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Abstract

While random permutations of point processes are useful for gener-
ating counterfactuals in bivariate interaction tests, such permutations
require that the underlying intensity be separable. In many real-world
datasets where clustering or inhibition is present, such an assumption
does not hold. Here we introduce a simple combinatorial optimiza-
tion algorithm that generates second order preserving (SOP) point
process permutations, e.g. permutations of the times of events such
that the L function of the permuted process matches the L function
of the data. We apply the algorithm to synthetic data generated by a
self-exciting Hawkes process and a self-avoiding point process, along
with data from Los Angeles on earthquakes and arsons and data from
Indianapolis on law enforcement drug seizures and overdoses. In all
cases we are able to generate a diverse sample of permuted point pro-
cesses where the distribution of the L functions closely matches that
of the data. We then show how SOP point process permutations can
be used in two applications: 1) bivariate Knox tests and 2) data aug-
mentation to improve deep learning based space-time forecasts.
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1 Introduction

In this paper we are motivated by the problem of testing for interactions
between two spatial-temporal point processes. For example, in [10] a two
sample randomization test was introduced to test for interactions between
underground nuclear tests and subsequent earthquakes. Similar methods
have been applied to test for interactions between firearm arrests and shoot-
ings [20], homicide and other violent or property crimes [5] and law enforce-
ment drug seizures and overdose [13]. In a more general multivariate fashion,
the interest is in detecting and modeling cross-interactions amongst any two
marginal processes, as shown in [8] and [18]. Indeed, the literature on mod-
eling multivariate spatial point patterns is mainly restricted to the bivariate
case (see [4], [7], [6], [14]). In this context, interactions have been modeled
by using Gibbs point processes and Cox processes.

In a two sample randomization test, the event times of a point process are
permuted, while the spatial coordinates of the process are fixed. This “per-
muted point process” provides a counterfactual that can be compared to the
second point process for which an interaction is being assessed. However, the
permuted point process may not have the same statistics as the original data.
For example, in Figure 1 we plot a realization of a self-exciting Hawkes pro-
cess along with a permutation of the Hawkes process. Whereas the Hawkes
process exhibits significant space-time clustering, the permuted process only
exhibits spatial clustering. Thus two sample randomization tests typically
require the assumption that the point process is stationary Poisson or that
the intensity of the point process is separable [3, 1, 16].

Our goal here is to generate permutations of a point process that preserve
second order statistics of the process. In Section 2, we introduce a simple
combinatorial optimization algorithm that, starting from a random permu-
tation, iteratively swaps two random event times to improve the agreement
of the second order statistics (as measured by the L function) between the
permuted point process and the data. We then apply the method in Section
3 to synthetic data generated by a self-exciting Hawkes process and a self-
avoiding point process. We also use the method to assess interactions between
a) Los Angeles earthquakes and arson and b) Indianapolis law enforcement
drug seizures and overdose. Finally, we use second order preserving point
process permutations to augment training data and improve a CNN-LSTM
based short-term forecast. We discuss some open questions and directions
for future research in Section 4.
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Figure 1: Simulated Hawkes process in black (first spatial coordinate vs.
time) along with the same Hawkes process with times randomly permuted
in red.

2 Methodology

Let (xi, ti)
N
i=1

denote the spatial coordinates and event times of a point pro-
cess and t̃i be a random permutation of the event times. Two common second
order statistics of a spatial point process are Ripley’s K function [15] and the
related L function. We consider space-time extensions of the K and L func-
tions, where we first define zi to be a 3-dimensional vector consisting of the
two spatial coordinates and one time coordinate of (xi, ti) (and each coordi-
nate is rescaled by min-max scaling to be in [0, 1]). The K function is then
estimated by,

K(r) =
1

N2

∑

i,j

1{∥zi − zj∥ < r} (1)

and the L function is given by L(r) = [K(r)]1/2. The K and L functions
measure the prevalence of events within a space-time radius r of each event
from the process and can be compared to the K and L functions of a Poisson
process to determine clustering or inhibition.

Here we propose an algorithm to generate permutations such that the
L function, L(r), of the data better matches the L function, L̃(r), of the
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permuted point process. We first note that we do not want the L function of
each permutation to exactly match that of the data. If one were to simulate
multiples realizations of a point process, there would be variation in each
sample that would lead to a distribution of L functions. Thus our goal is to
generate multiple permuted point processes such that the distribution of the
L functions closely matches the distribution of the L function of the data.

The algorithm, which is summarized in Algorithm 1, proceeds in two
stages. In the first stage, M independent random permutations z̃k = (xi, t̃

k
i ),

k = 1, ...,M of the data are generated and the L function Lk(r) is computed
for each permutation. Next, the mean over the M L functions is calculated,

µ(r) =
1

M

M∑

k=1

Lk(r), (2)

along with the error,
ϵk(r) = Lk(r)− µ(r). (3)

In the second stage, we generate M second order preserving (SOP) per-
mutations. For each k, we initialize the permutation with the random per-
mutation z̃k from stage one. We then iteratively swap two random times
to generate a proposal permutation q̃k. The L function, Lprop(r), of this
proposal permutation is then computed, along with the proposal error,

errorprop =
( ∫
|Lprop(r)− Ldata(r)− ϵk(r)|2dr

)
1/2

. (4)

Here we want the L function of the permutation to be close to the L function
of the data plus the L function error of random permutation k, so that the
variation of the SOP permutations around the data L function will be similar
to the variation of the random permutation L functions around their mean.
We accept proposal permutations if they reduce the error and we terminate
the iteration when the error is below a tolerance parameter γ. We note that
the integral in Equation 4 can be approximated using numerical integration,
for example using the trapezoidal rule (we calculate the L function at 100
equally spaced points and approximate the integral using quadrature at those
same points).

2.1 Bivariate Knox test

The motivating application of our second order preserving permutations is
a two-sample Knox test [10] for interactions between two point processes.
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Algorithm 1 SOP point process permutation pseudo code
Input: Data (xi, ti)

N
i=1

, number of permutations M , tolerance γ, L function
of data Ldata(r)
Output: SOP permutations z̃k, for k = 1, ...M

1: for k=1:M do

z̃k = (xi, t̃
k
i ) \\ permute event times

Lk(r) =
(

1

N2

∑
i,j 1{∥z̃

k
i − z̃kj∥ < r}

)
1/2
\\ compute L function

2: end for

3: µ(r) = 1

M

∑M
k=1

Lk(r) \\ mean L function of permuted processes

4: for k=1:M do

ϵk(r) = Lk(r)− µ(r) \\ L function error of permuted process k
5: end for

6: for k=1:M do

7: (xi, si)← z̃k \\ initialize permutation
8: error = γ + 1
9: while error > γ do

10: j1, j2 = random(1, N) \\ pick two random integers
11: s̃ = s
12: s̃j1 = sj2 \\ swap event times
13: s̃j2 = sj1
14: q̃k ← (xi, s̃i) \\ new proposal permutation

15: Lprop(r) =
(

1

N2

∑
i,j 1{∥q̃

k
i − q̃k

j∥ < r}
)
1/2
\\ compute L function

16: errorprop = (
∫
|Lprop(r)−Ldata(r)−ϵk(r)|2dr)1/2 \\ calculate error

17: if errorprop < error then

18: error = errorprop \\ update best error
19: (xi, si)← q̃k \\ update optimal permutation
20: end if

21: end while

22: z̃k ← (xi, si) \\ output optimal permutation k
23: end for
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In particular, given a time cutoff τ and spatial distance cutoff δ, the Knox
statistic [11] κ(τ, δ) is given by,

κ(τ, δ) =
∑

i,j

1{∥xa

i − xb
j∥ ≤ δ, |tai − tbj| < τ}. (5)

where the two point processes are (xa
i , t

a
i ) and (xb

j, t
b
j). The Knox statistic

counts the number of events of type b within a radius δ and time window τ
of events of type a.

To determine excess clustering or inhibition, the Knox statistic can be
compared to a null distribution where the two processes are independent.
The null distribution of the Knox statistic is computed through multiple
realizations of,

κ̃(τ, δ) =
∑

i,j

1{∥xa

i − xb
j∥ ≤ δ, |tai − t̃bj| < τ}, (6)

where t̃bj are random permutations of the event times of process b. In the
next section we will explore the benefits of using SOP permutations rather
than random permutations to generate t̃bj.

3 Experiments

In this section we illustrate the effectiveness of Algorithm 1 at generating
second order preserving permutations using synthetic and real data. We then
compare the results of bivariate Knox tests that utilize SOP permutations
versus random permutations. Finally, we show how second order preserving
permutations can be used to improve a CNN-LSTM based space-time forecast
through data augmentation.

3.1 Synthetic data experiment with a Hawkes process

In the first experiment we generate data from a self-exciting Hawkes point
process with intensity,

λ(x, t) = µ+
∑

t>ti

θf(t− ti;ω)g(x− xi; σ). (7)

We simulate the process on the unit cube in space-time with background
rate µ = 40, reproduction number θ = 0.75, exponential kernel f in time
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with parameter ω = 100 (mean 0.01) and Gaussian kernel g in space (2d)
with standard deviation σ = 0.01. We estimate the L function on r ∈
[0, 0.3] at 100 discrete (evenly spaced) points and use a tolerance of γ = .01
for Algorithm 1. The tolerance was selected by visually inspecting the L
functions corresponding to different choices of γ (see Figure 2).

Figure 2: L function of data vs. L functions of SOP permutations for different
choices of γ.

In Figure 3, we plot a realization of the Hawkes process (first spatial
coordinate versus time) along with an example random permutation. We
then plot three example SOP (L function preserving) permutations and the
corresponding L function. We see that Algorithm 1 is able to produce diverse
point patterns that match the second order statistics of the permutations to
the original data.

Next we apply a bivariate Knox test to two independent Hawkes process
realizations generated with the above parameters. For the Knox test we use
parameters δ = 0.1 and τ = 0.1 for the Knox statistic κ(τ, δ). In Figure
4, we plot the null distribution of the Knox statistic under both random
permutations and SOP permutations for M = 200 permutations. We note
that the random bivariate Knox test rejects the null hypothesis that the two
point patterns are independent, whereas the p-value for the SOP based Knox
test is p = 0.1. On the bottom of Figure 4 we also plot the L functions for
the 200 permutations. Here we see that the random permutations are much
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Figure 3: Top Left: Realization of the Hawkes process (first spatial coor-
dinate vs. time). See text for the parameters used. Top right: example
random permutation. Lower left: Three example SOP permutations of the
Hawkes process. Lower Right: L function of data vs. L functions of SOP
and random permutations.

less clustered than the data, whereas the SOP permutations match the L
function of the data (with similar variation to the random permutations, by
design).

3.2 Synthetic data experiment with a regular self-avoiding

point process

In the next experiment we generate data from a self-avoiding “regular” point
process. We iteratively simulate N points in the unit cube using rejection.
The fist point is generated at random, then the next point is generated at
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Figure 4: Two independent Hawkes processes experiment. Top: Null dis-
tribution of the Knox statistic under both random permutations (left) and
SOP permutations (right) for M = 200 permutations. Data Knox statistic
represented by vertical dashed line. Bottom: L functions for the 200 random
(right) and SOP (left) permutations.

random subject to being at least a distance c (space-time Euclidean distance)
from all previous points (otherwise the point is rejected and a new point is
added). We let N = 100, c = 0.2, and estimate the L function on r ∈ [0, 0.3]
at 100 discrete (evenly spaced) points and use a tolerance of γ = .01 for
Algorithm 1.

In Figure 5, we plot a realization of the regular process (first spatial co-
ordinate vs. time) along with an example random permutation. We then
plot three example SOP (L function preserving) permutations and the cor-
responding L function. We see that Algorithm 1 is able to produce diverse
regular point patterns that match the second order statistics of the permu-
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tations to the original data.

Figure 5: Top Left: Realization of the regular process (first spatial coordi-
nate vs. time). See text for the parameters. Top right: example random
permutation. Lower left: Three example SOP permutations of the regular
process. Lower Right: L function of data vs. L functions of SOP and random
permutations.

Next we apply a bivariate Knox test to two independent regular process
realizations generated with the above parameters. For the Knox test we use
parameters δ = 0.1 and τ = 0.1 for the Knox statistic κ(τ, δ). In Figure
6, we plot the null distribution of the Knox statistic under both random
permutations and SOP permutations for M = 200 permutations. We note
that in this case both the random and SOP bivariate Knox tests fail to reject
the null hypothesis that the two point patterns are independent (which is
the correct result). However, in the bottom of Figure 6 we see that the
random permutations are much more clustered than the data, whereas the
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SOP permutations better match the L function of the data.

Figure 6: Two independent regular point processes experiment. Top: Null
distribution of the Knox statistic under both random permutations (left) and
SOP permutations (right) for M = 200 permutations. Data Knox statistic
represented by vertical dashed line. Bottom: L functions for the 200 random
(right) and SOP (left) permutations.

3.3 Association between earthquakes and arson in Los

Angeles

Next we apply a bivariate Knox test to earthquake and arson data from Los
Angeles during 2020-2021. The earthquake magnitudes range from 1.5 (query
cutoff) to 4.28 being the largest. The arson events are based on Los Angeles
crime reports from the same time period. Given the small magnitude of
the earthquakes, we do not expect there to be an association between these
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two types of events. We plot the distribution of events in space and time in
Figure 7.

Figure 7: Top: distribution of earthquake and arson events in Los Angeles
during 2020 and 2021. Bottom: distribution of drug seizure and overdose
events in Indianapolis during the second half of 2018.

For the Knox test we use parameters δ = 1000m and τ = 30 days for the
Knox statistic κ(τ, δ). In Figure 8, we see that the random permutations are
less clustered than the data, whereas the L functions of the SOP permutations
better match the L function of the data. In Figure 8, we also plot the null
distribution of the Knox statistic under both random permutations and SOP
permutations for M = 400 permutations. Whereas the random permutation
test would reject the null hypothesis of independence at the p = 0.01 (two-
sided) level, the SOP based Knox test fails to reject the null hypothesis at
the p = 0.05 level.

If we look again at Figure 7, we see that earthquakes are clustered along
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fault lines, which are in different areas from housing (where arsons are clus-
tered). In time, earthquake aftershocks are highly clustered in short windows
(for example a few hours). Thus it appears that arsons “avoid” earthquakes,
hence the rejection of the null hypothesis by the standard two-sample Knox
test. However, the standard test assumes that the processes themselves are
not clustered, and clearly earthquakes are. The SOP based Knox test ac-
counts for randomly occurring avoidance among two independent cluster pro-
cesses, and the test produces a more conservative p-value.

Figure 8: Arson versus Earthquakes. Top: Null distribution of the Knox
statistic under both random permutations (left) and SOP permutations
(right) for M = 400 permutations. Data Knox statistic represented by ver-
tical dashed line. Bottom: L functions for the 400 random (right) and SOP
(left) permutations.
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3.4 Association between drug seizures and overdose in

Indianapolis

In our last experiment, we assess interactions between law enforcement drug
seizure events and overdoses where naloxone was administered by Indianapo-
lis Emergency Medical Services. Data consist of latitude, longitude, date and
time of the incident and come from Indianapolis, Indiana from July 1, 2018
to December 31, 2018. A space-time positive association between law en-
forcement drug seizures and overdose was observed in [13]. One hypothesis
is that, when law enforcement officers make an arrest for drug dealing and
seize drugs, users may need to seek out alternative sources and may be at
higher risk of overdose in the near future.

For the Knox test we use parameters δ = 250m and τ = 21 days for the
Knox statistic κ(τ, δ) (similar to the values used in [13]). In Figure 9 we see
similar agreement between the L functions of random permutations, SOP
permutations and the L function of the data. One possible explanation is
that the intensity of law enforcement seizures are separable, and thus random
permutations generate similar second order statistics to SOP permutations.
We note that the L functions are tightly clustered around the mean, due
to larger number of events in the dataset compared to the previous three
examples. In Figure 9, we plot the null distribution of the Knox statistic
under both random permutations and SOP permutations for M = 400 per-
mutations. Both tests reject the null independence hypothesis, as none of
the M = 400 permutations yield Knox statistics as extreme as the data.

3.5 Data augmentation for CNN-LSTM 1-day ahead

point process forecast

A number of neural network based models for space-time point processes
have been introduced recently [9] [12] [2] [19]. These models can improve
accuracy of forecasts over simpler parametric models, but typically require
larger datasets due to the increased number of parameters. Here we show
how SOP permutations can be used to improve model performance on held
out data through augmentation of training data.

We first generate data from a space-time Hawkes process defined on
[0, 1]× [0, 1]× [0, 730] with background rate µ = 40/730, reproduction num-
ber θ = 0.75, exponential kernel f in time with parameter ω = 100/730 and
Gaussian kernel g in space (2d) with standard deviation σ = 0.01. Next we
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Figure 9: Law enforcement drug seizures versus overdose. Top: Null dis-
tribution of the Knox statistic under both random permutations (left) and
SOP permutations (right) for M = 400 permutations. Data Knox statistic
represented by vertical dashed line. Bottom: L functions for the 400 random
(right) and SOP (left) permutations.

discretize space into 25× 25 grid cells and time into 1 “day” intervals from 0
to 730. We then use a sliding window and create 14× 25× 25 features con-
sisting of a binary indicator in each space-time cell for whether at least one
event occurred (y = 1) or no events occurred (y = 0). We use this feature as
input to a CNN-LSTM [17] to predict whether an event will occur or not in
each grid cell in the following day. The CNN-LSTM consists of three ConvL-
STM2D layers (implemented in Keras) followed by batch normalization. The
last layer is a Conv3D layer with a sigmoid activation. The model is trained
using Adam optimization with a binary crossentropy loss. The data is split
into the first 486 days used for training (after waiting 14 days to create the
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Knox test did not. In the other two cases we found that random and SOP
based Knox tests produced similar results.

Another potential application for SOP point process permutations is data
augmentation in deep learning models. One challenge in point process re-
search is that a dataset typically consists of a single realization. The algo-
rithm we have introduced here could be used to simulate other realizations,
and our results indicate that such realizations may be able to improve accu-
racy of deep learning based space-time models.

There are several limitations of the present article. First, we have no
guarantees that Algorithm 1 will converge for a given tolerance. In our
experiments the algorithm was able to find permutations (other than the
identity) that satisfied the error objective, but for certain point processes
there may not be a solution. Second, we have not analyzed the theoretical
properties of SOP based bivariate Knox tests. In our four examples we
observed improved type 1 errors without loss of power, but more research is
needed to better understand the statistical properties of SOP permutations
and associated interaction tests. At present, our recommendation would
be to use the SOP based Knox test in tandem with the standard random
Knox test. If the results fail to agree, then one should question whether
the assumptions of the standard Knox test hold. Future research should also
explore data augmentation applications of SOP permutations, as well as more
sophisticated combinatorial optimization techniques to speed up convergence.
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