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1. Introduction

Algorithmic scoring is employed in a variety of deci-
sion making situations including parole and bail (Berk,
2017; Dressel & Farid, 2018), loan approval (Mothilal,
Sharma, & Tan, 2020), and credit scoring (Wang, Hao,
Ma, & Jiang, 2011). In the case of bail decisions and the
well-known COMPAS algorithm, false positive rates are
much higher for African American defendants compared
to Caucasian defendants (Dressel & Farid, 2018). Recently,
a number of approaches have been introduced to improve
the fairness of machine learning algorithms. In Hardt,
Price, and Srebro (2016), disparate group thresholds on
logistic regression predictions are used to improve fair-
ness after model training. In Lum and Johndrow (2016),
the authors transform input features to achieve the in-
dependence of predictions from group membership. Of
particular relevance for us is the work of Zafar, Valera,
Gomez Rodriguez, and Gummadi (2017), Zafar, Valera,
Gomez-Rodriguez, and Gummadi (2019), in which a pe-
nalized loss is used in training in an effort to match false
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positive and negative rates across groups; this particular
method is discussed in more detail below.

A number of fairness-aware forecasting methods have
been introduced in the literature specifically for forecast-
ing recidivism. In Berk et al. (2017), the authors con-
sider a convex surrogate loss where the step function
representing the decision at the cutoff is replaced by a
linear approximation (simply the score itself). Fairness
can also be encouraged by post-processing forecasting
scores (Wei, Ramamurthy, & Calmon, 2020). Other work
has emphasized the interpretability of recidivism fore-
casts (for example, through super-sparse integer models),
which may be a more immediately achievable goal (Rudin,
Wang, & Coker, 2018; Ustun & Rudin, 2019). Research has
shown that recidivism forecasts utilizing limited feature
sets can underperform human decision making (Dressel
& Farid, 2018). However, algorithmic forecasts outper-
form humans when the feature set is expanded (Jung,
Goel, Skeem, et al., 2020). In all of these studies, offline
training is used and predictions are evaluated in batch
on a test set. Furthermore, these methods do not usually
quantify uncertainty in estimates of fairness or disparate
misclassification.

In this paper, we introduce a method for mitigating
disparate misclassification between groups where the dis-
tributions of covariates or other relevant parameters may
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be changing over time and need to be tracked. Under
this scenario, a fairness-aware algorithm trained offline
may deviate from fair predictions over time due to the
changing distribution of the data. We therefore propose
a Bayesian tracking method that estimates changing co-
variate and outcome probability distributions in real time
and dynamically modifies decisions to mitigate disparate
misclassification in predictions. The method has the ad-
ditional benefit of allowing for uncertainty quantifica-
tion in fairness-aware classification. To date, Bayesian
approaches to fairness have been limited to offline stud-
ies (Dimitrakakis, Liu, Parkes, & Radanovic, 2019; Simoiu,
Corbett-Davies, Goel, et al., 2017) and, to our knowledge,
this is the first to consider the Bayesian fairness tracking
problem. We also note that there has been recent research
on dynamic logistic regression with Bayesian variable se-
lection (Bakerman, Pazdernik, Korkmaz, & Wilson, 2022).
However, such research has not addressed the question of
fairness in dynamic logistic classification.

There are many possible domains where algorithmic
decisions may need to be made sequentially under
changes in the underlying distribution of the data. For
example, issues of bias and fairness may arise in other
criminal justice applications beyond recidivism, parole,
and bail decisions, such as traffic stops and hotspot polic-
ing based on spatial crime forecasts. These scenarios are
known to present complex spatial-temporal dynamics
with potential feedback (Brantingham, Valasik, & Mohler,
2018; Lum & Isaac, 2016; Mohler, Raje, Carter, Valasik, &
Brantingham, 2018). The methodology may also apply to
growth-stage technology companies that are expanding
into new geographic regions and customer segments. For
example, a peer-to-peer lending company may benefit
from a sequential Bayesian approach to predicting de-
faults on loans. Bias of lending decisions may change as
such a company grows from an early adopter customer
base into newer and larger markets. More generally, since
fair prediction algorithms are of specific importance to
social systems and applications, and societal changes can
sometimes occur rather abruptly—in the form of elections,
new laws, the rapid adoption or abandonment of fads,
etc.—it seems prudent to develop prediction algorithms
that are able to handle such changes gracefully should
they arise, while still being able to ensure the fairness of
these predictions.

Finally, it is known (Zhang, Wu, & Wu, 2017) that
classification algorithms can lead to outcomes that display
certain kinds of bias when the distribution of feature
vectors varies from one group to the next, even if the
algorithm does not explicitly include knowledge of the
group membership when making its classifications. One
could attempt to counteract this by having the algorithm
explicitly take into account the group membership of
the individual in question when making a prediction or
classification, for the purpose of removing the implicit
bias. However, this is often deemed undesirable and, in
some real-use cases, may be illegal. Instead, we develop
a tracking algorithm that need not (and probably should
not) explicitly take into account an individual's group
membership in order to make the prediction, but instead
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applies the exact same method uniformly to all individ-
uals, while nonetheless attempting to guarantee similar
statistical results across groups.

The outline of the paper is as follows. In Section 2,
we present the formulation of the problem that we study
and the details of our Bayesian algorithm. In Section 3,
we demonstrate the effectiveness of the approach on
synthetic data when the ground truth is known, and in
Section 4, we illustrate the application of the methodol-
ogy to the well-known ProPublica COMPAS dataset and
a dataset on traffic stops. We discuss our results and
directions for future research in Section 5.

2. Methodology

Our algorithm shall accept as input streaming, N di-
mensional feature data Xx;, where subscript i denotes the
time at which this specific data point arrives for pro-
cessing; we assume that no two individuals’ data arrive
simultaneously, so i also implicitly references individuals
as well. It is not strictly necessary that the data actually
be generated at different, well-ordered points in time.
However, as a tracking algorithm, one of the strengths
of this method is that it is built to handle data that
are dynamically evolving in some way, so we cast the
problem in this light. Since our main concern here is
providing an algorithm that is unbiased (in the sense of
matched false positive or negative rates) when applied
to data from individuals of different groups, we stipulate
that each feature vector X; is accompanied by a cate-
gorical value z; that indicates the value of a sensitive
variable (sex, race, age, etc.) for the individual i. We as-
sume that feature vectors for individuals with a specific
sensitive variable value z are drawn from a probability
density D,(x), which may be changing in time; this is
discussed in more detail below. The algorithm then pro-
duces binary classifications y; € {0, 1} for each individual;
depending on the domain in question, this classification
could correspond to a belief that the individual will or
will not default on a loan, commit a crime in the near
future, or soon become homeless, among many other
possibilities. We differentiate here between the predicted
classifications y; and the true classifications y;, which are
assumed to derive from some probability mass function
that depends on x;, potentially z;, and some generally
unknown parameters. Note that in some domains, the
true classifications may not always be available, or even
in some sense exist, or may only become available after
some time has passed after the predicted classification
is made. For the purposes of this study, we simply as-
sume that y; exists and is known immediately after the
predicted value y; is generated. Crucially, we insist that
the classifications our algorithm makes for the different
sensitive variable groups must approximately match in
terms of false prediction rates, which is one common
choice for these kinds of algorithms, as mentioned above.
But we note that other bias/fairness metrics may be used
as alternatives to this. See Mehrabi, Morstatter, Saxena,
Lerman, and Galstyan (2019) for a review of fair machine
learning, including a summary of the different metrics
used in practice, and Corbett-Davies and Goel (2018) for
a discussion of the tradeoffs.
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The main point of comparison for our model will be
the method of Zafar et al. (2017, 2019). This is largely
because their method (hereafter, the Zafar method) uses
the same notion of bias as we have chosen here-disparity
in false prediction rates between groups—and also uses
(but does not specifically depend on) a logistic classifier,
which we also adopt below. Given the same inputs as
described above, the Zafar method is

N
minimize: — Z log [P(yi10, X;)]
i=1
subject to: |Cov(z, gy(y, X))|
|

|Cov(z, fo(y, X))

where P(y;|6, X;) is given in (6) below for a logistic clas-
sifier, and z is the sensitive variable. Here, gy(y, X) and
fo(y, X) are functions that serve as measures of false neg-
atives and false positives, respectively, and are given by

g(y, x) = min (0, (2y — 1)ydy(x)) , (2)
Jo(y,X) = min (0, (1 — y)(2y — 1)ds(X)) , (3)

where dy(x) is the signed distance from the decision
boundary (dictated by 6) for an individual with feature
vector X, such that if dy(x) > 0, the person is classified as
positive (y = 1), and otherwise is classified as negative
(¥ = 0). The parameters c; and ¢y serve to limit potential
covariance between sensitive variable values and false
predictions, hence attempting to equalize false predic-
tions between different groups, and are chosen such that
¢ = mc,, where ¢, is the value of the given covariance
when using an unconstrained classifier, and m < 1is a
parameter chosen by the user. Whereas the Zafar method
solves the optimization problem in (1) on a fixed training
dataset, our goal is to develop a dynamic method for
tracking and mitigating disparate false prediction rates
that are updated after each new observation, thus al-
lowing for situations where the underlying covariate or
classifier distributions are changing over time.

A second point of comparison we analyze is a simple,
online version of the model detailed in Berk et al. (2017)
and Mohler and Porter (2021). The model, which we will
refer to as the Berk model, consists of a linear regression,
y; = 07x;, estimated using a convex surrogate loss, where
the step function representing the decision at the cutoff
is replaced by a linear approximation (simply the score

itself):
)2

MSE + A( >
X; €S00
Here, Soo is the set of individuals of sensitive variable
group O in the negative label class (y; = 0), and Sy is
the set of individuals with a sensitive variable in group 1
in the negative label group. The penalty term encourages
the average scores over the negative class (y; = 0) to
be matched across the sensitive variable (as A increases).
Note, then, that this method does not attempt to match
results for those in the positive class, though a similar
penalty to encourage matched false negative rates or pre-
cision could easily be added. Because the loss function in

(1)

<c
<cf,

QTX,'
[Sool

QTX,'
1S10l

>

X;€S10

(4)
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(4) is quadratic, there is an analytical solution (Mohler &
Porter, 2021). The model as originally specified in Berk
et al. (2017) is not dynamic, but to make it so, we estimate
the model parameters iteratively over sequential batches
of data (throughout the paper, we use a batch size of 500
samples). Let b; be the batch index containing data point
i. Letting 0, be the parameters estimated by minimizing
Eq. (4) from the samples in batch b, the dynamic update
is then 6, = pBy_1 + (1 — p)fy. The prediction for data
point i is then made using parameters 6,,_; (we do not
make predictions for those points in the first batch).

The remainder of this section is broken into three
parts. Our main contribution is in Section 2.2, which
presents a new method to remove disparate misclassifica-
tion between groups in a dynamic Bayesian context. This
method requires some way to produce classifications of
individuals based on their feature vectors, and some way
to estimate the feature vector distributions of individuals
based on their sensitive variable value. In Sections 2.1 and
2.3, we discuss how a Bayesian classifier and Bayesian
feature vector tracker may be implemented to accomplish
these tasks, respectively. It is important to emphasize,
though, that the specific methods we use in these two
sections are not of fundamental importance to the main
contribution here, and that our method for removing
classification bias could be paired with other Bayesian
classification and/or feature vector trackers, with only
relatively small changes in the bias removal algorithm.
That said, the choices made below are helpful in that
the posterior distributions are all assumed to be normal,
allowing for some simplifications of various integrals that
appear. We note that in many real-world scenarios the
features themselves, and/or the posterior distributions
of parameters, may violate the normal assumption we
make in deriving the algorithm. However, we find that
our Bayesian logistic tracker works well in practice on
the synthetic and real data examples we consider in this

paper.
2.1. Bayesian logistic tracker

To perform the classification task, we employ a
Bayesian logistic tracker. This choice is made partly for
simplicity, since there are well-known methods for
Bayesian logistic tracking (Bakerman et al., 2022; Penny
& Roberts, 1999). Further, this provides for a more direct
comparison to the Zafar algorithm described above. How-
ever, this portion of the algorithm could be accomplished
by an alternative classifier if desired, so long as it can be
implemented in a Bayesian way that results in a distri-
bution over some kind of parameter space that is used to
make predictions. Since this is not the main contribution
of this work, which is in the method for removing bias
from the classifier, we do not test any alternate classifiers
here; this is an area where future work may make a
contribution.

The logistic model assumes that the true classifications
y; are Bernoulli random variables with probability

eﬂiTx,-
p(xil0;) = T e’ (5)
14¢€%%
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where 6; is an N-dimensional vector of feature weights
at time i. The probability of observing a specific y; for an
individual with feature vector X; is given by

P(yi16;, x;) = p(xi|6;Y (1 — p(x;]6;))' " . (6)

Using this equation, the classifier algorithm attempts to
recursively generate an estimate for 6; in the form of a
probability distribution, given a sequence of observations
{x;} and {y;} for j <1, as described below.

Noting that the model (6) is nonlinear, two prominent
possibilities to perform the tracking are the unscented
Kalman filter and the extended Kalman filter. For our
purposes, we employ an extended Kalman filter, though
we make no claim to its superiority over the unscented
Kalman filter, other than its relative speed in our particu-
lar case. The resulting classifier was presented previously
(see Niranjan, 1999 for one such instance), but we briefly
provide its derivation here, largely to provide an oppor-
tunity to define several key variables and concepts of our
algorithm.

Let us now assume that the prior belief over 6; be-
fore incorporating observation y; is a multivariate normal
with mean 6;;_; and covariance matrix Gj;—;, denoted
N(6;16iji—1, Gyji—1). We further insist that the posterior be-
lief over 6; after incorporating observation y; is a mul-
tivariate normal with mean 6; and covariance matrix G,
N(6;10;, G;). Under these assumptions, Bayes’ rule, with
logarithms applied to all terms, gives

- % (0i - 5:‘)T ¢! <0i - 5:‘) = y;In[p(x;|6;)] +
(1 =y [t~ pxio)] — 5 (6~ 81 )

C,—EL (9i - 0:‘\:'71) +D, (7)
where D is a constant unrelated to #;. We now Taylor
expand the logarithmic terms on the right-hand side of (7)
up to the second order around the point 6; = 6;;_; and,
after some algebraic manipulation, obtain our iterative
update equations by matching the linear and quadratic
terms in #; on both sides of the equation, finding

G 1=yl +hh (8)
0; =0y — Gf; 9

where

fi = (=1Yxp ((—1)yixi|§m71> ; (10)

by = xip ((—1)" % [Byi1) exp (—178,_x/2) . (1)

Because of the special form of the matrix used to up-
date Ci‘1 in (8), Eq. (8) can be computed very efficiently,
without the need for any matrix inversion, by using the
rank-one update rule:

Gyi—1hih] Gji_s
1+h/Gsh;
The tracking algorithm is completed by providing a

model for the dynamics of ;, allowing one to find the
prior parameters 6;;; and Ci;q;; for the next observation

G = Gji—1 — (12)
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from the posterior parameters #; and C; from the previ-
ous observation. For our purposes, and lacking any more
informed model, we simply make the common choice
that ; is undergoing a simple random walk 6;; = 6; +
N(0, Q); this choice maintains the normality of the prob-
ability distribution. Then, we simply have 611, = 6;
and Giyq; = G + Q. The value of covariance matrix Q
affects how well the algorithm is able to track changes
over time, with too high a value causing the tracked value
to fluctuate too rapidly, and too low a value causing the
system to adjust too slowly to changes in the tracked
variable.

2.2. Bias estimation and elimination

Given our streaming data and the output of our
Bayesian tracker (9)-(12), one can construct predictions y;
for the classifications y; by first computing the expected
probability for an individual with feature vector x;,

p(X10i—1, Cyji—1) = /N p(Xi|0;)N (0101, Ciji—1)d6; , (13)
R
and then thresholding this probability by a value t such
thaty; = 1if p > v and y; = 0 if p < 7; generally, and in
the remainder of this work unless explicitly stated other-
wise, T = 0.5. A simpler version of the integral above can
be found by first noting that p(x;|6;) depends only on the
argument q; = o{xi and by employing the well-known

property (Tong, 2012) that if 6; ~ N(6;i—1, Cii—1), then
07 x; ~ N (B,

ili—

1Xi, X! Gji_1X;). Then, we have

o di

g e _r
p(xil0ii—1, Ciji—1) = ‘[m WN(QI’WI‘“_]XiaxiTCi\i—lxi)dCIi .

(14)

The above integral has several known approximations
that can be used to simplify the computation, and we
opted to use the approximation from Crooks (2013).

However, as mentioned above, under many circum-
stances these predictions will show bias in terms of false
prediction rates when comparing between those predic-
tions made for individuals of differing sensitive variable
values. For example, consider the case in which the sen-
sitive variable value z; may only take one of two possible
values, which we will simply choose to be 0 and 1 for
convenience. Let us assume that the feature vectors Xx;
for those individuals with sensitive variable value O are
well described by a probability density Dg(x;) and simi-
larly D1(x;) for individuals with sensitive variable value 1.
Then, if we were to employ posteriors 6; and C; to make
hypothetical predictions for more individuals at time i,
the expected instantaneous false negative rate and false
positive rate for sensitive variable value z, FNR;(z) and
FPR;(z), respectively, would be

Jen 15(xi|§i,ci)<,5(xi|6i, G)D,(X;)dX;

FNR;(z) = iG)<t , (15)
Jen D(Xil6:, C)D(X;)dx;
FPR(z) = Jan 1g(xi|§i,q)>i[1 _7177(xi|0i, G)ID;(x;)dx;
Jan[1 = P(xi]60;, CID,(x;)dx;
(16)
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where 1 is an indicator function. Similarly, the expected
instantaneous accuracy would be given by

ACCi(z) = /N lﬁ(xi|§i,ci)>rﬁ(xi|6i’ G)D(x;)dx; +
R

/R picyoe |1 BB G)] D060 (17)
It is important to note that discrepancies between the
expected false prediction rates for the two sensitive vari-
able values can arise even if the posterior distribution
parameters 6; and C; are correctly specified—that is, even
if they themselves are not biased due to flawed data being
used to estimate them. This is simply due to the fact that
Do(X;) and D1(x;) may differ (Zhang et al., 2017).

If we assume that #; and C; are indeed correct, but the
false prediction rates generated by using (15) and (16)
are unequal between the two groups, then the only way
to possibly equalize the false prediction rates, which is
our goal, is to change the indicator function term present
in the integrals above, which represents the prediction
methodology. The method we propose to equalize false
positive and negative rates leverages a surrogate multi-
variate normal distribution with parameters ©; and C;
rather than the distribution with parameters #; and C;.
The details of how we obtain these parameters are given
below in Eqs. (22) and (25). The intuition is that the
posterior distribution of ®; and C; will concentrate the
probability density in a subset of regions where the pos-
terior of #; and G is concentrated, but such that the
false positive and negative rates are more closely matched
across the sensitive variable groups.

Using these newly proposed parameters, then, our
false prediction rates and accuracy are

~ Jan Ty ,.c;) < P(Xil0;, G)D,(X;)dX;

FNRi(2) L L , (18)

Jan D(Xil0;, C)D,(X;)dX;
FPR(2) = Jan IE(Xiléi’Ci)>i[1 iﬁ(xilo,-, C)ID,(xi)dx;

Jan[1 = D(xi0;, CHID,(xi)dx;

(19)
ACCi(z) = /N Ly o,.c;)- - P(Xil0i, G)D(x;)dx; +
R
/ T5x@:.cp)<c [1 — p(xi6;, Ci)] D, (X;)dx; . (20)
RrRN

It is important to note in these equations that the dis-
tribution with parameters 6; and G is still assumed to
accurately indicate whether or not an individual will ex-
hibit y; = 0 or y; = 1, whereas the predicted value
yi is made using our newly proposed, ideally unbiased
distribution. The goal, then, is to generate posterior pa-
rameters ©; and C; that reduce or eliminate differences
in false prediction rates, while still retaining some level
of accuracy.

To detail how we accomplish this, we begin first by
defining our precise metric for measuring expected pre-
diction bias at time i:

A= \/[FISRi(l) — FPRi(0)I2 + [FNRi(1) — FNRy(0)2,  (21)

1242

International Journal of Forecasting 39 (2023) 1238-1252

where our goal is to make A; < € for some chosen
small € value. Suppose, then, that we possess some prior
values for ®;;_; and C;;_y, which at the beginning of the
algorithm must be initialized in some way, presumably
to the same values as 5”0 and Cy)o. Given data point Xx;, y;,
we then use our Bayesian classification tracker to update
them, via

Ci = Cyps — Cili—ll'lTiH,'T(Ci\i—l ’ (22)
1+ H; Cyi—H;
8, =0;i_1 — CF (23)
where
Fi = (—1)ixp (—1)'%i©yi-1) . (24)
H; = xp ((_1)1_yixi|§i|i—l) exp ((—1))"'6;1’71?(1‘/2) ;
(25)

0; and G are also updated after this observation, as
described above in (8)-(9). Upon obtaining these new
posterior values ®; and C;, we then evaluate (15)-(21).
Importantly, at the end of this series of calculations, we
find one of two things. One possibility is that A; < e,
in which case the posteriors ©; and C; accomplish the
goal of creating predictions with little or no bias, and
the algorithm can simply proceed to the next observation
without any need to address classification bias at this
time. The other possibility is that A; > ¢, in which case
the posteriors ®; and C; do not accomplish their intended
goal of creating unbiased classifications, and must be
modified in some way in order to meet this goal. We now
detail how this modification is done.

First, we again recognize that ®; and C; are parameters
describing a multivariate normal distribution. Assuming
we are dealing with the case where the current distri-
bution of ®; and C; causes our bias metric to exceed its
threshold, it must be true that the false positive and/or
false negative rates differ too substantially between the
two groups. However, we hypothesize that there are some
subregions where the posterior probability density is con-
centrated that, if they were the only regions of support
when calculating p—that is, if the integral in (14), properly
normalized, were only over those subregions and not
all of the space—then the resulting bias metric would
fall below its threshold. So, to construct our prior dis-
tribution for the next step of the algorithm, we seek
to alter our current posterior distribution by retaining
only those regions over which the bias metric would be
below its threshold, and rejecting the rest of the dis-
tribution. In practice, we achieve this via Monte Carlo
sampling. Specifically, we first sample from the current
posterior multivariate normal distribution described by
N(6:1©;, C;), My potential predictor coefficient vectors,
each denoted by a é,-j, where index j runs from 1 to
Me. Then, for each of these sampled predictor coefficient
vectors j, we calculate FNR;(z) and FPR;j(z) using the
right-hand side of (19)-(18) but with the indicator func-
tion replaced with 1yx16;) that is, we use the sampled
predictor coefficient vectors to make the hypothetical
predictions. We can then calculate the bias A; for each
sampled vector, retaining those samples whose A; < €
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and rejecting those whose A;; > e. After processing all Mg
samples in this way, the remaining, non-rejected samples
all represent regions of the posterior that lead to unbiased
predictions.

However, we note that it is easy to construct predic-
tor coefficient vectors that yield classifications that are
completely unbiased, but that have low predictive accu-
racy. Specifically, the predictor coefficient vector ®; = 0
automatically classifies all individuals as positive (assum-
ing © 0.5), which leads to a false positive rate of 1
and a false negative rate of 0 for both groups, making
the predictions unbiased via our metric. And, depending
on what the initial values for the priors of the various
tracking parameters are at the beginning of the algorithm,
this particular predictor vector may be quite likely to be
chosen in our sampling method. But (depending on the
nature of the true classifications) this particular unbiased
classification will generally lead to low accuracy in com-
parison with the standard, biased classifier. So, we further
restrict our unbiased samples to those whose predictive
accuracy ACCy, which is calculated via the right-hand
side of (20) but with the indicator functions replaced
with 1,,6,). lies above some threshold in relation to the
predictive accuracy of the standard, biased classifier in
(17). Specifically, we require that

min [AéCy(z)/ACCi(z)] _— (26)
where 0 < o < 1. In our various experiments (detailed
below), we found that the obtained solutions depend on
the choice of « (for a given ¢) in a relatively straightfor-
ward way. Specifically, there appear to be roughly two
transition points for the solutions, call them «; and «y,
with oy < «y. For values of « < o, solutions tend
toward the trivially unbiased answer of classifying all in-
dividuals as positive (or possibly negative), with generally
low accuracy. With « > «ay, there are generally no fair
predictor coefficients that exhibit the required accuracy,
in which case we abort the algorithm and simply state
that it was unable to attain the requested fairness and
accuracy combination. Finally, for ¢y < a« < ay, the
algorithm is able to find numerous predictor coefficient
vectors that fit the required bias and accuracy constraints
while retaining a non-trivial classification of individuals,
and importantly seems to be generally independent of
the specific o value used. These threshold « values can
be found via trial and error, which in our experience has
been easy to do, given that we have generally observed a
significant separation between the two threshold values.

Finally, after processing all My samples for both lack
of bias and desired relative accuracy, the mean ©; and co-
variance matrix Cj for that subset meeting these two cri-
teria are computed, and we simply use those to construct
our prior for the next step in the tracker via ®;41; = @f
and Ciyq; = Cf + Q. We see, then, that our method
involves tracking two (potentially) different coefficient
vector distributions using (8)-(12): the “true” distribution
N(6;16;, G;) that is never used to make predictions y but
is used to predict the current expected bias level and
accuracy, and the “unbiased” distribution N(Oi@f, CP)
that is used to make predictions y and is forced to produce
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a bias metric A that is below our threshold € after every
data point y; is assimilated via the Monte Carlo sampling
method described above, while retaining at least some
relative measure of accuracy.

Of course, the sampling method for constructing our
unbiased distribution involves evaluating the integrals in
(19)-(20) for each of our Mg potential predictor coeffi-
cient vectors, which is easier said than done. There are
at least two difficulties: the integral may be over a high-
dimensional space, and the integrals require knowledge of
D,(X;). We deal with the first problem by performing the
integral via Monte Carlo methods, at this point assuming
that estimates for the distributions D,(x;) are known; be-
low, we detail how these may be estimated. Specifically,
we sample M, feature vectors X, from each distribu-
tion D,. For each sample, we compute its corresponding
P(Xc|60;, C;) and p(X.|©;) via (5) and (14), respectively.
Then, the integrals are approximated as

Y iy )< PRelBi, i)

FNR;(z) = — (27)
ZQ/IQ p(X¢10:, G)
i S e | 1~ PR )
FPR;(z) = v — ; (28)
k1 [1 — D(X¢|0:, Ci)]
1
ACCH2) = D~ Vyigoy-PRelBi G) +
X k=1
1 &
D seyer | 1 - PR )] (29)
* k=1

and the integral within (17) is evaluated similarly.
2.3. Bayesian feature tracker

The only remaining portion of our algorithm to de-
scribe is our method for estimating the distributions D,
for the feature vectors x of individuals with sensitive
variable value z. Similarly to the classification portion of
our algorithm, there are many methods of tracking evolv-
ing feature distributions from streaming data. Since the
particular method used is not the focus of our work, and
in theory any Bayesian tracker that allows one to estimate
distributions of feature vectors over time could be em-
ployed, we simply adopt a standard approach. Noting that
the N-dimensional feature vectors will generally all have
an entry of 1 as their final component, allowing for a con-
stant probability offset for all individuals in the dataset if
necessary (as is standard in logistic regression), the distri-
butions D, are really N — 1-dimensional in our case. Then,
we assume that the first N— 1 entries of each x for a given
sensitive variable value z are drawn from a multivariate
normal distribution N(x|u,;, X ;). The parameters pu, ;
and X,; are themselves unknown, but we select their
prior to be a normal-inverse-Wishart distribution with
hyperparameters my jji_1, Az ji—1, @z,iji—1, and v, ;i_1; note
that it is required that A, i1 > 0, v, 3-1 > N — 2, and
@, ji—1 be a positive definite N — 1 x N — 1 matrix. This
choice is the conjugate prior of the multivariate normal
distribution assumed for the observations X, so that a
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relatively simple Bayesian update rule for the posterior
hyperparameters is known:

)\z,i = )\z,i|i—1 +1 (30)

m,; = Az jli—1Mg i1 + X (31)
)\z,i

b, =Py + )\Z’iz‘li_l (X — My, i—1)(X — M, i-1)" (32)

Vzi = Vi1 + 1 (33)

Given these posterior hyperparameters, the posterior
predictive distribution D, for x for sensitive variable value
z is multivariate ¢t:

Ari+ 1
#@Z,l) . (34)
)Lz,i(vz,i - N+ 2)

It is this posterior predictive distribution that is used
to generate the samples X, used in (27)-(29). For the
multivariate ¢t to have a finite mean and variance, we need
vzi > N, which is more restrictive than the requirement
above.

We complete the specification of the feature vector
distribution tracker by providing a means by which the
posterior parameters’ values after step i are used to con-
struct the priors for step i + 1. We use m, jji_1 = m,;_q,
(pz,i\i—l = ¢z,171- and Vz,ili-1 = Vz,i—1- Since A effectively
serves as a factor that weighs how much the prior mean
contributes to the posterior mean, and because we are
interested in scenarios where the mean may be evolving
over time, we do not want A to continually increase
after each observation, as (30) might indicate. Hence, we
simply set A, jji—1 B. If B is very small, then the
estimated mean will fluctuate rapidly with each new data
point and potentially cause the tracker to lose accuracy,
whereas if 8 is very large, then the mean will fluctuate
very little, potentially causing the tracker to have a long
lag time between a true change in mean and when that
is detected. Generally, an intermediate value will provide
a compromise between these two extremes, allowing a
true change in mean to be detected relatively quickly,
while not causing the mean to fluctuate by large amounts
between every data point.

We summarize the full algorithm in Algorithm 1, which
sequentially updates the posterior as new data is ob-
served.

Dy(Xi) = ty, ;—N+2 (Xilmz,i,

3. Results on synthetic data

We first illustrate our method on synthetic datasets,
with both static and dynamic parameters.

3.1. Static parameters

We use a low-dimensional case of N = 3. The data
are generated such that the static mean of Dy is g
[—1; —3] while for D; we have w; = [2; 3]; both use
XY =[5, 1; 1, 5]. To generate the simulated classifications
yi, each individual’s z; is first determined uniformly from
{0, 1}, and x; is generated via the appropriate D,. The dot
product of this feature vector with the vectorv = [1, —1]
is taken, such that q; = wvx;. Then, if ¢; > 0, we let
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Algorithm 1 Bias-reducing logistic regression tracking
algorithm

Sequential input: M feature vectors X;, sensitive vari-
able values z;, and true classifications y;; bias threshold
€, accuracy threshold «, covariance matrix Q, and
feature tracker sensitivity g
Initialize: priors 91|0, C1|0, @1‘0, (C]‘o, )\.Z.”o, m; 1o, ¢Z,1|0'
and Vz,1/0
fori=1:Mdo
7 <« Zi
Find Az ;, myz;, &z, and vz ; using (30)-(33)
forz 7 do
Set posteriors A, ;, m; ;, ¢, ;, and v, ; to their current
prior values
end for
Find G; and 6; using (9)-(12)
Find C; and ©; using (22)-(25)
for all z do
Generate set of M, feature vectors {X}, ~ D, from
(34)
Find ACCi(z) from (17) with integrals evaluated as
in (29)
end for
B < O
forallzdo R
Compute FNRjo(z) and FPRp(z) using (27)-(28)
end for
Compute Ajy using (21)
if Ay < ¢ then
@f <~ O, Ci <G
else _
Generate set of Mg coefficient vectors {®;} ~
N(©;, C)
forj=1: Mgy do
forallzdo R )
Compute FNRy(z), FPR;(z), and ACCy(z) using
(27)-(29)
end for
Compute Aj; using (21)
if A;j > € or accuracy goal (26) is violated then
Remove entry j from set {©);}
end if
end for _ _
©; < mean ({6}), C{ <« covariance ({&})
end if _
Set priors mg i q)i, D i1)is Vz,it+1)i» and Oiy1)i to their
current posterior values
Oipi < 0;,Cipyp < Cf +Q, Gy < G+ Q, and
Azt < B
end for

pi = 0.7, while if g; < 0, we let p; = 0.3. Finally, the true
classification y; is Bernoulli with probability p;. Note, then,
that the true classifications are not generated via a logistic
function, though the feature vectors are in fact generated
via multivariate normal distributions. We generate 10,000
such data points. Initial values for the various tracking
variable priors are 5”0 = [0;0;0], Cyp = 0.0001I3,
m; 10 = [0; 0], Az10 = B, Pz10 = b, and vz 10 =N + 1.
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Fig. 1. Plots of the tracked values of 8 (top left), ®° (top right), m, (bottom left, shown with the true values p, as dashed lines), and the estimated
unbiased false prediction rates FNR(z) and FPR(z) (bottom right) for the static parameters described in the text.

We use € = 0.05, « = 0.85, Q = 0.00001I3, and 8 = 49
(this value was chosen to accomplish the compromise
in tracking mentioned above). Plots in Fig. 1 show the
evolution of the estimated values of 6, ©, m,, and the
false prediction rates FNR(z) and FPR(z). The estimated
covariance values are X, = [5.00, 0.98; 0.98, 5.05] and
Y1 = [5.11, 1.05; 1.05, 5.02] after all points have been
tracked.

Importantly, one can also determine the actual false
prediction rates after the fact, obtaining false positive
rates 0.48 and 0.48 and false negative rates 0.28 and 0.28
for sensitive values z = 0 and z = 1, respectively, over the
final 9000 data points (we only use these points to allow
for some stabilization of the algorithm before the evalua-
tion). These are clearly within the tolerance requested and
match quite well to the estimated false prediction rates
averaged over the last 9000 data points, which give 0.50
and 0.50 for false positive rates and 0.30 and 0.30 for false
negative rates. These essentially unbiased false prediction
rates should be compared to the false prediction rates one
would obtain if no bias elimination were employed (using
a value of € = 2), which are 0.62 and 0.23 for false pos-
itive rates and 0.11 and 0.46 for false negative rates. The
tradeoff of decreased bias is also a decrease in accuracy,
however. With no bias elimination, the accuracies are 0.69
and 0.67 for sensitive variable values 0 and 1, respectively,
while our reduced-bias accuracies are 0.64 and 0.60.
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The mean value of @ over the last 9000 points is
[0.21, —0.21, 0.04], while the average value of ©° is
[0.30, —0.16, 0.05]. A standard logistic regression over
this set of data yields a coefficient vector
[0.21, —0.22, 0.04] almost identical to the mean of @ that
we obtain, showing that our logistic tracker works as
anticipated. In comparison to our baseline methods, the
results of our algorithm essentially match perfectly with
those of the Berk method with A = 10. We also apply
the previously discussed Zafar algorithm to this dataset,
with a covariance threshold multiplicative factor of m =
0.0005. Here, we train the algorithm over the full dataset
but only evaluate it over the last 9000 points, to put it
on an equal footing with our own algorithm. The results
in this case are a coefficient vector of [0.24, —0.14, 0.04],
leading to false positive rates of 0.49 and 0.47 and false
negative rates of 0.26 and 0.29, with accuracies of 0.65
and 0.61. While certainly less biased than the standard
logistic classifier, the difference in false prediction rates
with the Zafar algorithm is certainly larger than in our
case; consequently, the accuracy is slightly higher than
in our case. This is likely due to the fact that our algo-
rithm is directly attempting to equalize the false predic-
tion rates, while Zafar uses a proxy measure to achieve
the same goal. Of course, our algorithm is much slower
than that of Zafar due to the several Monte Carlo steps
involved.
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Fig. 2. Plots of the tracked values of 8 (top left), ®° (top right), m, (bottom left, shown with the true values p, as dashed lines), and the estimated
unbiased false prediction rates FNR and FPR (bottom right) for the dynamic parameters described in the text.

3.2. Dynamic parameters

The scenario here is very similar to that used in the
static parameter case above. The exception is that after
the first 1000 data points, the means wo and w; begin to
linearly drift with each new data point, such that the two
values have exactly swapped by the 10,000th data point.
Specifically, we use po; = [—1; —3] and pq; = [2; 3] for
i < 1000 while wo; = [—1; —3] + [3; 6](i — 1000)/9000
and p1,; = [2; 3]—[3; 6](i—1000)/9000 for i > 1000. This
highly contrived scenario allows us to focus on a situation
in which, when considering the final 9000 data points all
together, we expect to see little difference in false pre-
diction rates between the two sensitive variable values,
even if a standard logistic regression is used. However, it
is clear that there will be, in general, instantaneous bias
in the predictions. This bias will switch between the two
groups over the course of the observations, making the
overall false prediction rates roughly equivalent.

We run our tracking algorithm with the same pa-
rameters and initial values as in the static case, and we
present the results in Fig. 2. Here, our reduced-bias false
prediction rates as measured over the final 9000 data
points are 0.52 and 0.54 for false positives and 0.22 and
0.23 for false negatives for sensitive values z = 0 and
z = 1, respectively; accuracies are 0.64 and 0.62. How-
ever, as shown in Fig. 2, the estimated instantaneous false
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prediction rates vary significantly over the course of the
tracking, albeit in such a way that the estimated bias is
always within our tolerance e.

However, by design, when we run this scenario through
our algorithm using the large value ¢ 2.0, in which
case no bias removal is actually attempted, the overall
observed results still appear effectively unbiased. Over
the final 9000 observations, we obtain 0.38 and 0.37 for
false positive rates and 0.24 and 0.27 for false negative
rates for sensitive values z = 0 and z = 1, respectively;
accuracies are 0.69 and 0.69. The mean value of @ over
the last 9000 points in this case is [0.25, —0.25, 0.00].
All of these values are very close to those obtained for
a standard logistic regression trained over this dataset,
which gives coefficient vector [0.25, —0.24, 0.00], and
which over the last 9000 points gives false positive rates
of 0.36 and 0.35, false negative rates of 0.23 and 0.24,
and accuracies of 0.71 and 0.71. In essence, because of
the symmetric way that the feature distributions change
over time, even a standard logistic regression will appear
unbiased for this dataset when only analyzing the bulk
classifications made on the interval in which the feature
distributions are shifting.

The Zafar method applied to this dataset gives inter-
esting results. Using a covariance threshold multiplicative
factor of m = 0.0005, as used in the static case above, we
obtain false positive rates of 0.06 and 0.06, false negative
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Fig. 3. Plots of the observed false prediction rates computed via a moving-window average width of 2000 events for our dynamically unbiased
predictions (top-left panel), for effectively static logistic predictions (top-right panel), for the Zafar method with m = 0.0005 (bottom-left panel),

and the Berk method with A = 10, p = 0.9 (bottom-right panel).

rates of 0.85 and 0.86, and accuracies of 0.52 and 0.51. The
algorithm was able to determine some potential problem
with the baseline logistic regression with regard to dis-
parate misclassification and correct for it, but at this level
was only able to resolve the problem by classifying the
vast majority of individuals (89% of them) as negative. Ap-
plying a much higher covariance threshold multiplicative
factor of m = 0.05, and hence reducing the desired bias
mitigation, gives false positive rates of 0.32 and 0.31, false
negative rates of 0.41 and 0.42, and accuracies of 0.63 and
0.63, much more in line with the standard logistic regres-
sion, and still appearing unbiased. Of course, the dataset
is designed so that even a standard logistic classifier will
appear unbiased when averaged over the entire dataset,
so this result is not surprising.

We run the Berk method on this dataset using param-
eters A = 10, p = 0.9. The results over the final 9000
data points are false positive rates of 0.4 and 0.44, false
negative rates of 0.29 and 0.27, and accuracies of 0.66 and
0.65; these are similar to the results of our unconstrained
algorithm.

Given the design of this dataset, it is not surpris-
ing that all of the methods are able to produce results
that are unbiased on average. But to illustrate the dif-
ferences between the methods on this dynamic dataset,
we plot in Fig. 3 the observed false prediction rates when
calculated via a symmetric moving-window average width
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of 2000 events. In the case of our dynamic method with
€ = 0.05 (top-left panel), these moving averages show
relatively small bias between the two sensitive variable
values, and are similar to the estimated false prediction
rates shown in Fig. 2. However, when the same moving-
window average is applied to predictions made by our
tracking algorithm but with ¢ = 2.0 (top-right panel),
which mimics a static logistic regression that appears
unbiased when considering the entire dataset at once,
as discussed above, we clearly see large differences in
false prediction rates between the two protected variable
groups at any given moment in time. The Zafar method
with the larger value m = 0.05 behaves very similarly
to the logistic classifier, as the two methods give very
similar parameter estimates, while the results using m =
0.0005 (bottom-left panel) appear effectively unbiased at
all times, but only by classifying almost all individuals
as negative and thereby having consistently very low
accuracy. The Berk method (bottom-right panel) is, as a
dynamic method, able to maintain rough instantaneous
fairness while also retaining good accuracy. Interestingly,
the results here are qualitatively different from those
of our algorithm, as the Berk method maintains similar
levels of false prediction rates and accuracy throughout
the dataset, while our algorithm varies throughout. At
this time, we can speculate that the behavior of the
Berk algorithm observed here is related to the specific
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details of this example, as in our limited testing, other
synthetic dynamic datasets do not always exhibit this
same behavior with the Berk algorithm. But the specific
underlying cause is not entirely clear and highlights the
need for future work on dynamic fairness algorithms,
to better understand which methods might be better or
worse, and under what circumstances.

4. Results on real-world datasets
4.1. ProPublica COMPAS dataset

To illustrate the ability of our algorithm to analyze
real-world datasets, we applied it to the often-used ProP-
ublica COMPAS two-year recidivism dataset (Larson, Mat-
tu, Kirchner, & Angwin, 2016). This dataset was
constructed to test potential bias in recidivism forecasting
between races, and includes certain features (described
below) of individuals who were arrested on suspicion of
committing specific crimes, and whether or not each in-
dividual recidivized within two years of the initial event.
In analyzing the dataset, we chose race as the sensitive
variable, and only analyzed that subset of the data in
which the race is listed as either “African American” or
“Caucasian”. After selecting this subset and removing a
few points in the same way as described in Larson et al.
(2016), we were left with 5278 entries.

For our features, we analyzed two scenarios. In both
scenarios, we use “sex” (categorical, male = 0 or female
= 1), “age_cat” (using two categorical variables “Less than
25” and “Greater than 45”), “priors_count” (number of
prior crimes), and “c_charge_degree” (categorical, felony
= 0 or misdemeanor = 1). In the first scenario, these
are the only features considered, while in the second sce-
nario we also directly consider “race” as the final feature
(categorical, Caucasian = 0 or African American = 1);
this is done to match what some others have consid-
ered when analyzing this particular dataset. Importantly,
we also analyze this dataset after sorting the entries by
“compas_screening_date” from earliest to latest. This is
done because our algorithm is specifically developed to
allow for temporally evolving scenarios, so we evaluated
it as such. All initial parameters of the algorithm are the
same as those used in the synthetic data above, with
the exception that we use @ = 0.65 here; the value of
o 0.85 used in the synthetic experiments was too
high, resulting in the algorithm failing to find predictor
coefficients that were unbiased to the desired ¢ at this
level of accuracy.

Table 1 lists the results of our algorithm, as well as
those of the Zafar and Berk methods, for both sets of
features (with and without race), and both with and with-
out any bias constraints applied (except that Berk is only
analyzed in the constrained case); for the Zafar algorithm
we use a covariance threshold multiplicative factor of
m 0.000001 and for Berk we use A 10, p
0.9. The results here are computed over the second half
of the dataset only; in the case of the Zafar algorithm,
only the first half of the dataset is used for training. The
results clearly show that, without any constraints, there is
bias between the false prediction rates of Caucasians vs.
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African Americans: false negative rates for Caucasians are
higher than those for African Americans, and the opposite
is true of false positive rates. When constraints are added,
all algorithms greatly reduce these differences, with ours
accomplishing our goal of € < 0.05 in all cases, but with
the other algorithms generally unable to reduce the bias
levels to within this same tolerance. This is not necessarily
surprising, as the other algorithms only use proxy mea-
sures for bias, rather than an explicit calculation of the
expected level, as our own algorithm employs; further,
the Berk method only attempts to equalize results for
those in the negative class. Within the table, we specif-
ically note the number of positive predictions given in
each case. This is displayed to illustrate the fact that, in
general, the constrained algorithms accomplish their goal
by classifying many more individuals as negative than
in the unconstrained case. The most extreme example of
this is in the Zafar algorithm with race not included as
a feature, in which case only 111, or 4.2%, of the 2639
predictions made are positive. This leads to an overall
accuracy of only 0.48. It seems that, if not explicitly us-
ing race to make predictions, a static unbiased classifier
like Zafar can only really treat these data by classifying
essentially everyone in the same way (negative in this
case).

Interestingly, though, our own constrained classifier in
the no-race case still makes 655 positive predictions, and
ends up with an overall accuracy of 0.69, not much lower
than the accuracy of 0.74 that we achieve with the same
features in the unconstrained case. Somewhat amazingly,
our algorithm does this with a false positive rate of 0 for
both races: all 655 positive predictions were correct. Also,
our algorithm displays significantly better overall accu-
racy than the constrained Zafar and Berk across the board
here. To help understand how our algorithm achieves
such results, we plot in Fig. 4 the evolving estimates of
the unbiased coefficients ®° that our algorithm produces
in both the with-race and without-race scenarios. As can
be clearly seen, there is an abrupt and very large change
in estimated coefficients at around data point number
4600 in each case. Upon investigating the data directly,
we observed that every data point starting at number
4512 (with “compas_screening_date” of April 2, 2014) is
classified as a recidivist. These data, if they are to be
believed, are then a perfect example of a scenario in
which a temporal trend is important to the classification
task, which our algorithm handles quite naturally. The
Berk algorithm also handles the data dynamically, but
was unable to match the performance of our algorithm
in this case. However, it is likely that these data points at
the end of the dataset are in fact erroneously classified;
in fact, this precise observation has been pointed out
elsewhere (Barenstein, 2019).

In light of this observation, we performed two addi-
tional analyses on this dataset. First, we ran all of our
analyses on a further subset of the COMPAS data, remov-
ing all those entries with a “compas_screening_date” on
or after April 2, 2014, as suggested by Barenstein (2019).
This leaves 4511 data points in this second subset. Second,
we ran our algorithm and Zafar in the specific case of the
constrained classifier without race (the case in which our
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Table 1
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Results for the various algorithms on the full subset of the ProPublica dataset described in the text, under various different
combinations of feature vectors (both with and without race) and constraints. Here, “C.” is “Caucasian” and “A.A.” is “African

American”.
Algorithm Feature Pred. Pos.  Overall Acc. C.Acc. C.FNR C.FPR AA Acc. AA FNR AA. FPR
Ours, uncons. w/race 1023 0.75 0.73 0.50 0.05 0.76 0.31 0.13
Zafar, uncons. w/race 662 0.61 0.58 0.83 0.03 0.63 0.51 0.15
Ours, cons. w/race 718 0.68 0.71 0.54 0.05 0.66 0.54 0.03
Zafar, cons. w/race 840 0.61 0.60 0.66 0.16 0.61 0.52 0.19
Berk, cons. w/race 555 0.58 0.60 0.71 0.10 0.56 0.68 0.08
Ours, uncons. w/o race 1000 0.74 0.73 0.49 0.06 0.75 0.34 0.12
Zafar, uncons.  wj/o race 607 0.60 0.60 0.78 0.06 0.60 0.59 0.12
Ours, cons. w/o race 655 0.69 0.72 0.57 0.00 0.67 0.54 0.00
Zafar, cons. w/o race 111 0.48 0.53 0.97 0.00 0.44 0.91 0.01
Berk, cons. w/fo race 361 0.53 0.56 0.88 0.03 0.52 0.75 0.07
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Fig. 4. Plots of the tracked values of ®° for the full ProPublica COMPAS dataset both without (left panel) and with (right panel) race as a feature.

algorithm previously performed suspiciously well) again
on the full dataset, but with the dataset shuffled randomly
so that any potential temporal trend (or misclassified
data) was hidden. The results are shown in Table 2. In
comparison to Table 1, the results in Table 2 show that
the overall accuracy of our algorithm drops, while that
of Zafar increases, as one would expect. Comparing our
algorithm to that of Zafar in the cases of the subset, we
find that with the exception of the constrained, with-race
case, the results are roughly similar, though Zafar gener-
ally has slightly higher accuracy at the expense of greater
bias. The constrained, with-race results on this subset are
quite different between our two algorithms, however. In
this case, the overall accuracies of the two algorithms are
on par, but these are achieved in very different ways.
Our algorithm classifies far fewer individuals as positive
than Zafar in this case, ending up with quite high false
negative rates and very low false positive rates, with little
difference between the two races. On the other hand,
the Zafar algorithm actually classifies more individuals as
positive in this case than the unconstrained, with-race
case, yielding a moderately high false negative rate as well
as a low but notable false positive rate, and with still sig-
nificant disparity between the races. Finally, we see that
the Zafar results for the full shuffled dataset are on par
with those of the full unshuffled dataset, again with very
few individuals classified as positive. However, our own
algorithm performs very differently on the full shuffled
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dataset than on the unshuffled dataset, classifying a very
large number of people as positive and ending up with
much lower accuracy (but still similar false prediction
rates). The results here are of course different from those
of Zafar on the shuffled data, but neither could really be
classified as better than the other; they are both quite bad
(see Table 2).

4.2. New Orleans data

For a second real-world example, we apply our meth-
od, along with the baseline methods, to a dataset of traf-
fic stops in New Orleans from 2009 to 2018. The data
come from the Stanford Open Policing Project (Pierson
et al.,, 2020) and contain information on the location, date,
and time of the stop, the race and age of the individual
stopped, whether a search was conducted, and whether
contraband was found. We focus on the subset of traffic
stops where the race of the individual was Caucasian
or African American and where a search was conducted.
After selecting this subset, we are left with 73,041 traffic
stops, and we evaluate the models on the first 70,000
stops. We then predict the label, defined as whether the
search resulted in contraband being found (y = 1) or not
(y 0). We use as features the hour of the day (cate-
gorical, with eight bins containing three hours each), the
district (categorical, with seven options), the age of the
individual (integer values), and race (categorical). Race
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Table 2
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Results for the various algorithms on the restricted subset of the ProPublica dataset described in the text with all data points
with “compas_screening_date” of April 2, 2014 or later removed (first ten rows), or using the full dataset but shuffled randomly
(final two rows), under various different combinations of feature vectors (both with and without race) and constraints. Here,

“C.” is “Caucasian” and “A.A.” is “African American”.

Algorithm Feature Pred. Pos. Overall Accc C.Acc. C.FNR C FPR AA. Acc. AA FNR AA. FPR
Ours, uncons. w/race 408 0.70 0.72 0.83 0.05 0.68 0.58 0.13
Zafar, uncons. w/race 471 0.70 0.71 0.85 0.05 0.70 0.50 0.16
Ours, cons. w/race 197 0.67 0.72 0.84 0.05 0.63 0.83 0.03
Zafar, cons. w/race 568 0.67 0.69 0.73 0.13 0.66 0.53 0.19
Berk, cons. w/race 379 0.68 0.70 0.74 0.11 0.66 0.69 0.08
Ours, uncons. w/o race 395 0.69 0.72 0.82 0.06 0.68 0.61 0.11
Zafar, uncons. w/o race 416 0.70 0.71 0.83 0.06 0.69 0.57 0.12
Ours, cons. w/o race 17 0.63 0.70 1.00 0.00 0.59 0.97 0.00
Zafar, cons. w/o race 146 0.66 0.71 0.92 0.02 0.63 0.84 0.02
Berk, cons. w/o race 235 0.67 0.71 0.90 0.03 0.64 0.76 0.07
Qurs, cons., shuffle  wjo race 1985 0.49 0.47 0.25 0.71 0.50 0.24 0.78
Zafar, cons., shuffle  wjo race 13 0.53 0.61 1 0 0.48 0.99 0

Table 3

Results for the various algorithms on the New Orleans traffic stop data described in the text, under various constraints. Here,

“C.” is “Caucasian” and “A.A.” is “African American”.

Algorithm Feature  Pred. Pos. Overall Accc C.Acc. C.FNR C. FPR AA.Acc. AA FNR AA. FPR
Ours, uncons. w/race 12536 0.63 0.69 0.61 0.25 0.61 0.51 0.35
Zafar, uncons. w/race 2409 0.77 0.83 0.98 0.01 0.76 0.88 0.07
Ours, cons. w/race 8967 0.68 0.69 0.66 0.23 0.67 0.67 0.24
Zafar, cons. wfrace 8 0.8 0.83 1 0 0.79 1 0

Berk, cons. w/race 6677 0.73 0.77 0.77 0.13 0.72 0.69 0.18
Qurs, cons., shuffle  w/race 9022 0.66 0.67 0.73 0.25 0.66 0.72 0.25
Zafar, cons., shuffle  w/race 4708 0.76 0.78 0.84 0.11 0.75 0.78 0.12

is included as a feature here because the data generally
appear unbiased when race is not explicitly included.
We only evaluate the prediction results over the final
35,000 data points; for Zafar, we only train on the first
35,000 data points. Unlike the cases above, here we use
a threshold for positive predictions of t 0.25; this
threshold leads to predictions that are not completely
uniform, while the threshold of T = 0.5 generally leads
to almost all negative predictions. All other parameters
are the same as those used for the COMPAS dataset. Given
that these data specifically include the time of day and the
location of the stop, it is clear that temporal trends could
play a large role, given that stops made at varying times of
day and/or varying locations may be more or less likely to
result in contraband being found, and there could be links
between where a stop was conducted and when it was
conducted. So, this dataset represents a natural venue to
explore whether our method might offer advantages over
methods tailored to more static data. To test this, we also
ran our algorithm and Zafar on a shuffled dataset, as with
the COMPAS data above. Results are presented in Table 3.

Comparing the results, we see that our unconstrained
algorithm gives by far the highest number of positive
predictions, and the results are clearly biased with signif-
icantly different false prediction rates. The unconstrained
Zafar algorithm seems to just predict most individuals
as negative, with the results still quite biased. Our con-
strained algorithm reduced the number of positive predic-
tions significantly from the unconstrained version,
actually yielding higher accuracy by doing so, and in a
way that makes false prediction rates essentially equal
between groups. The constrained Zafar algorithm is essen-
tially all negative predictions here. Berk predicts a number
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of positives, approaching (but less than) our constrained
number, with correspondingly higher accuracy. But the
false prediction rates are not especially similar between
the groups, so Berk does not reduce the bias to the level
that our algorithm is able to. Finally, we see that for the
shuffled dataset, our algorithm is still able to produce
an essentially unbiased result, but with lower accuracy
than the standard dataset. Interestingly, though there are
more positive predictions overall for this shuffled dataset
than for the unshuffled version, for both our algorithm
and Zafar, the false negative rate increases quite a bit
for the shuffled version of the data with our algorithm,
indicating that these increased positives are going to the
wrong people. We also note that the behavior of Zafar on
the shuffled dataset is quite different from the normal
dataset, with vastly increased numbers of positive pre-
dictions. These differences in the results between the two
versions of the dataset give some indication that there are
some temporal trends within the data that are lost upon
shuffling.

5. Conclusions

In this work, we introduced a fully Bayesian track-
ing algorithm for fairness-aware classification. The model
sequentially tracks potential changes in the distribution
of features, along with false positive and negative rates,
and dynamically adjusts the model to mitigate disparate
misclassification at each step. We demonstrated the ef-
fectiveness of the algorithm on synthetic and recidivism
datasets, showing improved performance with regard to
disparate misclassification compared to bias-reducing
methods that are trained in batch offline.
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The proposed methodology has several limitations that
should be noted. Here, we assumed that class labels were
fully observed in real time, whereas in practice, some
labels are unobserved and other labels may only be avail-
able after some delay. For example, in the case of traffic
stop searches, the label as to whether contraband is found
is immediately known and available. However, in the case
of recidivism, the label may be delayed by several months
or go unobserved.

The accuracy metrics considered here, namely group
false positive and negative rates, may be different from
those that matter to policymakers. In certain cases, pre-
cision and recall may be appropriate metrics and could
be incorporated into Eq. (26). In this work, we focused
on group-level, rather than individual-level, fairness. The
method may introduce potential bias as it relates to indi-
vidual fairness (Dwork, Hardt, Pitassi, Reingold, & Zemel,
2012), the notion that individuals with similar features
should receive similar algorithmic scores and decisions.
Due to the dynamic nature of the proposed algorithm,
an individual at an earlier time may receive a different
decision than an individual with similar features at a
later time. However, at each fixed time, our methodology
consisted of a single model across individuals, and thus
yielded similar predictions for individuals with similar
features. We note that the model performed well even
when the sensitive variable was not included as a feature.
We also note that the method will likely be inefficient in
high-dimensional settings and that the threshold param-
eter « in Eq. (26) needed to be tuned by hand. Removing
these limitations will be a focus of future research.
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