| 1  | Schadonia saulskellyana (Pilocarpaceae; Lichenized                                                       |
|----|----------------------------------------------------------------------------------------------------------|
| 2  | Ascomycetes) an unusual new species endemic to the southern                                              |
| 3  | Appalachian Mountains of eastern North America                                                           |
| 4  |                                                                                                          |
| 5  | James C. Lendemer <sup>1,3</sup> & Jason P. Hollinger <sup>2</sup>                                       |
| 6  |                                                                                                          |
| 7  | <sup>1</sup> Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, U.S.A. |
| 8  | <sup>2</sup> Herbarium, Department of Biology, Western Carolina University, Cullowhee, NC 28723, U.S.A.  |
| 9  | <sup>3</sup> Corresponding author's email: jlendemer@nybg.org                                            |
| LO |                                                                                                          |
| l1 | Abstract Schadonia saulskellyana is described as new to science based on material from                   |
| 12 | the southern Appalachian Mountains in the eastern United States. The species appears to be               |
| L3 | endemic to the region and mostly restricted to the bark of conifers. It is particularly abundant and     |
| L4 | frequent in the imperiled high-elevation spruce-fir forests of the region. The new species is            |
| 15 | distinguished from its congeners by its corticolous habit, minutely areolate thallus with areoles        |
| 16 | that erupt into soralia which dissolve the areoles and give the appearance of a leprose crust,           |
| L7 | epruinose, dark brown-black apothecia with a brown hypothecium, and monosporous asci with                |
| 18 | large, muriform ascospores. It is also compared with other genera of Pilocarpaceae, particularly         |
| 19 | Calopadia. Lopadium disciforme, a superficially similar species is also compared to the new              |
| 20 | species and photographs, as well as a distribution map for eastern North America, are provided for       |
| 21 | that species.                                                                                            |
| 22 |                                                                                                          |
| 23 | Keywords Biogeography, disjunction, endemism, foliicole, North Carolina, substrate                       |
| 24 | specificity.                                                                                             |
| 25 |                                                                                                          |
| 26 | Introduction                                                                                             |
| 27 |                                                                                                          |
| 28 | The Appalachian Mountains of eastern North America are a globally recognized                             |

biodiversity hotspot for many organisms including lichens (Lendemer et al. 2014; Tripp &

Lendemer 2019, 2020; Tripp et al. 2019). The exceptional levels of lichen diversity in the region

29

result from a combination of extreme abiotic gradients, prolonged availability for colonization over geological time, and north-south topographic orientation that facilitated migration during the last glacial maximum (Dey 1976, 1993; Tripp & Lendemer 2020). High elevation conifer forests, dominated by red spruce (*Picea rubens*) and the endemic Fraser fir (*Abies fraseri*), are restricted to the southern portions of the Appalachian Mountains and are among the most iconic Appalachian ecosystems (Dey 1984). These ecosystems host numerous disjunct and endemic species of plants, animals and fungi including lichens (Dey 1978). After having been impacted extensively by historical logging, invasive pathogens and air pollution, the remaining southern Appalachian spruce-fir forests are now further imperiled by climate change and considered to be critically endangered (Allen & Lendemer 2016, Lusk et al. 2010, McManamay et al. 2011, Noss et al. 1995, White et al. 2012).

Lichens are among the most biologically diverse and readily visible macroscopic organismal groups in southern Appalachian spruce-fir forests (Dey 1976, 1993; Tripp & Lendemer 2020). It is thus not surprising that lichens in spruce-fir ecosystems are one of the most intensively studied lichen cohorts in eastern North America, with multiple taxonomic and floristic accounts spanning nearly a century (Degelius 1941, Dey 1984, Lendemer et al. 2017). While undescribed and overlooked lichens continue to be found in these ecosystems, the majority of these appear to be rare or highly restricted in terms of geographic distribution or ecological niche (Harris et al. 2004; Lendemer & Harris 2013a, b; Lendemer & Tripp 2015; Lendemer et al. 2013). The most frequent and abundant lichens are instead either species that are broadly distributed across montane Appalachian ecosystems, widespread temperate eastern North American species, or disjunct from boreal and Central American montane systems (Dey 1976, 1984).

In 2008 the first author made two collections of an unusual crustose lichen in middle and high elevation habitats of the southern Appalachian Mountains in western North Carolina, U.S.A. These were characterized by a greenish, granular, sorediate thallus and black, lecideine apothecia with monosporous asci and hyaline, muriform ascospores. After encountering the species twice, it was not collected again for over a decade, until the second author found abundantly fertile material in spruce-fir forests of Grandfather Mountain State Park, North Carolina. All of the collections were from conifers and led us to question whether it was a previously overlooked rare species of southern Appalachian lichen communities. We were, nonetheless, perplexed by the gap in

collections, which occurred during a period of intensive study of southern Appalachian lichens in middle and high elevations (e.g., Lendemer 2020, Tripp & Lendemer 2019).

Given that we had multiple well-developed collections of this unidentified lichen, we prepared to describe it as new and compared it to genera that shared the same suite of morphological characters, namely *Calopadia* Vězda, *Lopadium* Körb. and *Schadonia* Körb. By chance, the first author located more abundantly fertile material while carrying out population genetic sampling in the Black Mountains of North Carolina, U.S.A., an area that had been intensively surveyed previously (Lendemer et al. 2017). While only one large fertile thallus was located at that time, numerous thalli without apothecia were located on adjacent trees. This led us to make the connection between our fertile collections, and a nondescript, sterile, granular-sorediate crustose lichen that we had previously found to be frequent in closed-canopy spruce-fir forests. Subsequent careful searching led to the discovery of fertile material at multiple additional locations and the recognition that this highly distinctive species is likely a characteristic member of closed-canopy, southern Appalachian spruce-fir forests. It appears to have previously been overlooked due to the frequent lack of apothecia, and the superficial resemblance of the sterile thallus to the ubiquitous crustose lichen *Bacidia schweinitzii* (Fr. ex Tuck.) A. Schneid. Here we describe this unusual species as *Schadonia saulskellyana*.

## **Materials and Methods**

This study is based on material deposited in the herbarium of the New York Botanical Garden (NY) collected as part of biodiversity inventory work in the Appalachian Mountains (see Tripp et al. 2019, Tripp & Lendemer 2019). Specimens were first studied dry using an Olympus SZ-STB dissecting microscope and then microscopic morphology and anatomy was then studied with an Olympus BX53 compound microscope. Sections and lichenized diaspore mounts were prepared by hand with a razor blade and mounted in water then treated with K/I, K, nitric acid (HNO3) or hydrochloric acid (HCl). Measurements given in the description are either provided as simple ranges of observed values, or as the mean +/- one standard deviation and bounded by the extreme minimum and maximum observed values together with sample size. Chemistry was studied using standard chemical tests (K, C, KC, P, UV) following Brodo et al. (2001) and

| 91  | supplemented by Thin Layer Chromatography (TLC) using solvent C following Culberson and               |
|-----|-------------------------------------------------------------------------------------------------------|
| 92  | Kristinsson (1970) but as modified by Lendemer (2011).                                                |
| 93  |                                                                                                       |
| 94  | <b>Taxonomic Section</b>                                                                              |
| 95  |                                                                                                       |
| 96  | Schadonia saulskellyana Lendemer & Hollinger                                                          |
| 97  | MycoBank #846885.                                                                                     |
| 98  | Figures 1–6, 10.                                                                                      |
| 99  |                                                                                                       |
| 100 | A highly distinctive species of Schadonia distinguished from all other members of the                 |
| 101 | genus by its corticolous habit, minutely areolate thallus where soralia erupt from, and dissolve, the |
| 102 | areoles into soredia which become confluent and give the appearance of a thick, leprose crust,        |
| 103 | black apothecia with a dark brown hypothecium, monosporous asci with muriform ascospores,             |
| 104 | and occurrence at middle and high elevations of the southern Appalachian Mountains in North           |
| 105 | America.                                                                                              |
| 106 |                                                                                                       |
| 107 | TYPE: U.S.A. North Carolina. Avery Co., Grandfather Mountain State Park, McCrae Peak,                 |
| 108 | along Grandfather Trail ca. 310 m W of summit block at base of series of ladders, 1696 m, massive     |
| 109 | S-facing granite slab surrounded by Abies fraseri-Betula alleghaniensis forest, 14 Jul. 2020, on      |
| 110 | base of young Abies fraseri, J.P. Hollinger 24085 (NY!, holotype).                                    |
| 111 |                                                                                                       |
| 112 | Description Thallus corticolous, minutely areolate, sorediate, initially forming discrete             |
| 113 | circular colonies several centimeters in diameter, but these quickly becoming confluent and           |
| 114 | forming large continuous patches on the substrate; areoles minute, weakly corticate, convex,          |
| 115 | granular in appearance, [44]–(71)–109–(147)–[225] $\mu m$ (n=150 from 3 specimens) in diameter,       |
| 116 | dark green to gray-green in color, erupting into soralia and then almost entirely dissolving into a   |
| 117 | mass of soredia; cortex poorly developed, a thin layer of irregularly oriented and heavily            |
| 118 | gelatinized hyphae, POL-; medulla thin, a densely packed matrix of irregularly intertwined fungal     |
| 119 | hyphae and algal cells, POL+ but lacking evident crystals; soralia erumpent, diffuse and irregular    |

in shape, rapidly dissolving the areoles to form piles of soredia that become confluent and resemble

a leprose thallus; soredia fine, [12]–(20.8)–31.3–(41.7)–[60.2]  $\mu m$  (n=164 from 5 specimens) in

120

diameter, bright green to green-white in color, often contrasting strongly with the coloration of the undissolved thallus areoles; apothecia lecideine, [0.30]–(0.46)–0.63–(0.81)–[1.50] mm (n=100 from 3 specimens) in diameter; apothecial discs black, epruinose, smooth, plane to becoming convex and tuberculate, sessile on top of soredia with narrow hyphal attachment in center; apothecial margin initially distinct, smooth, concolorous with the disc, epruinose, becoming excluded with age; epihymenium unevenly pigmented, reddish-purple to purple-brown, K- or slowly K+ lavender, HNO<sub>3</sub>+ red-purple, not inspersed with crystals or granules, POL-, HCl-; hymenium 90-125 µm thick, irregularly streaked with the same pigment as is present in the epihymenium, not inspersed with crystals or oil, POL-; hypothecium 100–200 µm thick, dark brown, K- or slowly bleeding yellow, HNO<sub>3</sub>-, HCl- or more vivid red, composed of densely packed intricate hyphae ca. 1.5 µm thick; exciple 40–75 µm wide laterally thickening to 100 µm or more near stipe, composed of strongly branched and anastomosing gelatinized hyphae 1.5–2.0 µm wide, internally pigmented with the same pigment as the hypothecium but rapidly transitioning along a gradient to entirely hyaline, not inspersed with crystals or oil, POL-; paraphyses weakly branched and anastomosing, [1.0]-(1.2)-1.5-(1.8)-(2.1) µm thick (n=69 from 3 specimens), tips neither expanded nor pigmented; asci clavate, with thickened tholus and shallow ocular chamber, outer wall K/I+ blue, inner wall K/I+ blue near tip when immature, with diverging K/I+ blue tubular structure (cf. Porpidia-type), [68]–(75)–91–(107)–[130] × [14]–(18)–22–(26)–[30] µm (n=24) from 3 specimens), monosporous to rarely bisporous; ascospores hyaline, ellipsoid to oblong, strongly muriform,  $[35.0]-(44.0)-58.2-(72.5)-[90.0] \times [11.7]-(15.5)-17.9-(20.5)-[25.0] \mu m$ (n=37 from 5 specimens), all measurements from ascospores outside of asci although these may have been released when the asci were damaged during study; campylidia not seen. Photobiont green coccoid, cells [3.7]–(4.6)–6.0–(7.2)–[10.3] µm (n=163 from 5 specimens) in diameter.

144145

146

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

Chemistry. – No substances detected with TLC. Spot tests: K-, C-, KC-, P-, UV-.

147

148

149

150

151

152

Etymology. – The epithet "saulskellyana" honors Mary Sauls Kelly, ecologist and long-time resident of Shelton Laurel in Madison County, North Carolina, U.S.A. Dr. Kelly is a broadly trained naturalist with decades of experience in applied biodiversity assessment and forest management policy, having earned her PhD in ecology from the University of Georgia (Kelly 1988). Much of her career has focused on conservation and sustainable use of southern

Appalachian forests, particularly those in western North Carolina managed as Nantahala and Pisgah National Forests. Through her dynamic engagement as a scientist, advocate, activist and organizer, particularly as the director of the Western North Carolina Alliance—now MountainTrue, she was instrumental in successful grassroots efforts to end large-scale clearcutting projects in the region in favor of practices more compatible with biodiversity and ecosystem health (Newfont 2012). Such practices, combined with preserving large areas of contiguous, high quality forest, are pivotal to maintaining the exceptional lichen biodiversity of the region (e.g., Allen & Lendemer 2016, Tripp et al. 2019), including the habitats where the new species occurs.

Together with her husband Rob Kelly, Dr. Kelly was among the leaders of a coalition to protect Bluff Mountain, a unique area in the Bald Mountains on the North Carolina and Tennessee line that connects disjunct high elevation lichen communities from the Great Smoky Mountains to Unaka and Roan Mountains (Lendemer, unpublished data; see also DePriest 1983). This effort also resulted in founding the Bluff Mountain Music Festival, celebrating both conservation and traditional Appalachian music, held annually in Hot Springs, North Carolina. Currently Dr. Kelly is involved in the Laurel Community Center, an organization that includes STEM education and outreach anchored in aquatic communities of the nearby Laurel River.

Ecology and distribution. – The new species is known from middle and high elevation habitats (3400–6260 ft.; 1036–1908 m.) in the southern Appalachian Mountains of eastern North America from North Carolina north to Virginia, U.S.A (Figure 5). Although described here from a relatively small number of scattered locations, the species is almost certainly more frequent and widespread than the current data suggest. Indeed, once we recognized that it was frequently sterile, we began to locate *Schadonia saulskellyana* in every spruce-fir stand that we visited in the southern Appalachians. In humid, shaded, closed-canopy spruce-fir forests where the boles of Fraser fir are dominated by bryophytes and crustose lichens (Figure 6), *S. saulskellyana* can be among the most common crustose lichens, although most thalli lack apothecia.

The new species occurs almost entirely on the bark of conifers, and the primary phorophytes are Fraser fir and red spruce. At middle elevations in the southern Appalachians, where those tree species do not occur, *Schadonia saulskellyana* was found on two other common and widespread conifers, white pine (*Pinus strobus*) and eastern hemlock (*Tsuga canadensis*). This suggests that although *S. saulskellyana* can occur on a broad range of tree genera, it is nonetheless

mostly restricted to conifers. Two collections were made on yellow birch (*Betula alleghaniensis*) however these were from a stand where the species was otherwise abundant on adjacent red spruces.

Intensive searching of conifer substrates elsewhere in the Appalachian Mountains, especially in spruce-dominated forests of the central Appalachians of Virginia and West Virginia, is needed to confirm that the species is endemic to the southern Appalachians. Nonetheless, there are data that support the status of S. saulskellyana as a regional endemic primarily restricted to high elevation spruce-fir forests. First, during the writing of this paper, the authors and their colleagues studied balsam fir (Abies balsamea) stands in Shenandoah National Park, Virginia and several red spruce dominated stands in West Virginia (e.g., Gaudineer Knob, Spruce Knob) where the species was not located. While in contrast, the species was located at additional red spruce or Frasier fir-red spruce sites in Virginia where it had not been collected previously by others (e.g., Balsam Beartown Mountain, Mount Rogers, Whitetop Mountain). This suggests the species occurs in stands with Frasier fir but not those with balsam fir, The occurrence on Beartown Mountain in a pure red spruce stand is an outlier. Second, extensive fieldwork at middle and low elevations of the southern Appalachians during the last decade has also failed to locate additional occurrences of the species. This suggests that although S. saulskellyana can occur in middle elevation habitats of the region, it is likely much rarer there in comparison to high elevation spruce-fir forests. Finally, northwards in the Appalachian Mountains and related ranges in New England, the species does not appear to have been encountered despite nearly two centuries of study that has particularly emphasized conifer forests and high elevation habitats (e.g., Seaward et al. 2017, Selva 1994, Tuckerman 1847).

205206

207

208

209

210

211

212

213

214

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

Discussion. – We considered a wide range of potential genera to which the new species could belong. The apothecial pigment, particularly the dark brown hypothecium (Figures 3, 4A-C), combined with the monosporous asci and large, hyaline, muriform ascospores (Figures 4I-L) strongly suggested *Lopadium*, *Calopadia* or *Schadonia*. *Lopadium* is similar in these respects, but differs from the material of the new species in having a persistent, well-developed apothecial margin (vs. margin that is soon excluded), asci that lack a distinct tholus (vs. with a distinct tholus), and most notably in having relatively thick paraphyses with a conspicuous spike-like or conical, dark pigmented cap on the uppermost cells (vs. very narrow paraphyses that lack pigment caps)

(Döbbeler et al. 1985, Hafellner 1984, Smith et al. 2009; compare Figures 1 and 4 of *S. saulskellyana* with Figure 7 of *L. disciforme* herein). The only species of *Lopadium* that occurs in the southern Appalachian Mountains is *L. disciforme* (Flot.) Kullh. (Tripp & Lendemer 2020) and *L. disciforme* occurs in the same habitats and on the same substrates as the new species. However, in addition to the characters listed above, *L. disciforme* differs markedly from the new species in having a well-developed, areolate, esorediate thallus (compare Figures 1E&F, and 2 of *S. saulskellyana* with Figures 7A&B of *L. disciforme* herein).

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

Calopadia is one of several genera, such as Brigantiaea Trevis. and Tapellaria Müll. Arg., that were previously included within a broadly delimited *Lopadium* based on their large, muriform ascospores (Santesson 1952, Vězda 1986). As has been outlined in multiple publications (e.g., Döbbeler et al. 1985; Hafellner 1984, 1997; Kalb & Vězda 1987), these genera differ in many respects from the small group of species that comprise *Lopadium* s. str., including its type *L*. pezizoideum (Ach.) Körb. which occurs on soil the arctic (Brodo et al. 2001) and L. disciforme which occurs on bark in wet, northern temperate and boreal regions of the Northern Hemisphere and has an Appalachian-Great Lakes Distribution in eastern North America (Brodo et al. 2001; Figure 8 herein). The new species does not match the current delimitation of *Tapellaria* as that genus differs in having lecideine apothecia with a dark brown-black pigmented exciple (vs. internally brownish but rapidly transitioning outward to hyaline in our material) (Lücking 2008). Similarly, it does not match the current delimitation of *Brigantiaea* in numerous respects, most notably the absence of anthraquinones in the apothecia (Hafellner 1997). Many morphological characters of the new species are in agreement with Calopadia, even though campylidia, highly distinctive conidium bearing structures, were not found in our material and our material was from habitats more similar to those of northern temperate or boreal regions rather than the tropical habitats typical of Calopadia (Lücking 2008, Sanders 2014). It has however, been noted previously that corticolous thalli of normally foliicolous *Calopadia* species often lack campylidia (Cáceres 2007). Despite the morphological similarities to Calopadia, our material differs from that genus in the anatomy of the exciple. Calopadia has a paraplectenchymatous exciple composed of large, thin-walled, isodiametric cells (Figure 9). Schadonia saulskellyana has a prosoplectenchymatous exciple composed of branched and anastomosing, narrow hyphae in a thick gelatinous matrix (Figure 10).

Schadonia is a small genus of three species, with a fourth Brazilian species, S. subobscurata (Vain.) Kalb, having been transferred to Brigantiaea, as B. subobscurata (Vain.) Aptroot (Aptroot 2002). Two of the species, S. alpina Körb. and S. fecunda (Th. Fr.) Vězda & Poelt appear to be rare, primarily not corticolous (mostly terricolous, saxicolous or muscicolous), occur in alpine or boreal habitats of Europe (Poelt & Vězda 1981) and have been reported from North America (Esslinger 2021). A third species, S. indica Upreti & Nayaka, is corticolous and so far, known only from India (Upreti & Nayaka 2006).

Although no detailed treatment of *Schadonia* has been published to date, the apothecium morphology of the new species, including the prosoplectenchymatous exciple and asci with a distinct amyloid tholus, match well those of the European species (e.g., Ekman 1996, Poelt & Vězda 1981; compare Figures 3, 4 and 10 of S. saulskelleyana to Figure 11 of S. fecunda herein). The presence of the new species in high elevation spruce-fir habitats, which include many floristic elements typical of northern boreal and arctic regions (Lendemer et al. 2017, Tripp & Lendemer 2019), also agrees with Schadonia. The primary morphological difference between the new species and all known Schadonia is that it has predominantly monosporous asci while those of Schadonia uniformly produce two or more ascospores per ascus (2-4 in S. alpina, 8 in S. fecunda and S. indica; Poelt & Vězda 1981, Upreti & Nayaka 2006). The strictly corticolous, or rarely lignicolous, habit is also very different from the ecology of S. alpina and S. fecunda, both of which are typical of alpine humus or soil communities (Poelt & Vězda 1981). Given the preponderance of morphological and biogeographic similarity, we describe the new species in Schadonia with the recognition that it may eventually be better placed in another genus when molecular data become available. It should be noted that as of the writing of this text, only two sequences of Schadonia were available in GenBank (mtSSU: AY756376, nucLSU/28s: AY756362; both generated nearly two decades ago).

While apothecium anatomy and biogeography suggest a placement in *Schadonia*, the new taxon is much more likely to be confused with one of the many described *Calopadia* species. Although there are more than twenty species of *Calopadia*, the majority of these are foliicolous, have smooth thalli and frequently produce campylidia, hence they are not likely to be confused with *S. saulskellyana* (Lücking 2008). No other members of the genus are known to occur on bark in middle and high elevation habitats in the southern Appalachian Mountains (e.g., Lendemer et al. 2017; Tripp & Lendemer 2019, 2020). The only other *Calopadia* species known from the region

is the foliicolous *C. puiggarii* (Müll. Arg.) Vězda, which differs in having lighter colored, gray-brown apothecia and a smooth, continuous thallus (Lücking 2008). In the Appalachians, that species is restricted to the leaves of evergreen shrubs, especially *Leucothoe* and *Rhododendron*, in very high humidity riparian corridors at low and middle elevations (J. Hollinger & J. Lendemer, unpublished data). *Calopadia puiggarii* is one of a cohort of foliicolous species with primarily tropical or subtropical distributions and that are disjunct between the Coastal Plain of southeastern North America and riparian corridors at middle and low elevations of the southern Appalachians (Sérusiaux 1979, Tripp & Lendemer 2019; Figure 12 herein).

Based on the epithet, we considered that the new species might be similar to *Calopadia granulosa* Aptroot & M. Cáceres, a corticolous species that is known only from rainforests in Brazil. However, *C. granulosa* has a very different corticate thallus that appears to be verruculose or coarsely granular rather than sorediate, reddish-brown apothecia with light brown margins, and smaller ascospores (33–38 × 10.5–13.0 μm; Aptroot & Cáceres 2014: 784, figs. 1A-C). As was noted by Aptroot and Cáceres (2014) there are only two other species of *Calopadia* with thalli that are not continuous and smooth, and while both are evidently corticolous, they differ significantly from *S. saulskellyana* in that *C. insidiosa* Kalb & Vězda has an isidiate thallus, while *C. psoromoides* Kalb & Vězda has a squamulose thallus (Kalb & Vězda 1987).

Most other known corticolous species of *Calopadia* with muriform ascospores differ markedly from *S. saulskellyana* in having a smooth, continuous thallus and pruinose apothecia (e.g., *C. bonitensis* M. Cáceres & Lücking, see Cáceres 2007; *C. cinereopruinosa* Bungartz & Lücking and *C. editiae* Vězda ex Chaves & Lücking, see Lumbsch et al. 2011; *C. perpallida* (Nyl.) Vězda, see Lücking 2008; *C. schomerae* Seavey & J. Seavey, see Seavey & Seavey 2011). One exception is *C. subfusca* Kalb & Vězda, which was described based on corticolous material and has subsequently been reported to also be foliicolous (Lücking 2008). Confusion of the new species with *C. subfusca* is unlikely since that species has brown rather than black apothecia, the thallus is continuous and smooth, and the ascospores are 2–4 per ascus (Kalb & Vězda 1987). *Calopadia subcoerulescens* (Zahlbr.) Vězda is another species that can be both corticolous and foliicolous, and has epruinose apothecia, but it differs from the new species in having a smooth, continuous thallus and apothecia with an aeruginose pigmented hypothecium (Lücking 2008). *Calopadia lecanorella* (Nyl.) Kalb & Vězda is tropical species similar to *S. saulskellyana* in being corticolous and having black apothecia as well as monosporous asci with muriform ascospores of

a comparable size (Kalb & Vězda 1987). Nonetheless that species is reported to have a smooth, thin thallus and campylidia are known (Kalb & Vězda 1987).

Much as we did, the average person in the field would likely overlook *Schadonia* saulskellyana and assume that it was poorly developed material of other common and widespread Appalachian species. *Bacidia schweinitzii* is the most superficially similar species, and the small, black apothecia of *S. saulskellyana* would likely be confused with either the large pycnidia or immature apothecia that are typical of some forms of *B. schweinitzii* (Ekman 1996, Harris & Ladd 2015, Lendemer et al. 2016). That species differs from *S. saulskellyana*, however, in having an esorediate thallus and acicular, needle-like ascospores (Ekman 1996, Lendemer et al. 2016). It also differs chemically in the production of atranorin, although that substance can usually only be detected with thin layer chromatography (Lendemer et al. 2016). Ecologically *B. schweinitzii* also differs in almost never occurring on red spruce or Fraser fir, although it does occur on other conifers at middle and low elevations (Lendemer et al. 2016).

The new species could also be confused with members of the *Micarea prasina* group, whose thalli often form extensive, brownish-green or vibrant grass-green colored colonies on bark in closed-canopy southern Appalachian spruce-fir forests (Tripp & Lendemer 2020). Most members of that group have a thallus that is composed of goniocysts rather than granular soredia, differ chemically in the production of micareic or methoxymicareic acid, and are frequently fertile with tan to dark-brown apothecia and simple to 2-celled ascospores (Barton & Lendemer 2014, Guzow-Krzemińska et al. 2019, Launis et al. 2019). *Micarea soralifera* Guzow-Krzem., Czarnota, Łubek & Kukwa is a sorediate member of the *M. prasina* group that can resemble *S. saulskellyana* from a distance. While *M. soralifera* also grows on conifers, it is mostly restricted to middle and low elevations in the southern Appalachians and differs chemically from *S. saulskellyana* in the presence of micareic acid (Guzow-Krzemińska et al. 2016).

Ropalospora viridis is another sorediate lichen with a dark greenish or brownish-green thallus that also occurs in southern Appalachian spruce-fir forests with Schadonia saulskellyana (Tripp & Lendemer 2020). Unlike S. saulskellyana, R. viridis is typically found on hardwoods and the branches of conifers (vs. the trunks) and it has a thick, relatively continuous thallus that regularly forms small circular rosettes, and often has a conspicuous shiny brown prothallus (Lendemer 2011, Tønsberg 1992). Ropalospora viridis also differs from S. saulskellyana in the production of perlatolic acid (Lendemer 2011).

Additional specimens examined. – U.S.A. North Carolina. Clay Co., Nantahala National 339 Forest, stream bed/valley of Buck Creek, 1–1.5 mi N of US64 on Buck Creek Rd., 10 Nov. 2007, 340 on Tsuga, J.C. Lendemer et al. 10489 (NY); Buck Creek Barrens, 10 Nov. 2007, on Tsuga, S.O. 341 Beeching 4390 (NY). Haywood Co., Great Smoky Mountains National Park, Cataloochee Balsam, 342 N side of Polls Gap trail near W end of mountain ca. 3.0 km N of Polls Gap trailhead, 31 May 343 2022, on Picea, J.P. Hollinger 27096 (NY); Great Smoky Mountains National Park, Big 344 345 Cataloochee Mountain, along Sterling Ridge Trail ca. 1.6 mi E of Balsam Mountain Trail, on Picea, J.P. Hollinger 27531 & P.A. Scott (NY); Great Smoky Mountains National Park, Gunter 346 Fork Trail, 0.2–0.4 mi from top, on Betula alleghaniensis, J.P. Hollinger 27561 & P.A. Scott (NY), 347 J.P. Hollinger 27563 & P.A. Scott (NY), on Picea, J.P. Hollinger 27562 & P.A. Scott (NY), on 348 349 Tsuga, J.P. Hollinger 27574 & P.A. Scott (NY); Great Smoky Mountains National Park, Baxter Creek Trail, ca. 1 mi from the top, on Picea, J.P. Hollinger 27626 & N.L. Noell (NY), J.P. 350 351 Hollinger 27629 & N. Noell (NY). Macon Co., Highlands Ravenel Park, trail to Sunset Rock, 30 Apr. 2006, on Pinus, J.C. Lendemer et al. 7030 (NY). Swain Co., Great Smoky Mountains 352 353 National Park, Cataloochee Balsam, just above old Polls Gap Trail near E end of mountain ca. 2.2 km N of Polls Gap trailhead, 31 May 2022, on *Picea, J.P. Hollinger 27108* (NY); Great Smoky 354 355 Mountains National Park, Balsam Mountain Trail between Tricorner Knob and Luftee Knob, ca. 1.5 mi E of Appalachian Trail, on Picea, J.P. Hollinger 27480 & P.A. Scott (NY). Yancey Co., 356 357 Pisgah National Forest, Black Mountains, E-slopes just S of Black Mountain Crest Trail and Big Tom Trail, ~0.4 mi N of Big Tom summit, 27 Oct. 2021, on Abies, J.C. Lendemer et al. 71948 358 (NY). Tennessee. Sevier Co., Great Smoky Mountains National Park, Sweet Ridge, ca. 2.2 mi 359 from Mt. Collins shelter N bound on Sugarland Mountain Trail, 29 Sep. 2021, on *Picea*, J.P. 360 361 Hollinger 26062 (NY); Great Smoky Mountains National Park, False Gap, on Abies, J.P. 362 Hollinger 27190 (NY); Great Smoky Mountains National Park, Porters Gap, on Picea, J.P. Hollinger 27202 (NY), J.P. Hollinger 27203 (NY); Great Smoky Mountains National Park, Eagle 363 Rocks, on Picea, J.P. Hollinger 27225 (NY); Great Smoky Mountains National Park, Hughes 364 Ridge, ca. 1.8 km S of Pecks Corner Shelter, on Picea, J.P. Hollinger et al. 27236 (NY); Great 365 Smoky Mountains National Park, Appalachian Trail near Pecks Corner, on Picea, J.P. Hollinger 366 27391 & P.A. Scott (NY); Great Smoky Mountains National Park, Mount Sequoyah, on Picea, 367 J.P. Hollinger 27396 & P.A. Scott (NY); Great Smoky Mountains National Park, Appalachian 368

Trail between Tricorner Knob and Mount Guyot, on Picea, J.P. Hollinger 27431& P.A. Scott (NY), J.P. Hollinger 27360 & P.A. Scott (NY), J.P. Hollinger 27465-a & P.A. Scott (NY); Great Smoky Mountains National Park, S slope of Mount LeConte, Alum Cave Trail ~1 mi SE of LeConte Lodge, upper slopes of Huggins Hell above headwaters of Styx Branch, 2 Aug. 2022, on Picea, J.C. Lendemer et al. 77167 (NY). Virginia. Grayson Co., Jefferson National Forest, Mount Rogers National Recreation Area, Lewis Fork Wilderness, S-facing slopes of Mount Rogers, 16 Apr. 2022, on Abies base, J.C. Lendemer et al. 73072 (NY), on Picea, J.C. Lendemer et al. 73091 (NY), J.C. Lendemer et al. 73092 (NY). Smyth Co., Jefferson National Forest, W-slopes below summit of Whitetop Mountain, 15 Oct. 2022, on Picea, J.C. Lendemer 75454 & J.W. Howland (NY), J.C. Lendemer 75455 & J.W. Howland (NY), on log, J.C. Lendemer 75517 (NY). Tazewell Co., Jefferson National Forest, Beartown Wilderness, Garden Mountain, Beartown Ridge, 20 Oct. 2022, on *Picea*, *J.C. Lendemer et al.* 76230 (NY).

382 Conclusion

The discovery and recognition of *Schadonia saulskellyana* in the southern Appalachian Mountains of eastern North America further highlights the remarkable heterogeneity of biogeographic elements present in the region (Hedin & McCormack 2017, Manos & Meireles 2015, White et al. 1984; for lichens see Tripp & Lendemer 2019). Interestingly, the new species appears to be an endemic that is morphologically and ecologically incongruous with its congeners in having an areolate, sorediate thallus and corticolous habit, monosporous asci, and in being strongly disjunct from the alpine boreal habitats that characterize *S. alpina* and *S. fecunda* (Lücking 2008). It is also noteworthy that in a biodiversity hotspot where narrowly endemic vascular plants and animals are distributed across many ecosystems and elevations (Davies 1955, Estill & Cruzan, 2001, Hedin & McCormack 2017, Niemiller & Zigler 2013, Petranka 1998), the new species adds to the growing body of literature that suggests most strictly southern Appalachian lichen endemics occur as naturally fragmented, disjunct populations largely restricted to high elevation ecosystems (Allen & Lendemer 2016, Allen et al. 2018, Lendemer & Allen 2015, Lendemer & McMullin 2022, Tripp & Lendemer 2019).

That the species was largely overlooked in the ecosystems, and on the substrates, where it is most frequent, is remarkable considering the amount of lichen biodiversity inventory work that

has been carried out across the southern Appalachians for well over two decades (Allen & Lendemer 2016; Lendemer et al. 2013, 2017; Tripp & Lendemer 2019, 2020). It is even more remarkable that some of the locations where the species was found, and found growing abundantly, were among areas that had already been visited multiple times by the authors previously (e.g., Cataloochee Balsam and Mount Collins in Great Smoky Mountains National Park, or Big Tom in the Black Mountains). This starkly illustrates the detection-, and collection-, bias that exists for crustose lichens with dominantly asexual reproductive modes even when specialists in these very taxa lead the inventory efforts[!]. Concurrently it underscores that iterative, intensive, and repeated study is required to develop a clear understanding of the ecology, distribution and morphological variation of crustose microlichens that have previously been little studied (Lendemer 2021). This is particularly poignant in the broader context of attempting to conserve understudied biodiverse groups in areas that are currently undergoing rapid, ecosystem-wide change (Allen et al. 2019).

## Acknowledgments

The first author's participation in this study was carried out under NSF DEB Award #2115190. Fieldwork in Grandfather Mountains State Park was carried out under permit #2020\_0437. Fieldwork in Great Smoky Mountains National Park was carried out under permits #GRSM-2018-SCI-9001 & #GRSM-2021-SCI-2090. The National Forest Service is thanked for permission to conduct fieldwork in Jefferson and Nantahala National Forests. Laura Boggess is thanked for epithet inspiration and contact with the honoree. The first author thanks Mary and Rob Kelly for discussion of Appalachian biodiversity on a chance encounter while running through Hickey Fork in Shelton Laurel, North Carolina in summer 2021.

## 424 Literature Cited

- Allen, J. L. and J. C. Lendemer. 2016. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25: 555–568.
- Allen, J. L., S. K. McKenzie, R. S. Sleith and S. E. Alter. 2018. First genome-wide analysis of the endangered, endemic lichen *Cetradonia linearis* reveals isolation by distance and strong population structure. American Journal of Botany 105: 1556–1567.

- 431 Allen, J. L., R. T. McMullin, E. A. Tripp and J. C. Lendemer. 2019. Lichen conservation in North
- America: A review of current practices and research in Canada and the United States.
- 433 Biodiversity and Conservation 28: 3103–3138.
- Aptroot, A. 2002. New and interesting lichens and lichenicolous fungi in Brazil. Fungal Diversity
- *9*: 15–45.
- 436 Aptroot, A. and M. E. S. Cáceres. 2014. A key to the corticolous microfoliose, foliose and related
- crustose lichens from Rondônia, Brazil, with the description of four new species. The
- 438 Lichenologist 46: 783–799.
- Barton, J. W. and J. C. Lendemer. 2014. *Micarea micrococca* and *M. prasina*, a summary of two
- very similar species in eastern North America. The Bryologist 117: 223–231.
- Brodo, I. M., S. Duran Sharnoff and S. Sharnoff. 2001. Lichens of North America. Yale University
- 442 Press, New Haven & London.
- Cáceres, M. E. S. 2007. Corticolous crustose and microfoliose lichens of northeastern Brazil. Libri
- 444 Botanici 22: 1–168.
- Culberson, C. F. and H. Kristinsson. 1970. A standardized method for the identification of lichen
- products. Journal of Chromatography 46: 85–93.
- Davies, P. A. 1955. Distribution and abundance of *Shortia galacifolia*. Rhodora 57 189–201.
- Degelius, G. N. 1941. Contributions to the Lichen flora of North America II. The lichen flora of
- the Great Smoky Mountains. Arkiv för Botanik 30A(3): 1–80.
- 450 DePriest, P. T. 1983. [Thesis:] The macrolichen flora of Unaka Mountain, Unicoi County, TN-
- 451 Yancey County, NC. University of Tennessee, Knoxville.
- Dey, J. P. 1976. Phytogeographic relationships of the fruticose and foliose lichens of the southern
- 453 Appalachian Mountains. *In:* B. C. Parker & M. K. Roane (eds.): The Distributional History
- of the Biota of the Southern Appalachians. Part IV. Algae and Fungi. Virginia Polytechnic
- 455 Institute and State University, Research Division Monograph. pp. 398–416.
- 456 Dey, J. P. 1978. Fruticose and foliose lichens of the high-mountain areas of the southern
- 457 Appalachians. The Bryologist 81: 1–93.
- 458 Dey, J. P. 1984. Lichens of the southern Appalachian mountain spruce-fir zone and some
- unanswered ecological questions. *In*: White, P.S. (ed): The Southern Appalachian Spruce-
- 460 Fir Ecosystem: Its Biology and Threats. Research/Resources Management Report SER-71.
- 461 U.S. Department of the Interior, National Park Service, pp. 139–150.

- Dey, J. P. 1993. Observations on the fruiticose and foliose lichens of the Upland Forest Region.
- 463 In: Stephenson, S. (ed.): Upland forests of West Virginia. West Virginia Academy of
- 464 Science, pp. 101–124.
- Döbbeler, P., J. Poelt and A. Vezda. 1985. *Lopadium hepaticola* spec. nov. ein moosparasitisches
- echtes *Lopadium* von der Sudhalbkugel. Herzogia 7: 81–91.
- Ekman, S. 1996. The corticolous and lignicolous species of *Bacidia* and *Bacidina* in North
- 468 America. Opera Botanica 127: 1–148.
- 469 Estill, J. C. and M. B. Cruzan. 2001. Phytogeography of rare plant species endemic to the
- 470 Southeastern United States. Castanea 66: 3–23.
- 471 Guzow-Krzemińska, B., P. Czarnota, A. Łubek, M. Kukwa. 2016. Micarea soralifera sp. nov., a
- new sorediate species in the *M. prasina* group. The Lichenologist 48: 161–169.
- 473 Guzow-Krzemińska, B., E. Sérusiaux, P. P. G. van den Boom, A. M. Brand, A. Launis, A. Łubek
- and M. Kukwa. 2019. Understanding the evolution of phenotypical characters in the
- 475 Micarea prasina group (Pilocarpaceae) and descriptions of six new species within the
- group. MycoKeys 57: 1–30.
- 477 Hafellner, J. 1984. Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien
- Lecanoraceae und Lecideaceae. Beiheft zur Nova Hedwigia 79: 241–371.
- 479 Hafellner, J. 1997. A world monograph of *Brigantiaea* (lichenized Ascomycotina, Lecanorales).
- 480 In: Tibell, L. & I. Hedberg, I (eds.): Lichen Studies Dedicated to Rolf Santesson. Symbolae
- Botanicae Upsalienses, Acta Universitatis Upsaliensis, Uppsala. pp. 35–74.
- Harris, R. C. and D. Ladd. 2005. Preliminary Draft: Ozark Lichens, enumerating the lichens of the
- Ozark Highlands of Arkansas, Illinois, Kansas, Missouri, and Oklahoma. Published by the
- authors. 249 pp.
- Harris, R. C., E. A. Tripp and J. C. Lendemer. 2014. Arthopyrenia betulicola (Arthopyreniaceae,
- Dothidiomycetes), an unusual new lichenized fungus from high elevations of the southern
- 487 Appalachian Mountains. Aliso 31: 77–81.
- 488 Hedin, M. and M. McCormack. 2017. Biogeographical evidence for common vicariance and rare
- dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens).
- Journal of Biogeography 44: 1665–1678.
- 491 Kalb, K. and A. Vězda. 1987. Einige nicht-foliicole Arten der Familie Ectolechiaceae (Lichenes)
- aus Brasilien. Folia Geobotanica et Phytotaxonomica 22: 287–312.

- 493 Kelly, M. S. 1988. Biomass dynamics and 137Cs cycling in floating-leaved macrophytes in a
- 494 nuclear-contaminated aquatic ecosystem. Ph.D. dissertation. University of Georgia,
- 495 Athens.
- 496 Launis, A., J. Malíček, M. Svensson, A. Tsurykau, E. Sérusiaux and L. Myllys. 2019. Sharpening
- species boundaries in the *Micarea prasina* group, with a new circumscription of the type
- 498 species *M. prasina*. Mycologia 111: 574–592.
- 499 Lendemer, J. C. 2011. A review of the morphologically similar species Fuscidea pusilla and
- 500 Ropalospora viridis in eastern North America. Opuscula Philolichenum 9: 11–20
- Lendemer, J. C. 2020. Leprocaulon beechingii (Leprocaulaceae), a new species from the southern
- Appalachian Mountains of eastern North America. The Bryologist 123: 1–10.
- 503 Lendemer, J. C. 2021. Proposed best practices for taxonomic innovations in lichen and allied
- Fungi: A framework derived from analysis of more than 1,000 new taxa and new
- combinations. The Bryologist 124(1): 90–99.
- Lendemer, J. C. and J. L. Allen. 2015. Reassessment of *Hypotrachyna virginica*, an endangered,
- endemic Appalachian macrolichen, and the morphologically similar species with which it
- has been confused. Proceedings of the Academy of Natural Sciences of Philadelphia 164:
- 509 279–289.
- 510 Lendemer, J. C. and R. C. Harris. 2013a. Buellia sharpiana (Physciaceae, lichenized
- Ascomycetes), another new species from the Great Smoky Mountains of eastern North
- 512 America. Castanea 78: 148–153.
- 513 Lendemer, J. C. and R. C. Harris. 2013b. Cladonia appalachensis, belated description of a
- southern Appalachian lichen endemic from the Great Smoky Mountains. Opuscula
- 515 Philolichenum 12: 17–22.
- 516 Lendemer, J. C. and R. T. McMullin. 2022. Lectotypification of the threatened endemic
- 517 Appalachian lichen *Alectoria fallacina*. Taxon: 10.1002/tax.12719.
- Lendemer, J. C. and E. A. Tripp. 2015. Lecanora anakeestiicola (Lecanorales): an unusual new
- fruticose species from Great Smoky Mountains National Park in eastern North America.
- 520 The Bryologist 118: 1–10.
- Lendemer, J. C., R. C. Harris and E. A. Tripp. 2013. The lichens and allied fungi of Great Smoky
- Mountains National Park: an annotated checklist with comprehensive keys. Memoirs of
- the New York Botanical Garden 104: 1–152.

- 524 Lendemer, J. C., R. C. Harris, and D. Ladd. 2016. The faces of *Bacidia schweinitzii*: Molecular
- and morphological data reveal three new species including a widespread sorediate morph.
- The Bryologist 119: 143–171.
- Lendemer, J. C., C. R. Anderson Stewart, B. Besal, J. Goldsmith, H. Griffith, J. R. Hoffman, B.
- Kraus, P. LaPoint, L. Li, Z. Muscavitch, J. Schultz, R. Schultz and J. L. Allen. 2017. The
- lichens and allied fungi of Mount Mitchell State Park, North Carolina: A first checklist
- with comprehensive Keys and comparison to historical data. Castanea 82: 69–97.
- Lendemer, J. C., E. A. Tripp and J. W. Sheard. 2014. A review of *Rinodina* (Physciaceae) in Great
- Smoky Mountains National Park highlights the growing significance of this "93island of
- biodiversity" in eastern North America. The Bryologist 117: 259–281.
- Lücking, R. 2008. Foliicolous lichenized fungi. Flora Neotropica Monograph 103: 1–866.
- Lumbsch, H. T., T. Ahti, S. Altermann, G. Amo De Paz, A. Aptroot, U. Arup, A. Bárcenas Peña,
- P. A. Bawingan, M. N. Benatti, L. Betancourt, C. R. Björk, K. Boonpragob, M. Brand, F.
- Bungartz, M. E. S. Cáceres, M. Candan, J. L. Chaves, P. Clerc, R. Common, B. J. Coppins,
- A. Crespo, M. Dal-Forno, P. K. Divakar, M. V. Duya, J. A. Elix, A. Elvebakk, J. D.
- Fankhauser, E. Farkas, L. Itatí Ferraro, E. Fischer, D. J. Galloway, E. Gaya, M. Giralt, T.
- Goward, M. Grube, J. Hafellner, J. E. Hernández M., M. A. Herrera Campos, K. Kalb, I.
- Kärnefelt, G. Kantvilas, D. Killmann, P. Kirika, K. Knudsen, H. Komposch, S.
- Kondratyuk, J. D. Lawrey, A. Mangold, M. P. Marcelli, B. McCune, M. I. Messuti, A.
- Michlig, R. Miranda González, B. Moncada, A. Naikatini, M. P. Nelsen, D. O. Øvstedal,
- Z. Palice, K. Papong, S. Parnmen, S. Pérez-Ortega, C. Printzen, V. J. Rico, E. Rivas Plata,
- J. Robayo, D. Rosabal, U. Ruprecht, N. Salazar Allen, L. Sancho, L. Santos De Jesus, T.
- Santos Vieira, M. Schultz, M. R. D. Seaward, E. Sérusiaux, I. Schmitt, H. J. M. Sipman,
- M. Sohrabi, U. Søchting, M. Z. Søgaard, L. B. Sparrius, A. Spielmann, T. Spribille, J.
- Sutjaritturakan, A. Thammathaworn, A. Thell, G. Thor, H. Thüs, E. Timdal, C. Truong, R.
- Türk, L. Umaña Tenorio, D. K. Upreti, P. van den Boom, M. Vivas Rebuelta, M. Wedin,
- 550 S. Will-Wolf, V. Wirth, N. Wirtz, R. Yahr, K. Yeshitela, F. Ziemmeck, T. Wheeler, R.
- Lücking 2011: One hundred new species of lichenized fungi: a signature of undiscovered
- global diversity. Phytotaxa 18: 1–127.
- Lusk, L., M. Mutel, E.S. Walker and F. Levy. 2010. Forest change in high-elevation forests of Mt.
- Mitchell, North Carolina: re-census and analysis of data collected over 40 years. *In*:

- Rentch, J.S. and T.M. Schuler (eds.): Proceedings from the conference on the ecology and
- management of high-elevation forests in the central and southern Appalachian Mountains.
- Gen. Tech. Rep. NRS-P-64. USDA Forest Service, Northern Research Station, Newtown
- Square, Pennsylvania. pp. 104–112.
- Manos, P. S. and J. E. Meireles. 2015. Biogeographic analysis of the woody plants of the Southern
- Appalachians: Implications for the origins of a regional flora. American Journal of Botany
- 561 102: 780–804.
- McManamay R. H., L. M. Resler, J. B. Campbell and R.A. McManamay. 2011. Assessing the
- 563 impacts of the balsam woolly adelgid (Adelges piceae Ratz.) and anthropogenic
- disturbance on the stand structure and mortality of Fraser Fir [Abies fraseri (Pursh) Poir.]
- in the Black Mountains, North Carolina. Castanea 76: 1–19.
- Newfont, K. 2012. Blue Ridge Commons: Environmental Activism and Forest History in Western
- North Carolina. University of Georgia Press.
- Niemiller, M. L. and K. S. Zigler. 2013. Patterns of cave biodiversity and endemism in the
- Appalachians and Interior Plateau of Tennessee, USA. PLOS ONE 8(5): e64177.
- Noss R. F., E. T. LaRoe III and J. M. Scott. 1995. Endangered ecosystems of the United States: A
- 571 preliminary assessment of loss and degradation. US Department of the Interior,
- 572 Washington, D.C.
- 573 Petranka, J. 1998. Salamanders of the United States and Canada. Smithsonian Institutional Press,
- Washington, DC.
- 575 Poelt, J. and A. Vězda. 1981. Bestimmungsschlussel europaischer Flechten. Erganzungsheft II.
- Bibliotheca Lichenologica 16: 1–390.
- 577 Sanders, W. B. 2014. Complete life cycle of the lichen fungus *Calopadia puiggarii* (Pilocarpaceae,
- Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus
- development, and formation of sexual and asexual reproductive structures. American
- Journal of Botany 101(11): 1836–1848.
- Santesson, R. 1952. Foliicolous lichens I. A revision of the taxonomy of the obligately foliicolous,
- lichenized fungi. Symbolae Botanicae Upsaliense 12: 1–590.
- 583 Seavey, F. C. and J. L. Seavey. 2011. Calopadia schomerae (Pilocarpaceae), a lichen from
- Everglades National Park. Opuscula Philolichenum 9: 39–43.

- Seaward, M. R. D., D. H. S. Richardson, I. M. Brodo, R. C. Harris and D. L. Hawksworth. 2017.
- Checklist of lichen-forming, lichenicolous and allied fungi of Eagle Hill and its vicinity,
- 587 Maine. Northeastern Naturalist 24: 349–379.
- Selva, S. B. 1994. Lichen diversity and stand continuity in the northern hardwoods and spruce-fir
- forests of northern New England and western New Brunswick. The Bryologist 97: 424–
- 590 429.
- 591 Sérusiaux, E. 1979. Foliicolous lichens from southeastern United States. The Bryologist 82: 88–
- 592 93.
- 593 Smith, C. W., A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James and P. A.
- Wolseley. 2009. The Lichens of Great Britain and Ireland. British Lichen Society.
- 595 Tønsberg, T. 1992. The sorediate and isidiate, corticolous, crustose lichens in Norway.
- 596 Sommerfeltia 14: 1–331.
- 597 Tripp, E. A. and J. C. Lendemer. 2019. Highlights from 10+ years of lichenological research in
- Great Smoky Mountains National Park: Celebrating the United States National Park
- Service Centennial. Systematic Botany 44: 943–980.
- 600 Tripp, E. A. and J. C. Lendemer. 2020. Field Guide to the Lichens of Great Smoky Mountains
- National Park. University of Tennessee Press, Knoxville. 572 pp.
- Tripp, E. A., J. C. Lendemer and C. M. McCain. 2019. Habitat quality and disturbance drive lichen
- species richness in a temperate biodiversity hotspot. Oecologia 190(2): 445–457.
- Tuckerman, E. 1847. A synopsis of the lichens of New England, the Northern United States and
- British America. Proceedings of the American Academy of Arts and Sciences 1: 195–285.
- 606 Upreti, D. K. and S. Nayaka. 2006. Schadonia indica, a new corticolous species from tropical
- 607 India. Mycotaxon 97: 275–278.
- Vězda, A. 1986. Neue Gattungen der Familie Lecideaceae s. lat. (Lichenes). Folia Geobotanica et
- 609 Phytotaxonomica 21: 199–219.
- 610 White, P. S., R. I. Miller & G. S. Ramseur. 1984. The species-area relationship of the Southern
- Appalachian High Peaks: Vascular plant richness and rare plant distributions. Castanea 49:
- 612 47–61.
- White, P. B., S. L. van de Gevel and P. T. Soule. 2012. Succession and disturbance in an
- endangered red spruce-Fraser fir forest in the southern Appalachian Mountains, North
- 615 Carolina, USA. Endangered Species Research 18: 17–25.

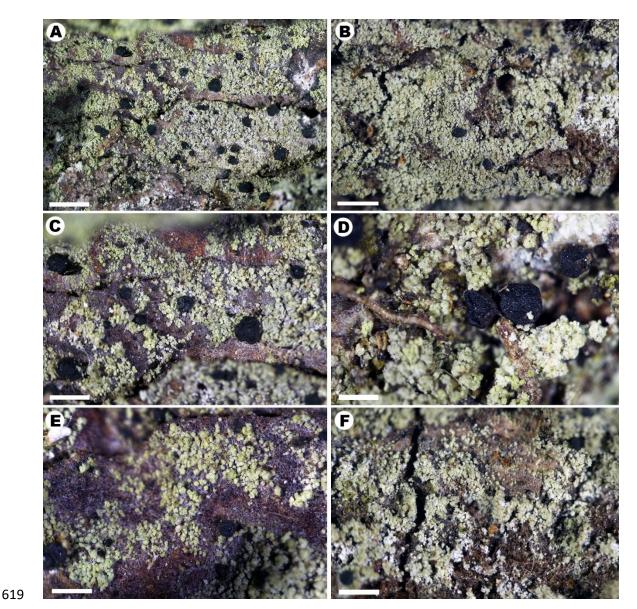



Figure 1. Morphology of *Schadonia saulskellyana* (A, C, and D from *Hollinger 24085*, holotype; B, E and F from *Lendemer 10489*). A-C, gross morphology of the thallus and apothecia. D, detail of apothecial variation and areoles dissolving into soredia. E, detail of areoles prior to formation of soralia. F, detail of portion of thallus where areoles have nearly completely dissolved into soredia. Scales = 2.0 mm in A and B, 1.0 mm in C, 0.5 mm in D-F.

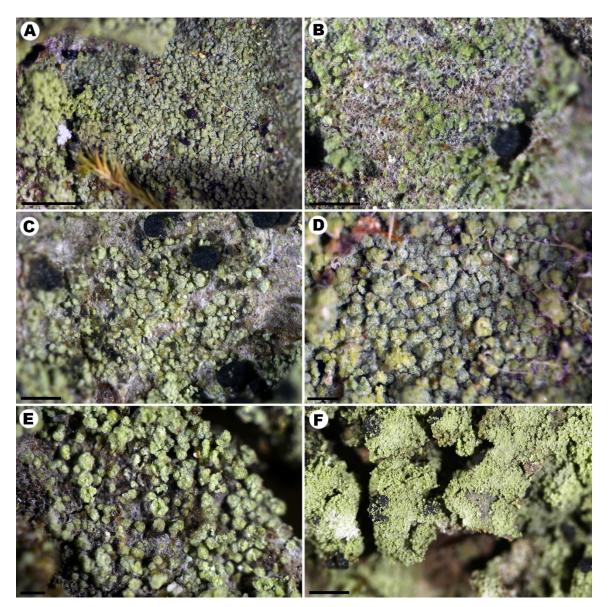



Figure 2. Thallus development in *Schadonia saulskellyana* (A & F from *Lendemer 71948*, B & E from *Lendemer 73091*, C & D from *Lendemer 73072*). A, intact thallus areoles with early stages of soralium formation viewed from a distance. B, detail of young, flattened areoles, beginning to become convex. C, mature thickened areoles beginning to form erumpent soralia. D, contiguous areoles with some erumpent soralia. E, somewhat dispersed areoles with well-developed erumpent soralia. F, thallus completely dissolved in soredia giving the appearance of a leprose crust. Scales = 1.0 in A & F; 0.5 mm in B, C & E; 0.2 mm in D.

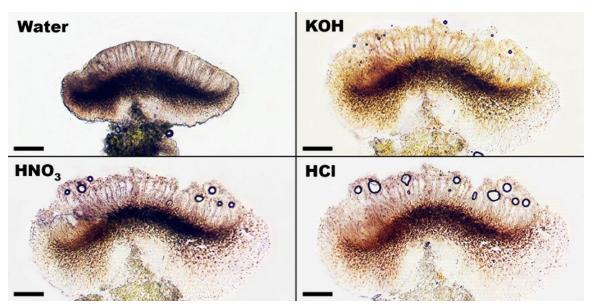



Figure 3. apothecial anatomy and pigmentation in *Schadonia saulskellyana* (from *Hollinger 24085*, holotype) as viewed in a section of an apothecium in water, 10% potassium hydroxide (KOH), 10% nitric acid (HNO<sub>3</sub>) and 10% hydrochloric acid (HCl). Scales =  $100 \, \mu m$ .

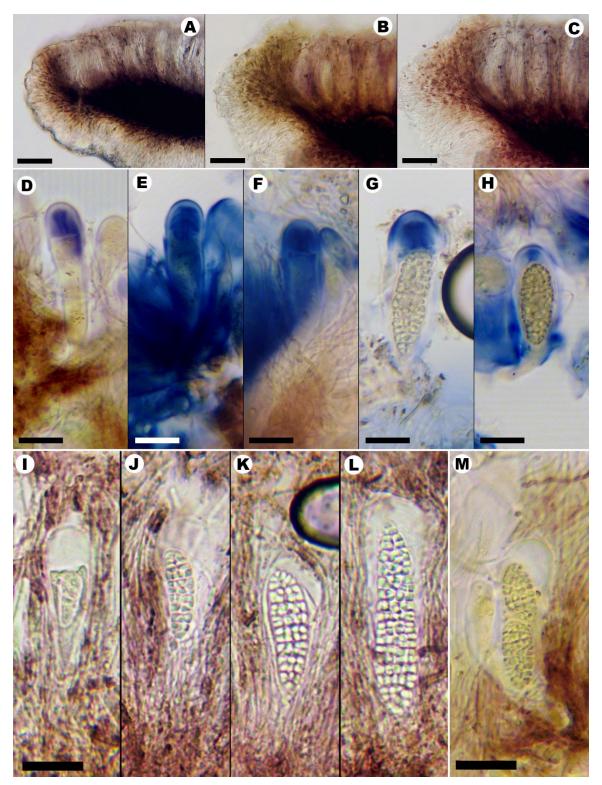



Figure 4. Apothecial anatomy of *Schadonia saulskellyana*. (A-H & M from *Hollinger 27096*, I-L from *Hollinger 24085*, holotype). A-C, detail of transverse section of apothecium illustrating pigmentation and excipular anatomy in water (A), KOH (B) and nitric acid (C). D-H, ascus

anatomy and staining of the tholus in K/I. I-L, ascus and ascospore development. M, atypical bisporous ascus in KOH. Scales =  $50 \, \mu m$  in A-C,  $20 \, \mu m$  in D-M.

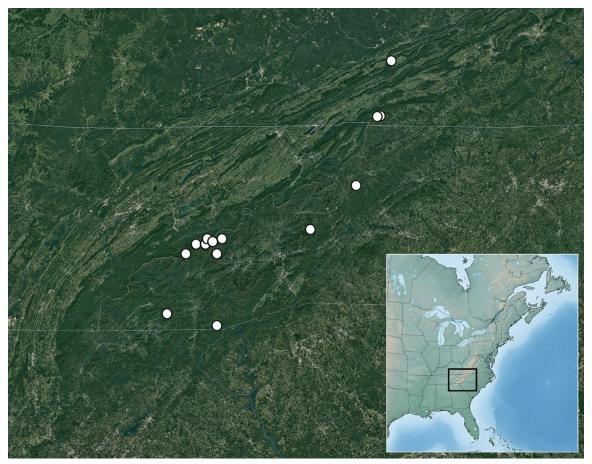



Figure 5. Geographic distribution of *Schadonia saulskellyana* based on specimens examined for this study. Area depicted with satellite imagery is bounded in a black box in the inset.

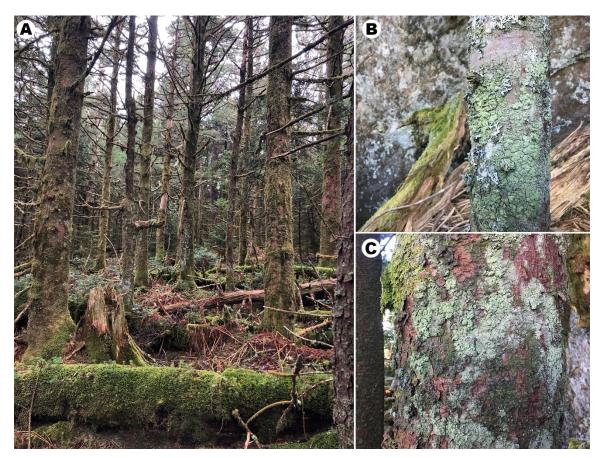



Figure 6. Ecology of *Schadonia saulskellyana*. A, typical spruce-fir forest habitat (summit of Mount Rogers, Virginia, U.S.A.). B, fertile thallus on young Fraser fir (Big Tom, Black Mountains, Pisgah National Forest, North Carolina, U.S.A.). C, sterile thallus on mature Fraser fir (Cattail Peak, Black Mountains, Pisgah National Forest, North Carolina, U.S.A.).

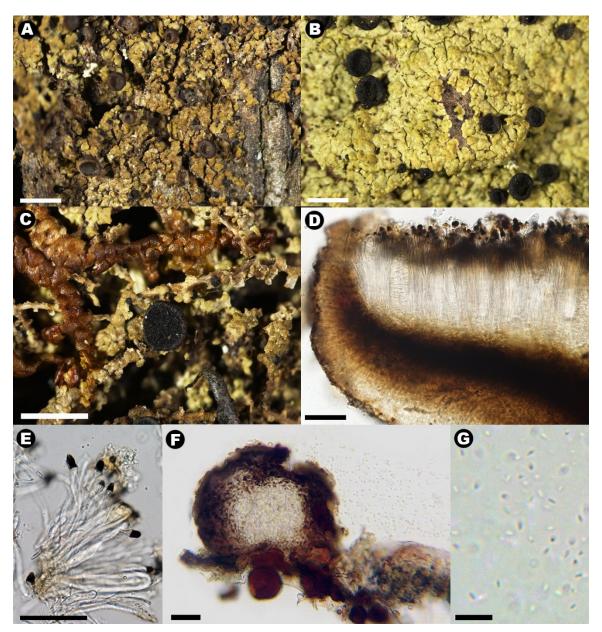



Figure 7. Morphology and anatomy of *Lopadium disciforme* (A from *Lendemer 43271*, B from *Lendemer 44182*, C from *Lendemer 46162*, D & E from *Lendemer 23050*, F & G from *Hollinger 24272*). A and B, gross morphology of thallus. C, detail of mature apothecium with persistent margin. D, transverse section of apothecium illustrating pigmentation and anatomy, particularly of the exciple. E, detail of paraphyses illustrating conspicuous black pigment caps. F, transverse section of a pycnidium. G, conidia. Scales = 1.0 mm in A and B, 0.5 mm in C,  $50 \text{ }\mu\text{m}$  in D and E,  $25 \text{ }\mu\text{m}$  in F,  $5 \text{ }\mu\text{m}$  in G.

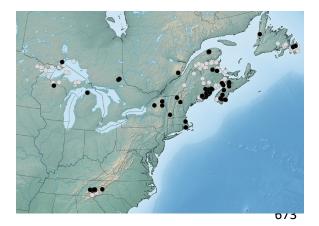



Figure 8. Geographic distribution of *Lopadium disciforme* in eastern North America based on specimens examined for this study at NY (black) and records from CNALH (gray).

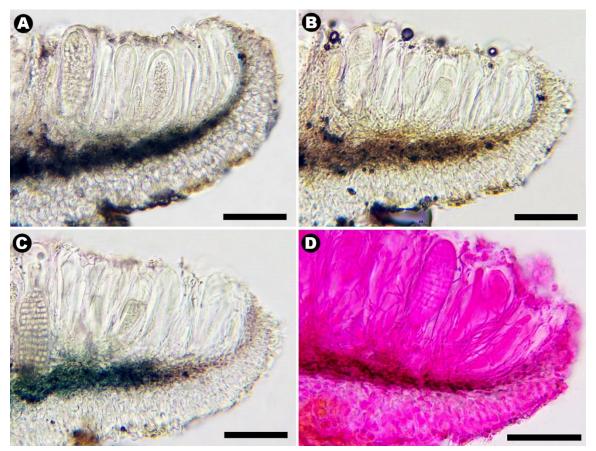



Figure 9. Transverse sections of apothecium of *Calopadia puiggarii* (all from *Hollinger 23994*) illustrating pigmentation and excipular anatomy in water (A), potassium hydroxide or KOH (B), nitric acid or N (C), and stained in phloxine after treatment with KOH (D). Scales =  $50 \mu m$ .

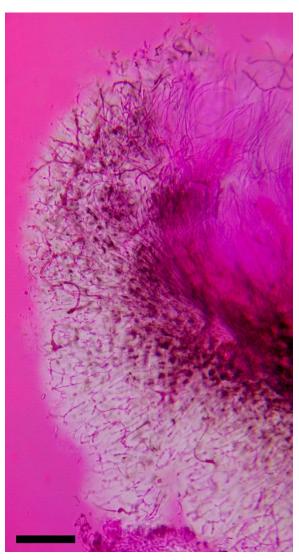



Figure 10. Detail of excipular anatomy in *Schadonia saulskellyana* illustrating the prosoplectenchymatous exciple composed of branched and anastomosing, narrow hyphae in a thick gelatinous matrix (from *Hollinger 27096*) as viewed in a transverse section stained in phloxine after treatment with KOH. Scale =  $20 \mu m$ .

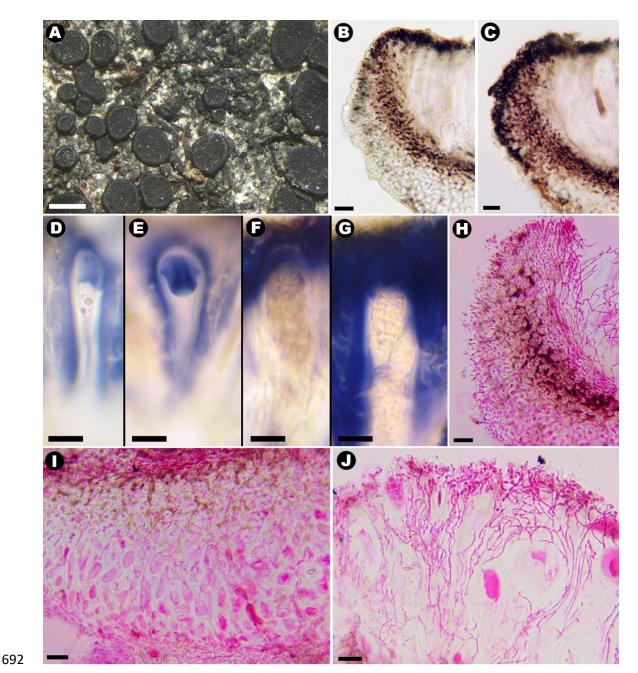



Figure 11. Morphology of *Schadonia fecunda* (all from *Fryday 8345*, MSC). A, gross morphology of the apothecia. B, exciple mounted in water. C, exciple mounted in KOH. D-G, asci mounted in K/I. H, exciple stained with phloxine. I, detail of lower exciple stained with phloxine. J, paraphyses stained with phloxine. Scales = 0.5 mm in A, 25  $\mu$ m in B and C, 20  $\mu$ m in D-J.

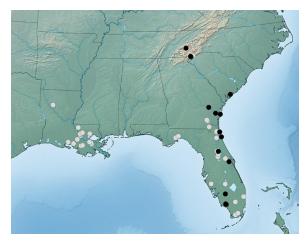



Figure 12. Geographic distribution of *Calopadia puiggarii* in eastern North America based on specimens examined for this study at NY (black) and records from CNALH (gray).