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1 | INTRODUCTION
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Abstract

Control of eukaryotic cellular function is heavily reliant on the phosphorylation
of proteins at specific amino acid residues, such as serine, threonine, tyrosine,
and histidine. Protein kinases that are responsible for this process comprise one
of the largest families of evolutionarily related proteins. Dysregulation of protein
kinase signaling pathways is a frequent cause of a large variety of human dis-
eases including cancer, autoimmune, neurodegenerative, and cardiovascular dis-
orders. In this study, we mapped all pathogenic mutations in 497 human
protein kinase domains from the ClinVar database to the reference structure of
Aurora kinase A (AURKA) and grouped them by the relevance to the disease
type. Our study revealed that the majority of mutation hotspots associated with
cancer are situated within the catalytic and activation loops of the kinase
domain, whereas non-cancer-related hotspots tend to be located outside of these
regions. Additionally, we identified a hotspot at residue R371 of the AURKA
structure that has the highest number of exclusively non-cancer-related patho-

genic mutations (21) and has not been previously discussed.
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kinases), CMGC (responsible for cell cycle control, MAPK
signaling, splicing, etc.), CAMK (Calmodulin/Calcium reg-

Post-translational modification of proteins through phos-
phorylation is a common process in biology. Protein
kinases play an essential role in cellular signaling and reg-
ulation and are responsible for phosphorylation. There are
more than 500 human protein kinases, which are grouped
into several families based on their structure and function
and which are encoded by 2% of all human genes
(Manning et al.,, 2002). Major kinase groups from the
human kinome include AGC (intracellular signaling

ulated kinases), CK1 (Cell Kinase 1, originally known as
Casein Kinase 1), STE (form the MAPK cascade), TK
(Tyrosine kinases), TKL (similar to TK, but whose activi-
ties are generally on serine/threonine substrates), and
RGC  (Receptor Guanylate Cyclases) (Manning
et al., 2002). Protein kinases are involved in many cellular
pathways, and their dysregulation has been implicated in
various diseases, including cancer, diabetes, neurodegener-
ative and cardiovascular disorders, and rheumatoid
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arthritis, among others (Lahiry et al, 2010; Lee &
Paull, 2021). Being one of the largest families of evolution-
arily related proteins, kinases phosphorylate particular
amino acids of 30% of the human proteome (Hubbard &
Cohen, 1993) and therefore are one of the most important
group of drug targets together with G-protein-coupled
receptors (Cohen, 2002; Melnikova & Golden, 2004).
Kinase inhibitors, which block the activity of specific
kinases, have been developed to treat various types of can-
cer, autoimmune diseases, and other disorders
(Melnikova & Golden, 2004). The role of kinases in carci-
nogenesis has been intensively studied: the protein kinase
domain is the most frequently encoded domain among
cancer-related genes (Futreal et al., 2004). In normal cells
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kinases function as both tumor suppressors and proto-
oncogenes, therefore mutations in these proteins facilitate
oncogenic processes such as inhibition of DNA damage
response, promotion of angiogenesis, deactivation of apo-
ptotic pathways, and others (Torkamani et al., 2009).

The secondary structure of a kinase domain includes
two structurally and functionally distinct subdomains or
lobes: N- and C-terminal (Taylor & Kornev, 2011). The
smaller N-terminal lobe adopts a five-stranded B-sheet
and includes highly conserved sequence motif—Gly-rich
loop between B1 and B2. This loop interacts with adenine
ring of ATP (Madhusudan et al., 2002). The AGC group
of typical protein kinases shares the distinctive helix aB
in the N-terminal region (Figure 1). This helix is not

GIST‘ HN| ILAM}meIa_Igoma

Dysgerminom:
A ./ Carcinoma .
Renal cell carcinoma

8
g
LAML_ X 3 _Astrocytoma
_Brainstem glioma
RA _Carcinoma of colon
X _Colorectal cancer
NSCLC_. H280
EGFR 20 “Germ cell tumor
i ~GIST
LUSC “Glioblastoma
1 “HNSCC
Wi~ BRAF “LUAD
: - 3
Renal cell carcinoma’ < Lung carcinoma
Papillary thyroid carcinoma 5 Lymphangioma
NscLe” g \
Neoplasm of ovaryf Melanoma
}_AML
_Neoplasm

Thyroid cancer_
_Carcinoma of colon

_CLL

HNSCC™ 7 PRAD™
BRAF oL “Gastric adenocarcinoma
“Melanoma BRAF K. .
% Leukemia
Glioblastoma
/
i “Neoplasm Melanoma’ \LuAD
PRAD NscLe lMalignant neoplasm of uterus
N NSCLG
Neoplasm of ovary_
MM_
G142
4
BRAF
“LUAD
Chronic myelogenous leukemia
s PRABUAD, lelanoma NLI LUAD
Melanoma’ NSCLC\ A sk IM /maoplasm |I 7 )-ICPS
Myel
\Lung carcinoma NLI \/Neoplasm of the pancreas lyeloma 4. NSCLC
CDK12
_Adrenal cortex carcinoma STK11
Neoplasm of brain_,
D274 Melanoma_. G276
11 “Carcinoma of the bladder 7 ~Carcinoma of the bladder
MM~
BRAF oL BRAF
\ LuAD”
; HNSCC
Melanoma \ )
LUAD Glioblastoma
FIGURE 1  Cancer-related mutations mapped to kinase domain of Aurora kinase A (PDB: 3E5A). Pie charts represent genes (inner layer)

and medical conditions and diseases (outer layer) that are related to mutations in a particular position. One mutation can be related to several

diseases. In the center of each pie chart the top item represents the number of amino acid in 3E5A structure, the bottom item represents the total

number of SNVs in this position in MSA. CLL, B-cell chronic lymphocytic leukemia; GIST, gastrointestinal stromal tumor; HCPS, hereditary
cancer-predisposing syndrome; HN, hematologic neoplasm; HNSCC, squamous cell carcinoma of the head and neck; LAML, acute myeloid

leukemia; LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma; MM, mltiple myeloma; NLI, neoplasm of the large intestine;
NSCLC, non-small cell lung carcinoma; PRAD, prostate adenocarcinoma; TGCT, germ cell tumor of testis; WT, nephroblastoma (Wilms tumor).
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observed in any of the other type of typical kinases
(Scheeff & Bourne, 2005). The majority of kinases typi-
cally exhibit a noticeable kink near the beginning of the
strand B4. This kink alters the arrangement and structure
of a significant portion of the hydrophobic pocket formed
by strand B4, helices oC, and aE (Scheeff &
Bourne, 2005). The larger C-terminal lobe contains
mostly alpha helices. This lobe also includes the catalytic
loop that bridges p6 and B7 and activation loop right after
the catalytic region (Taylor & Kornev, 2011). The cata-
lytic region of many kinase families is reinforced by intri-
cate hydrogen-bond networks that stabilize the structure
of the active site. Moreover, within this region, a distinc-
tive “crossing loops” structure is formed, where the cata-
lytic loop intersects with the loop between strands 8 and
B9. This motif is uncommon in protein structures and
serves as one of the distinguishing features of the kinase
superfamily (Grishin, 1999). Helix oE plays a stabilizing
role in the ATP binding pocket through its interactions
with strands B7 and B8. In the majority of kinases, oE is
oriented at approximately 45 to these strand elements
(Scheeff & Bourne, 2005). Helix aF, following the diverse
loop structures, represents the final segment of structural
similarity shared by all kinases. However, the similarity
in this region diminishes rapidly. In certain instances, it
could be argued that this helix exhibits poor superposi-
tion among superfamily structures and that it should not
be regarded as part of the “universal core” (Scheeff &
Bourne, 2005). However, aF consistently appears with a
similar orientation in most of the kinases' structures, and
in many cases, seems to serve a similar role: the stabiliza-
tion of the backbone of the catalytic loop.

Here we identified pathogenic mutation hotspots using
data from the ClinVar database (Landrum et al., 2020) and
an alignment of 497 human protein kinase domains. We
defined hotspot mutations based on the frequency of muta-
tions among kinase domains. Our analysis showed that
most of the cancer-related mutation hotspots are located
within catalytic and activation loops of kinase domain,
whereas most of non-cancer-related hotspots are mainly
located outside of these loops. We also identified the hotspot
with the highest number of exclusively non-cancer-related
pathogenic mutations (21) that corresponds to R371 of the
AURKA structure and has not been discussed previously.

2 | RESULTS AND DISCUSSION

We mapped all pathogenic mutations in 497 human protein
kinase domains (Modi & Dunbrack Jr., 2019) from ClinVar
database (Landrum et al., 2020) to the reference structure
of Aurora kinase A (AURKA) and grouped them by the rel-
evance to the disease type (cancer-related and others).
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Cancer-related mutations mapped to the Aurora kinase A
3D structure revealed eight major hotspots (Figure 1). Most
of the hotspots are located within catalytic and activation
loops of kinase domain (Dixit et al., 2009). The hotspot with
the highest number of mutations (20) corresponds to H280
of AURKA, located in the activation loop. This hotspot
includes mutations from six kinase genes with the BRAF
gene being responsible for the largest number of various
cancer types (Figure 1). BRAF V600 is a known driver
mutation that is related to poor prognosis in colorectal can-
cer (Chen et al., 2014), lung cancer (Cardarella et al., 2013),
melanoma (Flaherty et al., 2012), and glioblastoma (Chang
et al., 2016). Driver mutations from other kinases localized
in this hotspot include EGFR L861 (lung cancer [Mitsu-
domi & Yatabe, 2010]), FLT3 D835 (leukemia [Martelli
et al., 2013]), KIT D816 (leukemia [Smith & Shah, 2013],
melanoma [Willmore-Payne et al., 2006]), MET D1228 (car-
cinoma [Lorenzato et al., 2002]), PDGFRA D842 (gastroin-
testinal tumors [Heinrich et al., 2012]). Two cancer-related
hotspots with 11 total mutations correspond to R195 and
D274 of the AURKA structure (Figure 1). R195 includes
mutations in five genes: FGFR2 (endometrial carcinoma
[Dutt et al., 2008], breast neoplasm [Chang et al., 2016]),
FLT3 (leukemia [Zhang et al., 2014]), KIT (gastrointestinal
stromal tumors [Fornasarig et al., 2020]), MAP2K1 (mela-
noma [Emery et al., 2009]), and PDGFRA (gastrointestinal
stromal tumors [Corless et al., 2005]). R195 also includes
13 non-cancer-related mutations in five genes (Figure 2):
FGFR3 (hypochondroplasia [Xue et al., 2014]), PDGFRB
(myofibromatosis [Arts et al., 2016]), MAP2K1 and
MAP2K2  (cardio-facio-cutaneous syndrome [Schulz
et al., 2008]), and ACVRLI (telangiectasia [Koenighofer
et al., 2019]). D274 locates in activation loop of kinase
domain and includes mutations from two genes: BRAF
(melanoma [Maldonado et al., 2003]) and STK11 (lung can-
cer [Ji et al, 2007]). Two cancer-related hotspots with
10 mutations correspond to V252 (catalytic loop) and A281
(activation loop) (Figure 1). V252 includes mutations in two
genes ALK (neuroblastoma [Schonherr et al., 2011]) and
ABLI (chronic myelogenous leukemia [Cho et al., 2013]).
A281 includes mutations in three genes: BRAF (melanoma
[Chang et al., 2016]), FLT3(leukemia [Mills et al., 2006]),
and MAP2K1 (neoplasms [Morris et al., 2013]). The final
cancer-related hotspot located within the activation loop is
G276 which has 7 mutations in three genes: BRAF (glio-
blastoma [Chang et al., 2016]), STK11 (non-small cell lung
carcinoma [MacConaill et al., 2014]), and CDKI12 (lung
adenocarcinoma [Biswas et al., 2016]).

In the contrast to the cancer-related mutations, non-
cancer-related hotspots are mostly located outside of cata-
lytic and activation loops of kinase domain and include
larger number of involved genes (Figure 2). The hotspot
with the highest number of

exclusively non-
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FIGURE 2 Non-cancer-related mutations mapped to kinase domain of Aurora kinase A (PDB: 3E5A). Pie charts represent genes (inner
layer) and medical conditions and diseases (outer layer) that are related to mutations in a particular position. One mutation can be related to
several diseases. In the center of each pie chart the top item represents the number of amino acid in 3E5A structure, the bottom item
represents the total number of SNVs in this position in MSA. BSHI, bilateral sensorineural hearing impairment; CFS, cardiofaciocutaneous
syndrome; CMAM, capillary malformation-arteriovenous malformation; CSS, cardiospondylocarpofacial syndrome; CTSSHLS,
camptodactyly-tall stature-scoliosis-hearing loss syndrome; DEE, developmental and epileptic encephalopathy; GDD, global developmental
delay; HDL, hereditary diffuse leukoencephalopathy; IDD, intellectual developmental disorder; IDS, intellectual disability syndrome; IGD,
inborn genetic diseases; LCA, Leber congenital amaurosis; LKAV, LYN kinase-associated vasculopathy; OCNS, Okur-Chung
neurodevelopmental syndrome; PMO, progressive myositis ossificans; PWSD, piebaldism with sensorineural deafness; XLA, X-linked
agammaglobulinemia.

cancer-related pathogenic mutations (21) corresponds to  kinases (TYR). Tyrosine kinases are the prevalent group
R371 of the AURKA structure and is located at the  among proteins with mutations in the R371 hotspot
C-terminal part of aH of the kinase domain. To the best (6 out of 15). Based on their Medical Subject Heading
of our knowledge, this hotspot has not been described  (MeSH) disease classification (Rogers, 1963) the majority
previously. R371 includes mutations in 15 genes that cor-  of diseases caused by mutations from these hotspots
respond to seven kinase groups (Table 1). The majority of  belong to classes of nervous system diseases, such as
these kinase groups (five out of seven) are Ser/Thr pro-  encephalopathy (Hector et al., 2017), Okur-Chung syn-
tein kinases (AGC, CAMK, CMGC, STE, TKL). The rest drome (Owen et al., 2018), and X-linked agammaglobu-
are Receptor Guanylate Cyclase (RGC) and Tyr protein linemia (Lopez-Herrera et al., 2008); as well as eye
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MeSH class
Eye diseases
Nutritional and metabolic diseases

Digestive system diseases; skin and
connective tissue diseases

Nervous system diseases
Nervous system diseases
Nervous system diseases
Eye diseases

Eye diseases

Respiratory tract diseases

Hemic and lymphatic diseases;
cardiovascular diseases

Respiratory tract diseases

Immune system diseases; nervous system
diseases; endocrine system diseases

Nervous system diseases; mental disorders

Diseases of the musculoskeletal system and

connective tissue
Eye diseases

Nervous system diseases;
otorhinolaryngologic diseases

MEDVEDEYV Er aL.
TABLE 1 Disease classes that are caused by non-cancerous mutations corresponded to R371 hotspot of Aurora kinase A.
Gene UniProt Kinase
name ID group Disease
GRK1 Q15835 AGC Oguchi disease
PHKG2 P15735 CAMK Glycogen storage disease IXC
STK11 Q15831 CAMK Peutz-Jeghers syndrome
CDKLS5 076039 CMGC Developmental and epileptic encephalopathy
Angelman syndrome-like
CSNK2A1  P68400 CMGC Okur-Chung neurodevelopmental syndrome
GUCY2D Q02846 RGC Cone-rod dystrophy 6
Leber congenital amaurosis 1
TAOKI1 Q7L7X3 STE n/a n/a
ACVRLI P37023 TKL Pulmonary hypertension
Telangiectasia, hereditary hemorrhagic
BMPR2 Q13873 TKL Pulmonary hypertension
BTK Q06187 TYR X-linked agammaglobulinemia with growth
hormone deficiency
CSFIR P07333 TYR Frontotemporal dementia
LYN P07948 TYR LYN kinase associated vasculopathy
MERTK Q12866 TYR Retinitis pigmentosa 38
RORI1 Q01973 TYR Hearing loss, autosomal recessive 108
ZAP70 P43403 TYR n/a n/a

Abbreviation: MeSH, Medical Subject Headings.

diseases such as Leber congenital amaurosis (Thompson
et al., 2017). Enrichment analysis of 15 kinases related to
the R371 hotspot using ShinyGO (Ge et al, 2020)
revealed enrichment of these proteins in the NF-kappa B
signaling pathway, which is distinctive when using the
whole human proteome as a background (Enrichment
FDR = 2.3E-05, Fold Enrichment = 62.6) and our dataset
of  kinases FDR = 4.6E-02, Fold
Enrichment = 8.2). The NF-kappa B signaling pathway is
known for its key role in inflammatory processes (Liu
et al., 2017); however, it also plays an important role in
the function of the nervous system (Dresselhaus &
Meffert, 2019; Kaltschmidt & Kaltschmidt, 2009) and the
regulation of ocular surface inflammation (Lan
et al., 2012).

Two non-cancer-related hotspots with 18 mutations
correspond to G142 and E260. G142 is located within the
Gly-rich loop of the N-terminal lobe of the kinase domain
and includes non-cancer-related mutations in 11 genes
such as: CIT (microcephaly [Li et al., 2016]), CDKS (intel-
lectual developmental disorder [Calpena et al., 2019]),

(Enrichment

TP53RK (Galloway-Mowat syndrome [Braun
et al., 2017]). This hotspot also includes four cancer-
related mutations in two genes (Figure 1): BRAF (non-
small cell lung carcinoma [Houben et al., 2004]) and
FLT3 (acute myeloid leukemia [Zhang et al., 2014]). E260
locates catalytic loop and
cancer-related mutations in 10 genes, for example: BTK
(agammaglobulinemia [Sigmon et al., 2008]), CSFIR
(leukoencephalopathy [Kinoshita et al., 2012]), FGFR3
(hearing loss syndrome [Toydemir et al., 2006]). The hot-
spot D311 locates in the N-terminal part of aF and
includes 16 mutations in 10 genes such as: CDKLS
(encephalopathy [Melikishvili et al., 2019]), ACVRLI (tel-
angiectasia [Letteboer et al., 2005]), MAP3K7 (cardios-
pondylocarpofacial syndrome [Le Goff et al., 2016]).
Another hotspot with 16 mutations corresponds to
G276 of the AURKA structure. It is the only non-
cancer-related hotspot located within the activation loop
and includes mutations in 9 genes such as MASTI
(mega-corpus-callosum syndrome [Tripathy et al., 2018]),
ACVRLI (telangiectasia [Schulte et al., 2005]). This

within includes non-
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hotspot also includes the seven cancer-related mutations
discussed above (Figure 1). Hotspot G140 is located in
the Gly-rich loop region of kinase domains and includes
15 non-cancer-related pathogenic mutations in seven
genes, for example: CDKI19 (encephalopathy [Zarate
et al., 2021]), CSFIR (leukoencephalopathy [Rademakers
et al., 2011]). This hotspot also includes seven cancer-
related mutations in two genes (Figure 1): BRAF (mela-
noma [Carlino et al., 2014]) and EGFR (non-small cell

TABLE 2

cancer-related mutations.

Top kinase genes with largest number of pathogenic

lung carcinoma [Berge et al., 2013]). Finally, R255 is
located within catalytic loop and includes non-
cancer-related mutations in 11 genes such as AKT2 (type
2 diabetes [George et al., 2004]), DYRKI1A (intellectual
disability [Ji et al., 2015]), and CSFIR (leukoencephalo-
pathy [Guerreiro et al., 2013]).

A previous pan-cancer study revealed that among
protein domains significantly enriched in mutations, the
protein kinase domain (Pfam ID: PF07714) is the second
most mutated, considering all detected mutations (Miller
et al., 2015). The top three kinase genes with the largest
number of mutations in pan-cancer dataset included
BRAF, EGFR and ERBB2 (Miller et al., 2015). Our analy-

Gene name UniProt ID Number of mutations sis of cancer-related pathogenic mutations from the Clin-
BRAF P15056 53 Var database showed that the top three genes (containing
ALK QIUMT3 27 the most pathogenic cancer-related mutations) are BRAF,
ABLI PO0519 2% ALK, ABL1, and EGFR and ERBB2 are in the top
11 (Table 2).
FLT3 P36888 26 Furthermore, we compared the statistics of cancerous
STK11 Q15831 21 and non-cancerous mutations by calculating the over and
EGFR P00533 19 underrepresentation of these mutations at each position
MAP2K1 Q02750 18 (see Materials and Methods). Our analysis revealed
KIT P10721 18 19 positions with significant (p-value <0.05) overrepre-
FGFR2 P21802 17 sentation of cancerous mutations and seven positions
with significant overrepresentation of non-cancerous
MET P08581 17 . . . ..
mutations (Figure 3, Table S1). Mapping these positions
ERBB2 P04626 14 to the Aurora kinase A structure revealed that
V182 ®
E170 ®
E152 ®
V252 ®
H280 ®
L210 ®
R151
L188 ®
5284 ®
® 194 ®
3 R28s °
£ E183 ®
2 A281 °
g P138 ® .
3 F275 PY FIGURE 3  The ratio of
Y212 ® observed and expected
&; W277 O frequencies of cancer-related
D274 _ @ mutations in specific positions of
R195 —_— e Aurora kinase A (p-
R371 &— value < 0.05). Ratio >1 defines
R255 @&——— overrepresentation of cancer-
E ggi related and underrepresentation
E321 . of non-cancer-related mutations
E260 @ in a position. Ratio <1 defines
D294 e&—— — underrepresentation of cancer-
0 1 P 3 4 5 related and overrepresentation

Observed/Expected frequency

of non-cancer-related mutations
in a position.
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positions with an overrepresentation of cancerous muta-
tions are predominantly located in the N-terminal region
of the kinase domain and within the catalytic loop
(Figure 4). Only one position with overrepresented
cancer-related mutations is located within the activation
loop. On the other hand, positions with overrepresenta-
tion of non-cancerous mutations are mostly located in
C-terminal region of the domain and within the activa-
tion loop (Figure 4).

We investigated the intrinsic tendency of each residue
to mutate by collecting all missense mutations with
benign clinical relevance and a population frequency
greater than or equal to 1% from the gnomAD database
(Gudmundsson et al., 2022) for all kinases in our dataset.
Overall, we identified 26 such mutations with maximum
four mutations per position of Aurora kinase A structure
(Table S1). Benign mutations are predominantly located
on the surface of the protein structure and outside of the
catalytic and activation loops (Figure S1). Moreover,
the majority of cancerous and non-cancerous mutation
hotspots do not share positions in common with benign
missense mutations (Table S1).

Thus, our analysis revealed major cancer-related
pathogenic mutation hotspots in the structure of the

FIGURE 4
overrepresentation of cancer-related (red) and non-cancer-related

Positions of Aurora kinase A with an

(yellow) mutations.
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kinase domain located mostly within the catalytic and
activation loops. Non-cancer-related hotspots are mostly
located outside of catalytic and activation loops of kinase
domain and include a larger number of involved genes.
Protein kinases play dual roles as tumor suppressors and
proto-oncogenes in normal, healthy cells. As a conse-
quence, mutations in protein kinases often promote a
diverse array of tumorigenic activities. Due to their cru-
cial involvement in DNA damage response and cell cycle
checkpoints, protein kinases are associated with numer-
ous loss-of-function mutations that can lead to the inhibi-
tion of apoptosis, the acquisition of a “mutator”
phenotype, and eventual tumorigenesis (Torkamani
et al., 2009). Structures of protein kinases have unveiled
significant structural distinctions between the closely
related active and highly specific inactive forms of
kinases (Nolen et al., 2004). For instance, the conforma-
tional landscape of ABL kinase, which encompasses
active, inactive, intermediate, and inactive-like conforma-
tions, has provided evidence that the various structures
of the kinase activation loop may indeed reflect natural
kinase conformations (Cowan-Jacob et al., 2005). Hence,
it is likely that activating mutations disturb this equilib-
rium, favoring the active conformation by either destabi-
lizing the inactive state or stabilizing the active state of
the protein kinase. This mechanism could potentially
contribute to certain mutations' ability to promote tumor-
igenesis and could be the reason for the locations of can-
cerous mutations within the catalytic and activation
loops.

3 | MATERIALS AND METHODS

3.1 | Data collection

We used a structure-based multiple sequence alignment
(MSA) of 497 human protein kinase domains from Modi
and Dunbrack Jr. (2019). This MSA does not consider
atypical kinases. For each protein in the MSA “Patho-
genic” and “Likely Pathogenic” single nucleotide variants
(SNVs) that result in single amino acid substitutions were
retrieved from ClinVar database (Landrum et al., 2020).
Retrieved SNVs were considered as pathogenic and were
mapped to MSA and to the reference structure of Aurora
kinase A (Gene name: AURKA, UniProt: 014965, PDB:
3ESA [Zhao et al., 2008]). The reference structure was
selected based on previous study (Modi & Dunbrack
Jr., 2019). Total numbers of SNVs were summarized for
each amino acid position in AURKA and were treated as
B-factors in the PDB file for corresponding C-alpha
atoms. The resulting PDB file was visualized using
PyMOL. SNVs located in the gap regions of AURKA in
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MSA were excluded from consideration. In this study, we
determined hotspot mutations by counting the frequency
of their occurrence in kinase domains. The top 5% posi-
tions with the highest frequency of mutation for cancer-
related and non-cancer-related cases were considered as
hotspots. Medical conditions and diseases that are related
to SNVs in human protein kinase domains were retrieved
from ClinVar database. Cancer-related medical condi-
tions were sorted out manually from the total list. Pie
charts were created using R package, v4.2.1, library webr
and PieDonut function with following settings for PieDo-
nut arguments: showRatioPie = FALSE, showRatio
Donut = FALSE, labelpositionThreshold = 0.5, donutLabel
Size = 3.0, pieLabelSize = 3.5, r0= 0.2, r1 = 0.7, 12 = 0.8,
maxx = 1.7, start = 1.

3.2 | Statistical analysis

Comparison of the number of cancerous and non-
cancerous mutations for each position was conducted
using over and underrepresentation, which was calcu-
lated as ratio of observed and expected frequencies.
The observed frequency for cancer mutations in each
Aurora kinase A position was calculated as a ratio of
the number of the cancerous mutations in this position
over the sum of all cancerous mutations mapped to
Aurora kinase A structure. The observed frequency for
non-cancer mutations in each Aurora kinase A posi-
tion was calculated as a ratio of the number of the non-
cancerous mutations in this position over the sum of
all non-cancerous mutations mapped to Aurora kinase
A structure. The expected frequency for each position
was calculated as ratio of total number of mutation
(cancerous and non-cancerous) in this position of
Aurora kinase A over the total number of mutations.
Significance of over and underrepresentation was
checked using chi-square test (p-value<0.05 is consid-
ered significant). Statistical analysis was conducted
using the R package, v4.2.1.

3.3 | Analysis of benign mutations

To examine the inherent propensity of each residue to
mutate, we obtained all missense mutations with benign
clinical relevance and frequency in population greater
than or equal to 1% from gnomAD v2.1.1 database
(Gudmundsson et al., 2022) for all human protein kinases
in our dataset. Obtained benign mutations were mapped
to human kinases MSA and to the reference structure of
Aurora kinase A (Figure S1).
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