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ABSTRACT

Excess mortality is the difference between expected and observed mortality in a given period and
has emerged as a leading measure of the overall impact of the Covid-19 pandemic that is not
biased by differences in testing or cause-of-death assignment. Spatially and temporally granular
estimates of excess mortality are needed to understand which areas have been most impacted by
the pandemic, evaluate exacerbating and mitigating factors, and inform response efforts,
including allocating resources to affected communities. We estimated all-cause excess mortality
for the United States from March 2020 through February 2022 by county and month using a
Bayesian hierarchical model trained on data from 2015 to 2019. An estimated 1,159,580 excess
deaths occurred during the first two years of the pandemic (first: 620,872; second: 538,708).
Overall, excess mortality decreased in large metropolitan counties, but increased in nonmetro
counties, between the first and second years of the pandemic. Despite the initial concentration of
mortality in large metropolitan Northeast counties, beginning in February 2021, nonmetro South
counties had the highest cumulative relative excess mortality. These results highlight the need for
investments in rural health as the pandemic’s disproportionate impact on rural areas continues to
Srow.
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Introduction

The Covid-19 pandemic has had a substantial impact on mortality in the United States, leading to
declines in life expectancy rarely observed since the end of World War I1."* Estimates of excess
mortality, which compare observed deaths to those expected in the absence of the pandemic,
suggest that the true death toll of the pandemic is much larger than indicated by the official
Covid-19 deaths alone.””’ Deaths attributable to the pandemic may have been assigned to causes
other than Covid-19 for several reasons. Lack of access to testing in the community, combined
with the inconsistent use of post-mortem testing for suspected cases, likely resulted in a large
share of undiagnosed Covid-19 infections and deaths, especially early in the pandemic.*'?
Additionally, persons with comorbid conditions may have had their cause of death assigned to
the comorbid condition rather than to Covid-19." Finally, excess deaths not assigned to
Covid-19 may also reflect deaths indirectly related to the pandemic, including deaths associated
with reductions in access to health care, hospital avoidance due to fear of Covid-19 infection,

increases in drug overdoses, and economic hardship leading to housing and food insecurity.'*?

For these reasons, it is beneficial to use excess mortality as a measure of the pandemic’s impact,
particularly when examining geographic patterns in mortality. Estimates of excess mortality are
more comparable spatially than Covid-19-assigned deaths alone, because states use different
procedures to assign Covid-19 deaths and local death investigation systems may have different
policies and resources that affect assignment of Covid-19 deaths.’?' Furthermore, because many
Covid-19 deaths were not assigned to Covid-19 early in the pandemic, excess mortality is likely
to provide a more accurate measure of the pandemic’s impact for purposes of resource allocation

and evaluating health disparities.”*** Thus, continued tracking of excess mortality across time
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and space helps to clarify the total impact of the pandemic, identify where its impacts have been

greatest, and implement the most appropriate policy responses.

Prior studies of excess mortality in the United States have primarily focused on national and
state-level estimates,> but estimating the full impact of the Covid-19 pandemic at the
county-level is necessary to understand finer-grained geographic patterns of excess mortality.
Although the prior study generated predictions of excess mortality for 1,470 county sets for all
months of 2020 combined,* to the best of our knowledge, there are no estimates of excess
mortality at the county-month level across the first two years of the pandemic. Additionally,
expanding these estimates to the second year of the pandemic is critical because the geographic
impact of the pandemic has changed markedly since the first year due to changing national and

state-level policies, the availability of vaccines, and the emergence of new variants.

In the present study, we employ a Bayesian hierarchical model to estimate all-cause excess
mortality by month for 3,127 counties for the period from March 2020 to February 2022. In
addition to generating county-month level estimates of excess mortality, we examine spatial
patterning of these estimates across Census divisions and large metros, medium/small metros,

and nonmetro areas between the first and second year of the pandemic.

Results
Across 3,127 counties in the U.S., 620,872 estimated excess deaths occurred during the first year

of the pandemic (March 2020 to February 2021), and 538,708 estimated excess deaths occurred
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during the second year (March 2021 to February 2022). This equals a total of 1,159,580 excess

deaths during the first two years of the pandemic.

Geographic Patterns in Relative Excess Mortality

Table 1 shows excess deaths and relative excess mortality across combinations of U.S. Census
Divisions and metro-nonmetro areas during each pandemic year. In the entire United States,
relative excess mortality decreased in large metros from 23% of expected deaths in the first year
to 16% in the second year. Meanwhile, relative excess mortality in nonmetro areas increased
from 20% in the first year to 23% in the second year. The decrease in relative excess mortality in
large metro areas between the first and second year was particularly large in the Middle Atlantic
(28% to 8%), New England (16% to 5%), and Pacific (26% to 16%) divisions. The increase in
relative excess mortality in nonmetro areas was largest in the Pacific (7% to 21%), New England
(5% to 13%), and Mountain (23% to 30%) divisions. The divisions that had the highest relative
excess mortality in nonmetro areas during the second year were the South Atlantic (30%),

Mountain (30%), West South Central (27%), and East South Central (26%) divisions.

Figure 1 shows the evolution of relative excess mortality across four mortality peaks during the
pandemic across U.S. counties. These maps show the extent of excess mortality and demonstrate
how excess mortality shifted from coastal regions early in the pandemic into the rest of the
country as the pandemic progressed. During the Delta peak, excess mortality became more
concentrated in the South and Mountain West, while the spatial distribution of excess mortality
during the Omicron peak was less geographically consistent. Figure 2 shows the probability of

counties having any positive relative excess mortality across four mortality peaks during the
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pandemic, demonstrating that during each wave of the pandemic observed mortality fell above

the range of values we would have expected in the absence of the COVID-19 pandemic.

Temporal Trends in Relative Excess Mortality

Throughout the pandemic, national trends in excess mortality reflect the aggregation of
heterogeneous trends across disparate census regions and metro/nonmetro areas. To explore this
pattern, Figure 3 shows temporal trends in relative excess mortality across combinations of U.S.
Census division and metro-nonmetro categories. The initial peak in excess mortality nationally
was mostly driven by high excess mortality in large metro areas within the Middle Atlantic
region. In contrast, the Winter peak spared this region and affected counties across the
metro-nonmetro continuum in other regions of the country. As the pandemic progressed, there
was a higher degree of concordance in temporal patterns across regions, which was especially
evident during Delta and Omicron. Figure 4 further illustrates differences in the geography of
the pandemic between the first and second year by directly comparing relative excess mortality
in the two years across divisions and metro-nonmetro areas. Large metro counties predominantly
had greater relative excess mortality in the first year of the pandemic than they did in the second
year. In contrast, nonmetro counties were more likely to have greater relative excess mortality in
the second year as compared with the first year. This pattern is indicative of the emergence of a

rural disadvantage in the second year of the pandemic.

Cumulative Trends in Relative Excess Mortality
Figure S examines relative excess mortality in cumulative terms for combinations of Census

Region and metropolitan status. In the initial months of the pandemic, large metro areas in the
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Northeast experienced exceptionally high relative excess mortality. However, by February 2021,
cumulative relative excess mortality in the non-metro South had exceeded cumulative relative
excess mortality in large metro areas in the Northeast. Cumulative relative excess mortality
remained higher in the non-metro South than in any other region through the end of February
2022. By the end of February 2022, cumulative relative excess mortality was lower in metro and
nonmetro areas in the Northeast than in metro and nonmetro areas in the South, West, and
Midwest. The regions with the highest cumulative relative excess mortality at the end of
February 2022 were nonmetro areas in the South, medium and small metro areas in the South,

large metros in the West, nonmetro areas in the West, and large metros in the South.

County-Level Trends in Relative Excess Mortality

An emerging rural disadvantage is also visible when examining temporal trends for individual
counties. Figure 6 shows temporal trends in relative excess mortality for the most populous
counties among large metro and nonmetro counties. Among large metro counties, relative excess
mortality was especially high in Northeastern counties in the early pandemic and in California
counties during the Winter peak. In nonmetro counties, marked increases in mortality were
observed during the second year of the pandemic, especially during the Delta peak. Figure 7
explores changes in excess mortality between the first and second year of the pandemic among
the most populous counties in each metro-nonmetro category. In the most populous counties in
large metro areas, substantial declines in excess mortality were observed between the first and
second year. For counties in nonmetro areas, the opposite pattern was observed. These areas
were generally spared in the first year, after which they experienced high mortality in the second

year. Figure 8 displays temporal trends for each county alongside state trend lines. This figure


https://doi.org/10.1101/2022.04.23.22274192
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.04.23.22274192; this version posted November 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

reveals substantial variation in temporal trends in relative excess mortality across states along

with substantial variation in relative excess mortality trends within states.

Discussion

This study produced monthly estimates of excess mortality for 3,127 counties in the U.S. from
March 2020 through February 2022, identifying 1,159,580 excess deaths during the first two
years of the pandemic. Between the first and second year of the pandemic, relative excess
mortality decreased in large metro areas and increased in nonmetro areas. The increases in
mortality in nonmetro areas occurred most markedly during the Delta wave of the pandemic. By
the end of February 2022, nonmetro and medium and small metro areas in the South had the
highest cumulative relative excess mortality, surpassing large metro areas in the Northeast and

other areas that were affected heavily in the early pandemic.

Prior studies of excess mortality have largely produced estimates for the year 2020,*°** leaving
patterns of excess mortality during 2021 and 2022 under-studied. The Center for Disease Control
and Prevention (CDC) has reported an estimate of approximately 1.1 million excess deaths in the

U.S. from March 2020 to February 2022, which is in line with our estimate.*

Generating estimates of excess mortality at the county-level has several potential benefits. First,
because counties are the administrative unit for death investigation, excess mortality estimates
have the potential to help identify counties where Covid-19 death rates differ from excess
mortality rates and who might benefit from additional training in cause-of-death certification.?

Such estimates may also be valuable for informing local public health workers, community
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leaders, and residents of the true impact of the pandemic, thus potentially increasing vaccination
and uptake of other protective measures.?’” These estimates may also be used to target federal and
state emergency resources, such as funeral assistance support from the Federal Emergency
Management Agency (FEMA). Finally, estimating excess mortality at the county-level also
enables analyses of social and structural factors affecting mortality associated with the pandemic,

including across geographic dimensions like metropolitan status.

One major finding of this study is that the number of excess deaths in the second year of the
pandemic was not substantially lower than the first year, which is noteworthy as vaccinations
were available for much of 2021 and 2022. Despite the strong efficacy of vaccines, gaps in
uptake likely contributed to high excess mortality in 2021 and 2022, which may persist into the
future if these vaccination gaps are not closed. This finding may also reflect federal and state
governments’ failure to invest in population-based strategies designed to protect the communities
at greatest risk for Covid-19 death, such as financial support for family and medical leave,
improved ventilation of schools and workplaces, and vaccine delivery programs organized in

coordination with community partners.

A second and related major finding of this study is that excess mortality moved substantially
from large metro areas in the first year of the pandemic to nonmetro areas during the second
year. One factor that likely contributed to this change is vaccination. In urban areas, 75% of
people aged 5 years and older were vaccinated as of January 2022 compared to only 59% of
people aged 5 years and older in rural areas.?*° This rural-urban difference in vaccination rates

has more than doubled since April 2021, suggesting that differences in vaccination rates across
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metro-nonmetro categories may be playing an increasingly important role in the rural mortality
disadvantage observed in the second year of the pandemic. A prior study found that increases in
Covid-19 mortality in nonmetro areas during the second year of the pandemic were largely
driven by increases in mortality among non-Hispanic white populations.’! In line with this, a
survey from 2021 found that white, older individuals who identified as Republican were the most
vaccine hesitant population in the U.S..*? Another factor that may be contributing to high rural
excess mortality is insufficient rural health infrastructure related to funding gaps and workforce
shortages.* This may have affected access to Covid-19 treatment, including oral antivirals and
monoclonal antibody treatments.** Another consideration is the high prevalence of comorbidities
among rural residents that likely increased risk for severe Covid-19 outcomes.* Each of these

factors may have contributed to the rural mortality disadvantage observed in this study.

The study had several limitations. First, the study relied on publicly available data, which were
subject to suppression of death counts fewer than 10 in a given county-month. We addressed this
limitation by pooling information across different geographical levels through the use of
hierarchical models and by taking advantage of the additional information provided by yearly
death counts. However, our estimates remain uncertain in areas with small populations and few
deaths. Second, our study examined all-cause mortality and did not explore differences in trends
using cause-specific death rates. Assessing geographic and temporal differences in excess death
rates by cause-of-death would allow for a deeper understanding of the mechanisms driving
trends in excess mortality overall and is an important direction for future work. Third, we were
not able to model age-specific excess mortality at the county-month level because of suppression

in CDC public data. However, the number of excess deaths across all ages combined is an


https://paperpile.com/c/RPVZ1a/f14P
https://paperpile.com/c/RPVZ1a/Ge63
https://paperpile.com/c/RPVZ1a/l6I0
https://paperpile.com/c/RPVZ1a/HnRG
https://paperpile.com/c/RPVZ1a/jc6o
https://doi.org/10.1101/2022.04.23.22274192
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.04.23.22274192; this version posted November 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

important metric of the impact of the pandemic in a given area even when its magnitude is
partially explained by age distribution. Finally, the primary objective of the present study was to
generate descriptive estimates of excess mortality for each county over the course of the
pandemic. As such, we did not model the determinants of spatial-temporal variation in excess
mortality. An important direction for future research will be to identify the key demographic,
social, structural, and policy factors that contributed to differences in county excess mortality
across time and space to gain insight into why some counties experienced much worse outcomes

than others.

In conclusion, this study provides the first county-level estimates of excess mortality by month in
the U.S. during the first two years of the pandemic (March 2020 to February 2022). It reveals
that the burden of excess mortality has moved substantially from large metro areas in the first
year to nonmetro areas in the second year, especially in the South. Future research should use the
estimates generated here to examine the social and structural factors associated with excess
mortality throughout the pandemic, counties where Covid-19 death rates differ significantly from

excess death rates, and mechanisms contributing to rural health disparities during the pandemic.

Methods

Data

Monthly death counts at the county level were extracted from the CDC WONDER online tool.
See Methods Supplement for further details about data extraction procedures. We extracted
all-cause death counts from the Multiple Cause of Death database using the provisional counts

for 2021 and 2022 and the final counts for 2015-2020. To convert the number of deaths into

10
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rates, we used publicly available yearly county-level population estimates from the Census
Bureau (2010-2020%*¢ and 2021°7). To compute monthly rates, we assumed linear growth in
population between each two time points. For the August 202 1-February 2022 period, for which
no population estimates are available, we projected county-level population by applying the
county-specific average monthly growth rate for the period January 2018 - July 2021 (the most

recent month for which Census Bureau estimates were available).

We harmonized county FIPS codes by reversing FIPS code changes implemented by the Census
Bureau (code changes, merging of counties, or separation of counties) until we could ensure that
FIPS code represented the same spatial units across all data sources.*® This harmonization
procedure led to a total of 3,127 units. For exploration of the results of our model, we grouped
counties into 4 metropolitan-nonmetropolitan categories (large central metro, large fringe metro,
medium or small metro, and nonmetro) based on the 2013 NCHS Rural-Urban Classification
Scheme for Counties.** For simplicity of comparison, in some analyses, we reduced the 4
metropolitan-nonmetropolitan categories into 2 or 3 groups. We also grouped counties into 4
Census Bureau Regions (Northeast, Midwest, South, and West) and 9 Census Bureau Divisions
(New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East
South Central, West South Central, Mountain, and Pacific). Finally, in some analyses, we
stratified the Census Regions and Divisions by the metropolitan-nonmetropolitan categories,
leading to more granular geographic units. See Methods Supplement for further details about

the geographic classifications used in this study.
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Within the two-year period, we identified four temporal peaks representing periods where
Covid-19 mortality in the U.S. was heightened. We identified peaks as periods where excess
death rates rose steeply and then steeply declined. Four peaks were identified: the initial wave
(March to August 2020), the winter wave (October 2020 to February 2021), the delta wave

(August to October 2021) and the omicron wave (November 2021 to February 2022).

Statistical Methods
To predict the monthly county-level number of deaths, we fit a Bayesian hierarchical model
starting from the framework described in a prior paper®” and adapting it to our specific

application. Let Y. be the number of deaths in spatial unit s at time t. Let Pts be the population
of spatial unit s at time t. We assume a Poisson distribution for the number of monthly deaths Y.

and model the risk T of dying using the following specification:

Y., = Pozsson(rts . Pts)

log (rts) = Boy + Monthm- Divisions + BTimeTimet + f(Timet) + bS

where Boy is the year specific intercept given by Boy = BO + €, with BO being the global

. -1 . .
intercept and sy~N ormal(0, T ) an unstructured random effect representing the deviation of
each year from the global intercept. The parameter T indicates the precision of €. We include

fixed effects for each month and Census division to capture seasonal effects. The linear predictor

12


https://paperpile.com/c/RPVZ1a/BLka
https://doi.org/10.1101/2022.04.23.22274192
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.04.23.22274192; this version posted November 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

also includes both a linear effect (captured by BTime ) and non-linear effect f(-) of time (in

months) since the start of the period (t = 1, 2, ... with time 1 corresponding to January 2015).
For the non-linear effect, we assume the following first-order autoregressive process (AR1)

model:

. . . -1
Tlmet | Tlmet_l, Tt~N0rmal(q)1TLmet_1, T, )

We model county-level intercepts using the modified Besag, York and Mollie spatial model

proposed by Riebler et al. (BYM2 model).** This model is the sum of a spatially unstructured

random effect, v ~N ormal (0, T;l) and spatially structured effects u. bS is defined as:

b= == (T8 +F )

* * . . .
where u and v_are standardized versions of U and v_to have variance equal to 1. The term

0 < ¢ < 1isamixing parameter which measures the proportion of the marginal variance

explained by the spatially structured effect.

We specify minimally informative prior distributions for the fixed effects BO, the month-division
specific intercepts Monthm . Divisions m = 1,2, .., 12, the linear time effect BTime, and the
c|)1 parameter for the AR1 process. For the hyperparameters of the BYM2 model, ¢ and T, We

adopt priors that tend to regularize inference while not providing too strong information, the

so-called penalized complexity (PC) priors introduced by Simpson et al.*' In particular, for the
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standard deviation o, =1 / T;l I select a prior so that Pr (O'b > 1) = 0. 01, implying that it is

unlikely to have a spatial relative risk higher than exp(2) based solely on spatial or temporal
variation. For ¢ we set Pr Pr (¢ < 0.5) = 0.5 reflecting our lack of knowledge about which

spatial component, the unstructured or structured, should dominate the spatial term bs. Finally,

. . y -1
we also adopt PC priors for all the remaining standard deviations of random effects 0,=1/T

b

o =1 /‘ts_l , and o, =1 /‘tt_l such that for each hyperparameter Pr (c > 1) = 0.01.

We fit the models using the Integrated Nested Laplace Approximation (INLA) method, through
the R-INLA software package.** We train the model on the years 2015-2019. We experimented
with a longer training window (2010-2019) but found no meaningful improvements in

performance with respect to our final choice.

Suppressed Observations

Death counts less than 10 were censored in the public data used for analysis. Between
2015-2019, 1,312 distinct counties had at least one month of censored data, totaling 42,734
county-months. To address suppression of death counts below 10, we estimated censored death
counts with a set of state-year specific censored Poisson models using monthly dummies to
capture seasonality, and imputed the suppressed observations with the estimated counts. We
exploited lower levels of censoring in year-level data to further adjust the total of imputed deaths
by year and state to sum to the difference between the total of uncensored month-level deaths
aggregated to the year level and the uncensored year total (obtained from a year-level data

extract).
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Model Validation

We performed a cross-validation procedure to evaluate the out-of-sample validity of the
predictions generated by our methods. Using data for the years 2015-2019, we fit the proposed
model multiple times on data from a random sample of states. After training the model on 2015
data and predicting 2016-2019 death counts, we then trained the model on 2015-2016 data and
predicted 2017-2019 death counts, and so on. We assessed the agreement between the predicted
and observed deaths in the year(s) excluded from the training data and average over the
cross-validation results using the following metrics: a) the correlation between predicted and
observed deaths and b) 90% coverage, defined as the probability that the observed deaths lie
within the 90% credible interval estimated from the model. Results from this cross-validation
procedure, stratified by metro category and Census region, are presented in Supplementary
Table 1. All strata achieved correlation > .89 and 90% coverage > .90, with the vast majority >
.95 and > .93, respectively. Sample output for the largest counties in each Census Division and

Metro Category are provided in Supplementary Table 2.

This study used de-identified publicly available data and was exempted from review by the
Boston University Medical Center Institutional Review Board. Programming code was
developed using R, version 4.1.0 (R Project for Statistical Computing) and Python, version

3.7.13 (Python Software Foundation).
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Table 1. Excess Mortality by U.S. Census Division and Metro-Nonmetro Areas, March 2020 - February 2022

Excess Deaths Relative Excess
Mar 2020 - Feb 2021 Mar 2021 - Feb 2022 Mar 2020 - Feb 2021 Mar 2021 - Feb 2022
Posterior Interval Posterior Interval Posterior Interval Posterior Interval
Median (90%) Median (90%) Median (90%) Median (90%)

East North Central
Large Metro 47,615 (25,819 - 66,511) 37,648 (7,050 -64,008) 0.209 (0.103-0.318) 0.165 (0.027 - 0.318)
Medium or Small Metro 23,092 (10,831 - 34,143) 23,248 (5,615 - 38,283) 0.177 (0.076 - 0.285) 0.178 (0.038-0.330)
Non Metro 17,182 (7474 - 25,568) 19,488 (6,037 - 31,203) 0.171 (0.068 - 0.277) 0.193 (0.053 - 0.350)
Total 87,754 (44,296 - 126,019) 80,454 (18,795 - 133,211) 0.191 (0.088 - 0.299) 0.175 (0.036 - 0.327)
East South Central
Large Metro 11,855 (6,462 - 16,539) 12,395 (4,718 - 18,980) 0.212 (0.105 - 0.322) 0.220 (0.074 - 0.381)
Medium or Small Metro 15,704 (8,465 -22,191) 17,256 (6,610 - 26,259) 0.204 (0.100 - 0.314) 0.222 (0.075-0.382)
Non Metro 18,450 (10,921 - 24,947) 20,188 (9,416 - 29,267) 0.237 (0.128 - 0.349) 0.258 (0.106 - 0.423)
Total 45,978 (26,123 - 63,552) 49,786 (20,812 - 74,441) 0.218 (0.113-0.328) 0.234 (0.086 - 0.397)
Middle Atlantic
Large Metro 73,092 (48,366 - 94,719) 21,354 (-13,410 - 51,515) 0.283 (0.171- 0.400) 0.083 (-0.046 - 0.226)
Medium or Small Metro 14,526 (5,905 - 21,796) 10,870 (-1,407 - 21,203) 0.163 (0.061- 0.267) 0.122 (-0.014 - 0.269)
Non Metro 5,404 (2,322-8,091) 7,044 (2,704 -10,745) 0.166 (0.065 - 0.270) 0.216 (0.073-0.372)
Total 92,990 (56,440 - 124,749) 39,390 (-11,962 - 83,717) 0.245 (0.135 - 0.358) 0.104 (-0.028 - 0.249)
Mountain
Large Metro 22,560 (14,456 - 29,674) 21,603 (9,756 - 31,528) 0.267 (0.156 - 0.384) 0.254 (0.101-0.419)
Medium or Small Metro 15,580 (8,494 - 21,839) 17,856 (7,726 - 26,423) 0.210 (0.104 - 0.321) 0.237 (0.091-0.397)
Non Metro 8,460 (4,968 -11,627) 11,242 (5,892 - 15,570) 0.225 (0.121- 0.337) 0.296 (0.136 - 0.462)
Total 46,534 (27,880 - 63,092) 50,5637 (23,686 - 73,493) 0.237 (0.130-0.351) 0.254 (0.105 - 0.418)
New England
Large Metro 10,970 (4,603 - 16,564) 3,110 (-6,025-10,822) 0.164 (0.063 - 0.270) 0.046 (-0.079 - 0.182)
Medium or Small Metro 7,280 (2,329 -11,565) 3,392 (-3,746 - 9,343) 0.141 (0.041-0.245) 0.065 (-0.063 - 0.203)
Non Metro 1,036 (-827-2,702) 2,488 (-263 - 4,748) 0.053 (-0.038 - 0.150) 0.125 (-0.012 - 0.270)
Total 19,206 (6,157 - 30,859) 8,981 (-10,084 - 24,924) 0.139 (0.041-0.244) 0.065 (-0.064 - 0.203)
Pacific
Large Metro 63,256 (39,598 - 83,818) 38,569 (4,950 - 66,796) 0.257 (0.147 - 0.372) 0.157 (0.018 - 0.308)
Medium or Small Metro 17,046 (6,465 - 26,432) 20,888 (5,751-33,902) 0.152 (0.053 - 0.257) 0.185 (0.045 - 0.340)
Non Metro 2,070 (-815-4,542) 6,324 (2,162 -9,741) 0.069 (-0.025 - 0.165) 0.209 (0.063 - 0.362)
Total 82,420 (45,325 - 114,878) 65,735 (13,048 - 110,745) 0.212 (0.107 - 0.323) 0.169 (0.030-0.323)
South Atlantic
Large Metro 54,882 (27,730 - 79,127) 56,126 (17,067 - 89,532) 0.191 (0.088 - 0.301) 0.194 (0.052 - 0.351)
Medium or Small Metro 44,112 (22,014 - 63,596) 50,446 (18,369 - 77,446) 0.190 (0.086 - 0.298) 0.214 (0.069 - 0.372)
Non Metro 22,575 (14,187 - 29,897) 26,516 (14,290 - 36,817) 0.254 (0.146 - 0.366) 0.298 (0.141- 0.468)
Total 121,399 (64,366 -172,700) 132,882 (50,027 - 203,515) 0.200 (0.097 - 0.310) 0.217 (0.072 - 0.375)
West North Central
Large Metro 11,422 (5,277 - 16,749) 9,900 (1,024 -17,369) 0.178 (0.075 - 0.284) 0.153 (0.014 - 0.304)
Medium or Small Metro 10,810 (4,780 - 15,986) 9,114 (620 -16,292) 0.174 (0.070 - 0.280) 0.146 (0.009 - 0.294)
Non Metro 12,152 (5,188 - 18,648) 11,184 (1,279 - 19,777) 0.163 (0.064 - 0.275) 0.150 (0.015-0.301)
Total 34,253 (15,484 - 51,120) 30,142 (2,973 - 53,340) 0.170 (0.070 - 0.278) 0.150 (0.013-0.299)
West South Central
Large Metro 36,692 (22,404 - 48,792) 33,477 (13,086 - 50,997) 0.247 (0.138 - 0.359) 0.223 (0.077 - 0.385)
Medium or Small Metro 32,270 (21,799 - 41,142) 28,219 (13,749 - 40,632) 0.302 (0.186 - 0.420) 0.263 (0.113 - 0.428)
Non Metro 20,482 (13,550 - 26,694) 19,558 (9,367 - 28,017) 0.279 (0.169 - 0.397) 0.266 (0.112-0.431)
Total 89,258 (57,879 - 116,753) 81,377 (36,448 - 119,338) 0.272 (0.161-0.388) 0.246 (0.097 - 0.408)
United States
Large Metro 332,306 (196,288 - 451,610) 233,418 (39,476 - 400,509) 0.231 (0.125 - 0.342) 0.162 (0.024 - 0.314)
Medium or Small Metro 180,034 ( 91,465 - 259,254) 181,067 (54,096 - 290,287) 0.192 (0.089 - 0.302) 0.192 (0.051- 0.348)
Non Metro 107,666 (57,214 - 152,520) 123,794 (51,623 - 186,085) 0.201 (0.098 - 0.311) 0.231 (0.085 - 0.392)
Total 620,872 (345,616 - 863,761) 538,708 (145,084 - 876,551) 0.213 (0.108 - 0.324) 0.184 (0.044 - 0.339)

Notes: Relative excess is the ratio of excess deaths to expected deaths, indicating the proportion increase in observed deaths compared to expected
deaths during a period.
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Figure 1. Relative Excess Mortality across U.S. Counties during 4 Mortality Peaks, March 2020 - February 2022

Initial (Mar - Aug 2020) Winter (Oct 2020 - Feb 2021)

<0% . (15%, 30%] . (50%, 90%)

Relative Excess (%)
(0%, 15%] . (30%, 50%)] . >90%

Notes: Each county in the map is colored according to its relative excess mortality (the ratio of excess deaths over expected deaths). Each of the four maps refers to one of the four peak periods of the
pandemic, months of particularly high excess mortality. Category cutoffs are the 10th, 30th, 60th, 80th and 95th percentiles rounded to the nearest 5% relative excess.
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Figure 2. Probability of Positive Excess Mortality across U.S. Counties during 4 Mortality Peaks, March 2020 - February 2022

Initial (Mar - Aug 2020) Winter (Oct 2020 - Feb 2021)

o - ’ 5
Probability of Positive Relative Excess (%) ; 100 o 750 p— — p— —

Notes: Each county in the map is colored according to the posterior probability that the observed death count is higher than the expected one. We highlight counties where the probability of positive
excess mortality is higher than 0.75. The four maps refer to the four peak periods of the pandemic, months of particularly high excess mortality.
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Figure 3. Temporal Trends in Relative Excess Mortality by Census Division and Metro-Nonmetro Status,
March 2020 - February 2022
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Notes: The large metro category includes large central metros and large fringe metros. All non large metro counties are classified as medium, small,
and non-metro. The shaded intervals behind the bars separate the different waves of the COVID-19 pandemic as follow: Initial Wave (Mar 2020 -
Aug 2020), Winter Peak (Oct 2020 - Feb 2021), Delta (Aug 2021 - Oct 2021), Omicron (Nov 2021 - Feb 2022). The height of each bar reflects
excess deaths as a proportion of expected deaths. The color of the bars reflects each Division-month position (percentile) in the overall distribution of

relative excess. Black, solid segments below the bars indicate units for which the posterior probability of positive excess mortality is above 95%.
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Figure 4. A Comparison of Relative Excess Mortality by Pandemic Year, March 2020 - February 2022
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Notes: Each point in the graph represents a county and reflects its relative excess mortality from March 2020 to February 2021 (horizontal axis) and
its relative excess mortality from March 2021 to February 2022 (vertical axis). We excluded counties with less than 30,000 residents to make the
relationship between the two variables clearer. The 45 degrees line separates the plot into two parts. Points above the line saw higher mortality in the
second year of the pandemic compared to the first one. Points falling below the line saw instead a decrease in mortality in the second year compared
to the first.
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Figure 5. Rolling Cumulative Relative Excess Mortality by Census Region and Metro Category, March 2020 -
February 2022
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Notes: Each line represents the rolling cumulative excess mortality for one combination metropolitan/nonmetropolitan area categories and one census
region. “Large Metro” includes large central and large fringe metropolitan areas. Each census region is represented by a different line color: light
brown for Midwest, green for Northeast, aquamarine for South, and light blue for West. Each metropolitan category is represented by a different line
type: solid for Large Metro, dashed for Medium or Small Metro, and dotted for Nonmetro. The y-axis for relative excess mortality above 30% is
compressed vertically. Rolling cumulative relative excess mortality is calculated as the sum of excess deaths divided by the sum of expected deaths
for all months from March, 2020, through a given month. For example, values for February, 2022, reflect total excess deaths for 24 months of the
pandemic, from March, 2020, through February, 2022. Decreasing cumulative relative excess mortality indicates months with relative excess
mortality below-average to date, for a given combination of census region and metro category. Increasing cumulative relative excess mortality
indicates months with relative excess mortality above-average to date, for a given combination of census region and metro category.
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Figure 6. Spatial-Temporal Trends in Relative Excess Mortality Among the Most Populous Counties by Metro-Nonmetro Category,

March 2020 - February 2022
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Notes: Each cell in the four heatmaps represents a county-month. In the shaded heatmaps colored from white to dark red, darker and redder colors indicate higher relative excess mortality. In the
white-and-gray heatmaps, gray cells indicate county-months with a greater than 90% probability of positive excess mortality. Counties in each pair of heatmaps are the 50 most populous within two
categories of metropolitan and nonmetropolitan areas. “Large Metro” includes large central and large fringe metropolitan areas. Within each pair of heatmaps, counties were sorted vertically based on
the occurrence of the highest peak of excess deaths. Counties at the tops of the heatmaps thus had their month of highest relative excess earlier in the pandemic. In contrast, those at the bottom had

their highest peak or relative excess later in the pandemic.
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Figure 7. Change in Relative Excess Mortality between the First and Second Pandemic Years In the Most Populous Counties by Metro-Nonmetro
Category, March 2020 - February 2022
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Notes: Each line in the four graphs represents a county. For each line, the vertical segment reflects relative excess in the first year of the pandemic (Mar 2020 - Feb 2021), while the dot indicates
relative excess in the second year of the pandemic (Mar 2021 - Feb 2022). The color of the line distinguishes between counties that saw a decline in relative excess (blue lines), and those that saw an

increase (orange lines). The 30 most populous counties were selected for each metro category.
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Figure 8. Temporal Trends in Relative Excess Mortality across Counties in Each State, March 2020 to February 2022
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Counties. https://muObrt-zhenwei-zhou.shinyapps.io/county_ex_app/
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Methods Supplement

Data Extraction from CDC WONDER

The CDC WONDER online database query system found at https://wonder.cdc.gov/ was used to
extract all mortality data used in this project. To obtain death counts for all-causes mortality, we
used the Multiple Cause of Death (Final) database from 1999-2020. We obtained two main sets
of extracts, one for data at the county-month level and one for data at the county-year level (to
investigate suppression). In order to minimize suppression, additional extracts were obtained at
the wave level and the pandemic year level (pooling different months) for all figures and tables
using these longer time periods. For all cause mortality extracts, the data request was submitted

for the time period of interest using the request form with the following settings:

Tab 1. Organize table layout: Group results by County and by: Month for monthly data,

Year for yearly data, and no additional group for wave and pandemic year data

Tab 4. Select time period of death: specific period

Tab 6. Select underlying cause of death: *All* (All Causes of Death)

Tab 8. Other options: checking Export Results. The request generates a text file.

To extract data for the time periods of March 2020 to February 2022, we used the Multiple Cause
of Death (Provisional) database from 2018 — Last Month database. The data requests were

submitted for each time period of interest using the request form with the following settings:

- Tab 1. Organize table layout: Group results by County and by: Month for monthly data,
Year for yearly data, and no additional group for wave and pandemic year data
- Tab 4. Select time period of death: March 2020 to February 2022

- Tab 6. Select underlying cause of death: *All* (All Causes of Death)
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- Tab 8. Other options: checking Export Results. The request generates a text file.

Geographic Classifications

DA/ER HS Metropolitan-Nonmetropolitan Categori

Large central metros: counties in metropolitan statistical areas with a population of
more than 1 million.

Large fringe metros: counties that surrounded the large central metros

Small or medium metros: counties in metropolitan statistical areas with a population
between 50,000 and 999,999.

Nonmetropolitan areas: all other counties.

US Census Divisions:

- New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island,
Vermont

- Middle Atlantic: New Jersey, New York, Pennsylvania

- East North Central: Indiana, Illinois, Michigan, Ohio, Wisconsin

- West North Central: lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota,
South Dakota

- South Atlantic: Delaware, District of Columbia, Florida, Georgia, Maryland, North
Carolina, South Carolina, Virginia, West Virginia

- East South Central: Alabama, Kentucky, Mississippi, Tennessee

- West South Central: Arkansas, Louisiana, Oklahoma, Texas

- Mountain: Arizona, Colorado, Idaho, New Mexico, Montana, Utah, Nevada, Wyoming

- Pacific: Alaska, California, Hawaii, Oregon, and Washington

US Census Regions:

- Midwest: Indiana, Illinois, Michigan, Ohio, Wisconsin, lowa, Kansas, Minnesota,
Missouri, Nebraska, North Dakota, South Dakota

- Northeast: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont,
New Jersey, New York, Pennsylvania

- South: Delaware, District of Columbia, Florida, Georgia, Maryland, North Carolina,
South Carolina, Virginia, West Virginia, Alabama, Kentucky, Mississippi, Tennessee,
Arkansas, Louisiana, Oklahoma, Texas

- West: Arizona, Colorado, Idaho, New Mexico, Montana, Utah, Nevada, Wyoming,
Alaska, California, Hawaii, Oregon, and Washington
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Model Definition in INLA

We report here the model definition in INLA. This should help the reader understand the
specifics of the model and interpret Supplementary Figures 2, 3, and 4, and Supplementary Table
2, reporting (graphically or in table format) the posterior distribution of the model’s parameters
and hyperparameters with the exception of the random effects for the counties.

# priors

hyper.bym <- list(thetal = list("PCprior’, param=c(1, 0.01)),
theta? = list("PCprior’, param=c(0.5, 0.5)))

hyper.iid <- list(theta = list(prior="pc.prec"”, param=c(1, 0.01)))

hyper.arl <- list(thetal = list(prior="pc.prec", param=c(1, 0.01)))

# model formula
formula <- deaths ~ 1 + offset(log(pop)) + timelD +
as.factor(month)*as.factor(divisionID) +
S(FIPSID, model="bym2', hyper=hyper.bym,
graph=inla.graph, scale.model=T) +
f(vearID, model="iid' hyper=hyper.iid) +
f(timelD2, model="ar',order=p,hyper=hyper.arl)
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Supplementary Table 1 Cross-validation results for the model for monthly death counts: correlation between
predicted and observed number of deaths, and 90% coverage probability across the different metro/non-metro

categories and Census Regions.

Midwest Northeast South West
Metro Status Correlation Coverage Correlation Coverage Correlation Coverage Correlation Coverage
Large Central Metro 0.816 0.941 0.761 0.938 0.800 0.935 0.816 0.912
Large Fringe Metro 0.833 0.954 0.815 0.943 0.827 0.962 0.819 0.954
Medium or Small Metro 0.813 0.965 0.803 0.957 0.822 0.959 0.818 0.954
Non Metro 0.793 0.972 0.773 0.960 0.788 0.964 0.813 0.969
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Supplementary Table 2 Summary of the Posterior Distribution for the Model’s Hyperparameters and for the

Linear Time Trend

Percentile

Mean S.D. 2.5th 50th 97.5th
Precision for FIPSID 11.1780 0.4381 10.3794 11.1546 12.1027
Phi for FIPSID 0.8749 0.0151 0.8429 0.8757 0.9023
Precision for yearID 1,939.6508 1,153.7022 681.5905 1,626.5955 4,993.6974
Precision for timelD2  500.4373 178.4131 272.2303 459.8157 953.2002
Rho for timelD2 0.9320 0.0132  0.9043 0.9326 0.9557

timelD 0.0004 0.0013 -0.0021 0.0004 0.0029


https://doi.org/10.1101/2022.04.23.22274192
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.04.23.22274192; this version posted November 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Supplementary Figure 1. Sample Model Output for the Largest Counties in each Census Division and Metro
Category

Large Central Metro Large Fringe Metro Medium or Small Metro Non Metro
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Supplementary Figure 2. Month seasonal effects by Census Division
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Supplementary Figure 3. Non-Linear Effect of Time (AR1 Component) with 95% Posterior Interval
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Supplementary Figure 4 Year Random Effects with 95% Posterior Interval
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