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Abstract— Remote entanglement distribution plays a crucial
role in large-scale quantum networks, and the key enabler for
entanglement distribution is quantum routers (or repeaters) that
can extend the entanglement transmission distance. However, the
performance of quantum routers is far from perfect yet. Amongst
the causes, the limited quantum memories in quantum routers
largely affect the rate and efficiency of entanglement distribution.
To overcome this challenge, this paper presents a new modeling
for the maximization of entanglement distribution rate (EDR) on
a memory-limited path, which is then transformed into entan-
glement generation and swapping sub-problems. We propose
a greedy algorithm for short-distance entanglement generation
so that the quantum memories can be efficiently used. As for
the entanglement swapping sub-problem, we model it using an
Entanglement Graph (EG), whose solution is yet found to be at
least NP-complete. In light of it, we propose a heuristic algorithm
by dividing the original EG into several sub-problems, each
of which can be solved using dynamic programming (DP) in
polynomial time. By conducting simulations, the results show
that our proposed scheme can achieve a high EDR, and the
developed algorithm has a polynomial-time upper bound and
reasonable average runtime complexity.

Index Terms— Quantum network, entanglement swapping,
entanglement distribution, dynamic programming.

I. INTRODUCTION

Q
UANTUM network is a promising networking technol-

ogy to transmit quantum bits (qubits), enabling new
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applications such as quantum key distribution (QKD) and

quantum clock synchronization. With the fast prototyping of

quantum devices, the quantum network will soon become the

reality [1]. Compared with the classic Internet, a quantum

network enables unprecedented network services for end users.

Specifically, quantum networks make it possible to generate

and distribute entangled pairs (a.k.a., ebits) between arbi-

trary endpoints even with a long spatial separation [2], [3].

Those entangled pairs are fundamental for many upper-layer

applications such as secure quantum state transmission [4],

quantum key distribution [5], [6] and distributed quantum

computation [7], [8].

In quantum networks, entangled pairs can be produced by an

entanglement generator and distributed to two adjacent nodes

through optical fiber [2], or in free space [9], [10]. We refer to

this process as link entanglement generation, or entanglement

generation for short. However, one of the major difficulties is

distributing entangled pairs to two remote nodes. It is largely

due to the path loss incurred by scattering and absorption

in the transmission medium, leading to quick decoherence of

entanglement. Here, we coin the research task of distributing

entanglement over a long distance as remote entanglement

distribution. To offer a solution to this task, quantum routers

(or repeaters) [11], [12] with the capability of Bell State

Measurement (BSM) are introduced to perform a quantum

joint measurement. As a result, two original entangled pairs

are consumed, but a new entangled pair is created across

two links, thereby extending the entanglement distribution

distance. By repetitively performing BSM in intermediate

quantum routers, one can create entanglement over a much

longer distance. This operation is called entanglement swap-

ping (or swapping for short). In brief, several quantum routers

are placed in the middle of endpoints and not separated

too far. Any adjacent nodes — endpoint and router — first

generate link entanglement. Then, by performing entanglement

swapping at quantum routers, an end-to-end entangled pair

over a longer distance is formed.

The primary problem in quantum networks is the optimal

routing problem [13], [14], which can be further divided into

two challenges. The first challenge is how to select a path.

When an entanglement distribution request is issued, a specific

routing algorithm will be called to select a specific path in the

network and to pre-allocate resources for such entanglement

distribution [15], [16], [17], [18], [19]. The second challenge is
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how to distribute entanglement efficiently on the selected path,

considering that quantum operations are imperfect, e.g., these

operations may fail and/or cause entanglement to decohere,

and the size of a quantum memory is limited. The solution to

the second challenge is of vital importance to the establishment

of a large-scale quantum network, so it is the focus of this

paper.

To this end, we first model the problem of maximizing the

entanglement distribution rate (EDR) on a resource-limited,

noisy, and unreliable path. We then decompose the problem

into the entanglement generation problem and the entangle-

ment swapping problem. Next, we prove that the best strategy

is to perform entanglement generation operations greedily.

That is to say, entangled pairs need to be generated signifi-

cantly to the extent that they can make full use of any available

quantum memory in the quantum routers.

As for the entanglement swapping problem, it is found that

the utility function, i.e., EDR, cannot be used directly due to

the high evaluation cost. Therefore, we propose an alternative

utility function Mτ , which is the sum of a contribution func-

tion of each entanglement swapping. In this way, solving the

entanglement swapping problem is equivalent to finding the

weighted Maximal Independent Sets (MIS), which is widely

known to be hard in a polynomial-time [20]. To overcome this

obstacle, we propose a heuristic algorithm, HSA, in which the

solution turns out to be near-optimal in most scenarios. Specif-

ically, we use a heuristic rule to decompose the entanglement

swapping problem into several independent sub-problems. The

heuristic rule is that a router can only perform at most one

swapping in each sub-problem solution instance. In each sub-

problem, a Dynamic Programming (DP) algorithm [21], [22]

is used to calculate the solution in polynomial time. When

aggregated, the overall swapping algorithm is proved to be a

deterministic polynomial-time algorithm with the worst upper

bound O(m · N4), where N is the number of nodes on the

path and m is the memory size.

We conduct simulations and performance analyses to com-

pare HSA with other baseline algorithms. The results show that

the proposed scheme has a performance improvement of up to

87.76% compared to baselines, and the average complexity is

about O(N2.109) in most scenarios which are far better than

its worst case.

Our contributions in this paper are as following:
• We model the problem of maximizing the entanglement

distribution rate on a memory-limited quantum path and

propose a centralized and iterative end-to-end entangle-

ment distribution framework to handle entanglement gen-

eration and swapping where only the swapping decision

is made in a centralized way.

• We transform the entanglement swapping problem into

a weighted Maximal Independent Set searching problem

by introducing an Entanglement Graph (EG). We then

propose a heuristic polynomial-time approximate algo-

rithm to decompose the original problem into multiple

sub-problems that can be solved easily by a DP algorithm.

• We develop a numerical evaluation platform, and the

results show the performance advantages of our design

in terms of EDR and memory use. Also, We eval-

uate the algorithm’s time complexity numerically and

theoretically. We deem that the designed algorithm is

applicable to future large-scale quantum networks for

entanglement distribution.

The organization of this work is as follows. In Section II,

we introduce the background of the enabling technologies and

related works. In Section III, we describe the system model

and the modeling of the maximum EDR design problem. Then,

in Section III-B, we propose the entanglement distribution

framework in which short-distanced entanglement generation

and entanglement swapping are performed alternatively in

each decision-making time slot. Next in Section IV, a greedy

entanglement generation algorithm is presented. In Section V,

we provide our heuristic algorithm for entanglement swap-

ping. We present the performance evaluation and analysis in

Section VI. Finally, we discuss and conclude our work in

Section VII.

II. RELATED WORKS

The quantum network is unique for its transmission of

quantum bits (qubits) through teleportation [3], [23], which

is based on the established entanglement between the source

and the destination. Taking a 2-qubit entanglement as an

example, a Bell entangled pair — the maximally entangled

2-qubit state — is pre-distributed between the source and

the destination. Then, a target qubit can be teleported with

the assistance of the established entangled pair [24] through

several standard quantum operations.

Quantum network is the product of many disciplines span-

ning from physics to telecommunication that can hardly be sur-

veyed in this work. Instead, we mainly summarize the works

that are relevant to entanglement distribution. In essence, the

critical quantum operations pertaining to distributing entan-

glement include entanglement generation and entanglement

swapping [25]. In this procedure, quantum memory is needed

to store the qubits’ quantum state.

A. Enabling Quantum Operations

Link entanglement generation is a quantum operation that

can produce two Bell-state entangled qubits at an EPR gen-

erator. The generator can be located at either a node or a

third party. Then, qubits are sent to these adjacent nodes

to form a link-layer entangled pair through a quantum link

(e.g., an optical fiber). Nevertheless, due to the attenuation of

the quantum link and the imperfection of the EPR generator,

entanglement generation may fail, and we denote pgen as the

overall probability of a successful entanglement generation.

Entanglement swapping [26] is a quantum operation per-

formed on quantum routers [26]. The router will consume

two entangled pairs to create a new entangled pair with

longer distances. For example, if the source and a router

share an entangled pair, the destination and the router share

another pair, the router can perform Bell State Measurement

(BSM) — a key operation for entanglement swapping —

to create a new entangled pair between the source and the

destination. However, the consumed two entangled pairs are

not available anymore. In practice, BSM cannot be guaranteed
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to be successful due to the noise and imperfect operations [15],

and we denote pswap as the success probability.

The limitation of quantum memory is another contributing

factor to EDR. Quantum memories [27], [28] can store qubits

within a short time because the entanglement will decohere as

time goes on. However, it is very complicated and expensive

in the noisy intermediate-scale quantum (NISQ) ego [7].

As quantum memories in a quantum router are shared among

multiple entanglement distribution requests, the memory allo-

cated for a specific request becomes even more precious.

B. Challenges in Entanglement Distribution

The primary problem in quantum networks is to efficiently

distribute entangled pairs between two remote nodes, which

is named the optimal routing problem [13], [14]. To this end,

it can be divided into two steps. First, a routing algorithm

must be presented to select a path from the source to the

destination for each communication request. After that, the

entanglement distribution schema should be proposed to dis-

tribute end-to-end entangled pairs on that selected path. The

major difficulty is that the network resources are limited, and

the entangled pairs decohere quickly, resulting in a limited

network capacity [17], [29]. Unfortunately, The overall optimal

routing problem in arbitrary network topology is proved to be

an NP-complete problem [16], [19], and we further prove that

even finding an optimal entanglement distribution schema is

also an NP-complete problem in Section V-B.

For the routing path selection between a source and a

destination, several existing mechanisms have been proposed

[15], [18], [19], [30]. To improve the capacity of a single

path [17], [29], Pant et. al [15] proposed a multi-demand

multi-path routing protocol. The entangled pair distribution

scheme proposed in this paper can be directly adopted into a

multi-path model and executed independently on every single

path. Other routing algorithms focus on specific features. For

example, Chakraborty et al. [19] proposed a path selection

approach under different fidelity requests. Shi and Qian [14]

proposed Q-Cast algorithm for both routing and allocating

entangled pairs, and Zhang et al. [31] improved it by reusing

entanglement fragments. Besides, Li et al. [16] proposed a

multiple-path routing and entanglement allocation algorithm.

For remote entangled pair distribution schema, there

are also several mechanisms. Among them, Evgeny

Shchukin et al. [32] and Liang Jiang et al. [33] focused on

the distribution of the first qubit and reducing the delay time.

However, more entangled pairs are needed and distributed

continuously in most quantum applications. Bernardes et al.

[34] proposed a remote distribution algorithm using

multiplexing and calculating the rate of remote distribution.

However, it uses a strict entanglement scheme (we call it

BTSA later), which greatly restricts EDR. Dai et al. [35]

proposed an optimal algorithm for long-distance distribution

with noisy intermediate-scale quantum technologies, where

the imperfect quantum routers have been considered. However,

they have not considered that the limited size of a quantum

memory also greatly impacts the entanglement distribution

rate, as we will show later. In [19], Kaushik Chakraborty et al.

presented a simple but efficient distribution algorithm called

prepare and swap protocol, but it did not consider the

quantum memory either.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A quantum network is composed of several quantum nodes,

including endpoints and quantum routers. These quantum

nodes are equipped with quantum devices to perform quantum

measurements and quantum memories to store qubits. These

quantum nodes are also equipped with one or more interfaces

bonded to quantum links such as optical fiber or free space.

Those quantum links are capable of transmitting qubits. The

primary function of the quantum network is to transmit qubits

between arbitrary source-destination pairs by distributing a

pair of entangled qubits between them. This operation is

known as quantum teleportation [24]. We assume that an

integrated classic network is presented along with quantum

networks to deliver classic control messages reliably between

any quantum nodes.

In this paper, we assume that a routing protocol exists to

select a path and allocate quantum memories for each request

(i.e., a source-destination pair). To be more specific, when a

request starts, a routing protocol will calculate one or more

paths in the quantum network and also allocate a certain

number of quantum memories on each node of the selected

path. The advantage of the pre-selected path model is that it

can guarantee a better performance for each request. Consider

a path with N quantum nodes including 2 end points and

N − 2 quantum routers. ui (∈ U) denotes the i-th node in

U where U is the set of nodes on that path. The cardinality

of U, i.e., |U|, is equal to N . We assume that there is an

m-qubit quantum memory allocated for one interface in each

quantum node. That is to say, the source and the destination

allocate an m-qubit memory, while quantum routers should

have at least a size of 2m for their two interfaces (one for

incoming and the other for outgoing). With m-qubit quantum

memory, at most m entangled pairs can be generated between

any adjacent nodes. Fig. 1 shows the model of a quantum

path with 4 nodes. It also shows the internal details within

a quantum router. Quantum memories (with the size of 4) is

available on both interfaces of a quantum router, so at most

4 entangled pairs can be restored on each link. Provided that

only two interfaces are involved in each quantum router ui for

any request, we use inbound and outbound to distinguish the

two interfaces, where inbound is closer to the source (i.e., u1)

and outbound is closer to the destination (i.e., uN ).

We use ei,j to represent an entangled pair between ui

and uj . In case of ui and uj sharing multiple entangled pairs,

we use the notation ek
i,j to represent the k-th entangled pair.

Let E be the set of all existing entangled pairs and E(i, j) be

the the number of entangled pairs between ui and uj .

The quantum network is assumed to follow a discrete time

slot model, where the network control decision is made at the

beginning of a time slot. Specifically, let τ ∈ N+ denote a

time slot, and Eτ be the set of existing entangled pairs at τ .

A centralized controller will instruct a selection of quantum
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Fig. 1. Example of a quantum path and an abstracted model within quantum
routes (N = 4, m = 4).

nodes in each time slot to perform entanglement generation or

entanglement swapping. Without loss of generality, we assume

a decision set to represent the control decisions for entangle-

ment generation and swapping in a time slot.

Specifically, for the link entanglement generation, let the

decision set Sg
τ be a set of entangled pairs. For each element

ei,i+1 in Sg
τ , it means that ui and ui+1 will perform entan-

glement generation and have a probability of pgen to generate

ei,i+1 in time slot τ + 1.

Let S
s
τ be a swapping decision set which contains several

swappable candidates (ei,j , ej,k), where ei,j and ej,k are two

existing entangled pairs in the current time slot τ . uj will

consume these two entangled pairs and perform entanglement

swapping. As a result, this joint measurement operation has

a probability of pswap to distribute a new entangled pair ei,k

in time slot τ + 1. Regardless of whether the operation is

successful, both ei,j and ej,k will be consumed.

Consider that the size of the quantum memory on each

quantum node is limited. For each quantum node ui, it cannot

hold more than m entangled pairs for each interface, and we

get the following constraints on the limited size of the quantum

memory:

Cout(i) =

N∑

j=i+1

E(i, j) ≤ m, (1)

Cin(i) =

i−1∑

j=1

E(j, i) ≤ m, (2)

where Cout(i) is the number of qubits existing in the outbound

interface of node ui and Cin(i) is the number of qubits in the

inbound memory. Here i ∈ [1, N ].
We do not consider the entanglement distillation [36], [37],

but instead, we require a reliably link-layer protocol [38]

to produce high-fidelity entangled pairs. From the network

architecture perspective, entanglement distillation can be per-

formed at both the link layer and the application layer. In the

link layer, distillation can obtain high-fidelity entangled pairs

between any adjacent nodes [38]. In the application layer, the

upper layer applications can use multiple distributed remote

entangled pairs for purification to obtain high-fidelity end-

to-end entangled pairs to address the fidelity downgrade during

entanglement swapping. For those qubits that have a low

fidelity and cannot be used, quantum memory will cut off

Fig. 2. Procedure of remote entanglement distribution.

these entangled pairs, Vardoyan et. al provides a cutoff policy

in quantum memories [39].

B. Remote Entanglement Distribution Framework

In this subsection, we propose a remote entanglement dis-

tribution framework to make an optimal decision for remote

entanglement distribution, and we decompose it into the entan-

glement generation problem and the swapping problem.

Quantum nodes have limited information about the whole

network, and distributed decision-making processes cannot

efficiently utilize the network resources. Therefore, it is better

to introduce a centralized controller to manage the resources

of any end-to-end sessions [16], [30]. Specifically, in our

problem setting, the role of a centralized controller includes

entanglement information collection, decisions making for

entanglement generation and swapping, requesting quantum

routers to perform entanglement swapping or generation, and

obtaining the response from them. We assume a synchronous

time-slotted system where the controller runs the algorithm

at each time slot and instructs the selected nodes to execute

entanglement generation or entanglement swapping.

Fig. 2 shows the remote entanglement distribution frame-

work. The procedure in each time slot can be further divided

into four steps:

Step 1. The controller collects the entanglement information

over all candidate paths, such as the available size of quantum

memories. Then it instructs the quantum routers to generate

entangled pairs. In Section IV, we find that the best entan-

glement generation strategy is to generate link-layer entan-

gled pairs at the maximized rate to fill quantum memories.

Therefore, this step can be implemented by a static rule that

all quantum nodes spontaneously complete the short-distanced

entanglement generation by themselves.

Step 2. The controller keeps track of the status information

of the entangled pairs. This is because not all short-distanced

entanglement generations will succeed, and the existing entan-

gled pairs have the possibility of decoherence.

Step 3. The controller performs the distribution algorithm

to produce and release S
s
τ to a selection of routers.

Step 4. Finally, the selected quantum routers will perform

entanglement swapping under the controller’s instruction.
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In Section IV, we illustrate the algorithm for entanglement

generation. We find the strategy to be greedy. In Section V,

we model the problem of entanglement swapping and propose

a heuristic algorithm, HSA, for its solution.

C. Problem Formulation

The upper-layer applications usually require long-distanced

quantum entanglement distribution at a higher rate. For exam-

ple, in the scenario of QKD, two endpoints with a higher

entanglement distribution rate will achieve a higher security

level and performance.

We model the problem of maximizing the remote entangle-

ment distribution rate PMEDR as follow: Let AL(N,m) : Eτ →
{Sg

τ , Ss
τ} denote the algorithm used for remote entanglement

distribution at time slot τ , where L(N, m) is a N -nodes

quantum path and each interface has a m-qubit quantum

memory. Also, let A∗
L be the optimal algorithm on L(N, m).

The optimization goal is to increase the number of distrib-

uted remote entangled pairs. Let EDRAL
be the entanglement

distribution rate, and therefore, we obtain the utility function

of PMEDR as follows,

EDRAL
= lim

T→∞

1

T

T∑

τ=1

EAL

τ (u1, uN), (3)

where EAL
τ (u1, uN ) represents the entangled pairs distributed

between u1 and uN at time slot τ . PMEDR can be formally

described as:

A∗
L = arg max

AL

EDRAL
,

Briefly, we aim to design an algorithm that can better use

the limited quantum memory and further distribute remote

entanglements with a higher EDR rate in the long term.

How to distribute the first several entangled pairs is not the

focus of this paper based on the following two reasons: First,

most quantum applications and upper-layer protocols will not

just use one entangled pair. Long-distanced entangled pairs

need to be produced and transmitted continuously. Second,

the establishment of quantum entanglement connections and

long-distance distribution tunnels is costly. It is dramatically

wasteful if it is to distribute only one entangled pair.

IV. THE ENTANGLEMENT GENERATION ALGORITHM

The entanglement generation algorithm runs in Step 1 in

each time slot. The strategy for generating entangled pairs

between two adjacent nodes is discussed in this section. The

conclusion is that entangled pairs should be generated greedily,

i.e., generates link-layer entangled pairs at a maximized rate.

Here is a brief proof.

In an optimal strategy for maximizing EDR, new entangled

pairs should be generated whenever the quantum memories

have the available capacity to store them. Let A∗ be the

algorithm that entangled pairs are distributed in the most recent

time slot, and A′ is another algorithm that has the same

behavior before t as A∗ except that one entangled pair is

distributed later than A∗. Assume that the entangled pair is

TABLE I

NOTATIONS TABLE

distributed in t∗ time slot in A∗ while it is distributed in t > t∗

in A′. Then we have the following proposition.

Proposition 1: For two algorithm A∗ and A′ and for any

time slot τ , the following inequality holds: E
A∗

L
τ (u1, uN) ≥

E
A′

L
τ (u1, uN).

Proof: For τ < t∗, A∗ and A′ has the same behavior and

we can obtain E
A∗

L
τ (u1, uN) = E

A′

L
τ (u1, uN). As for t∗ ≤ τ <

t, the entanglement distribution is not carried out in A′ and

E
A∗

L
τ (u1, uN) ≥ E

A′

L
τ (u1, uN). For τ ≥ t, we have that the

entanglement distribution is carried out in both A∗ and A′, but

E
A∗

L
τ (u1, uN) ≥ E

A′

L
τ (u1, uN ), as memories to distribute the

entanglement is faster to be reused to distribute other entangled

pairs then A′
L. In conclusion, we have the proposition holds.

Thus, we can conclude that A∗ is not worse than A′.

More specifically, the best entanglement generation strategy

is to carry out every entanglement generation once quantum

memories have free capability. Assume there are two strate-

gies, Ag and A′
g , where Ag prefers to carry out entanglement

generation greedily, and it performs generation fully till there

is no free quantum memory available; while A′
g keeps the

memory not fully used. The strategies of Ag and A′
g are almost

the same before t, except that one new entanglement ei,i+1 can

be generated in Ag between ui and ui+1 in t while A′
g chooses

to postpone the execution of ∆t(> 0) time slots. We have the

following proposition.

Proposition 2: For those two algorithms Ag and A′
g ,

we have E
AgL
τ (u1, uN) ≥ E

A′

gL
τ (u1, uN) in any time slot τ .

The proof can be articulated as follows. The entanglement

ei,i+1 is either going to be a component which successfully

help the distribution of the remote entangled pair e1,N , or it

decays due to the failure of quantum generation or swapping.

In the success case, Ag generates ei,i+1 faster than A′
g and
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we can obtain: E
AgL
τ (u1, uN) ≥ E

A′

gL
τ (u1, uN). While in the

failure case, there is no additional entanglement distributed

in both Ag and A′
g . However, the quantum memory used to

generate ei,i+1 can be reused faster in Ag than that in A′
g,

where the quantum memory is occupied.

In conclusion, in order to maximize EDRA∗
L

, entangle-

ment generation should be performed whenever the quantum

memory is free for generating an entangled pair between two

adjacent nodes. Thus, we propose the entanglement generation

in Algorithm 1. Specifically, it first counts the usage of

the quantum memory on each node, which is represented

as Cout(i) and Cin(i), to calculate the maximum number

of entangled pairs that can be established between any two

adjacent nodes. Once it is possible to generate a new entangled

pair, the algorithm updates the generation decision set Sg
τ to

allow this generation operation. Since Algorithm 1 is a greedy

strategy and there is no trade-off between different generation

options, it can be delegated to each quantum node. As a result,

these quantum nodes can spontaneously and simultaneously

execute Algorithm 1 at the beginning of the time slot.

Algorithm 1 Algorithm for Entanglement Generation

Input: The current entanglement state, Eτ ;

Output: Sg
τ

1 Sg
τ ← {} ;

2 calculate the usage of the quantum memory on each

node,

Cout(i) =
∑N

j=i+1 Eτ (i, j), Cin(i) =
∑i−1

j=1 Eτ (j, i);

3 for i = 1 to N − 1 do

4 while m − max {Cout(i), Cin(i + 1)} > 0 do

5 Sg
τ = Sg

τ ∪ {ei,i+1} ;

6 Cout(i) = Cout(i) − 1 ;

7 Cin(i + 1) = Cin(i + 1) − 1 ;

8 end

9 end

10 return Sg
τ ;

V. ALGORITHM FOR ENTANGLEMENT SWAPPING

In order to distribute remote entangled pairs, entanglement

swapping must be conducted on every quantum router. How-

ever, the optimal strategy for swapping is not trivial, mainly

due to two challenges.

The first challenge is that the entanglement swapping strat-

egy should maximize EDR in Eq. 3. However, EDR is the

time-averaged distributed entangled pairs over infinite time

slots. Since the result is delayed after multiple time slots, it is

difficult to guide the swapping algorithm instantly. Even the

evaluation of EDR is also infeasible. Therefore, we propose

an instantaneous swapping contribution goal Mτ and the cor-

responding algorithm to replace EDR in Section V-A, which

can be evaluated instantly with low computational complexity.

Second, we model the entanglement swapping strategy as

an optimization problem Pswap. However, we find it is at

least an NP-complete problem as it can be reduced to a

weighted Maximum Independent Set problem (weighted MIS

in Section V-B) [40]. The major difficulty comes from the

fact that entanglement swapping needs two entangled pairs as

the material. We call those two entangled pairs a swappable

candidate (i.e., a swappable candidate contains two entangled

pairs that share a node). However, one entangled pair can be

used to group multiple swappable candidates, which leads to

the conflict that only one of these candidates can be selected

to perform an entanglement swapping. Inspired by the graph

theory, we use a heuristic to decompose the original problem

into multiple sub-problems in Section V-C. Then, dynamic

programming algorithms can be used to solve sub-problems

in polynomial time. As a result, we propose a heuristic

algorithm to obtain an effective and efficient solution for the

entanglement swapping problem in polynomial time.

A. Mτ : An Instantaneous Swapping Contribution Goal

The original optimization goal is to maximize EDR in

Eq. (3). Nevertheless, this value is hard to evaluate in real

time because it averages the distributed entangled pairs over

infinite time slots. Only after some time slots can we observe

the effectiveness of the decision at this time slot, but it is

difficult to guide the swapping algorithm instantly. As a result,

EDR is more likely to be an evaluation goal rather than an

instructive goal.

Real-time estimation of EDR is also prohibitive due to

the computational complexity. Brand et al. [41] proposed an

efficient method to estimate the waiting time for entanglement

distribution in polynomial time, but the order of entanglement

swapping is strictly fixed. As a result, it can only be used to

evaluate the entanglement swapping in a specific mode, which

we call Binary Tree Swapping Algorithm (BTSA). Apart

from this, the estimation takes the time complexity O(eN ) in

general cases. Even worse, this estimation needs to be done

several times for each optional swapping decision in each

time slot. Consequentially, the overhead is not-negligible and

unacceptable, for we expect the running time to be restricted to

avoid entanglement decoherence even in a large-scale network.

To address this issue, we propose an instantaneous swapping

contribution goal Mτ as the optimization goal, which can be

calculated at a low cost:

Mτ =
∑

(ei,j ,ej,k)∈Ss
τ

f(ei,j , ej,k), (4)

where f(ei,j, ej,k) is a function that represent the contribution

of a swappable candidate (ei,j , ej,k). Because the input of

f(·) is only related to the existing entangled pairs, and its

value is non-negative, representing the contribution, Mτ can

be calculated with a negligible computational time overhead.

To determine the close form of the optimal objective Mτ ,

we leverage the fact that each entanglement swapping can

make a contribution to the final EDR, and we use the func-

tion f(ei,j , ej,k) to quantify this contribution. As a result,

we assume that the optimization goal Mτ is the sum of all

entanglement swapping contributions in the current time slot.

Another advantage of this form of Mτ is that it is neat to be

an optimization goal and makes it easier to perform further
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Fig. 3. Example of entangled pairs swapping conflict. Fig. 3(a) shows the
existing entangled pairs on a 4-node path. Fig. 3(b) shows two available
swappable candidates, but they conflict with each other. 3(c) shows the
corresponding EG and 3(d) illustrates the two rounds of HSA.

optimization. However, it is difficult to find an optimal contri-

bution function f(·), and we use a heuristic one as a replace-

ment, which can be obtained through theoretical derivation or

experimental simulation. For example, let f(ei,j, ej,k) = 1 be

a constant function, Mτ represents the number of executions

of entanglement swapping in the current time slot. In this case,

the strategy for entanglement swapping is greedy, i.e., finding

a swapping decision containing the most swappable candidates

and allowing them to perform entanglement swapping.

B. Problem of Entanglement Swapping

The problem Pswap is now changed to select a set of the

swappable candidate and perform swapping so that Mτ can

be maximized.

Before presenting Pswap formally, we first introduce a con-

cept called Entanglement Graph (EG) to describe the conflict

of entangled pair selection. Each entangled pair can be poten-

tially used by multiple entanglement swapping candidates and

those candidates are conflicted with each other. An example of

entanglement conflict is shown in Fig. 3(a) and (b). Consider

a path with four nodes, and there are 5 entangled pairs

e1
1,2, e2

1,2, e1
2,3, e2

2,3 and e1
3,4 in Fig. 3(a). e1

2,3 can be used

to perform swapping with either e1
1,2 or e2

1,2 to distribute e1
1,3.

Alternatively, it can also be used to distribute e1
2,4 with e1

3,4.

However, these three candidates are conflict and only one of

them can be permitted. Fig. 3(b) shows two feasible swappable

candidates that are conflicted with each other.

We now describe the problem Pswap formally and draw the

following conclusions:

Proposition 3: Pswap can be reduced and formally

expressed as a weighted Maximal Independent Set (MIS)

problem.

Proof: We propose EG G(V , E) to express entanglement

conflict. Herein V is the set of nodes representing every

swappable candidate. A swappable candidate contains two

entangled pairs that share the same node and can be used to

perform entanglement swapping. Also, E is the set of edges

that connect two swappable candidates if they use the same

entangled pair. Thus, two adjacent swappable candidates can

not perform entanglement swapping concurrently as they use

the same entangled pair.

Edges in E represent two feasible but conflict entanglement

swappable candidates. As shown in Fig. 3(c), G has six nodes

that represent all swappable candidates. In Fig. 3(b), there

are edges between (e1
1,2, e

1
2,3) and (e1

2,3, e
1
3,4) because they

all contain a specific entanglement e1
2,3.

The goal of Pswap is to maximize Mτ by selecting an

independent set in G, as two connected swappable candidates

are conflict in G.. Notice that the input parameter of f is

the two entangled pairs in a swappable candidate, and f
can also be considered as the weight of nodes in G. There-

fore, the entanglement swapping problem, i.e., Pswap, can be

equivalently described as the following integer programming

problem:

max Mτ =
∑

v∈Vsel

f(v),

s.t. Vsel = {v|xv = 1, ∀v ∈ V},

N(v) ∪ Vsel = ∅, ∀v ∈ Vsel,

xv ∈ {0, 1}, ∀v ∈ V , (5)

where xv is the boolean for whether select v ∈ V to

execute swapping and Vsel is the selected subset of swapping

candidates. N(v) denotes the neighbor set of v.

Finally, Pswap can be reduced into weighted-MIS, and the

common MIS is a special case of Pswap when the contribution

function is f(v) = 1.

Pswap is at least an NP-complete problem as MIS is proved

to be an NP-complete problem. It means that there is no

optimal polynomial-time algorithm to solve Pswap. Therefore,

we propose a heuristic algorithm in the following section.

C. HSA: A heuristic algorithm for Entanglement Swapping

There is no efficient algorithm for searching all MISs in

polynomial time [42], [43], so Pswap is hard to solve as well.

Nonetheless, we observe that if the degree of G is less than 2,

the MIS problem has a polynomial-time solution [44]. It is

equivalent to the case of the single-tunnel model (i.e., m = 1),

as there are at most two nodes that will use a common

entangled pair to perform entanglement swapping, and there

is no loop in G. Therefore, we propose a heuristic algorithm

based on the basic idea of dividing Pswap into several sub-

problems Pm=1
swap where Pm=1

swap is the strict version of Pswap

in the single-tunnel model.

Then, we propose a Dynamic Programming (DP) algorithm

to address Pm=1
swap as illustrated in Algorithm 2. The idea

of the algorithm is to first solve the problem on a partial

path from node u1 to ui. The maximized Mτ on this partial

path is recorded in notation M [i], and the best strategy is

recorded in S[i]. Then, the algorithm will solve the problem

from node u1 to ui+1, and finally, the algorithm gives the

best entanglement swapping strategy on the whole path. The

entanglement swapping decision is in S[N ], and M [N ] is
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Algorithm 2 DynamicAlg: Algorithm for Entanglement

Swapping in Single-Tunnel Model (m = 1)

Input: The current entanglement state, Eτ ; Nodes on

the Path, U; The total number of nodes, N ;

Output: The strategy Ss
τ ; And the maxmized Mτ ;

1 ∀ui, M [i] ← 0, S[i] ← {};

2 for uj ∈ U, s.t. ei,j and ej,k ∈ Eτ do

3 if (∗, ei,j) /∈ S[i] then

// no conflict exists, allow uj to

perform swapping.

4 S[j] = S[j − 1] ∪ {(ei,j , ej,k)};

5 M [j] = M [j − 1] + f(ei,j , ej,k);
6 else

7 (eq,i, ei,j) ∈ S[i];
// find ui that uses ei,j

8 if M [q] + f(ei,j, ej,k) > M [i] then

// allow uj to use ei,j and cancel

ui’s swapping.

9 S[j] = S[j − 1]/(eq,i, ei,j) ∪ {(ei,j, ej,k)} ;

10 M [j] = M [j − 1] − f(eq,i, ei,j) + f(ei,j , ej,k) ;

11 else

// reject uj to perform swapping.

12 S[j] = S[i − 1];
13 M [j] = M [i − 1];
14 end

15 end

16 end

17 Return Ss
τ ← S[N ], Mτ ← M [N ];

the maximized goal. To be more specific, as mentioned in

Section V-A, f(·) is non-negative and Mτ is monotonically

increasing. Thus, if the current two entangled pairs can be

used to perform swapping and this swapping does not conflict

with other swapping decisions, the algorithm should allow it

to be executed and put it into Ss
τ . When there is a conflict,

the algorithm must choose the best option to maximize Mτ .

Without loss of generality, we assume uj can perform swap-

ping with (ei,j , ej,k) while ui(i < j) is allowed to perform

swapping with (eq,i, ei,j). Since both options use the same

entangled pair ei,j , they cannot be permitted simultaneously.

The algorithm blocks uj’s execution when

M [i] ≥ M [q] + f(ei,j , ej,k),

which means that (eq,i, ei,j) is a better option to maximize

M [i]. Otherwise, the algorithm revokes ui from executing

and chooses uj to execute swapping. In general, the recursive

expression of the algorithm is

M [j] = max (M [i], M [q] + f(ei,j , ej,k)).

As a result, the problem Pm=1
swap can be solved in the time

complexity of O(N).
In case of multi-tunnel model (i.e., m > 1), the proposed

algorithm should divide the problem Pswap into multiple

Pm=1
swap sub-problems. We implement the algorithm through

two heuristic ideas: First, priority is given to entangled pairs

with longer distances. This is because their fidelity levels are

Algorithm 3 SplitAlg: Algorithm for Entanglement Swap-

ping in Multi-Tunnel Model (m > 1)

Input: The current entanglement state, Eτ ; Nodes on

the Path, U; The total number of nodes, N ; The

size of a quantum memory, m;

Output: The entanglement swapping strategy Ss
τ ;

1 while True do

2 C ← {};

3 for uj ∈ U, s.t. ei,j and ej,k ∈ Eτ do

4 e1 ← ei,j s.t. ∀ei,j , ep,j ∈ Eτ , i ≤ p;

5 e2 ← ej,k s.t. ∀ej,q, ej,k ∈ Eτ , k ≥ q;

6 C ← C ∪ (e1, e2);
7 end

8 if C = ∅ then

9 Break;

10 end

11 Ss
τ ← Ss

τ ∪ DynamicAlg(C, u, N, m);
12 Eτ ← Eτ/{e1, e2}, ∀(e1, e2) ∈ Ss

τ ;

// Update unallocated entanglement

13 end

14 Return Ss
τ ;

usually low and it is easy for them to lose coherence after

multiple swapping operations compared to the shorter distance

entangled pairs. This will further cause blocking of the dis-

tribution of other entangled pairs. Second, each sub-problem

expects to deal with the most number of swappable candidates

if it does not violate the assumption of m = 1 to reduce the

time cost of solving the whole problem to find the optimal

solution and reduce the runtime overhead.

Algorithm 3 shows how divide the original problem into

multiple Pm=1
swap sub-problems. It runs multiple rounds. In each

round, it generates a sub-problem and solves it using Algo-

rithm 2. The strategy used to generate sub-problems is that

the controller only produces one swappable candidate on each

node. This strategy guarantees that the degree of the EG in

the generated sub-problem is less than 2. It is because a Bell

state entangled pair has two qubits and is related to at most

two nodes. If the two nodes use the same entangled pair to

generate swappable candidates, this entangled pair will be used

in no more than two swappable candidates.

In each round, Algorithm 3 checks all nodes in turn and

looks for two entangled pairs with the longest distance on

each of interfaces to form a swappable candidate. It takes

the selected two entangled pairs as a swappable candidate of

this node and puts this swappable candidate in the candidates

set (C). After calculating a swappable candidate on every

node, multiple swappable candidates are selected, but they

could be conflicted with each other. Thus, the algorithm uses

the candidate set (C) as the input parameter and executes

Algorithm 2 to solve the sub-problem. After that, some swap-

pable candidates from C are chosen to perform entanglement

swapping while others are revoked. The algorithm then updates

Eτ and Ss
τ and starts the next round till no more swappable

candidates can be chosen.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on September 12,2023 at 17:46:01 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: HEURISTIC REMOTE ENTANGLEMENT DISTRIBUTION ALGORITHM ON MEMORY-LIMITED QUANTUM PATHS 7499

An example of Algorithm 3 is illustrated in Fig. 3(d).

In this case, there exists N = 4 nodes (from u1 to u4) and

5 entangled pairs. In the first round, a swappable candidate

is selected on each node in Algorithm 3. As a result, (e1
1,2,

e1
2,3) and (e1

2,3, e1
3,4) are selected. Then, the controller performs

Algorithm 2, and since the above two swappable candidates

are in conflict (as they use the same entangled pair e1
2,3), only

one swappable candidate is allowed. Let us assume that Algo-

rithm 2 allows u3 to perform swapping through using e1
2,3 and

e1
3,4, while e1

1,2 is left into the next round. In the second round,

the controller chooses the candidate (e1
1,2, e2

2,3) and allows it to

be performed. Finally, since there are no swappable candidate

left, Algorithm 3 exits, and e2
1,2 is reserved for the next time

slot. At a result, (e1
2,3, e1

3,4) and (e1
1,2, e2

2,3) is allowed to

perform entanglement swapping.

D. Computational Complexity Analysis

Although it is difficult to estimate the average time com-

plexity of Algorithm 3, we can get the upper bound of

the algorithm’s running time in the worst case. HSA can

be considered acceptable whenever this upper bound can be

acceptable. Simulation in the Section VI shows that even

in the strictest scenarios, the average time complexity of

the algorithm is much better than its worst-case runtime

complexity discussed in this section.

Lemma 1: The worse-case runtime complexity of Algo-

rithm 2 is O(N).
Proof: Algorithm 2 is a dynamic programming algorithm,

which traverses every quantum node ui ∈ U in line 2, so its

time complexity is O(N). When entangled pairs exist between

every adjacent node, the upper bound is reached.

Lemma 2: The main loop (in line 1 of Algorithm 3) needs

to be executed at most m · 
N
2 � times.

Proof: It is mainly because |C| is at least 1, where |C|
is the cardinality of C (first defined in line 1). Otherwise, the

algorithm will jump out of the outer loop and exit. It also

means that at least one entanglement swapping needs to be

determined each round before Algorithm 2 is executed.

When m and N are given, the maximum number of

entanglement swapping that can be performed in a time slot

is m · 
N
2 �. This bound will be reached when the quantum

memory is fully used, and all entangled pairs between adjacent

nodes are generated. Consequentially, the main loop runs at

most m · 
N
2 � times in the worst cases.

Proposition 4: In the worst case, the runtime complexity of

Algorithm 3 is O(m · N4).
Proof: When considering the runtime complexity of the

inner loop in line 3, the algorithm traverses each quantum

nodes and find two entangled pairs e1 and e2. For uj ,

the algorithm traverses from u1 to uj−1 and looks for the

entangled pairs with the longest distance. Then, it traverses

from uj+1 to uN to find another entanglement. It is obvious

that the runtime complexity for all nodes is
N∑

i=1

((i − 1) + (N − i)) = N · (N − 1).

From Lemma 2, the maximum number of execution of

Algorithm 2 is m · 
N
2 �. From Lemma 1, the complexity

of Algorithm 2 is O(N). Therefore, the worst runtime

complexity is

O(m · N · N · (N − 1) · N) = O(m · N4). (6)

Discussion: Since N are small constants (even the number

of hops in Internet is usually less than 128), the total runtime

complexity is acceptable. Further experiments in Section VI-C

show that average time complexity of the algorithm is

O(m · N2.109) in a relatively strict scenario.

VI. NUMERIC SIMULATION AND EVALUATION

This section conducts simulations and investigates the per-

formance and runtime complexity of HSA under different

settings. Expressly, we set up different scenes given N , m,

pswap and pgen, and then we calculate EDR after a fixed

number of time slots as the criterion for the performance

of algorithms. We also perform simulations to evaluate the

average runtime of our algorithm.

A. Experiment Environment and Baselines

The results of the simulations are obtained from commodity

hardware (precisely, a single logical processor of an Intel

i5-8259U @ 2.3 GHz and 8GB 2133 MHz RAM). In our

evaluations, we fix the time slot to 1000 rounds. We find

that EDR has been stable in 1000 time slots and can be

used to evaluate the algorithm. More time slots will only

increase the computational cost of simulations without any

further advantages.

We compare the proposed algorithm with other trivial algo-

rithms, including Ordered Swapping Algorithm (OSA) and

Binary Tree Swapping Algorithm (BTSA) [34]. In OSA, the

entanglement swapping is carried out from the source to the

destination hop by hop. Specifically, node u2 will perform

swapping to distribute e1,3, followed by node u3 perform

swapping with e1,3 and e3,4 to distribute e1,4 in the next

time slot. For multi-tunnel models (i.e., m > 1), each tunnel

performs entanglement swapping independently in each time

slot. While in BTSA, entangled pairs of the same distance

perform swapping in pairs. Specifically, the odd-numbered

entangled pairs (for example, the i-th entangled pair) perform

swapping with the next entangled pair (i.e., i+1-th entangled

pair). If the consumed entangled pairs are n hop, the new

generated entangled pair will be 2n hop. As a result, BTSA

uses log2 N rounds to distribute an end-to-end entangled pair

on a N hop path. Fig. 4 shows an example that a quantum

path of five nodes (from u1 to u5). u2 and u4 performs

swapping firstly to distribute e1,3 and e3,5. Then, u3 performs

swapping to distribute the proposed remote entangled pair e1,5.

Both OSA and BTSA are stop-and-wait algorithms. When a

necessary entangled pair is not present, the algorithm will stop

and wait until it is generated.

In this paper, we propose a heuristic algorithm called HSA.

However, the contribution function f in HSA has not yet been

determined. In the evaluations, we use two heuristic views to

select f and also constitute two candidates, HSAg and HSAm,

respectively. In HSAg, the algorithm tends to perform more
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Fig. 4. Example of BTSA algorithm on a N = 5 path.

entanglement swappings in each time slot. To achieve this

goal, we use a constant function fg(ei,j , ej,k) = 1. In this case,

Mτ indicates the number of entanglement swapping allowed

to be performed in time slot τ .

While in HSAm, we prefer to choose entangled pairs with

longer distance (i.e., the distance between two nodes) to

participate in swapping and because they usually have low

fidelity and are easy to decoherence. Therefore, the contribu-

tion function in HSAm is

fm(ei,j , ej,k) = max{j − i, k − j}. (7)

B. Simulation Results

To evaluate the performance of those algorithms, we use the

averaged entanglement distribution rate (EDR) in 1000 time

slots as an evaluation indicator. Another feasible indicator

is the time it takes for the first entanglement distribution.

However, in the experimental evaluation, we do not adopt it

because entangled pairs need to be continuously distributed in

most quantum network scenarios.

First, we consider the performance at different node scales.

The parameter pgen fits

pgen = 10−γ·D/10,

where D is the distance between two nodes and loss rate γ
is 0.02 [45], [46]. Considering a quantum network, we give

priority to deploy more quantum nodes to reduce the distance

between nodes and ensure the success probability of entan-

glement generation pgen. Therefore, we set pgen to 0.9 and

examine the performance on a path with up to 50 nodes. We fix

the success probability of entanglement swapping pswap to

0.7 or 0.9, and the memory size of m = 10 or m = 20. The

results of the simulations are shown in Fig. 5.

Overall, HSAm has a better performance in most scenarios,

followed by HSAg . These two algorithms achieve higher EDR

than the two baseline algorithms. OSA is almost infeasible in

large-scale networks because it is difficult to distribute remote

entangled pairs. In addition, we also observe the following

phenomena. First, EDR decreases with the number of nodes

increasing in all algorithms. Averaged EDR is 4.001 ebits/slot

when N = 5, whereas it is 1.757 ebits/slot when N = 50
in HSAm, which is shown in Fig. 5(b). Second, HSAg and

HSAm are better than OSA and BTSA, for the curve of both

HSA algorithms is above the baseline curves as a whole.

It can be further observed that the performance of OSA drops

Fig. 5. Averaged EDR with different node scales.

drastically as N increases. It is almost impossible to distribute

remote entangled pairs reliably. For example, when averaged

EDR reaches 3.037 ebits/slot for N = 5 while it drops to

0.005 ebits/slot when N = 15 in Fig. 5(c). Third, EDR in

BTSA drops as a wave shape, which significantly degrades

when N is an integer power of 2. It is because it takes

one more round to distribute remote entangled pairs when N
exceeds these integer powers of 2 (i.e., 2, 4, 8 …). As a result,

each distribution of entangled pairs requires an additional time

slot.

In the next experiments, we fix the network scale and then

examine the impact of the quantum memory size on EDR.

We fix the number of quantum nodes to 20 and then evaluate

the averaged EDR when m increases from 1 to 100. As shown

in Fig. 6, with the increase of the memory size, EDR grows

approximately linearly. However, with the increase of each

qubit memory, EDR increases faster in HSAg and HSAm than

BTSA and OSA, which shows the proposed algorithm can

make better use of the limited size of the quantum memory.

To be more specific, Fig. 6(a) illustrate averaged EDR when

pswap = 0.7 and pgen = 0.9. The EDR increment of each

qubit of the quantum memory is 0.1061 ebits/slot in HSAg,

which is approximately 87.76% higher than 0.05651 in BTSA.

In Fig. 6(b), it is 0.2537 (0.2587) in HSAg (HSAm) and is

83.31% (86.92%) higher than 0.1384 in BTSA respectively.

With the development of quantum devices, the probability

of entanglement generation pgen and entanglement swapping

pswap will increase. On the other hand, the quantum memory

size m may also increase on quantum nodes. Therefore,

to evaluate EDR in a wider scene, we conduct the following

experiments to evaluate EDR when pgen and pswap vary.

Consider a quantum path with 20 nodes and m = 10, and

we use the following indicator to illustrate the advantage of

the algorithm HSAm:

AdvHSAm
=

EDRHSAm
−max(EDROSA, EDRBTSA, EDRHSAg

)

max (EDROSA, EDRBTSA, EDRHSAg
)

,
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Fig. 6. Averaged EDR under different quantum memory sizes.

Fig. 7. This is the heat map that shows the advantage of HSAm. Darker
blue indicates a greater advantage compared to other three algorithms.

where EDRHSAm
is the averaged EDR of HSAm, so as other

variables. We set pgen and pswap between 0.5 and 1, and form

the heat map in Fig. 7.

In most scenarios where pswap ≥ 0.6, HSAm has advan-

tages compared with two baselines and even HSAg . When

pswap is smaller than 0.5, the probability of distributing remote

entangled pairs is almost close to 0, and so is EDR. From

another perspective, pgen has little influence on EDR under

the same conditions. The advantage between algorithms is

relative constant, which indicates that HSAm performs better

in a wild scene. With the development of quantum information

technology, the advantage of the proposed algorithm will

increase.

C. Estimate the Average Runtime complexity of HSA

We also evaluate the average time complexity based on the

following experiments. We execute the algorithm under a vari-

able node scale N and the quantum memory size m. Note that

our simulations are implemented based on Python 3 and run on

a single-threaded processor. The following experimental data

does not represent the absolute performance of the algorithm.

However, it is possible to use its relative performance to

explore the runtime complexity of HSA.

In the first experiment, we set both pgen and pswap to

be 0.9. We evaluate HSAm’s runtime in different node scale

settings. More specific, we set N to be 5, 10, 15 and 20,

Fig. 8. Evaluate the averaged runtime of HSAm.

TABLE II

POWER OF N AND CORRELATION COEFFICIENT

and then measure the execution time of the algorithm for the

quantum memory size from m = 5 to m = 50 as shown in

Fig. 8(a). Experimental results show that HSAm’s averaged

runtime complexity is proportional to m, which is consistent

with Eq. (6). In addition, we find that pgen and pswap have no

significant effect on the complexity in additional experiments.

Then we examine how N affects the algorithm runtime

complexity. We construct a path with m = 10, 20, 30 and 40.

The influence of the number of nodes on the runtime complex-

ity of HSAm is discussed. The variable N varies from 5 to

50 to evaluate the increase in runtime. The simulation results

are presented in Fig. 8(b) in the form of a double logarith-

mic curve. Since the curve approximates a straight line in

the logarithmic graph, we consider the time t a polynomial

function of N (i.e., t = C · Nx) and the low-order terms are

negligible, we can perform a linear regression to the double

logarithmic curve. Its slope can be viewed as the exponent x
for the constraint

x =
ln(t) − ln(C)

ln(N)

holds, where both x and ln(C) are obtained directly from the

linear regression. The result is shown in TABLE II. When

m = 10, we get the scope is 2.109 while it is 1.999 when

m = 40. The scope even slightly drops when the memory

size is larger, which means HSA can get higher progressive

performance with a larger quantum memory size. In all

settings, the average runtime complexity of the algorithm is

less than O(N2.109), which is far better than its worst bound

O(N4). We also calculate the correlation coefficient, which

is above 0.995 in every setting. Our assumption that t is

a polynomial function about N is acceptable. We can also

observe that the correlation coefficient gets close to 1 when m
increases.

In these two experiments, we set both pgen and pswap

to 0.9. Since the complexity is related to the number of
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existing entangled pairs on the path, with more entangled

pairs exist, the more time HSA consumes. We explore a

scenario where both pgen and pswap are very close to 1 so

that the number of entangled pairs is relatively big to achieve

a strict result. The experiments show that even in this scenario,

the increase in the running time of HSA is limited and

acceptable.

D. Discussion: the Close Form of Mτ and f

So far, the exact form of Mτ remains flexible. We choose

two metrics heuristically in the experiments and form the

corresponding algorithm HSAg and HSAm. According to the

experimental results, HSAm works better in most games than

HSAg and baselines as well, while HSAg wins a few games.

For example, we can see the line of HSAg is slightly above

the line of HSAg in Fig. 6(a).

According to the experimental results, there may be no sim-

ple form of Mτ that enables the algorithm to achieve the best

EDR in every scenario. For example, when pswap is relatively

tiny, BTSA works fine because it performs only necessary

entanglement swappings to avoid entanglement decoherence

while it cannot fully use the quantum memory in the opposite

scenarios. While in most cases, HSAm achieves a better EDR.

On the other hand, our current understanding of quantum

networks is not sufficient. Especially for the value of pgen,

pswap, and m may change significantly with the development

of our knowledge and quantum devices. Therefore, it may be

unnecessary to decide the close form of the instant optimal

goal Mτ and the swapping contribution function f(·) for a

specific setting. This work can be left for further studies.

However, as demonstrated in the experiment, HSAm has

advantages in the most common scenarios.

VII. CONCLUSION

To improve the performance of the quantum network,

we focus on the remote end-to-end entanglement distribution

problem over paths in which quantum routers have limit-

sized memories. In our design, we consider the imperfection

of quantum operations, the limited memory size, and the

vulnerability of entangled pairs.

The solution to our proposed design is based on an entan-

glement distribution framework. Under this framework, our

generation algorithm works greedily and attempts to use

quantum memory fully. Also, we introduce a deterministic

polynomial-time algorithm to make entanglement swapping

decisions. Here, the swapping algorithm uses a heuristic

to divide the original NP-complete problem into several

sub-problems that a dynamic programming algorithm can

easily solve. The evaluations show that our algorithm achieves

a high distribution rate level and fully uses the limited size of

quantum memory. On the other hand, the proposed algorithm

has a polynomial-time upper bound, which makes it an accept-

able solution in a large-scale quantum network.
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