are drawn from a probability
density Dz(x), which may be changing in time; this is
discussed in more detail below. The algorithm then pro-
duces binary classifications ŷi ∈ {0, 1} for each individual;
depending on the domain in question, this classification
could correspond to a belief that the individual will or
will not default on a loan, commit a crime in the near
future, or soon become homeless, among many other
possibilities. We differentiate here between the predicted
classifications ŷi and the true classifications yi, which are
assumed to derive from some probability mass function
that depends on xi, potentially zi, and some generally
unknown parameters. Note that in some domains, the
true classifications may not always be available, or even
in some sense exist, or may only become available after
some time has passed after the predicted classification
is made. For the purposes of this study, we simply as-
sume that yi exists and is known immediately after the
predicted value ŷi is generated. Crucially, we insist that
the classifications our algorithm makes for the different
sensitive variable groups must approximately match in
terms of false prediction rates, which is one common
choice for these kinds of algorithms, as mentioned above.
But we note that other bias/fairness metrics may be used
as alternatives to this. See Mehrabi, Morstatter, Saxena,
Lerman, and Galstyan (2019) for a review of fair machine
learning, including a summary of the different metrics
used in practice, and Corbett-Davies and Goel (2018) for
a discussion of the tradeoffs.
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The main point of comparison for our model will be

the method of Zafar et al. (2017, 2019). This is largely

because their method (hereafter, the Zafar method) uses

the same notion of bias as we have chosen here–disparity

in false prediction rates between groups—and also uses

(but does not specifically depend on) a logistic classifier,

which we also adopt below. Given the same inputs as

described above, the Zafar method is

minimize: −

N
∑

i=1

log [P(yi|θ, xi)] (1)

subject to: |Cov(z, gθ (y, x))| ≤ cg

|Cov(z, fθ (y, x))| ≤ cf ,

where P(yi|θ, xi) is given in (6) below for a logistic clas-

sifier, and z is the sensitive variable. Here, gθ (y, x) and

fθ (y, x) are functions that serve as measures of false neg-

atives and false positives, respectively, and are given by

gθ (y, x) = min (0, (2y− 1)ydθ (x)) , (2)

fθ (y, x) = min (0, (1− y)(2y− 1)dθ (x)) , (3)

where dθ (x) is the signed distance from the decision

boundary (dictated by θ ) for an individual with feature

vector x, such that if dθ (x) ≥ 0, the person is classified as

positive (ŷ = 1), and otherwise is classified as negative

(ŷ = 0). The parameters cg and cf serve to limit potential

covariance between sensitive variable values and false

predictions, hence attempting to equalize false predic-

tions between different groups, and are chosen such that

c = mcu, where cu is the value of the given covariance

when using an unconstrained classifier, and m ≤ 1 is a

parameter chosen by the user. Whereas the Zafar method

solves the optimization problem in (1) on a fixed training

dataset, our goal is to develop a dynamic method for

tracking and mitigating disparate false prediction rates

that are updated after each new observation, thus al-

lowing for situations where the underlying covariate or

classifier distributions are changing over time.

A second point of comparison we analyze is a simple,

online version of the model detailed in Berk et al. (2017)

and Mohler and Porter (2021). The model, which we will

refer to as the Berk model, consists of a linear regression,

yi = θ Txi, estimated using a convex surrogate loss, where

the step function representing the decision at the cutoff

is replaced by a linear approximation (simply the score

itself):

MSE+ λ

(

∑

xi∈S00

θ Txi

|S00|
−

∑

xi∈S10

θ Txi

|S10|

)2

. (4)

Here, S00 is the set of individuals of sensitive variable

group 0 in the negative label class (yi = 0), and S10 is

the set of individuals with a sensitive variable in group 1

in the negative label group. The penalty term encourages

the average scores over the negative class (yi = 0) to

be matched across the sensitive variable (as λ increases).

Note, then, that this method does not attempt to match

results for those in the positive class, though a similar

penalty to encourage matched false negative rates or pre-

cision could easily be added. Because the loss function in

(4) is quadratic, there is an analytical solution (Mohler &

Porter, 2021). The model as originally specified in Berk

et al. (2017) is not dynamic, but to make it so, we estimate

the model parameters iteratively over sequential batches

of data (throughout the paper, we use a batch size of 500

samples). Let bi be the batch index containing data point

i. Letting θb be the parameters estimated by minimizing

Eq. (4) from the samples in batch b, the dynamic update

is then θb = ρθb−1 + (1 − ρ)θb. The prediction for data

point i is then made using parameters θbi−1 (we do not

make predictions for those points in the first batch).

The remainder of this section is broken into three

parts. Our main contribution is in Section 2.2, which

presents a new method to remove disparate misclassifica-

tion between groups in a dynamic Bayesian context. This

method requires some way to produce classifications of

individuals based on their feature vectors, and some way

to estimate the feature vector distributions of individuals

based on their sensitive variable value. In Sections 2.1 and

2.3, we discuss how a Bayesian classifier and Bayesian

feature vector tracker may be implemented to accomplish

these tasks, respectively. It is important to emphasize,

though, that the specific methods we use in these two

sections are not of fundamental importance to the main

contribution here, and that our method for removing

classification bias could be paired with other Bayesian

classification and/or feature vector trackers, with only

relatively small changes in the bias removal algorithm.

That said, the choices made below are helpful in that

the posterior distributions are all assumed to be normal,

allowing for some simplifications of various integrals that

appear. We note that in many real-world scenarios the

features themselves, and/or the posterior distributions

of parameters, may violate the normal assumption we

make in deriving the algorithm. However, we find that

our Bayesian logistic tracker works well in practice on

the synthetic and real data examples we consider in this

paper.

2.1. Bayesian logistic tracker

To perform the classification task, we employ a

Bayesian logistic tracker. This choice is made partly for

simplicity, since there are well-known methods for

Bayesian logistic tracking (Bakerman et al., 2022; Penny

& Roberts, 1999). Further, this provides for a more direct

comparison to the Zafar algorithm described above. How-

ever, this portion of the algorithm could be accomplished

by an alternative classifier if desired, so long as it can be

implemented in a Bayesian way that results in a distri-

bution over some kind of parameter space that is used to

make predictions. Since this is not the main contribution

of this work, which is in the method for removing bias

from the classifier, we do not test any alternate classifiers

here; this is an area where future work may make a

contribution.

The logistic model assumes that the true classifications

yi are Bernoulli random variables with probability

p(xi|θi) =
eθT

i
xi

1+ eθT
i
xi

, (5)
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where θi is an N-dimensional vector of feature weights

at time i. The probability of observing a specific yi for an

individual with feature vector xi is given by

P(yi|θi, xi) = p(xi|θi)
yi (1− p(xi|θi))

1−yi . (6)

Using this equation, the classifier algorithm attempts to

recursively generate an estimate for θi in the form of a

probability distribution, given a sequence of observations

{xj} and {yj} for j ≤ i, as described below.

Noting that the model (6) is nonlinear, two prominent

possibilities to perform the tracking are the unscented

Kalman filter and the extended Kalman filter. For our

purposes, we employ an extended Kalman filter, though

we make no claim to its superiority over the unscented

Kalman filter, other than its relative speed in our particu-

lar case. The resulting classifier was presented previously

(see Niranjan, 1999 for one such instance), but we briefly

provide its derivation here, largely to provide an oppor-

tunity to define several key variables and concepts of our

algorithm.

Let us now assume that the prior belief over θi be-

fore incorporating observation yi is a multivariate normal

with mean θi|i−1 and covariance matrix Ci|i−1, denoted

N (θi|θi|i−1, Ci|i−1). We further insist that the posterior be-

lief over θi after incorporating observation yi is a mul-

tivariate normal with mean θi and covariance matrix Ci,

N (θi|θi, Ci). Under these assumptions, Bayes’ rule, with

logarithms applied to all terms, gives

−
1

2

(

θi − θi

)T

C−1i

(

θi − θi

)

= yi ln [p(xi|θi)]+

(1− yi) ln [1− p(xi|θi)]−
1

2

(

θi − θi|i−1

)T

C−1i|i−1

(

θi − θi|i−1

)

+ D , (7)

where D is a constant unrelated to θi. We now Taylor

expand the logarithmic terms on the right-hand side of (7)

up to the second order around the point θi = θi|i−1 and,

after some algebraic manipulation, obtain our iterative

update equations by matching the linear and quadratic

terms in θi on both sides of the equation, finding

C−1i = C−1i|i−1 + hih
T
i , (8)

θi = θi|i−1 − Cifi (9)

where

fi = (−1)yixip
(

(−1)yixi|θi|i−1

)

, (10)

hi = xip

(

(−1)1−yixi
⏐

⏐θi|i−1

)

exp

(

(−1)yiθ
T

i|i−1xi/2

)

. (11)

Because of the special form of the matrix used to up-

date C−1i in (8), Eq. (8) can be computed very efficiently,

without the need for any matrix inversion, by using the

rank-one update rule:

Ci = Ci|i−1 −
Ci|i−1hih

T
i Ci|i−1

1+ hT
i Ci|i−1hi

. (12)

The tracking algorithm is completed by providing a

model for the dynamics of θi, allowing one to find the

prior parameters θi+1|i and Ci+1|i for the next observation

from the posterior parameters θi and Ci from the previ-
ous observation. For our purposes, and lacking any more
informed model, we simply make the common choice
that θi is undergoing a simple random walk θi+1 = θi +
N (0,Q ); this choice maintains the normality of the prob-

ability distribution. Then, we simply have θi+1|i = θi

and Ci+1|i = Ci + Q . The value of covariance matrix Q
affects how well the algorithm is able to track changes
over time, with too high a value causing the tracked value
to fluctuate too rapidly, and too low a value causing the
system to adjust too slowly to changes in the tracked
variable.

2.2. Bias estimation and elimination

Given our streaming data and the output of our
Bayesian tracker (9)–(12), one can construct predictions ŷi
for the classifications yi by first computing the expected
probability for an individual with feature vector xi,

p(xi|θi|i−1, Ci|i−1) =

∫

RN

p(xi|θi)N (θi|θi|i−1, Ci|i−1)dθi , (13)

and then thresholding this probability by a value τ such

that ŷi = 1 if p > τ and ŷi = 0 if p < τ ; generally, and in

the remainder of this work unless explicitly stated other-

wise, τ = 0.5. A simpler version of the integral above can

be found by first noting that p(xi|θi) depends only on the

argument qi = θT
i xi and by employing the well-known

property (Tong, 2012) that if θi ∼ N (θi|i−1, Ci|i−1), then

θT
i xi ∼ N (θ

T

i|i−1xi, x
T
i Ci|i−1xi). Then, we have

p(xi|θi|i−1, Ci|i−1) =

∫ ∞

−∞

eqi

1+ eqi
N (qi|θ

T

i|i−1xi, x
T
i Ci|i−1xi)dqi .

(14)

The above integral has several known approximations

that can be used to simplify the computation, and we

opted to use the approximation from Crooks (2013).

However, as mentioned above, under many circum-

stances these predictions will show bias in terms of false

prediction rates when comparing between those predic-

tions made for individuals of differing sensitive variable

values. For example, consider the case in which the sen-

sitive variable value zi may only take one of two possible

values, which we will simply choose to be 0 and 1 for

convenience. Let us assume that the feature vectors xi
for those individuals with sensitive variable value 0 are

well described by a probability density D0(xi) and simi-

larly D1(xi) for individuals with sensitive variable value 1.

Then, if we were to employ posteriors θi and Ci to make

hypothetical predictions for more individuals at time i,

the expected instantaneous false negative rate and false

positive rate for sensitive variable value z, FNRi(z) and

FPRi(z), respectively, would be

FNRi(z) =

∫

RN 1p(xi|θi,Ci)<τp(xi|θi, Ci)Dz(xi)dxi
∫

RN p(xi|θi, Ci)Dz(xi)dxi
, (15)

FPRi(z) =

∫

RN 1p(xi|θi,Ci)>τ [1− p(xi|θi, Ci)]Dz(xi)dxi
∫

RN [1− p(xi|θi, Ci)]Dz(xi)dxi
,

(16)
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where 1 is an indicator function. Similarly, the expected

instantaneous accuracy would be given by

ACCi(z) =

∫

RN

1p(xi|θi,Ci)>τp(xi|θi, Ci)Dz(xi)dxi +

∫

RN

1p(xi|θi,Ci)<τ

[

1− p(xi|θi, Ci)

]

Dz(xi)dxi . (17)

It is important to note that discrepancies between the

expected false prediction rates for the two sensitive vari-

able values can arise even if the posterior distribution

parameters θi and Ci are correctly specified—that is, even

if they themselves are not biased due to flawed data being

used to estimate them. This is simply due to the fact that

D0(xi) and D1(xi) may differ (Zhang et al., 2017).

If we assume that θi and Ci are indeed correct, but the

false prediction rates generated by using (15) and (16)

are unequal between the two groups, then the only way

to possibly equalize the false prediction rates, which is

our goal, is to change the indicator function term present

in the integrals above, which represents the prediction

methodology. The method we propose to equalize false

positive and negative rates leverages a surrogate multi-

variate normal distribution with parameters Θi and Ci

rather than the distribution with parameters θi and Ci.

The details of how we obtain these parameters are given

below in Eqs. (22) and (25). The intuition is that the

posterior distribution of Θi and Ci will concentrate the

probability density in a subset of regions where the pos-

terior of θi and Ci is concentrated, but such that the

false positive and negative rates are more closely matched

across the sensitive variable groups.

Using these newly proposed parameters, then, our

false prediction rates and accuracy are

ˆFNRi(z) =

∫

RN 1p(xi|Θi,Ci)<τp(xi|θi, Ci)Dz(xi)dxi
∫

RN p(xi|θi, Ci)Dz(xi)dxi
, (18)

ˆFPRi(z) =

∫

RN 1p(xi|Θi,Ci)>τ [1− p(xi|θi, Ci)]Dz(xi)dxi
∫

RN [1− p(xi|θi, Ci)]Dz(xi)dxi
.

(19)

ˆACCi(z) =

∫

RN

1p(xi|Θi,Ci)>τp(xi|θi, Ci)Dz(xi)dxi +

∫

RN

1p(xi|Θi,Ci)<τ

[

1− p(xi|θi, Ci)

]

Dz(xi)dxi . (20)

It is important to note in these equations that the dis-

tribution with parameters θi and Ci is still assumed to

accurately indicate whether or not an individual will ex-

hibit yi = 0 or yi = 1, whereas the predicted value

ŷi is made using our newly proposed, ideally unbiased

distribution. The goal, then, is to generate posterior pa-

rameters Θi and Ci that reduce or eliminate differences

in false prediction rates, while still retaining some level

of accuracy.

To detail how we accomplish this, we begin first by

defining our precise metric for measuring expected pre-

diction bias at time i:

∆i =

√

[ ˆFPRi(1)− ˆFPRi(0)]2 + [ ˆFNRi(1)− ˆFNRi(0)]2 , (21)

where our goal is to make ∆i < ϵ for some chosen

small ϵ value. Suppose, then, that we possess some prior

values for Θi|i−1 and Ci|i−1, which at the beginning of the

algorithm must be initialized in some way, presumably

to the same values as θ1|0 and C1|0. Given data point xi, yi,

we then use our Bayesian classification tracker to update

them, via

Ci = Ci|i−1 −
Ci|i−1HiH

T
i Ci|i−1

1+ HT
i Ci|i−1Hi

, (22)

Θi = Θi|i−1 − CiFi (23)

where

Fi = (−1)yixip
(

(−1)yixi|Θi|i−1

)

, (24)

Hi = xip
(

(−1)1−yixi
⏐

⏐Θi|i−1

)

exp

(

(−1)yiΘ
T

i|i−1xi/2

)

;

(25)

θi and Ci are also updated after this observation, as

described above in (8)–(9). Upon obtaining these new

posterior values Θi and Ci, we then evaluate (15)–(21).

Importantly, at the end of this series of calculations, we

find one of two things. One possibility is that ∆i < ϵ,

in which case the posteriors Θi and Ci accomplish the

goal of creating predictions with little or no bias, and

the algorithm can simply proceed to the next observation

without any need to address classification bias at this

time. The other possibility is that ∆i ≥ ϵ, in which case

the posteriors Θi and Ci do not accomplish their intended

goal of creating unbiased classifications, and must be

modified in some way in order to meet this goal. We now

detail how this modification is done.

First, we again recognize that Θi and Ci are parameters

describing a multivariate normal distribution. Assuming

we are dealing with the case where the current distri-

bution of Θi and Ci causes our bias metric to exceed its

threshold, it must be true that the false positive and/or

false negative rates differ too substantially between the

two groups. However, we hypothesize that there are some

subregions where the posterior probability density is con-

centrated that, if they were the only regions of support

when calculating p—that is, if the integral in (14), properly

normalized, were only over those subregions and not

all of the space—then the resulting bias metric would

fall below its threshold. So, to construct our prior dis-

tribution for the next step of the algorithm, we seek

to alter our current posterior distribution by retaining

only those regions over which the bias metric would be

below its threshold, and rejecting the rest of the dis-

tribution. In practice, we achieve this via Monte Carlo

sampling. Specifically, we first sample from the current

posterior multivariate normal distribution described by

N (θi|Θi,Ci), MΘ potential predictor coefficient vectors,

each denoted by a Θ̃ij, where index j runs from 1 to

MΘ . Then, for each of these sampled predictor coefficient

vectors j, we calculate ˆFNRij(z) and ˆFPRij(z) using the

right-hand side of (19)–(18) but with the indicator func-

tion replaced with 1p(xi|Θ̃ij)
; that is, we use the sampled

predictor coefficient vectors to make the hypothetical

predictions. We can then calculate the bias ∆ij for each

sampled vector, retaining those samples whose ∆ij < ϵ
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and rejecting those whose ∆ij ≥ ϵ. After processing allMΘ

samples in this way, the remaining, non-rejected samples

all represent regions of the posterior that lead to unbiased

predictions.

However, we note that it is easy to construct predic-

tor coefficient vectors that yield classifications that are

completely unbiased, but that have low predictive accu-

racy. Specifically, the predictor coefficient vector Θ̃ij = 0

automatically classifies all individuals as positive (assum-

ing τ = 0.5), which leads to a false positive rate of 1

and a false negative rate of 0 for both groups, making

the predictions unbiased via our metric. And, depending

on what the initial values for the priors of the various

tracking parameters are at the beginning of the algorithm,

this particular predictor vector may be quite likely to be

chosen in our sampling method. But (depending on the

nature of the true classifications) this particular unbiased

classification will generally lead to low accuracy in com-

parison with the standard, biased classifier. So, we further

restrict our unbiased samples to those whose predictive

accuracy ˆACCij, which is calculated via the right-hand

side of (20) but with the indicator functions replaced

with 1p(xi|Θ̃ij)
, lies above some threshold in relation to the

predictive accuracy of the standard, biased classifier in

(17). Specifically, we require that

min
z

[

ˆACCij(z)/ACCi(z)

]

> α , (26)

where 0 < α < 1. In our various experiments (detailed

below), we found that the obtained solutions depend on

the choice of α (for a given ϵ) in a relatively straightfor-

ward way. Specifically, there appear to be roughly two

transition points for the solutions, call them αL and αH ,

with αL < αH . For values of α < αL, solutions tend

toward the trivially unbiased answer of classifying all in-

dividuals as positive (or possibly negative), with generally

low accuracy. With α > αH , there are generally no fair

predictor coefficients that exhibit the required accuracy,

in which case we abort the algorithm and simply state

that it was unable to attain the requested fairness and

accuracy combination. Finally, for αL < α < αH , the

algorithm is able to find numerous predictor coefficient

vectors that fit the required bias and accuracy constraints

while retaining a non-trivial classification of individuals,

and importantly seems to be generally independent of

the specific α value used. These threshold α values can

be found via trial and error, which in our experience has

been easy to do, given that we have generally observed a

significant separation between the two threshold values.

Finally, after processing all MΘ samples for both lack

of bias and desired relative accuracy, the mean Θ
ϵ

i and co-

variance matrix C
ϵ
i for that subset meeting these two cri-

teria are computed, and we simply use those to construct

our prior for the next step in the tracker via Θi+1|i = Θ
ϵ

i

and Ci+1|i = C
ϵ
i + Q . We see, then, that our method

involves tracking two (potentially) different coefficient

vector distributions using (8)–(12): the ‘‘true’’ distribution

N (θi|θi, Ci) that is never used to make predictions ŷ but

is used to predict the current expected bias level and

accuracy, and the ‘‘unbiased’’ distribution N (θi|Θ
ϵ

i ,C
ϵ
i )

that is used to make predictions ŷ and is forced to produce

a bias metric ∆ that is below our threshold ϵ after every

data point yi is assimilated via the Monte Carlo sampling

method described above, while retaining at least some

relative measure of accuracy.

Of course, the sampling method for constructing our

unbiased distribution involves evaluating the integrals in

(19)–(20) for each of our MΘ potential predictor coeffi-

cient vectors, which is easier said than done. There are

at least two difficulties: the integral may be over a high-

dimensional space, and the integrals require knowledge of

Dz(xi). We deal with the first problem by performing the

integral via Monte Carlo methods, at this point assuming

that estimates for the distributions Dz(xi) are known; be-

low, we detail how these may be estimated. Specifically,

we sample Mx feature vectors x̃k from each distribu-

tion Dz . For each sample, we compute its corresponding

p(x̃k|θi, Ci) and p(x̃k|Θ̃ij) via (5) and (14), respectively.

Then, the integrals are approximated as

ˆFNRij(z) =

∑Mx

k=1 1p(x̃k|Θ̃ij)<τp(x̃k|θi, Ci)
∑Mx

k=1 p(x̃k|θi, Ci)
, (27)

ˆFPRij(z) =

∑Mx

k=1 1p(x̃k|Θ̃ij)>τ

[

1− p(x̃k|θi, Ci)

]

∑Mx

k=1

[

1− p(x̃k|θi, Ci)

] , (28)

ˆACCij(z) =
1

Mx

Mx
∑

k=1

1p(x̃k|Θ̃ij)>τp(x̃k|θi, Ci) +

1

Mx

Mx
∑

k=1

1p(x̃k|Θ̃ij)<τ

[

1− p(x̃k|θi, Ci)

]

; (29)

and the integral within (17) is evaluated similarly.

2.3. Bayesian feature tracker

The only remaining portion of our algorithm to de-

scribe is our method for estimating the distributions Dz

for the feature vectors x of individuals with sensitive

variable value z. Similarly to the classification portion of

our algorithm, there are many methods of tracking evolv-

ing feature distributions from streaming data. Since the

particular method used is not the focus of our work, and

in theory any Bayesian tracker that allows one to estimate

distributions of feature vectors over time could be em-

ployed, we simply adopt a standard approach. Noting that

the N-dimensional feature vectors will generally all have

an entry of 1 as their final component, allowing for a con-

stant probability offset for all individuals in the dataset if

necessary (as is standard in logistic regression), the distri-

butions Dz are really N−1-dimensional in our case. Then,

we assume that the first N−1 entries of each x for a given

sensitive variable value z are drawn from a multivariate

normal distribution N (x|µz,i, Σz,i). The parameters µz,i

and Σz,i are themselves unknown, but we select their

prior to be a normal-inverse-Wishart distribution with

hyperparameters mz,i|i−1, λz,i|i−1, Φz,i|i−1, and νz,i|i−1; note

that it is required that λz,i|i−1 > 0, νz,i|i−1 > N − 2, and

Φz,i|i−1 be a positive definite N − 1 × N − 1 matrix. This

choice is the conjugate prior of the multivariate normal

distribution assumed for the observations x, so that a
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relatively simple Bayesian update rule for the posterior

hyperparameters is known:

λz,i = λz,i|i−1 + 1 (30)

mz,i =
λz,i|i−1mz,i|i−1 + xi

λz,i

(31)

Φz,i = Φz,i|i−1 +
λz,i|i−1

λz,i

(xi −mz,i|i−1)(xi −mz,i|i−1)
T (32)

νz,i = νz,i|i−1 + 1 (33)

Given these posterior hyperparameters, the posterior

predictive distribution D̂z for x for sensitive variable value

z is multivariate t:

D̂z(xi) = tνz,i−N+2

(

xi|mz,i,
λz,i + 1

λz,i(νz,i − N + 2)
Φz,i

)

. (34)

It is this posterior predictive distribution that is used

to generate the samples x̃k used in (27)–(29). For the

multivariate t to have a finite mean and variance, we need

νz,i > N , which is more restrictive than the requirement

above.

We complete the specification of the feature vector

distribution tracker by providing a means by which the

posterior parameters’ values after step i are used to con-

struct the priors for step i + 1. We use mz,i|i−1 = mz,i−1,

Φz,i|i−1 = Φz,i−1, and νz,i|i−1 = νz,i−1. Since λ effectively

serves as a factor that weighs how much the prior mean

contributes to the posterior mean, and because we are

interested in scenarios where the mean may be evolving

over time, we do not want λ to continually increase

after each observation, as (30) might indicate. Hence, we

simply set λz,i|i−1 = β . If β is very small, then the

estimated mean will fluctuate rapidly with each new data

point and potentially cause the tracker to lose accuracy,

whereas if β is very large, then the mean will fluctuate

very little, potentially causing the tracker to have a long

lag time between a true change in mean and when that

is detected. Generally, an intermediate value will provide

a compromise between these two extremes, allowing a

true change in mean to be detected relatively quickly,

while not causing the mean to fluctuate by large amounts

between every data point.

We summarize the full algorithm in Algorithm 1, which

sequentially updates the posterior as new data is ob-

served.

3. Results on synthetic data

We first illustrate our method on synthetic datasets,

with both static and dynamic parameters.

3.1. Static parameters

We use a low-dimensional case of N = 3. The data

are generated such that the static mean of D0 is µ0 =
[−1;−3] while for D1 we have µ1 = [2; 3]; both use

Σ = [5, 1; 1, 5]. To generate the simulated classifications

yi, each individual’s zi is first determined uniformly from

{0, 1}, and xi is generated via the appropriate Dz . The dot

product of this feature vector with the vector v = [1,−1]
is taken, such that qi = vxi. Then, if qi > 0, we let

Algorithm 1 Bias-reducing logistic regression tracking

algorithm

Sequential input: M feature vectors xi, sensitive vari-

able values zi, and true classifications yi; bias threshold

ϵ, accuracy threshold α, covariance matrix Q , and

feature tracker sensitivity β

Initialize: priors θ1|0, C1|0, Θ1|0, C1|0, λz,1|0,mz,1|0, Φz,1|0,

and νz,1|0

for i = 1 : M do

Z ← zi
Find λZ,i, mZ,i, ΦZ,i, and νZ,i using (30)–(33)

for z ̸= Z do

Set posteriors λz,i,mz,i, Φz,i, and νz,i to their current

prior values

end for

Find Ci and θ i using (9)–(12)

Find Ci and Θ i using (22)–(25)

for all z do

Generate set of Mx feature vectors {x̃}z ∼ D̂z from

(34)

Find ACCi(z) from (17) with integrals evaluated as

in (29)

end for

Θ̃i0 ← Θ i

for all z do

Compute ˆFNRi0(z) and ˆFPRi0(z) using (27)–(28)

end for

Compute ∆i0 using (21)

if ∆i0 < ϵ then

Θ
ϵ

i ← Θ i, C
ϵ
i ← Ci

else

Generate set of MΘ coefficient vectors {Θ̃i} ∼
N (Θ i,Ci)

for j = 1 : MΘ do

for all z do

Compute ˆFNRij(z), ˆFPRij(z), and ˆACCij(z) using

(27)–(29)

end for

Compute ∆ij using (21)

if ∆ij ≥ ϵ or accuracy goal (26) is violated then

Remove entry j from set {Θ̃i}
end if

end for

Θ
ϵ

i ← mean
(

{Θ̃i}
)

, Cϵ
i ← covariance

(

{Θ̃i}
)

end if

Set priors mz,i+1|i, Φz,i+1|i, νz,i+1|i, and θ i+1|i to their

current posterior values

Θ i+1|i ← Θ
ϵ

i , Ci+1|i ← C
ϵ
i + Q , Ci+1|i ← Ci + Q , and

λz,i+1|i ← β

end for

pi = 0.7, while if qi < 0, we let pi = 0.3. Finally, the true

classification yi is Bernoulli with probability pi. Note, then,

that the true classifications are not generated via a logistic

function, though the feature vectors are in fact generated

via multivariate normal distributions. We generate 10,000

such data points. Initial values for the various tracking

variable priors are θ1|0 = [0; 0; 0], C1|0 = 0.0001I3,

mz,1|0 = [0; 0], λz,1|0 = β , Φz,1|0 = I2, and νz,1|0 = N + 1.
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Fig. 1. Plots of the tracked values of θ (top left), Θ
ϵ
(top right), mz (bottom left, shown with the true values µz as dashed lines), and the estimated

unbiased false prediction rates ˆFNR(z) and ˆFPR(z) (bottom right) for the static parameters described in the text.

We use ϵ = 0.05, α = 0.85, Q = 0.00001I3, and β = 49

(this value was chosen to accomplish the compromise

in tracking mentioned above). Plots in Fig. 1 show the

evolution of the estimated values of θ, Θ, mz , and the

false prediction rates ˆFNR(z) and ˆFPR(z). The estimated

covariance values are Σ0 = [5.00, 0.98; 0.98, 5.05] and
Σ1 = [5.11, 1.05; 1.05, 5.02] after all points have been

tracked.

Importantly, one can also determine the actual false

prediction rates after the fact, obtaining false positive

rates 0.48 and 0.48 and false negative rates 0.28 and 0.28

for sensitive values z = 0 and z = 1, respectively, over the

final 9000 data points (we only use these points to allow

for some stabilization of the algorithm before the evalua-

tion). These are clearly within the tolerance requested and

match quite well to the estimated false prediction rates

averaged over the last 9000 data points, which give 0.50

and 0.50 for false positive rates and 0.30 and 0.30 for false

negative rates. These essentially unbiased false prediction

rates should be compared to the false prediction rates one

would obtain if no bias elimination were employed (using

a value of ϵ = 2), which are 0.62 and 0.23 for false pos-

itive rates and 0.11 and 0.46 for false negative rates. The

tradeoff of decreased bias is also a decrease in accuracy,

however. With no bias elimination, the accuracies are 0.69

and 0.67 for sensitive variable values 0 and 1, respectively,

while our reduced-bias accuracies are 0.64 and 0.60.

The mean value of θ over the last 9000 points is

[0.21,−0.21, 0.04], while the average value of Θ
ϵ

is

[0.30,−0.16, 0.05]. A standard logistic regression over

this set of data yields a coefficient vector

[0.21,−0.22, 0.04] almost identical to the mean of θ that

we obtain, showing that our logistic tracker works as

anticipated. In comparison to our baseline methods, the

results of our algorithm essentially match perfectly with

those of the Berk method with λ = 10. We also apply

the previously discussed Zafar algorithm to this dataset,

with a covariance threshold multiplicative factor of m =
0.0005. Here, we train the algorithm over the full dataset

but only evaluate it over the last 9000 points, to put it

on an equal footing with our own algorithm. The results

in this case are a coefficient vector of [0.24,−0.14, 0.04],
leading to false positive rates of 0.49 and 0.47 and false

negative rates of 0.26 and 0.29, with accuracies of 0.65

and 0.61. While certainly less biased than the standard

logistic classifier, the difference in false prediction rates

with the Zafar algorithm is certainly larger than in our

case; consequently, the accuracy is slightly higher than

in our case. This is likely due to the fact that our algo-

rithm is directly attempting to equalize the false predic-

tion rates, while Zafar uses a proxy measure to achieve

the same goal. Of course, our algorithm is much slower

than that of Zafar due to the several Monte Carlo steps

involved.
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Fig. 2. Plots of the tracked values of θ (top left), Θ
ϵ
(top right), mz (bottom left, shown with the true values µz as dashed lines), and the estimated

unbiased false prediction rates ˆFNR and ˆFPR (bottom right) for the dynamic parameters described in the text.

3.2. Dynamic parameters

The scenario here is very similar to that used in the

static parameter case above. The exception is that after

the first 1000 data points, the means µ0 and µ1 begin to

linearly drift with each new data point, such that the two

values have exactly swapped by the 10,000th data point.

Specifically, we use µ0,i = [−1;−3] and µ1,i = [2; 3] for
i ≤ 1000 while µ0,i = [−1;−3] + [3; 6](i − 1000)/9000

and µ1,i = [2; 3]−[3; 6](i−1000)/9000 for i > 1000. This

highly contrived scenario allows us to focus on a situation

in which, when considering the final 9000 data points all

together, we expect to see little difference in false pre-

diction rates between the two sensitive variable values,

even if a standard logistic regression is used. However, it

is clear that there will be, in general, instantaneous bias

in the predictions. This bias will switch between the two

groups over the course of the observations, making the

overall false prediction rates roughly equivalent.

We run our tracking algorithm with the same pa-

rameters and initial values as in the static case, and we

present the results in Fig. 2. Here, our reduced-bias false

prediction rates as measured over the final 9000 data

points are 0.52 and 0.54 for false positives and 0.22 and

0.23 for false negatives for sensitive values z = 0 and

z = 1, respectively; accuracies are 0.64 and 0.62. How-

ever, as shown in Fig. 2, the estimated instantaneous false

prediction rates vary significantly over the course of the

tracking, albeit in such a way that the estimated bias is

always within our tolerance ϵ.

However, by design, when we run this scenario through

our algorithm using the large value ϵ = 2.0, in which

case no bias removal is actually attempted, the overall

observed results still appear effectively unbiased. Over

the final 9000 observations, we obtain 0.38 and 0.37 for

false positive rates and 0.24 and 0.27 for false negative

rates for sensitive values z = 0 and z = 1, respectively;

accuracies are 0.69 and 0.69. The mean value of θ over

the last 9000 points in this case is [0.25,−0.25, 0.00].
All of these values are very close to those obtained for

a standard logistic regression trained over this dataset,

which gives coefficient vector [0.25,−0.24, 0.00], and

which over the last 9000 points gives false positive rates

of 0.36 and 0.35, false negative rates of 0.23 and 0.24,

and accuracies of 0.71 and 0.71. In essence, because of

the symmetric way that the feature distributions change

over time, even a standard logistic regression will appear

unbiased for this dataset when only analyzing the bulk

classifications made on the interval in which the feature

distributions are shifting.

The Zafar method applied to this dataset gives inter-

esting results. Using a covariance threshold multiplicative

factor of m = 0.0005, as used in the static case above, we

obtain false positive rates of 0.06 and 0.06, false negative
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Fig. 3. Plots of the observed false prediction rates computed via a moving-window average width of 2000 events for our dynamically unbiased

predictions (top-left panel), for effectively static logistic predictions (top-right panel), for the Zafar method with m = 0.0005 (bottom-left panel),

and the Berk method with λ = 10, ρ = 0.9 (bottom-right panel).

rates of 0.85 and 0.86, and accuracies of 0.52 and 0.51. The

algorithm was able to determine some potential problem

with the baseline logistic regression with regard to dis-

parate misclassification and correct for it, but at this level

was only able to resolve the problem by classifying the

vast majority of individuals (89% of them) as negative. Ap-

plying a much higher covariance threshold multiplicative

factor of m = 0.05, and hence reducing the desired bias

mitigation, gives false positive rates of 0.32 and 0.31, false

negative rates of 0.41 and 0.42, and accuracies of 0.63 and

0.63, much more in line with the standard logistic regres-

sion, and still appearing unbiased. Of course, the dataset

is designed so that even a standard logistic classifier will

appear unbiased when averaged over the entire dataset,

so this result is not surprising.

We run the Berk method on this dataset using param-

eters λ = 10, ρ = 0.9. The results over the final 9000

data points are false positive rates of 0.4 and 0.44, false

negative rates of 0.29 and 0.27, and accuracies of 0.66 and

0.65; these are similar to the results of our unconstrained

algorithm.

Given the design of this dataset, it is not surpris-

ing that all of the methods are able to produce results

that are unbiased on average. But to illustrate the dif-

ferences between the methods on this dynamic dataset,

we plot in Fig. 3 the observed false prediction rates when

calculated via a symmetric moving-window average width

of 2000 events. In the case of our dynamic method with

ϵ = 0.05 (top-left panel), these moving averages show

relatively small bias between the two sensitive variable

values, and are similar to the estimated false prediction

rates shown in Fig. 2. However, when the same moving-

window average is applied to predictions made by our

tracking algorithm but with ϵ = 2.0 (top-right panel),

which mimics a static logistic regression that appears

unbiased when considering the entire dataset at once,

as discussed above, we clearly see large differences in

false prediction rates between the two protected variable

groups at any given moment in time. The Zafar method

with the larger value m = 0.05 behaves very similarly

to the logistic classifier, as the two methods give very

similar parameter estimates, while the results using m =
0.0005 (bottom-left panel) appear effectively unbiased at

all times, but only by classifying almost all individuals

as negative and thereby having consistently very low

accuracy. The Berk method (bottom-right panel) is, as a

dynamic method, able to maintain rough instantaneous

fairness while also retaining good accuracy. Interestingly,

the results here are qualitatively different from those

of our algorithm, as the Berk method maintains similar

levels of false prediction rates and accuracy throughout

the dataset, while our algorithm varies throughout. At

this time, we can speculate that the behavior of the

Berk algorithm observed here is related to the specific
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details of this example, as in our limited testing, other

synthetic dynamic datasets do not always exhibit this

same behavior with the Berk algorithm. But the specific

underlying cause is not entirely clear and highlights the

need for future work on dynamic fairness algorithms,

to better understand which methods might be better or

worse, and under what circumstances.

4. Results on real-world datasets

4.1. ProPublica COMPAS dataset

To illustrate the ability of our algorithm to analyze

real-world datasets, we applied it to the often-used ProP-

ublica COMPAS two-year recidivism dataset (Larson, Mat-

tu, Kirchner, & Angwin, 2016). This dataset was

constructed to test potential bias in recidivism forecasting

between races, and includes certain features (described

below) of individuals who were arrested on suspicion of

committing specific crimes, and whether or not each in-

dividual recidivized within two years of the initial event.

In analyzing the dataset, we chose race as the sensitive

variable, and only analyzed that subset of the data in

which the race is listed as either ‘‘African American’’ or

‘‘Caucasian’’. After selecting this subset and removing a

few points in the same way as described in Larson et al.

(2016), we were left with 5278 entries.

For our features, we analyzed two scenarios. In both

scenarios, we use ‘‘sex’’ (categorical, male = 0 or female

= 1), ‘‘age_cat’’ (using two categorical variables ‘‘Less than

25’’ and ‘‘Greater than 45’’), ‘‘priors_count’’ (number of

prior crimes), and ‘‘c_charge_degree’’ (categorical, felony

= 0 or misdemeanor = 1). In the first scenario, these

are the only features considered, while in the second sce-

nario we also directly consider ‘‘race’’ as the final feature

(categorical, Caucasian = 0 or African American = 1);

this is done to match what some others have consid-

ered when analyzing this particular dataset. Importantly,

we also analyze this dataset after sorting the entries by

‘‘compas_screening_date’’ from earliest to latest. This is

done because our algorithm is specifically developed to

allow for temporally evolving scenarios, so we evaluated

it as such. All initial parameters of the algorithm are the

same as those used in the synthetic data above, with

the exception that we use α = 0.65 here; the value of

α = 0.85 used in the synthetic experiments was too

high, resulting in the algorithm failing to find predictor

coefficients that were unbiased to the desired ϵ at this

level of accuracy.

Table 1 lists the results of our algorithm, as well as

those of the Zafar and Berk methods, for both sets of

features (with and without race), and both with and with-

out any bias constraints applied (except that Berk is only

analyzed in the constrained case); for the Zafar algorithm

we use a covariance threshold multiplicative factor of

m = 0.000001 and for Berk we use λ = 10, ρ =
0.9. The results here are computed over the second half

of the dataset only; in the case of the Zafar algorithm,

only the first half of the dataset is used for training. The

results clearly show that, without any constraints, there is

bias between the false prediction rates of Caucasians vs.

African Americans: false negative rates for Caucasians are

higher than those for African Americans, and the opposite

is true of false positive rates. When constraints are added,

all algorithms greatly reduce these differences, with ours

accomplishing our goal of ϵ < 0.05 in all cases, but with

the other algorithms generally unable to reduce the bias

levels to within this same tolerance. This is not necessarily

surprising, as the other algorithms only use proxy mea-

sures for bias, rather than an explicit calculation of the

expected level, as our own algorithm employs; further,

the Berk method only attempts to equalize results for

those in the negative class. Within the table, we specif-

ically note the number of positive predictions given in

each case. This is displayed to illustrate the fact that, in

general, the constrained algorithms accomplish their goal

by classifying many more individuals as negative than

in the unconstrained case. The most extreme example of

this is in the Zafar algorithm with race not included as

a feature, in which case only 111, or 4.2%, of the 2639

predictions made are positive. This leads to an overall

accuracy of only 0.48. It seems that, if not explicitly us-

ing race to make predictions, a static unbiased classifier

like Zafar can only really treat these data by classifying

essentially everyone in the same way (negative in this

case).

Interestingly, though, our own constrained classifier in

the no-race case still makes 655 positive predictions, and

ends up with an overall accuracy of 0.69, not much lower

than the accuracy of 0.74 that we achieve with the same

features in the unconstrained case. Somewhat amazingly,

our algorithm does this with a false positive rate of 0 for

both races: all 655 positive predictions were correct. Also,

our algorithm displays significantly better overall accu-

racy than the constrained Zafar and Berk across the board

here. To help understand how our algorithm achieves

such results, we plot in Fig. 4 the evolving estimates of

the unbiased coefficients Θ
ϵ
that our algorithm produces

in both the with-race and without-race scenarios. As can

be clearly seen, there is an abrupt and very large change

in estimated coefficients at around data point number

4600 in each case. Upon investigating the data directly,

we observed that every data point starting at number

4512 (with ‘‘compas_screening_date’’ of April 2, 2014) is

classified as a recidivist. These data, if they are to be

believed, are then a perfect example of a scenario in

which a temporal trend is important to the classification

task, which our algorithm handles quite naturally. The

Berk algorithm also handles the data dynamically, but

was unable to match the performance of our algorithm

in this case. However, it is likely that these data points at

the end of the dataset are in fact erroneously classified;

in fact, this precise observation has been pointed out

elsewhere (Barenstein, 2019).

In light of this observation, we performed two addi-

tional analyses on this dataset. First, we ran all of our

analyses on a further subset of the COMPAS data, remov-

ing all those entries with a ‘‘compas_screening_date’’ on

or after April 2, 2014, as suggested by Barenstein (2019).

This leaves 4511 data points in this second subset. Second,

we ran our algorithm and Zafar in the specific case of the

constrained classifier without race (the case in which our
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Table 1

Results for the various algorithms on the full subset of the ProPublica dataset described in the text, under various different

combinations of feature vectors (both with and without race) and constraints. Here, ‘‘C.’’ is ‘‘Caucasian’’ and ‘‘A.A.’’ is ‘‘African

American’’.

Algorithm Feature Pred. Pos. Overall Acc. C. Acc. C. FNR C. FPR A.A. Acc. A.A. FNR A.A. FPR

Ours, uncons. w/race 1023 0.75 0.73 0.50 0.05 0.76 0.31 0.13

Zafar, uncons. w/race 662 0.61 0.58 0.83 0.03 0.63 0.51 0.15

Ours, cons. w/race 718 0.68 0.71 0.54 0.05 0.66 0.54 0.03

Zafar, cons. w/race 840 0.61 0.60 0.66 0.16 0.61 0.52 0.19

Berk, cons. w/race 555 0.58 0.60 0.71 0.10 0.56 0.68 0.08

Ours, uncons. w/o race 1000 0.74 0.73 0.49 0.06 0.75 0.34 0.12

Zafar, uncons. w/o race 607 0.60 0.60 0.78 0.06 0.60 0.59 0.12

Ours, cons. w/o race 655 0.69 0.72 0.57 0.00 0.67 0.54 0.00

Zafar, cons. w/o race 111 0.48 0.53 0.97 0.00 0.44 0.91 0.01

Berk, cons. w/o race 361 0.53 0.56 0.88 0.03 0.52 0.75 0.07

Fig. 4. Plots of the tracked values of Θ
ϵ
for the full ProPublica COMPAS dataset both without (left panel) and with (right panel) race as a feature.

algorithm previously performed suspiciously well) again

on the full dataset, but with the dataset shuffled randomly

so that any potential temporal trend (or misclassified

data) was hidden. The results are shown in Table 2. In

comparison to Table 1, the results in Table 2 show that

the overall accuracy of our algorithm drops, while that

of Zafar increases, as one would expect. Comparing our

algorithm to that of Zafar in the cases of the subset, we

find that with the exception of the constrained, with-race

case, the results are roughly similar, though Zafar gener-

ally has slightly higher accuracy at the expense of greater

bias. The constrained, with-race results on this subset are

quite different between our two algorithms, however. In

this case, the overall accuracies of the two algorithms are

on par, but these are achieved in very different ways.

Our algorithm classifies far fewer individuals as positive

than Zafar in this case, ending up with quite high false

negative rates and very low false positive rates, with little

difference between the two races. On the other hand,

the Zafar algorithm actually classifies more individuals as

positive in this case than the unconstrained, with-race

case, yielding a moderately high false negative rate as well

as a low but notable false positive rate, and with still sig-

nificant disparity between the races. Finally, we see that

the Zafar results for the full shuffled dataset are on par

with those of the full unshuffled dataset, again with very

few individuals classified as positive. However, our own

algorithm performs very differently on the full shuffled

dataset than on the unshuffled dataset, classifying a very

large number of people as positive and ending up with

much lower accuracy (but still similar false prediction

rates). The results here are of course different from those

of Zafar on the shuffled data, but neither could really be

classified as better than the other; they are both quite bad

(see Table 2).

4.2. New Orleans data

For a second real-world example, we apply our meth-

od, along with the baseline methods, to a dataset of traf-

fic stops in New Orleans from 2009 to 2018. The data

come from the Stanford Open Policing Project (Pierson

et al., 2020) and contain information on the location, date,

and time of the stop, the race and age of the individual

stopped, whether a search was conducted, and whether

contraband was found. We focus on the subset of traffic

stops where the race of the individual was Caucasian

or African American and where a search was conducted.

After selecting this subset, we are left with 73,041 traffic

stops, and we evaluate the models on the first 70,000

stops. We then predict the label, defined as whether the

search resulted in contraband being found (y = 1) or not

(y = 0). We use as features the hour of the day (cate-

gorical, with eight bins containing three hours each), the

district (categorical, with seven options), the age of the

individual (integer values), and race (categorical). Race

1249



M.B. Short and G.O. Mohler International Journal of Forecasting 39 (2023) 1238–1252

Table 2

Results for the various algorithms on the restricted subset of the ProPublica dataset described in the text with all data points

with ‘‘compas_screening_date’’ of April 2, 2014 or later removed (first ten rows), or using the full dataset but shuffled randomly

(final two rows), under various different combinations of feature vectors (both with and without race) and constraints. Here,

‘‘C.’’ is ‘‘Caucasian’’ and ‘‘A.A.’’ is ‘‘African American’’.

Algorithm Feature Pred. Pos. Overall Acc. C. Acc. C. FNR C. FPR A.A. Acc. A.A. FNR A.A. FPR

Ours, uncons. w/race 408 0.70 0.72 0.83 0.05 0.68 0.58 0.13

Zafar, uncons. w/race 471 0.70 0.71 0.85 0.05 0.70 0.50 0.16

Ours, cons. w/race 197 0.67 0.72 0.84 0.05 0.63 0.83 0.03

Zafar, cons. w/race 568 0.67 0.69 0.73 0.13 0.66 0.53 0.19

Berk, cons. w/race 379 0.68 0.70 0.74 0.11 0.66 0.69 0.08

Ours, uncons. w/o race 395 0.69 0.72 0.82 0.06 0.68 0.61 0.11

Zafar, uncons. w/o race 416 0.70 0.71 0.83 0.06 0.69 0.57 0.12

Ours, cons. w/o race 17 0.63 0.70 1.00 0.00 0.59 0.97 0.00

Zafar, cons. w/o race 146 0.66 0.71 0.92 0.02 0.63 0.84 0.02

Berk, cons. w/o race 235 0.67 0.71 0.90 0.03 0.64 0.76 0.07

Ours, cons., shuffle w/o race 1985 0.49 0.47 0.25 0.71 0.50 0.24 0.78

Zafar, cons., shuffle w/o race 13 0.53 0.61 1 0 0.48 0.99 0

Table 3

Results for the various algorithms on the New Orleans traffic stop data described in the text, under various constraints. Here,

‘‘C.’’ is ‘‘Caucasian’’ and ‘‘A.A.’’ is ‘‘African American’’.

Algorithm Feature Pred. Pos. Overall Acc. C. Acc. C. FNR C. FPR A.A. Acc. A.A. FNR A.A. FPR

Ours, uncons. w/race 12536 0.63 0.69 0.61 0.25 0.61 0.51 0.35

Zafar, uncons. w/race 2409 0.77 0.83 0.98 0.01 0.76 0.88 0.07

Ours, cons. w/race 8967 0.68 0.69 0.66 0.23 0.67 0.67 0.24

Zafar, cons. w/race 8 0.8 0.83 1 0 0.79 1 0

Berk, cons. w/race 6677 0.73 0.77 0.77 0.13 0.72 0.69 0.18

Ours, cons., shuffle w/race 9022 0.66 0.67 0.73 0.25 0.66 0.72 0.25

Zafar, cons., shuffle w/race 4708 0.76 0.78 0.84 0.11 0.75 0.78 0.12

is included as a feature here because the data generally

appear unbiased when race is not explicitly included.

We only evaluate the prediction results over the final

35,000 data points; for Zafar, we only train on the first

35,000 data points. Unlike the cases above, here we use

a threshold for positive predictions of τ = 0.25; this

threshold leads to predictions that are not completely

uniform, while the threshold of τ = 0.5 generally leads

to almost all negative predictions. All other parameters

are the same as those used for the COMPAS dataset. Given

that these data specifically include the time of day and the

location of the stop, it is clear that temporal trends could

play a large role, given that stops made at varying times of

day and/or varying locations may be more or less likely to

result in contraband being found, and there could be links

between where a stop was conducted and when it was

conducted. So, this dataset represents a natural venue to

explore whether our method might offer advantages over

methods tailored to more static data. To test this, we also

ran our algorithm and Zafar on a shuffled dataset, as with

the COMPAS data above. Results are presented in Table 3.

Comparing the results, we see that our unconstrained

algorithm gives by far the highest number of positive

predictions, and the results are clearly biased with signif-

icantly different false prediction rates. The unconstrained

Zafar algorithm seems to just predict most individuals

as negative, with the results still quite biased. Our con-

strained algorithm reduced the number of positive predic-

tions significantly from the unconstrained version,

actually yielding higher accuracy by doing so, and in a

way that makes false prediction rates essentially equal

between groups. The constrained Zafar algorithm is essen-

tially all negative predictions here. Berk predicts a number

of positives, approaching (but less than) our constrained

number, with correspondingly higher accuracy. But the

false prediction rates are not especially similar between

the groups, so Berk does not reduce the bias to the level

that our algorithm is able to. Finally, we see that for the

shuffled dataset, our algorithm is still able to produce

an essentially unbiased result, but with lower accuracy

than the standard dataset. Interestingly, though there are

more positive predictions overall for this shuffled dataset

than for the unshuffled version, for both our algorithm

and Zafar, the false negative rate increases quite a bit

for the shuffled version of the data with our algorithm,

indicating that these increased positives are going to the

wrong people. We also note that the behavior of Zafar on

the shuffled dataset is quite different from the normal

dataset, with vastly increased numbers of positive pre-

dictions. These differences in the results between the two

versions of the dataset give some indication that there are

some temporal trends within the data that are lost upon

shuffling.

5. Conclusions

In this work, we introduced a fully Bayesian track-

ing algorithm for fairness-aware classification. The model

sequentially tracks potential changes in the distribution

of features, along with false positive and negative rates,

and dynamically adjusts the model to mitigate disparate

misclassification at each step. We demonstrated the ef-

fectiveness of the algorithm on synthetic and recidivism

datasets, showing improved performance with regard to

disparate misclassification compared to bias-reducing

methods that are trained in batch offline.
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The proposed methodology has several limitations that

should be noted. Here, we assumed that class labels were

fully observed in real time, whereas in practice, some

labels are unobserved and other labels may only be avail-

able after some delay. For example, in the case of traffic

stop searches, the label as to whether contraband is found

is immediately known and available. However, in the case

of recidivism, the label may be delayed by several months

or go unobserved.

The accuracy metrics considered here, namely group

false positive and negative rates, may be different from

those that matter to policymakers. In certain cases, pre-

cision and recall may be appropriate metrics and could

be incorporated into Eq. (26). In this work, we focused

on group-level, rather than individual-level, fairness. The

method may introduce potential bias as it relates to indi-

vidual fairness (Dwork, Hardt, Pitassi, Reingold, & Zemel,

2012), the notion that individuals with similar features

should receive similar algorithmic scores and decisions.

Due to the dynamic nature of the proposed algorithm,

an individual at an earlier time may receive a different

decision than an individual with similar features at a

later time. However, at each fixed time, our methodology

consisted of a single model across individuals, and thus

yielded similar predictions for individuals with similar

features. We note that the model performed well even

when the sensitive variable was not included as a feature.

We also note that the method will likely be inefficient in

high-dimensional settings and that the threshold param-

eter α in Eq. (26) needed to be tuned by hand. Removing

these limitations will be a focus of future research.
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