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Abstract—Brain-inspired hyperdimensional computing (HDC)

in machine learning applications has been achieving great success

in terms of energy efficiency and low latency. The proposal of

low-dimensional computing (LDC) classification model not only

improves the inference accuracy of existing HDC-based models

but also gets rid of the ultra-high dimension in them. However,

the security part of LDC model to adversarial perturbations

has not been touched. In this paper, we adopt the bounding

technique, interval bound propagation (IBP), to train a LDC

classification model that is provably robust against L1 norm-

bounded adversarial attacks. Specifically, we propagate the L1
norm-bounded bounding box around the original input through

layers of LDC model using interval arithmetic. After propagation,

the worst case prediction logits can be computed based on the

upper bound and the lower bound of the output bounding box.

By minimizing the loss between the worst case prediction and

the true label, the predicted label could be kept invariant over all

possible adversarial perturbations within L1 norm-bounded ball.

We evaluate the algorithm on both MNIST and fashion MNIST

datasets. The experiment results corroborate that our trained

models with IBP exhibit robustness against strong projected

gradient descent (PGD) attacks and memory errors.

Index Terms—Low-dimensional computing, adversarial attack,

certified robustness, interval bound propagation

I. INTRODUCTION

Brain-inspired hyperdimensional computing (HDC) classi-
fiers have been emerging as light-weight machine learning
alternatives to deep learning models [1]–[4]. More recently,
a low-dimensional computing (LDC) classification framework
has been proposed which, compared to traditional HDC-based
classification models, improves the inference accuracy and
meanwhile dramatically reduces the model size, inference la-
tency and energy consumption by orders of magnitude [5].

Nonetheless, recent studies have shown that HDC-based
classifiers are vulnerable to carefully crafted adversarial attacks
in both white-box and black-box settings [6]–[9]. In such
attacks, the adversarial perturbations introduced to the original
input are visually indistinguishable but could make the output
label deviate from the ground truth. There has been significant
interest in the literature in constructing defenses to protect clas-
sification models against adversarial attacks, like obfuscating
gradients, defensive distillation and retraining technique [8]–
[13]. Unfortunately, these defenses are typically targeted to
specific attacks. For example, obfuscating gradient technique
takes advantage of gradient masking method and provides cer-
tain robustness against white-box iterative optimization attacks
[13]–[16]. Thus, these defense techniques were broken soon by

subsequent attacking schemes, which then drives the emergence
of certified robustness for defenses [17], [18].

Certified defenses provide guarantee of robustness against
all possible norm-bounded perturbation attacks. For example,
methods proposed in work [19]–[21] alter the network config-
urations such as the network structure and activation function,
which makes them struggle to generalize across different types
of networks. Provable robustness technique via random smooth-
ing requires taking the mean of the output vectors, which
is susceptible to the outliers and lead to ambiguous outputs
[22]–[26]. The study in [18] leverages differential privacy and
provides a scheme which requires extra model structure like
the separate auto-encoder. Interval bound propagation (IBP)
technique bypasses the challenges of these methods. It is
comparable to two forward passes through the network, without
changing the original network and inducing extra structure
[27]–[31].

In this paper, we make the first effort to study provable
robustness of LDC models with IBP for classification against
adversarial attacks. To obtain a certifiably robust LDC model
against L1 perturbation, the minimum difference between
logits of the true class and any other class, called minimum
margin, has to be larger than zero for any input perturbation
within L1 norm-bound ball. To this end, IBP is adopted
to calculate the lower bound of the minimum margin. An
appropriate loss function is defined to guarantee a non-negative
value of the lower bound and thus a correct labelling over L1
norm-bounded perturbed inputs. For evaluation, we train LDC
models across a wide range of L1 perturbation radii, referred
to as training perturbation radius, based on both MNIST and
fashion MNIST dataset. We also employ the elision technique
to make the lower bound of the minimum margin tighter and
compare the performance of the trained models in terms of
nominal accuracy and verified accuracy. Besides, we implement
a powerful white box attacking method, projected gradient
descent (PGD), to each of the trained models and demonstrate
a drastic reduction in attack success rate from 100% to below
0.1% with IBP robust training. The trained models also exhibit
high performance with memory errors existing.

II. PRELIMINARIES AND FORMULATION

A. LDC classifier

In a nutshell, an LDC classifier maps the encoding and
inference process of HDC classifier into an equivalent compact

neural network that includes a non-binary neural network for
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value representation followed by a binary neural network layer
for sample encoding and another binary layer for inference.
After training, it can extract optimized low-dimensional binary
vectors to represent features and values for efficient inference.

We focus on certified robustness of an LDC model for
classification tasks. The LDC model can be formulated as
a function f✓: x ! RC , where the input data is in a
normalized N-dimensional subspace x ✓ [0, 1]N . The model
provides confidence scores f✓(x) ✓ [0, 1]C for all C classes.
F✓(x) = argmaxi2[C] f✓(x)i is the predicted class label of
model f✓ given input x. ✓ is the set of trainable parameters of
the model, which is trained to minimize the cross-entropy loss.

Specifically, an LDC classifier f✓ can be equivalently
mapped to a 3-stage neural network, including value layer,
feature layer and class layer, respectively, as shown in Fig. 1.
It can be mathematically represented as follows:

8
>>>>>><

>>>>>>:

z0 = x0

z1 = Concat(W0zi0 + b0)

z1 = Bin(Tanh(z1))

z2 = Bin(W b
1 z1)

z3 = W b
2 z2

(1)

where x0 ✓ [0, 1]N is the input. zi0 is the ith dimension of
z0 for i = 1 to N . Bin(z) = sign(z) and Concat(z) is
concatenating operation which joins the weighted sum of each
item in the input vector into a single output vector. The trainable
parameters ✓ = {W0, b0,W b

1 ,W
b
2}. The shape of W0,W b

1 ,W
b
2

is (Dv, Dp), (Df , N ⇥ Dv), (Dc, Df ) respectively. Dp repre-
sents the dimension of each input feature value and Dc is the
dimension of final output vector. Take MNIST classification as
an example, Dp = 1 since each pixel value could be represented
as a single scalar. Dc = 10 because there are 10 classes in total.
Dv and Df are the hyperparameters of the model representing
dimension of value vector and dimension of feature vector
in HDC context. Thus, in LDC model there are only affine
transformations, Wz + b, and monotonic activation functions,
Concat(z), Bin(z) and Tanh(z).

B. Adversarial attacks

Adversarial attacks can be categorized into two settings, tar-
geted attack and untargeted attack. The goal of targeted attack
is to mislead the model to classify the adversarial example to an
intended target class, ytg , instead of the true class, ytrue. On the
other hand, an untargeted attacker makes the model misclassify
the perturbed image as any class, y0, other than the original
true class, ytrue. Both attacks can be formulated as bounded
perturbation. For given input (x0, ytrue), the attacker would like
to generate a perturbed input Ap,✏(x0) = {x : kx� x0kp < ✏}
such that F✓(x) 6= ytrue. We use Ap,✏(x0) to denote the
perturbed input which is sampled from the region centered at
x0 with ✏ radius, where ✏ represents the perturbation magnitude
measured by Lp norm for p � 1. Common choices of Lp are
L1, L2 and L1.

C. Robustness verification

To certify the robustness of a classifier against norm-bound
perturbation, Ap,✏(x0), we need to verify that for any possible
perturbed input x 2 Ap,✏(x0) the predicted class is always
the true label ytrue. To achieving this purpose, we define a
minimum margin, M(ytrue, y0), as the minimum prediction
logit difference between the true class label ytrue and any other
class y0, when the input x is within the Lp norm-bounded ball
by ✏. 8x 2 Ap,✏(x0) and y0 6= ytrue, we have

M(ytrue, y
0) = minx(f✓(x)ytrue � f✓(x)y0)

= minx(eytrue � ey0)f✓(x)
(2)

where ei is the ith standard basis vector. For any y0 6= ytrue, if
we can verify that M(ytrue, y0) > 0, which means the true label
will always has the highest confidence score, f✓ is certifiably
robust at x0 within radius ✏ with respect to Lp norm.

III. INTERVAL BOUND PROPAGATION

A. Interval Bound Propagation

It is highly non-trivial to find the exact minimum margin
M(ytrue, y0) (hereafter My0 ) and prove My0 > 0. Instead, we
could look for a lower bound of My0 and control the value
inside this bound. To this end, we consider the framework of
IBP [27], [32] to train a provably robust LDC classifier to L1
adversarial perturbation of size ✏ (which is stronger than Lp

adversarial perturbation with 1  p < 1). IBP is an algorithm
that can be used to find a lower bound of the minimum margin
My0 by bounding the activation zk of each layer. Specifically,
it propagates the axis aligned bounding box from layer to layer
using interval arithmetic. For L1 norm-bounded perturbation
by ✏, lower bounds and upper bounds of each layer can be
represented by the following equations.

z̄0,i(✏) = x0,i + ✏
z0,i(✏) = x0,i � ✏

...
z̄k,i(✏) = maxzk�1(✏)zk�1z̄k�1(✏)hk,i(zk�1)
zk,i(✏) = minzk�1(✏)zk�1z̄k�1(✏)hk,i(zk�1)

...

(3)

where zk,i is the i-th coordinate of zk and zk = hk(zk�1).
In LDC, there are three layers, thus k = 0 to 3. hk(z)
is the transformation function of k-th layer, which is either
affine transformation or element-wise monotonic activation
function, Concat(·), Bin(·) and Tanh(·). For the affine layer
hk(zk�1) = Wzk�1 + b, obtaining the upper bound and lower
bound, i.e. solving the above optimization problem, can be done
efficiently with two matrix multiplication as follows:

µk�1 =
z̄k�1+zk�1

2

rk�1 =
z̄k�1�zk�1

2
µk = Wµk�1 + b
rk = |W |rk�1

z̄k = µk + rk
zk = µk � rk

(4)
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Fig. 1. Illustration of LDC model with IBP method. The L1 norm-bounded perturbation with radius ✏ (in blue) is propagated through layers of LDC model.
The interval bound (in gray), represented as |z̄k, zk|, is propagated simultaneously through layers, which always encompasses the blue region.

where | · | is element-wise absolute value operator. When
hk(zk�1) is element-wise monotonic activation function, such
as Concat(·), Bin(·) and Tanh(·), we have:

z̄k = hk(z̄k�1)
zk = hk(zk�1)

(5)

In the case of an LDC classifier, after propagation, we obtain
the upper and lower bounds of the output logits, z̄3 and z3. With
the bounds of z3 and the IBP method for affine layer, a lower
bound of minimum margin My0 can be computed as

My0 = minz3z3z̄3(eytrue � ey0)z3

= eytruez3 � ey0 z̄3

= z3,ytrue
� z̄3,y0

 minz0xz̄0(eytrue � ey0)f✓(x) = My0

(6)

For any class label y0 other than the true label ytrue, to make
the lower bound of minimum margin, My0 , larger than 0, we
can construct worst case prediction ẑk, where the logit of the
true class is equal to its lower bound and the other logits are
equal to their upper bound. Note that, if ✏ = 0, ẑk = zk.

ẑk,y(✏) =

(
z̄k,y(✏) y 6= ytrue
zk,y(✏) y = ytrue

(7)

We then minimize a worst-case cross entropy loss
L(ẑk, ytrue) during the training procedure. However, a direct
application of worst-case cross entropy loss alone does not
work since the propagated bounds are too loose. In reality, As
shown in Fig. 1, during training stage, we feed the network
with both original training input, z0, its upper bound, z̄0, and
lower bound, z0, then minimize a combination of normal cross-
entropy loss and worst case cross-entropy loss.

L = kL(zk, ytrue) + (1� k)L(ẑk, ytrue) (8)

where k is a trade-off parameter, which controls the relative
weight of robust training versus fitting to the original input
images.

B. Elision of Last Layer

Considering the fact that the last layer in LDC network is a
linear layer, z3 = W b

2 z2, to make the calculated lower bound of
minimum margin, My0 , tighter, we elide the bound propagation
of the last linear layer:

My0 = minz3z3z̄3(eytrue � ey0)z3

 minz2z2z̄2(eytrue � ey0)W b
2 z2

= minz2z2z̄2Ŵz2 = Me
y0

 minz0xz̄0(eytrue � ey0)f✓(x) = My0 .

(9)

Thus, minimizing Ŵz2 over z2  z2  z̄2, with Ŵ = (eytrue�
ey0)W b

2 , gives a tighter lower bound, Me
y0 , of minimum margin

My0 . By doing so, we could bypass the additional relaxation
induced by the last linear layer.

IV. RESULTS

We will present our evaluation results based on MNIST
and fashion MNIST datasets in this section. We first discuss
the experiment setup. In what follows, the nominal accuracy
and verified accuracy are shown for each trained model with
different training epsilon. Besides, the robustness results of our
trained models against PGD attack and memory cell errors are
also presented.

A. Experiment Setup

a) Hyperparameters: The hyperparameters related to the
LDC model architecture follow those in [5], where Dv/Df is
set to 4/64 to get a good trade-off between good accuracy and a
sufficiently small model size. The loss function of the training
process uses CrossEntropyLoss(·), and Adam(·) method is
adopted as the optimizer following SOTA training strategy for
BNN [33]. Even if the Adam(·) method intrinsically adapts the
learning rate to each parameter, tuning the initial learning rate
and decay scheme for Adam(·) yield significant performance
improvement [34]. Thus, we implement grid-search mechanism
to find the best initial learning rate and weight decay. Besides,
we also adopt exponential learning rate decay with decay rate
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TABLE I
CONFIGURATION OF TRAINING PROCEDURE FOR EACH DATASET WITH DIFFERENT TRAINING PERTURBATION RADII.

Dataset Pert. Radius Without Elision With Elision

Learning Rate Weight Decay Learning Rate Weight Decay

MNIST ✏1 0.0001 0.0001 0.0001 0.0001
✏2 0.0001 0 0.0001 0.0001
✏3 0.0001 0 0.0001 0.0001
✏4 0.0001 0.0001 0.0001 0.001
✏5 0.0001 0.001 0.0001 0.01

Fashion MNIST ✏1 0.0001 0.0001 0.0001 0.0001
✏2 0.0001 1e-5 0.001 0.01
✏3 0.001 0.01 0.001 0.001
✏4 0.0001 0.0001 0.0001 0.01
✏5 0.001 1e-5 0.001 0.01

of 0.95 to the provided initial learning rate for a better con-
vergence. Table I shows the best choice of initial learning rate
and weight decay for different dataset with different training
perturbation radii. The 5 different perturbation radii ✏1, ✏2, ✏3,
✏4, ✏5 represent the L1 perturbation of 0, 0.02, 0.05, 0.08, and
0.1 associated to the normalized input x ✓ [0, 1]N .

b) Training: According to Section III, the final loss func-
tion to minimize is a combination of normal cross entropy
loss and worst case cross entropy loss. The relative importance
of the worst case loss is determined by the hyperparameter
k. According to literature, it achieves better results by slowly
reducing k starting from 1 until 0.5. The same strategy is used
for training perturbation radius, staring with 0 and slowly being
raised up to the target value. In reality, the total iteration in
our experiment is set to 120000 with batch size of 64. During
the first 2000 iterations, the model is trained to reduce nominal
loss alone, which can be regarded as a warm up period. Starting
from the 2000th iteration, the model entered a linearly ramp up
phase by gradually decreasing parameter k and increasing the
perturbation radius. After 10000 iterations, parameter k and the
training perturbation radius settle to 0.5 and the target radius
respectively.
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(b)

Fig. 2. Nominal accuracy of LDC models with different training perturbation
radii, ✏1, ✏2, ✏3, ✏4, and ✏5, representing perturbation radius of 0, 0.02, 0.05,
0.08, and 0.1 respectively. The blue line are the results without elision technique
and the red line represents the one with eliding the last layer. (a) MNIST
dataset. (b) Fashion MNIST dataset.

B. Nominal Accuracy and Verified Accuracy

We train LDC classifiers using a range of perturbation radii
✏ ✓ {0, 0.02, 0.05, 0.08, 0.1} on both MNIST and fashion
MNIST datasets. Note that when training perturbation radius
✏ = 0, the normal training with standard cross-entropy loss
is performed. After training, we obtain 5 robust models for
each dataset. During testing, we test each of the trained models

against adversarial perturbation from 0 to 0.12. We add the test
adversarial perturbation to each test image and compute the
worst case prediction, based on which we obtain the inference
accuracy over the test set, which is called verified accuracy.
Note that when test perturbation radius is 0, the nominal test
accuracy is obtained, which is called nominal accuracy.

To test the effectiveness of elision technique, we compare the
nominal accuracy of five trained models with and without elid-
ing the last layer. Fig. 2(a) presents the results based on MNIST
dataset. From the figure we can see the nominal test accuracy
of standard LDC model with zero training perturbation radius
is around 93%. The red line shows the results when eliding
the last layer during IBP procedure. The blue line displays that
without elision technique. In both lines, the nominal accuracy is
decreasing with the increasing of training perturbation radius.
This corroborate that the addition of verification loss deteriorate
the ability of the model fitting to the dataset. However, the
red line is sliding slower than the blue one. This is because
that the elision of the last layer makes the calculated bound
tighter and the penalty to the nominal accuracy becomes less
severe compared to that of standard IBP method without elision
scheme. Similarly, we give the experiment results of nominal
accuracy on the basis of fashion MNIST dataset, referring to
Fig. 2(b), revealing the akin results.

On the other hand, we demonstrate the verified accuracy of
the trained models with standard IBP method without elision of
the last layer. We choose a spectrum of test perturbation radii
from 0 to 0.12 spaced by 0.02. Fig. 3(a) gives the results of
MNIST dataset. As we can see from the figure, the standard
model without robust training presents a zero verified accuracy
when the test adversarial perturbation is above 0.02. The model
trained with 0.02 training perturbation radius exhibits immunity
to test adversarial perturbation of 0.02 and becomes vulnerable
again when the test perturbation increases to 0.04. Models with
training perturbation radius of 0.05, 0.08, and 0.1 show similar
robustness. However, the verified accuracy of the model trained
with smaller training perturbation radius degrades more quickly
as the test perturbation radius increases. The effectiveness of
increasing training perturbation radius becomes more obvious
in the results of fashion MNIST dataset. As shown in Fig. 3(b),
the model trained with higher training perturbation radius show
higher verified accuracy especially for large test perturbation
radius.
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(b)
Fig. 3. Verified accuracy against different test perturbation radii from 0 to 0.12. Five different models, ✏1, ✏2, ✏3, ✏4, and ✏5, associate with training perturbation
radius of 0, 0.02, 0.05, 0.08, and 0.1 respectively. (a) MNIST dataset. (b) Fashion MNIST dataset.
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(b)
Fig. 4. Attack success rate (ASR) of PGD attacking method to five LDC models, ✏1, ✏2, ✏3, ✏4, and ✏5, trained with IBP with training perturbation radius of
0, 0.02, 0.05, 0.08, and 0.1 respectively. (a) MNIST dataset. (b) Fashion MNIST dataset.

C. Robustness Against PGD

We also assess the trained models’ robustness against a
powerful attack method called PGD. PGD is a white-box
attack algorithm which means the attacker has full access
to the model, including models’ weights and gradients. It is
actually an iterative version of FGSM [35]. In our experiment,
we calculate the attack success rate (ASR) of PGD method
under 200 iterations. Specifically, we use FGSM to introduce
adversarial perturbation to each test image, which can be
correctly classified by model. We calculate the percentage of
images that can be crafted within 200 iterations to mislead
the classifier, which is denoted as ASR. To attack a trained
model with a specific training ✏, we use the same amount
of perturbation ✏ in PGD algorithm. Note that for the model
without robust training, the PGD attacking perturbation ✏ is
0.02. We use ASR of PGD to indicate the model robustness.

Fig. 4(a) and fig. 4(b) are the results of PGD to the robust
LDC models on the basis of MNIST and fashion MNIST
dataset, respectively. From the figure, we can see that for both
MNIST and fashion MNIST dataset, PGD can achieve 100%
attack success rate attacking the models without robust training.
However, to the models trained with IBP, the ASR decrease
significantly. PGD fails to attack the models trained with IBP
across the full training perturbation spectrum.

D. Robustness Against Memory Errors

LDC classifiers have orders-of-magnitude less dimensions
than their HDC counterparts. While the prior study has shown
that LDC classifiers are still robust to memory errors in the
hardware [5], it is not clear if our novel IBP robust training

method will break such robustness and introduce vulnerabilities
for LDC classifiers. Thus, in addition to perturbation attacks,
we also evaluate the performance of LDC model with IBP
robust training in the presence of erroneous memory cells in
the hardware. To demonstrate robustness against such hardware
errors, we conduct RTL fault simulations where we inject
memory bit flips during every clock cycle of execution. In the
simulation, we set the probability of failure for each memory
cell to be 10�5, 10�4, 10�3, 10�2, 10�1, respectively.

Fig. 5(a) and Fig. 5(b) present the test accuracy with memory
errors. X axis displays the probability of failure for each
memory cell in every clock cycle. From the figures we can see
that for both MNIST and fashion MNIST dataset, the accuracy
diminishes when the training perturbation radius increases. And
for each model, the performance maintains a high accuracy
when the probability is lower than 10�2 even if the accuracy
starts to drop afterwards. Thus, with our robust training, LDC
classifiers are still robust against memory errors.

V. CONCLUSION

In this paper, we propose IBP to achieve certified robustness
for LDC classifiers against all possible L1 norm-bounded
adversarial attacks. Specifically, based on IBP, the worst case
prediction logits can be computed based on the upper bound and
the lower bound of the output bounding box during training.
Thus, by minimizing the loss between the worst case prediction
and the true label, the predicted label could be kept invariant
over all possible adversarial perturbations within L1 norm-
bounded ball. We evaluate our algorithm on both MNIST and
fashion MNIST datasets, demonstrating that it can withstand
projected gradient descent (PGD) attacks.
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(b)
Fig. 5. Classification accuracy of five trained models, ✏1, ✏2, ✏3, ✏4, and ✏5, with faulty memory cells, when the probability of failure for each memory cell is
10�5, 10�4, 10�3, 10�2 and 10�1. ✏1, ✏2, ✏3, ✏4, and ✏5 correspond to training perturbation radius of 0, 0.02, 0.05, 0.08, and 0.1 respectively. (a) MNIST
dataset. (b) Fashion MNIST dataset.
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