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Invoking the manifold assumption in machine learning requires knowl-
edge of the manifold’s geometry and dimension, and theory dictates how
many samples are required. However, in most applications, the data are
limited, sampling may not be uniform, and the manifold’s properties are
unknown; this implies that neighborhoods must adapt to the local struc-
ture. We introduce an algorithm for inferring adaptive neighborhoods
for data given by a similarity kernel. Starting with a locally conserva-
tive neighborhood (Gabriel) graph, we sparsify it iteratively according
to a weighted counterpart. In each step, a linear program yields minimal
neighborhoods globally, and a volumetric statistic reveals neighbor out-
liers likely to violate manifold geometry. We apply our adaptive neigh-
borhoods to nonlinear dimensionality reduction, geodesic computation,
and dimension estimation. A comparison against standard algorithms us-
ing, for example, k-nearest neighbors, demonstrates the usefulness of our
approach.

1 Introduction

A starting point for many algorithms in data science—from clustering to
manifold inference—is knowing the neighbor relationships among data
points. Clustering, for example, often begins with a “k-nearest neighbor
graph,” while manifold inference involves a kernel, that is, a measure of
similarity between data points. In the first case, the neighborhoods are
local and discrete; in the second, they are global and continuous, with
concentration of influence controlled by the kernel bandwidth, or scale.
Such neighbor relationships are fundamental to defining a topology. More-
over, dimensionality may be estimated based on the rate of change in the
density of points within a ball, that is, within a neighborhood, with re-
spect to its radius. It is helpful when the number of data points is large, a
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454 L. Dyballa and S. Zucker

requirement that grows with dimensionality; asymptotic analysis is often
favored by theoreticians.

In practice, we rarely have enough data points to satisfy asymptotic
bounds. Nor are we given the precise number of neighbors, k, that each
point should have. We often make the manifold assumption—that the data
points are drawn randomly from a (or near a) manifold—but rarely try to
assess the basic properties of the manifold assumed by theorists: its dimen-
sionality, sampling density, curvature, medial axis, or reach (defined in the
next section). All of these could influence k.

Instead, we rely on different visualization algorithms, such as Isomap,
diffusion maps, t-SNE, and many others, to find a pleasing organization of
the data. This is dangerous, of course, because these algorithms have free
parameters. In particular, and central to this article, most require specifying
the number of neighbors, k (or its equivalent): changing k or other param-
eters changes the result. Unless one knows the answer, one is caught in a
conundrum: imposing a prior belief amounts to “fixing” the solution (ex-
amples of changing k are shown later in the article).

This gap between theory and practice shows up from the start. If the
manifold is not pure (i.e., if it consists of a union of manifolds of possibly
different dimensionality), then there may be no global k that suffices; fur-
thermore, the manifold may have a boundary. Even if it is pure and with-
out boundary, the temptation to choose k large is common. But this can
incorrectly fill in the open space around curved manifolds (“folding” or
“short-circuiting”), linking distant points that should not be neighbors. On
the other hand, choosing k small can induce holes and break connectivity.
Such phenomena are illustrated in Figure 1. As we shall demonstrate, sam-
pling issues and manifold geometry interact in causing these. Moreover, in
real data sets the appropriate number of neighbors may differ from point
to point. This final issue is a principal motivation for this article.

We present an algorithm to estimate an effective neighborhood—the im-
mediate neighbors, or scale of a similarity kernel—around each point. We
seek to identify those nearest neighbors that are “correct” in the sense that
they support dimensionality and volume estimates, andmanifold inference
in general, without covering holes or filling in concavities. It is inspired by
the philosophical position that views discrete and continuous mathematics
as “two sides of the same,” as argued by Lovász (2010), and iterates between
them.

Our algorithm builds from a conservative initial estimate of neighbors
(based on a discrete construct, the Gabriel graph) toward a refined one,
based on continuous estimates from a multiscale gaussian kernel. The dis-
crete and continuous volume estimates must be consistent, however, and
this provides the glue for our iteration. Since not all of the initial puta-
tive neighbors may actually be closest neighbors, neighbors that violate
the volume relationship are pruned, and the process repeats until the two
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Figure 1: Inferring the geometry of manifolds requires neighborhoods around
each given data point. Setting the correct scale for these neighborhoods, shown
as balls, is fundamental. (A) Example of a one-dimensional manifold, M.
(B) Collection of points sampled from an unknown distribution over M. Their
pairwise distances are the only available data; properties of M are not given
a priori. (C) Using a global kernel scale: if it is too small, the manifold will ap-
pear disconnected, artificially producing clusters. Notice how some balls do not
touch. (D) If it is too big, the manifold may collapse, giving rise to incorrect ge-
ometry/topology. Notice how the balls overlap (covering dimension). (E) The
use of local scales based on a global number of nearest neighbors (in this exam-
ple, k = 2) is still susceptible to the problems above. (F) Our approach computes
locally adaptive neighborhood sizes, resulting in scales that conform to the local
geometry and sampling.

perspectives agree. Our algorithm thus can be considered an iterative graph
sparsification.

Technically, it involves two different graphs: a discrete one, which links
only putative nearest neighbors (pairs of points defining the diameter of
an otherwise empty ball), and a weighted one, structured by a multiscale
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456 L. Dyballa and S. Zucker

Figure 2: Sampling a Swiss cheese. The available data constrain manifold com-
plexity. Viewed from left to right, as the number of sample points increases,
the apparent manifold goes from a plane to a plane with holes. The central
panel shows the sampling density for which actual holes in the manifold be-
come roughly distinguishable from holes due to sampling. The results of our
algorithm on these examples are shown in Figure 23.

gaussian kernel, whose individual scales must cover the neighborhood
given in the discrete graph. Keeping the two graphs consistent is another
way to think about our iteration. Each resulting graph can be applied to
many different algorithms for data visualization, dimensionality reduction,
and manifold inference.

Our approach to the problem is in the spirit of exploratory data anal-
ysis; it works with the available data. This provides another view regard-
ing the interaction between sampling and geometry: one can only do as
well as the available data allow (see Figure 2). The situation is analogous
to that in learning theory, where there is a trade-off between the accuracy
of the learner and the coarseness of the hypothesis class over which she is
learning (Alon, Ben-David, Cesa-Bianchi, &Haussler, 1997). Here, the space
of manifolds over which inferences are made is dictated by the available
samples.

An overview of the article is as follows. In the next section, we review
the background in some detail, covering both the zoo of similarity kernels
that exist, plus several relevant notions, such as the reach of a manifold,
that are well studied in the theory literature. The discussion is organized to
emphasize the centrality of scale, or neighborhood, in all of the references.
In section 3, we provide an overview of our algorithm. It includes a brief
sketch of both graphs weworkwith, plus the connection back tomanifolds.
Pseudocode for the algorithm is given in algorithm 1, which also includes
pointers to where each of its steps is developed.

We then expand on the algorithm. In section 3.3, we study the Gabriel
graph and putative neighbors. Two features are emphasized: scale-free
neighborhoods and the relationship between node degree and local
dimensionality. A structural criterion is revealed, showing how putative
edges between neighbors fill “volumes” that block others from being
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neighbors. This graph serves as an initialization. It is then refined itera-
tively in several steps. First, continuous kernel scales are computed based
on the discrete, putative neighbors. A linear program relaxation bridges lo-
cal scales to a global cover, in which each node’s weighted degree is com-
parable to the number of its neighbors. In other words, each neighborhood
radius should not cover too many outside points. If it does, then it indicates
that the neighborhood itself should be refined. That is, some putative scales
are likely wrong, in the sense that their neighborhood contains an extreme
outlier. This leads directly to a volumetric statistic (see section 3.5.1), and
to a pruning technique for sparsifying edges from the discrete graph. The
process iterates until there are no more outliers.

In section 4, we evaluate the results for estimating manifold low-
dimensional embeddings, geodesics, and local intrinsic dimensionality.
Comparisons against popular algorithms, such as UMAP and t-SNE, illus-
trate the power of the approach. In the end, we demonstrate that it is pos-
sible to infer data-driven local neighborhoods that remain consistent with
geometric and topological properties of manifolds.

Code for our algorithm will be available at github.com/dyballa/IAN.

2 Background

Manifold learning is a vast area of machine learning where high-
dimensional data are analyzed based on the assumption that they were
sampled from a low-dimensional manifold, M (Fefferman, Mitter, &
Narayanan, 2016), in which case geodesic distances over M provide a bet-
ter description of the relationships between data points than Euclidean dis-
tances in ambient space (Belkin & Niyogi, 2004). The manifold assumption
finds applications in nonlinear dimensionality reduction (van der Maaten,
Postma, & van den Herik, 2009), denoising (Hein &Maier, 2006), interpola-
tion (Bregler & Omohundro, 1994), dimensionality estimation (Camastra &
Staiano, 2016), computational geometry (Crane, Weischedel, & Wardetzky,
2013), and more.
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458 L. Dyballa and S. Zucker

Since M locally resembles Euclidean space, it is standard to define a
similarity kernel to define (possibly weighted) neighborhoods around each
point in terms of other points. This naturally leads to a graph having data
points as nodes and similarity values as edge weights. Then, by comput-
ing the graph Laplacian, one can apply a variety of methods from spectral
graph theory (see, e.g., Spielman, 2012). Formal analysis involves the limit
as the number of data points grows large; the practical success of suchmeth-
ods depends on how well graph neighborhoods capture the topology and
geometry ofM.

We here review the many approaches to specifying a similarity kernel
or a local neighborhood. Let M be a d-dimensional manifold in ambient
space R

n. When only pairwise distances are known, an intuitive approach
is to define the neighbors of a point, xi, as those within a certain distance
threshold, or, equivalently, inside an n-dimensional ball around xi. Akernel
function assumes the role of this ball by assigning values to neighboring
points as a function (discrete or continuous) of how close they are to xi. The
question becomes, What kernel size should be used for each point?

2.1 Similarity Kernels. Consider a set of points X ∈ R
n. Typically, a

symmetric, positive semidefinite similarity kernel (Schölkopf & Smola,
2002) is chosen to determine weighted connections between data points
based on the ambient Euclidean distances between them. For each pair of
data points xi, x j ∈ R

n, it returns a number between 0 and 1, which deter-
mines how close, or strongly connected, they are. This effectively defines a
neighborhood around each point.

2.1.1 Discrete Kernels. Possibly the simplest choice for a kernel is the
ε-neighborhood (Belkin & Niyogi, 2003):

Ki j(ε) =
{
1, if ‖xi − x j‖ < ε

0, otherwise,
(2.1)

where ‖ · ‖ is typically the Euclidean norm in R
n. This results in discrete-

like neighborhoods whose sizes may be quite sensitive to the choice of ε, so
implicit is the assumption that sampling is approximately uniform.

Instead of defining a neighborhood radius, a more common approach
is to specify the number of neighboring points, k. Letting Nk(xi) be the set
containing the k points closest to xi in R

n (not including xi1), a k-nearest
neighbors kernel can be defined as

1
Throughout, when referring to a point’s set of k-nearest neighbors, we shall not in-

clude the point itself (unless otherwise stated) and further assume that no two points are
identical.
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Ki j(k) =
{
1, if x j ∈ Nk(xi)

0, otherwise,
(2.2)

which is commonly symmetrized by making Ki j(k) = 1 if x j ∈ Nk(xi) ∨ xi ∈
Nk(x j ).

2.1.2 Continuous Kernels: Global Scale. In order to have the kernel values
decrease with increasing distance between data points, a gaussian kernel is
commonly used:

Ki j(σ ) = exp

(
−∥∥xi − x j

∥∥2
σ 2

)
. (2.3)

This gives a continuous similarity scale from 1 (when xi and x j are identical)
down to some predetermined cutoff below which the kernel is considered
to be zero (meaning no connection in the data graph). Such a threshold is
typically chosen to be a very small value, often at the limit of numerical
precision, and is often required to ensure compactness of the kernel.

One would like the parameter σ to be just large enough to be able to
capture local manifold patches. There are several heuristics for finding such
a scale: the median of all pairwise distances in X (or another percentile),
the mean (or median) of the distances to each point’s kth nearest neighbor
(Lafon, 2004), or a scalarmultiple of themaximal distance from a point to its
nearest neighbor in the data (Keller, Coifman, Lafon, & Zucker, 2009). Also
common is to choose a scale so that each data point is sufficiently connected
to at least one other point (Lafon, Keller, & Coifman, 2006).

A different approach is based on inspection of the curve given by the
sum of pairwise kernel values. When the double-sum

∑
i, j Ki j(σ ) is plotted

against σ using a log-log scale, the slope

d log
∑

i, j Ki j(σ )

d log σ
(2.4)

is proportional to the intrinsic dimensionality of the data (Coifman, Shkol-
nisky, Sigworth, & Singer, 2008). Aglobal scale is then chosen fromwithin a
linear region of such curve. Haghverdi, Buettner, and Theis (2015) proposes
a similar procedure that considers instead the curve given by the weighted
average of the degrees Zi(σ ) = ∑

j Ki j of each data point xi, after taking the
logarithm:

〈
logZi(σ )

〉 = ∑
i logZi(σ ) · (1/Zi(σ ))∑

i(1/Zi(σ ))
. (2.5)
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460 L. Dyballa and S. Zucker

The use of the inverse of each point’s degree as weights is intended to com-
pensate for density heterogeneities. The choice of σ is then made precise by
choosing the argmax of the slope of

〈
logZi(σ )

〉
plotted against log σ , which

in many cases should occur near the center of the linear region of equa-
tion 2.4. One complication occurring in both approaches, however, is that
more than one linear section (and, equivalently, more than one local max-
imum of the slope) may exist, requiring that additional criteria be defined
to make the choice of σ truly automated.

2.1.3 Continuous Kernels: Multiscale. Amore localized strategy is to use a
multiscale kernel, where each point has an individual scale, or bandwidth.
Instead of a single, global scale, there are now N parameters. The advan-
tage is that if the scale selection is adequate, the kernel may capture the
characteristics of more complex data sets and manifolds that have non-
uniform sampling and geometry.

In the self-tuningmethod (Zelnik-Manor& Perona, 2004), local scales are
used in a gaussian kernel by replacing the global scale σ , from equation 2.3,
by √

σiσ j, where σi and σ j are the scales assigned to xi and x j, respectively.
This results in the symmetric kernel:

Ki j(σi, σ j ) = exp

(
−∥∥xi − x j

∥∥2
σiσ j

)
. (2.6)

Each σi is set as the distance to the kth nearest neighbor of xi; authors rec-
ommend k = 7 (Zelnik-Manor & Perona, 2004; Mishne & Cohen, 2012).

In Berry, Giannakis, and Harlim (2015) and Berry and Harlim (2016), a
variable bandwidth kernel is proposed that combines the use of local band-
widths with a global scale parameter, ε. The kernel then takes the form

Kε

(
xi, x j

) = exp

(
−∥∥xi − x j

∥∥2
4ε(qε (xi)qε (x j ))β

)
, (2.7)

where qε is a local density function and β an additional (nonpositive) pa-
rameter. An initial estimate for the local bandwidth around each point xi is
set as the square root of the mean squared distance to the k-nearest neigh-
bors of xi, with k= 8. Finally, ε is automatically tuned as the argmax of equa-
tion 2.4; however, the authors do not consider cases in whichmore than one
local maximum may exist.

Other methods also adopt individual bandwidth parameters but use
asymmetric kernels that are symmetrized a posteriori. In the t-SNE algo-
rithm (van der Maaten & Hinton, 2008), the single-scale gaussian kernel
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Ki j(σi) = exp

(
−∥∥xi − x j

∥∥2
2σ 2

i

)
(2.8)

gives a measure of affinity, or similarity, between pairs of points. It is then
normalized as

pj|i(σi) = Ki j(σi)∑
k �=i Kik(σi)

(2.9)

to yield transition probabilities, and finally symmetrized as

pi j(σi, σ j ) = 1
2N

(
p j|i(σi) + pi| j(σ j )

)
. (2.10)

Each σi is fit to xi so that the distribution of p j|i,∀ j attains entropy Hi such
that its perplexity, 2Hi (a real-valued number representing the “effective
number of neighbors”), approximates some prespecified value, k. The au-
thors recommend a value for k between 5 and 50.

In the UMAP algorithm (McInnes, Healy, Saul, & Grossberger, 2018), an
exponential kernel is used instead of the typical gaussian. Using a prespec-
ified neighborhood size, k, let Nk(i) be the set of k-nearest neighbors of xi.
With ρi as the distance to the nearest neighbor of xi, the kernel has the form

Ki j(σi) = exp

(
−max{0, ∥∥xi − x j

∥∥ − ρi}
σi

)
, j ∈ Nk(i) (2.11)

and is symmetrized as

Ui j(σi, σ j ) = Ki j(σi) + Kji(σ j ) − Ki j(σi)Kji(σ j ). (2.12)

It can be seen as a hybrid between continuous and discrete, sinceUil is set
to zero for any point xl not in Nk(i). Each σi is fit to xi so that

∑
j Ki j(σi)

approximates log2 k (loosely analogous to the perplexity approach from
t-SNE).

2.1.4 Adaptive Neighborhood Size Methods. Other methods attempt to au-
tomatically determine optimal neighborhoods. Most of these are based on
determining an optimal k for a k-nearest neighbors (k-NN) graph; this can
be done either globally or by selecting a local neighborhood size ki around
each point xi, known as adaptive neighborhood selection (van der Maaten
et al., 2009).

Some approaches optimize a global k based on its performance in a spe-
cific embedding algorithm. For instance, themethod fromSamko,Marshall,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/3/453/2071882/neco_a_01566.pdf by Yale U
niversity user on 12 Septem

ber 2023
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and Rosin (2006) is tailored to Isomap (Tenenbaum, de Silva, & Langford,
2000), while others (Kouropteva, Okun, & Pietikäinen, 2002; Álvarez-Meza,
Valencia-Aguirre, Daza-Santacoloma, & Castellanos-Domínguez, 2011) ap-
ply to LLE (Roweis & Saul, 2000). In Álvarez-Meza et al. (2011), a local
method is additionally proposed that produces a nearest-neighbor graph
with variable ki, under the assumption that the manifold is connected.

Others are based on first estimating the local tangent space around each
point, then setting ki to include as neighbors those points that are close to
it. Such methods (Wang, Zhang, & Zha, 2004; Mekuz & Tsotsos, 2006) typ-
ically work with positional information for the tangent space computation
(usually via SVD).

Also available are methods that are not based on the nearest-neighbors
concept. In computational geometry, the idea of refining an initial estimate
of connectivity from a simplicial mesh has been used before, usually spe-
cific to the case when d = 2 and n = 3, surfaces in 3-D space (Amenta,
Bern, & Kamvysselis, 1998; Amenta & Bern, 1999; Bernardini, Mittleman,
Rushmeier, Silva, & Taubin, 1999; Belkin, Sun, & Wang, 2008). Other ap-
proaches extend this idea to arbitrary dimension (Belkin, Sun, & Wang,
2009; Boissonnat, Guibas, & Oudot, 2009) but still require knowledge of d.
Most of the algorithms in this class use point clouds as input, so they can
exploit positional information to decide on the appropriate neighborhood/
connectivity.

Among the myriad ways of estimating neighborhoods, there is little
agreement on which is most successful (see Lindenbaum, Salhov, Yeredor,
& Averbuch, 2020, for a review). Before proceeding to our algorithm, then,
it is helpful to first understand what makes this such a hard problem. How
can it fail, and what requirements must it fulfill in order to properly cap-
ture the topology and geometry of M? This brings us to the geometry of
manifolds.

2.2 Reach and the Geometry of Manifolds. The neighborhoods im-
plied by a kernel should agree with M, or at least approximate a tubular
neighborhood of it. As exemplified in Figure 1, if neighborhoods are too
small, the implied manifold may become disconnected (i.e., falsely divided
into disjoint submanifolds or clusters; Samko et al., 2006); if too large, they
may cause M to self-intersect, collapsing bottlenecks or curved regions, or
cause “smoothing” or “folding.” Such shortcomings are well known in the
manifold inference literature; while the former case typically occurs due to
nonuniform sampling, the latter is mainly caused by an incompatibility be-
tween the sampling rate and the reach ofM (Federer, 1959; Thäle, 2008).We
now expand on these points.

Letting the medial axis of M be the set of points in R
n with at least two

closest points in M, the reach, τ , can be defined as the minimum distance
fromM to its medial axis. Locally, it is constrained by theminimal radius of
curvature (i.e., maximal curvature of a geodesic through M); globally, it is
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Figure 3: The reach, τ , is a measure of the shape of a manifold. (A) A 1-
dimensional manifold M with a bottleneck; the reach (double arrow) is the
smallest distance between M and its medial axis (dashed curves). (B) A highly
curved manifold; now the reach indicates the high curvature region.

constrained by the presence of bottlenecks (see Figure 3). The reach encodes
essential geometric properties ofM, and has been widely used in the man-
ifold learning community (Amenta & Bern, 1999; Belkin et al., 2008; Niyogi,
Smale, &Weinberger, 2008, 2011; Boissonnat et al., 2009; Genovese, Perone-
Pacifico, Verdinelli, & Wasserman, 2012; Little, Maggioni, & Rosasco, 2017;
Fefferman, Ivanov, Kurylev, Lassas, &Narayanan, 2018; Aamari et al., 2019;
Boissonnat, Lieutier, & Wintraecken, 2019). It approximates the size of the
largest ball in ambient Rn such that points inM can be seen as lying in Eu-
clidean spaceRd (Block, Jia, Polyanskiy, & Rakhlin, 2021). Arelated concept,
the local feature size of a point xi ∈ M, is the smallest distance between xi
and themedial axis ofM, so τ can be seen as the infimumof the local feature
size anywhere onM (Belkin et al., 2009).

When τ is positive, it provides a measure of the “local distortion” (Block
et al., 2021); the larger it is, the easier inference becomes. Some authors (e.g.,
Narayanan & Mitter, 2010; Fefferman et al., 2016) assume large reach in
order to test the manifold hypothesis and find bounds on the required sam-
ple size. In Block et al. (2021), the reach is used when establishing bounds
on the quality of an intrinsic dimensionality estimation based on k-nearest
neighbors.

Obtaining a good representation of M therefore requires consideration
of its reach. In terms of our problem of finding an appropriate kernel, this
effectively means that no neighborhood radius should cross themedial axis
of M.

Sampling is a further complication and essentially what makes this a
hard problem: when it is nonuniform and sparse (common in real-life data
sets), it is not always clear whether the space between points constitutes an
undersampled piece of M, a hole, or a gap between disjoint submanifolds
(cf. Figure 2). The latter two conditions, of course, relate to reach.Narayanan
and Mitter (2010) prove that the number of required samples depends
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464 L. Dyballa and S. Zucker

polynomially on curvature, exponentially on intrinsic dimension, and lin-
early on intrinsic volume. Aspects of our algorithm address each of these
during the iteration process.

In all such cases, choosing a globally fixed radius is likely to be prob-
lematic. While defining neighborhood size based on a fixed number k of
neighbors can be helpful to deal with nonuniform density (since the neigh-
borhood radius adapts to the local pairwise distances), it is bound to violate
the reach if k is too large. It will also be a problem when the intrinsic di-
mensionality is not constant throughout M, as higher dimensions require
exponentially more neighbors.

Mekuz and Tsotsos (2006) point out the lack of a principled way for
setting this parameter, which in practice is often tuned empirically based
on prior knowledge of the desired output. As put by Wang et al. (2004),
the effectiveness of manifold learning algorithms depends on how nearby
neighborhoods overlap and on the interplay between the curvature of the
manifold and sampling density.

In terms relevant to this article, the neighborhood radius should be
smaller than the local feature size but large enough to account for sampling
variability and local dimensionality. We propose an iterative approach to
developing a kernel, so that it can adapt appropriately to the neighborhood
characteristics around each point.

3 The Algorithm

Wehere overview our algorithm for finding the neighborhood scale around
each point in a manner that makes it globally consistent as a covering of the
data points. As is common in manifold learning, we start with a pairwise
distance matrix, not the points themselves. The first step is to build a graph
in which each datum is connected to an appropriate neighborhood contain-
ing other data points. This data graph defines a topology; we refer to it as
the neighborhood graph.

As we reviewed above, in the discrete case, one might choose k-nearest
neighbors, while in the continuous kernel case, there is a bandwidth param-
eter that effectively defines a “ball of influence” around each point. Scale is
the radius of such a ball—a level set of the kernel function that essentially
contains those neighbors whose weights are nontrivial. Our goal, then, is to
find those scales—or neighborhoods—that support nonlinear dimensional-
ity reduction, geodesic estimation, and, in general, manifold inference from
the given pairwise distances. We do not have sampling guarantees so will
develop a statistic to check whether reach and curvature constraints might
be violated.

3.1 Subtleties of Scale. Since scale may not be constant across the data
set, we argue that it should be the first property to be inferred from the
data. We start by imposing the manifold assumption, but from an empirical
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Figure 4: The manifold subtleties of complex data sets. (A) Sampled data from
a nonlinear system that includes two regimes. (B) It may be the case that the
data in each regime define separate manifolds, shown by color. After sampling
their union, however, the evidence for the separation is absent. (C) Or the data
may be drawn from a single, connected manifold whose geometric properties
change rapidly. In both cases, the intrinsic dimensionality appears different in
the spike versus the ball. Colored meshes indicate underlying manifolds.

perspective. Unlike most theoretical studies, we do not assume the mani-
fold is pure (i.e., that it has constant dimension). In a simple case, the data
may be drawn from a union of different manifolds whose dimensions are
not known a priori; such data sets have been considered infrequently, al-
though exceptions exist (e.g., Haro, Randall, & Sapiro, 2008; Little et al.,
2017).

Second, we do not know the sampling rate, or density. Rather, we build
it up, conservatively, with putative nearest neighbors to each data point, by
imposing a necessary (but not sufficient) condition. These putative neigh-
bors will be refined, as the algorithm iterates, to achieve sufficiency. While
the manifold assumption does imply the existence of local neighborhoods,
their sizemay vary over the data set; we require that the sampling be nearly
constant over each of them. In effect, the density of points must be deter-
mined locally while respecting the global manifold geometry.

We illustrate the complexity of this situation in Figure 4. Shown is a data
sphere with an apparent spike emerging from it. On one hand, such com-
plex data sets could derive from two unrelated systems, which only appear
to connect through their embeddings. On the other hand, the data could
derive from a nonlinear system that includes two regimes, one responsi-
ble for the spherical data and the other for the spike. To handle the first
situation, we must allow data sets to consist of unions of manifolds. This
suggests the interpretation in Figure 4B, where the separation is obscured
by sampling. Since manifolds with boundary and high curvature are also
possible, the situation in Figure 4C arises. There is an apparent change in
intrinsic dimension due to the small reach in the spike and the large bound-
ary curvature. Because the (3D) spike is so narrow, sampling suggests it is
1-dimensional, while the bulk of the points derive from a 3D manifold.

We submit that such situations occur in real data sets and, since the
data are fixed, we cannot appeal to knowing the sampling density or the
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manifold dimensions and reach. Instead, we address the interplay between
manifold reach and sampling density pragmatically. Along the spike, the
data appear to be 1D; in the ball, 3D. We seek a neighborhood graph that
supports these inferences, so “most” points enjoy a neighborhood that
agrees with their apparent dimension. At the join (or high-curvature neck),
it is unclear. Moving from the spike to the ball suggests that dimension
should be increasing; from the ball to the spike, it should be decreasing.
For the neighborhood graph, most points along the spike should see about
2 neighbors, and most points in the ball should see about 23 neighbors; the
problematic points should see something intermediate. Such results will be
shown to follow from our algorithm.

We claim that either of the alternatives is worse; one should not impose
an apparent dimensionality (or connectivity in the neighborhood graph)
globally. If small numbers of neighbors (appropriate for the spike) are en-
forced on the ball, then holes are likely to be introduced. Or if too many
neighbors are enforced on the spike, it will collapse on itself. Both change
the topology drastically (these situations are illustrated later, in Figures 24
and 25).

3.2 Overview of the Algorithm. Let the data set, X , be a sampling of a
(possibly nonpure) manifoldM = ∪αMα , with the dimension of each com-
ponentMα denoted by dα . It consists ofN points in ambient spaceRn, where
n ≥ dα,∀α. The manifold may have a boundary, and the number of compo-
nents is not known a priori.

We work with two graphs: the first unweighted, and the second with
edgeweights given by a kernel. Our strategy is to beginwith a conservative
estimate of the unweighted graph and extend it to a global weighted graph
that suggests an estimatedmanifold covering. The validity of this extension
is evaluated by a measure of volume in both graphs; an iterative algorithm
is used to infer individual local scales for each point xi. Before presenting
the algorithm, we introduce the two graphs.

Let the unweighted graph beG = (V,E),with |V| = N and adjacencyma-
trix Awith entries ai j, where to each point xi ∈ X is associated a node i ∈ V .
We denote its initial estimate by G(0); successive refinements are indicated
as G(t) until convergence (G	).

Since we seek a scale for each data point, we work with a multiscale
gaussian similarity kernel, defined as in section 2.1:

Ki j = exp

(
−‖xi − x j‖2

σiσ j

)
. (3.1)

The kernel valueKi j is therefore symmetric and equivalent to that of a tradi-
tional gaussian kernel (see equation 2.3), except using the geometric mean
of σi and σ j as its scale. Notice, in particular, how the scales and the kernel
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value are coupled: setting the scale incorrectly could make distant points xi
and x j appear close in similarity.

Given a set of individual point scales σi (sometimes collected into the
vector σ ∈ R

N), we define a second, weighted graph G = (V, E,W ) as the
complete graph on all pairs of data points in X . Its weighted adjacency ma-
trix,W , has entries wi j = Ki j.

While the unweighted graph will be related to nearest neighbors and
computational geometry, the weighted graph will be related to spectral
methods on manifold inference. In particular, we expect the Laplacian of
G to approximate the Laplace-Beltrami operator onM, subject to the num-
ber of data points and their sampling.

The algorithm is initialized by computing a coarse estimate of G. As
described in section 3.3, this is achieved by exploiting the geometry of
medial balls between pairs of points to produce a Gabriel graph (Gabriel
& Sokal, 1969; Matula & Sokal, 1980). AGabriel graph is that in which there
is an edge between two points xi and x j if and only if they are the only
two closest points to the midpoint of the line segment joining them. The
main advantages of using a Gabriel graph as a starting point are that (1) it
is scale invariant, so a prespecified ε-neighborhood (equation 2.1) is not re-
quired; (2) there is no global constant k (it can vary); and (3) neighbors are
not limited to the closest neighbors in ambient space. Thus, it allows for
connections to “jump across” sampling gaps while keeping the data graph
sparse.

However, as described in section 2.2, obtaining a good inference of M
amounts to finding reasonable estimates of its reach and local feature size.
For that to occur, no edge segment 
i j between two points xi and x j should
cross a medial axis of M. As the examples that follow will show, there are
several cases in which the Gabriel graph will violate this. Therefore, addi-
tional steps are necessary to refine it. The Gabriel graph provides a neces-
sary condition (all the correct connections are present, but possibly others
as well); our refinement moves toward sufficiency.

In order to estimate G—the weighted counterpart of G—we will use the
weights that are obtained by applying a continuous kernel (see equation 3.1)
over the points in X . Such a kernel requires scales, or bandwidths, σ that
must be estimated from G. These will be obtained from an optimization
procedure that finds the smallest such scales ensuring that all discrete edges
have a minimum kernel value as weight. At this point, a weighted graph G
can be obtained from σ.

It is now helpful to articulate the geometry more carefully. Figure 5 de-
picts how the discrete connectivity relates to the manifold geometry. In par-
ticular, for a real data set, the few closest points surrounding xi are the best
candidates for “nearest” neighbors—this is all that can be asserted locally.
Let pi and p j be the projections of two neighbors xi and x j ontoM, respec-
tively. Then any point along the geodesic between pi and p j should be closer
to no sampled point other than xi or x j. By further assuming xi ∈ M,∀i or at
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Figure 5: Relating the discrete neighborhood graph to manifold geometry.
Nearby sampled points (i and j) on a patch of manifold M lie in (or near) the
tangent plane TpM to the midpoint (p). Line segments (edges) between neigh-
boring points lift, via the exponential map, to geodesics in M. The continuous
kernel extends this discrete relationship to the full tangent plane. The values of
the kernel centered at p are shown as shading, extending in every direction in
TpM. Our algorithm shall enforce this relationship (i.e., the consistency between
discrete edges and large kernel values).

least that ‖xi − M‖Rn < ε,∀i and small ε, then ‖xi − x j‖Rn approximates the
geodesic when the curvature between pi and p j is small. Equivalently, the
line segment 
i j between xi and x j lies on the tangent space TpM, where p is
the midpoint between pi and p j (see Figure 5). The existence of a geodesic
follows from identifying the tangent plane that includes the points with the
exponential map of the manifold around them.

Such an “edge-centric” approach connects differential geometry to the
underlying graph. This is illustrated in Figure 5, where the kernel values
are shown as shading in the tangent plane. Notice how xi and its neighbor
x j both fall under the bright kernel values; they are very similar (in thismea-
sure) to each other. Stated in geometric terms, we assume that the neighbors
lie within the injectivity radius around p. In fact, wewill show (in Figure 14)
that the value of a multiscale kernel between two data points is equivalent
to that of a rescaled, single-scale kernel centered at the midpoint between
those two points.

The optimized scales can be used to evaluate the current approximation
and identify the edges inG that are “too expensive,” that is, are likely to vio-
late the local feature size. We proceed by computing successive refinements
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of both G and σ in an iterative manner until no further change is observed.
We then return the final version of the discrete and weighted graphs (de-
noted by G	 and G	, respectively).

One can view the computation of G as a relaxation of the discrete con-
nectivity in G. In fact, as we shall see in section 3.5, a relaxation statistic, δ′

i ,
will be used to prune discrete edges that produce a poor approximation.
More specifically, when a node i with degree, deg(i), in G has δ′

i close to 1,
it means i has retained approximately the same degree in G, only continu-
ously spread as a gaussian around it.

Each of these steps is listed in algorithm 1 and will be described in
detail. We begin with the discrete connectivity rule (Gabriel graph); then
the scale optimization is developed, followed by the edge-pruning step.
Figure 6 illustrates the results of our algorithm on data sets for which the
Gabriel graph alone cannot infer a good approximation of the manifold
connectivity.

3.3 Neighbors in a Gabriel Graph. We begin by defining a set of pu-
tative neighboring points of xi (denoted byN (i)) that uses the connectivity
rule found in a Gabriel graph (Gabriel & Sokal, 1969; Matula & Sokal, 1980).
It directly incorporates the observation that closest neighbors should have
no points “between” them.

Remark 1. Two points, xi and x j, are Gabriel-nearest neighbors to each
other if and only if they both touch the same closed ball, Bi j, that is empty
except for xi and x j.

Note that Bi j is therefore a medial ball—a ball whose center point is a
medial axis (with respect to the set of sampled points). Thus, this connec-
tivity criterion can be restated as creating an edge for all those medial balls,
and only those, touching exclusively two points (to be clear, if a third point
touchesBi j, no edge shall be formed between xi and x j). Hence, to each edge
ei j is associated a medial ball Bi j centered at the midpoint between xi and x j
with radius ‖xi − x j‖/2 (see Figure 7). This is furthermore equivalent to the
following alternative definitions:

Remark 2. Points xi and x j are Gabriel-nearest neighbors if and only if any
point along the line segment 
i j = xix j in R

n has either xi or x j (or both) as
its only closest point(s).

Remark 3. In terms of the Voronoi diagram (Fortune, 1995) of X (with the
cell around xi denoted by Vi), xi and x j are neighbors when 
i j crosses a
single Voronoi hyperplane Hi j (namely, that between the cells Vi and Vj),
and the midpoint between xi and x j is in Hi j.

As a concrete example (refer to Figure 7), consider two points xi and x j
at a distance ri j from each other, with midpoint p. Assume the region in
the manifold between them is uniformly sampled. Now consider the ball
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Figure 7: Connecting “nearest neighbors.” (A) A set of data points in space.
(B) An edge can be formed between xi and x j because there is no other point
in the interior of the ball Bi j centered halfway between xi and x j. (C) Here, be-
cause of the presence of a third point x j inside Bi j, xi and x j cannot be neighbors.
(D) Even in the absence of the original data point coordinates (i.e., given only
the distances between all pairs of points), Apollonius’s formula can be used to
determine the length of the segment p–xk, where p is the center of Bi j. Namely,
p–xk is amedian of the depicted triangle. Here, because the length of themedian
is less than the radius of Bi j, xi and x j cannot be neighbors. (E) Edges are drawn
connecting points xi to xk and xk to x j because both Bik and B jk are empty except
for those pairs of points, respectively.

centered at pwith radius ri j/2, therefore touching xi and x j. If there are no
points in its interior, we say xi and x j are nearest neighbors. Conversely, if it
contains other points in its interior, under our assumption of uniform den-
sity, this means that there is at least one other point xk “between” xi and x j.
So we say that xi and x j are not nearest neighbors, in the sense that connect-
ing xi and x j directly would be “crossing over” xk; this implies that an edge
ei j in the resulting graphwould be a poor approximation to a geodesic inM
(i.e., if M is “locally uniformly sampled,” the segment 
i j would be pass-
ing outside M). Note that even when the input to the algorithm is solely a
distance matrix (i.e., with no position information), this connectivity crite-
rion may still be evaluated by considering the triangle xi–x j–xk and using
Apollonius’s theorem to compute the length of the median from xk to p (see
Figure 7D).

Figure 6: Steps of algorithm 1 on toy data sets. (A) Data set with several chal-
lenges: nonuniform density, nonuniform dimension, and high curvature. Af-
ter pruning six edges (dashed red lines) from the original Gabriel graph, G(0),
the algorithm converges, inferring reasonable discrete neighborhoods (G	); the
optimal scales σ	 produce a weighted graph G	 whose connectivity closely ap-
proximates that of G	. (B) Data set with three gaussian clusters of nonuniform
density. The Gabriel graph approximation,G(0), naively connects all clusters us-
ing multiple edges. After convergence, the clusters become disconnected in G	,
and its weighted version follows this by assigning negligible weights (due to
σ	) between points in different clusters.
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The Gabriel graph is a subgraph of the Delaunay graph (Dyer, Zhang, &
Möller, 2009) and enjoys a number of key properties (Matula & Sokal, 1980).
We emphasize that (1) they are scale invariant, that is, there is no prespec-
ified threshold on the diameter of medial balls that can form connections;
(2) the guarantee that Gabriel graphs connect points to their true nearest
neighbors when M is uniformly sampled as a grid (shown in Figure 9);
and (3), Gabriel graphs provide a locally adapted neighborhood size ki, for
each point xi, based on the local geometry. Crucially, they do not require an
initial guess of the number of neighbors, of the intrinsic dimensionality, or
of a maximum neighborhood radius.

Nevertheless, the neighborhoods given by the Gabriel graph are not suf-
ficent. We now expand on a few of their properties—that will be useful in
motivating the rest of the algorithm.

3.3.1 Closing Triangles. Here we show that the edges created using the
above connectivity rule can only form acute triangles inR

n. Let three points
xi, x j, xk be such that xi and xk are connected, as well as x j and xk. The rule
says that xi and x j shall be connected only if xk is outside the closed ball Bi j

of radius R = ri j/2 centered halfway between xi and x j (where ri j stands for
the Euclidean distance between xi and x j). Using Apollonius’s formula for
the squared distancem2 between xk and themidpoint between xi and x j, we
obtain

m2 = 1
4
(2r2ik + 2r2jk − r2i j ). (3.2)

Then, xk is in Bi j if and only if m2 ≤ R2, so

1
4
(2r2ik + 2r2jk − r2i j ) ≤ R2 =

( ri j
2

)2
r2ik + r2jk ≤ r2i j. (3.3)

Notice that equality will hold when xi–x j–xk is a right triangle. Therefore:

Remark 4. Atrianglewill be formed by edges in aGabriel graph onlywhen
it is acute (see Figure 8A).

3.3.2 MaximumCurvature. The above result leads to a bound on themax-
imumprincipal curvature that is allowed locally onM such that theGabriel
graph correctly approximates it (i.e., without closing a triangle). Assume xi,
x j, and xk are points in a smooth manifold M as in Figure 8B, up to the
level that the sampling defines. If we assume that the curvature, κ , is lo-
cally constant, then the geodesic from xi to x j passing through xk is an arc
of a circle C. Therefore, the segments 
ik and 
k j approximate geodesics on
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Figure 8: Implications of the connectivity rule in a Gabriel graph. (A) Closing
triangles from edges: three points will be mutual neighbors if and only if they
form an acute triangle (left). If the angle between xi and x j at xk is at least π/2,
all three points will lie in Bi j, so no edge is created (right). (B) The maximum
principal curvature inM (shown in blue) that can be reasonably approximated
by the resulting graph geodesic (path) is constrained by the sampling interval.
The limiting case occurs when three points form a right triangle (top, see equa-
tion 3.4). When sampling is too sparse (bottom left), a triangle may be formed,
in this case preventing the graph from adequately capturing the manifold’s ge-
ometry. As sampling frequency increases (bottom right), higher curvatures can
be better approximated.

M but not 
i j (which would cause “folding”). Hence, values of curvature
that can be correctly inferred are those that do not create an edge between
xi and x j (i.e., those for which the ball Bi j is nonempty). In this case, from
equation 3.3, the maximum such curvature, κmax, occurs when xi, xk, and x j
form a right triangle in space (as any larger value would cause this triangle
to be acute, connecting xi to x j). Then, from Thales’s theorem, the diameter
D of C would equal that of the hypotenuse 
i j, so

κmax = 1
D/2

= 2
D

= 2√
r2ik + r2jk

. (3.4)

Aspecial case to consider iswhenM is uniformly sampledwith constant
interval T over arc length. Then the arc length s between i and j is 2T , but
since ri j = D, s covers half the circle and we have 2T = πD/2. Equation 3.4
then becomes

κmax(T ) = π

2T
. (3.5)
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Remark 5. Equations 3.4 and 3.5 define the maximum geodesic curvature
in M that can be adequately inferred from a Gabriel graph. As a conse-
quence, the reach is lower-bounded by 1/κmax.

3.3.3 Degree Distribution in Gabriel Graphs. We now study the above con-
nectivity rule starting with flat, uniformly sampledmanifolds (i.e., “regular
grids”) to illustrate how Gabriel graphs naturally adapt to their geometry
and dimensionality. As shown in Figure 9A, in such ideal cases, the degree
of an interior node in the Gabriel graph agrees with the true number of (lit-
eral) nearest neighbors: two for collinear points, four for a square grid, and
six for a triangular grid.

Node degree appears to grow with dimension as 2d, except for the tri-
angular grid (which, in some sense, looks too “nongeneric”). Adding noise
(gaussian, with standard deviation equal to half the spacing between neigh-
boring points) supports this conjecture, as the degree then approaches 2d

regardless of the original grid structure. This holds in higher dimensions as
well, for both normal and uniform sampling at random (see Figures 9B, 9C,
and 12).

Remark 6. The expected number of neighbors in a Gabriel graph approxi-
mately follows a distribution centered at 2d (where d is the intrinsic dimen-
sion of the data) for a variety of sampling strategies (see Figure 9C).

Importantly, because Gabriel graphs are inherently scale invariant, this de-
gree distribution is largely independent of sampling density.

How to explain such remarkable regularity despite the randomness of
sampling? A complementary geometric view of the Gabriel graph connec-
tivity rule is illuminating: each edge between data points implies an “oc-
cluding hyperplane” that blocks other points from becoming neighbors
(see Figure 10). For example, when d = 1, two points necessarily occlude
any additional connections and every nonboundary point must have two
neighbors. Now, using the diagrams in Figure 11 as reference, we find that
when d = 2, on average about 4 points are sufficient to occlude a point xi
from all sides. For d = 3 this number is doubled again, and the expected
number of neighbors becomes about 8, revealing the trend. Every additional
dimension adds a new coordinate axis alongwhich the previous constraints
are duplicated, roughly doubling the average number of directions avail-
able from which neighbors can connect. Once 2d balls are “attached” to xi,
the remaining space is greatly reduced, and so is the probability of drawing
a sample point from inside the region H enclosed by the hyperplanes.

When the neighbors are regularly spread around xi, by construction this
regionH is equivalent to a d-dimensional orthoplex2 (or cross-polytope). A

2
An orthoplex is a line segment in 1D, a square in 2D, a regular octahedron in 3D, a

16-cell in 4D, and so on.
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Figure 9: Regularity of node degree distribution inGabriel graphswith random
sampling. (A) Node degree in graphs computed from regular grids (constant
sampling interval, T) and their jittered versions (gaussian noise with std. dev.
0.5T). (Top) A sequence of collinear points (left) produces a one-dimensional
grid (center). Addition of noise (right) does not change the mean degree (con-
stant 2 for interior points). (Middle) Asquare grid (left) results in a quadrilateral
mesh with constant degree 4 in its interior. Although addition of noise consid-
erably scrambles the points, the mean degree is roughly unchanged. (Bottom)
Points arranged as a triangular grid (left) result in a triangular mesh where ev-
ery interior node has degree 6. Its noisy version looks similar to a noisy square
grid, with mean degree also approximating 4. (B) Degree distribution for inte-
rior points of d-dimensional triangular and square grids after addition of gaus-
sian noise. Moderate amounts of noise are sufficient to make the mean degree
become approximately 2d. Error bars indicate standard deviation; dotted lines
show constant 2n values for reference. (C) Mean degree of d-dimensional mani-
folds sampled using different strategies: uniformly at random, normally at ran-
dom, and as jittered versions of regular triangular and square grids (as in panel
A, added gaussian noise with std. dev. 0.5T). Remarkably, mean degree grows
approximately as 2n regardless of the sampling strategy.
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Figure 10: (A) A central point xi (in blue) and its neighbors (in black). Every
neighbor x j of xi will “occlude” the entire area behind a hyperplane tangent
to Bi j at x j (dashed lines). That is, no point inside the occluded areas (shaded
region) can form a connectionwith xi. Here, the dashed ball does not form a con-
nection between xi and xk because x j lies exactly on its boundary; despite this, xk
still contributes with an occluding hyperplane, preventing farther points from
connecting to xi. (B) In principle, there is no limit to the number of neighbors a
point in ambient space Rn may have (when n ≥ 2); for example, any number of
points lying exactly on a hypersphere around xi (dotted curve, in orange) will
not occlude one another. Sets of nodes with connectivity such as this are termed
“wheels” in graph theory, and the more points they contain, the less likely they
are to occur in real data sets. In this example, any appreciable variability in the
distance from xi to its neighbors would cause one (or several) of them to become
occluded. (C) Points inside occluded areas can also contribute with additional
occluding hyperplanes. Here, although xk lies inside the region occluded by x j
(and therefore cannot form a connection with xi), it produces further occlusion
behind a hyperplane of its own (region shaded in red). So xl cannot connect to
xi either due to the presence of xk (even though it is not occluded by x j).

d-orthoplex has 2d facets (or (d-1)-faces), and is one of the three finite, reg-
ular, convex polytopes that exist in dimension higher than 4 (the other two
being hypercubes and simplices). Naturally, when sampling is not uniform,
we should find irregular orthoplexes instead.

While this geometric construction supports our empirical results and im-
plies they should hold in higher dimensions, it also suggests the following:

Remark 7. Our experiments on the growth in dimension of randomly sam-
pled points agree with a model in which Gabriel neighbors lie approxi-
mately in the facets of an orthoplex.

We later use the additional observation that the dual polytope (a d-
hypercube) of an orthoplex is obtained by placing a vertex (i.e., a neighbor)
in each of its 2d facets.

The Gabriel graph enjoys many attractive properties and provides the
starting point for our algorithm. The above arguments show how the space
is largely filled by “Gabriel balls” within the manifold, but such balls may
also fill space across holes and bottlenecks; curvature must be dealt with.
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Figure 11: Occlusion hyperplanes (shown in gray) due to neighbors in dimen-
sions 1, 2, and 3 (A–C, respectively); compare with Figure 10. Every additional
dimension adds a new coordinate axis along which the previous constraints are
duplicated, roughly doubling the average number of directions available from
which neighbors can connect. Once 2d Gabriel balls are “attached” to xi, the re-
maining space is greatly reduced, and so is the probability of drawing a sample
point from inside the region enclosed by the hyperplanes.

Examples were given in Figure 6, where we showed that Gabriel connec-
tions can arise incorrectly and must be removed. To do so, one must “look”
in every direction (of the tangent plane) and past immediate neighbors. For
this, we now develop the weighted graph counterpart to the Gabriel graph,
exploiting the kernel to extend local information globally. This begins to
connect the graph construction more directly to manifold properties.

3.4 Multiscale Optimization. We now begin to develop the iteration in
algorithm 1, given the initial Gabriel neighborhood graph, G(0). Assuming
(temporarily) that this gives correct local neighborhoods, what should the
corresponding scales be for a gaussian kernel? In effect this is an extension
of G into a weighted counterpart, G. From Figure 5, this weighted graph is
also a type of approximation of (aspects of) the continuous manifold. Be-
cause density is not necessarily uniform, different points might have dif-
ferent neighborhood radii, so a multiscale gaussian similarity kernel (see
equation 3.1) is used. Each point xi has its own associated scale, σi. To de-
velop the computation of such scales, we now move into the continuous
domain and exploit the geometric notion of a cover.

3.4.1 Covering Criterion. A criterion for separability between two gaus-
sians has been developed in the mixture-of-gaussians literature (Dasgupta,
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478 L. Dyballa and S. Zucker

Figure 12: Distribution of node degree in theGabriel graph of data setswith dif-
ferent sampling strategies and dimensionalities. (Top) Points sampled normally
(blue) or uniformly (orange) at random from a two-dimensional ball result in
similar degree distributions centered at 22. (Bottom) In higher dimensions, inte-
rior points continue to follow this pattern. On the left, a four-dimensional unit
ball sampled uniformly at random is shown projected onto R

3, with boundary
points labeled as thosewith vector norm> 0.9 (edges omitted for clarity). It pro-
duces a Gabriel graph where interior points have degree distribution centered
at ∼ 24, and the mean degree of boundary points is close to 23.

1999; Vempala & Wang, 2004; Arora & Kannan, 2005): two spherical gaus-
sians, i and j, can be distinguished (in the sense of solving a classification
problem) with reasonable probability when they have a separation of at
least

‖μi − μ j‖ > Cmax{σi, σ j}, (3.6)

at which the overlap in their probability mass is a constant fraction (Vem-
pala & Wang, 2004).

We flip this around by using a different but related construction: con-
sider gaussians now centered at the midpoints (i.e., not on data points) to
indicate whether nearby points should be connected, not separated (Fig-
ure 5 illustrates this construction directly). Furthermore, because we use a
multiscale kernel (see equation 3.1), the (nonnormalized) gaussian density
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Figure 13: Effect of hyperparameter C from equation 3.7 on the resulting
weighted graph (left), optimal scales (middle), and manifold approximation
(right, shown as the resulting summation over the gaussian kernels around each
point using their individual scales). ForC= 1 (top), the scales overlap toomuch,
and as a result, the gaussian summation (right) is highly nonuniform. ForC= 0.8
(bottom), the scales are not sufficiently large to properly cover the underlying
manifold, resulting in holes (right). When C = 0.9, there is a good compromise
between covering and keeping a uniform density, so the gaussian summation
approximates a partition of unity (summing to about 1 everywhere) when the
scales correctly conform to the local sampling characteristics. Our approachwill
allow us to tuneC based on a relaxation statistic, δ′

i .

becomes a function of √
σiσ j. Hence, we obtain a criterion for what we term

C-connectivity:

Definition 1. Two neighbors i and j in the discrete graph G = (E,V ) are C-
connected by the multiscale kernel when the geometric mean of their individual
scales is at least the distance between xi and x j scaled by a positive constant, C:

C‖xi − x j‖ ≤ √
σiσ j. (3.7)

The constant C plays a role in normalizing for unknown density; it will
be developed in section 3.5.2. For now, we illustrate its role in the connec-
tion from graphs to manifolds. Figure 13 shows the graph over a set of data
points and the local scales obtained (by the algorithm below) for different
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values of C. Choosing C too large yields scales (and therefore gaussians)
that are too large, that is, their overlap has peaks. Choosing it too small
yields scales that introduce holes. When it is chosen correctly, the gaus-
sians form a covering of themanifold that approximates a partition of unity.
Such partitions of unity are used in differential geometry to extend local in-
formation (in our case, the scales) to global information (a covering of the
manifold).

By choosing appropriate scales (i.e., scales that meet our criterion for all
edges in E), we also ensure a covering of the edges in the following sense:
the value of the multiscale kernel Ki j between xi and x j is identical to that of
a kernel recentered at the midpoint p ≡ (xi + x j )/2 and rescaled using half
the geometric mean of σi and σ j as its scale, σp:

Ki j = exp
−‖xi − x j‖2

σiσ j
= exp

−‖(xi − x j )/2‖2
σiσ j/22

= exp
−‖(p− xi)‖2

σ 2
p

, (3.8)

with σp ≡ √
σiσ j/2 (see Figure 14).

Remark 8. We say a C-covering is attained when every pair (i, j) ∈ E is C-
connected (see equation 3.7). Additionally, when the spacing between neigh-
boring points is approximately uniform locally, the pointwise summation
over all gaussian kernel bumps given by the individual scales provides an
(unnormalized) partition of unity of M.

We now use the covering constraints to solve for the set of scales, σ. It is
desirable that the scales be small (respecting the reach) while at the same
time maintaining the connectivity in G close to that of G. Thus, one idea is
to find scales such that the sum of edge weights in G incident to a node i
from its neighbors in G approximates the degree of i in G, for all i, while at
the same time ensuring aC-covering. This, however, amounts to a noncon-
vex problem in which the cost function involves a summation of multiscale
kernel values. We are unable to solve this efficiently. Instead, we find the
smallest individual scales such that our covering criterion is satisfied for all
edges (a “minimal covering”) and later address the quality of the relaxation
by using a statistical pruning (edge sparsification). This can be transformed
into a convex, linear program with linear constraints by which all scales
can be solved for simultaneously, as we show next. (We also present, in the
appendix, a greedy approach to this optimization that may be convenient
when dealing with very large data sets.)

3.4.2 Linear Program Relaxation. To achieve a minimal covering, one
might minimize

∑
i σi (or, equivalently, the 1-norm of the vector σ, since
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Figure 14: Covering constraint for themultiscale kernel of equation 3.1. (Left) A
graphGwith two nodes i and j at a distance ri j from each other inR

n. Since they
are connected, their assigned individual scales σi and σ j must satisfy σiσ j ≥ r2i j,
the covering constraint (herewe assumeC= 1). (Center)All feasible pairs (σi, σ j)
lie inside the region above a positive hyperbola, three of which are indicated as
colored points; pairs A and B satisfy exactly, while C satisfies in excess. Each
is also depicted as a pair of circles on the left plot using the same color code,
each one centered at its corresponding node (radii are set to half the scale, for
clarity). Although pairs A and B differ in their ratio σi/σ j, both result in the
same multiscale kernel value for the edge (i, j), since the product σiσ j is the
same; pair C yields a slightly higher value. This illustrates the freedom that
might exist in choosing an optimal combination of scales for all nodes (i.e., a
covering). (Right)Multiscale kernel values,Ki j, centered at either i or j, shown in
green, are symmetric (with scale √

σiσ j). The horizontal axis represents position
over the line in R

n passing through i and j. A kernel centered at the midpoint p
between i and j using half the scale (black curve) attains the same value as Ki j

at i and j. The dashed red line indicates the common value between the three
kernels.

scales are positive) subject to the covering constraint.3 This suggests the
following:

Optimization Problem

min
σ

1ᵀσ

s.t. (i, j) isC-connected, ∀ (i, j) ∈ E

σi is bounded, ∀ i ∈ V, (3.9)

3
Another possibility is to use a weighted sum

∑
i νiσi while keeping the same con-

straints, thus still guaranteeing a covering. The weights νi add a bias to how the length
of an edge is split between its two incident nodes (by balancing their individual scales).
One interesting option is to set νi = rnoni /rFNi , the ratio between the distance to the nearest
nonneighboring point, rnoni , and the farthest neighbor, rFNi .
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where σ is the vector of individual scales, σi, and 1 is the all-ones vec-
tor. Now it remains to represent the C-covering requirement by a set of
constraints.

Looking in detail at C-connectedness (equation 3.7) as a function of σi
and σ j, observe that it represents a region delimited by a single-branched
hyperbola (since the distance and scales are positive),

σiσ j ≥ (Cri j )2, σi > 0, σ j > 0, (3.10)

where ri j ≡ ‖xi − x j‖Rn . Each σi is naturally bounded above by the distance
to i’s farthest neighbor, rFNi :

σi ≤ rFNi , (3.11)

beyond which all neighbors are satisfied,4 so further increasing either scale
would make the weights to nonneighbors larger than strictly necessary
(thereby hurting the kernel graph relaxation). These bounds, combined,
specify a bounding box for each edge that must necessarily be crossed (or
at least touched) by the hyperbola, since ri j > 0.

Due to the hyperbolas, this amounts to a non-linear, non-convex set of
constraints. However, we can convexify the feasible set by considering, for
each edge (i, j), the line(s) passing through the hyperbola’s vertex (the point
at which σi = σ j = Cri j) and the points where the hyperbola intersects the
bounding box. The four possibilities are shown in Figure 15. The feasible
region for each edge therefore is bounded by a convex envelope given by
such line(s) and those defined by the upper bounds to σi and to σ j. Such
envelopes for all edges, combined, define the boundaries of a convex poly-
tope. Note that this convexification is conservative in the sense that only
the objective is relaxed—the feasible scales are always at least as large as re-
quired by the original nonconvex problem; therefore, our covering require-
ment is not relaxed. (Because of the presence of a later pruning stage in the
algorithm, it is better to overconnect here than to inadvertently disconnect
nodes that should otherwise be connected.)

Letting m ≤ 2|E| be the total number of linear constraints obtained as
above and N the number of nodes in G, we define the m×N matrix � and
the m× 1 vector b. Now, for each edge, ei j, let its two possible constraints
be expressed as

σ j ≥ α
(1)
i j σi + β

(1)
i j , (3.12)

σ j ≥ α
(2)
i j σi + β

(2)
i j , (3.13)

4
That is assumingC ≤ 1 (a natural choice). If for some reason one needs to allowC > 1,

then the upper bounds must be scaled by C in order to ensure feasibility.
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Figure 15: Examples of constraints introduced by an edge, ei j, in G. The C-
connectivity rule, that is, the hyperbola given by σiσ j = (C‖xi − x j‖)2 (dashed
curve), when convexified, may give rise to one or two linear constraints, de-
pending on whether the hyperbola’s vertex v (point where σi = σ j) intersects
the bounding box given by the lines σi = 0, σ j = 0, σi = ui, and σ j = uj, where ui
and uj denote upper bounds. The hatched area (in orange) shows the feasible re-
gion using convexified constraints; the tangent line at v is shown in gray. When
v is interior to the bounding box (A), two secants (in blue) define the feasible
region (namely, the lines passing through v and the points where the hyperbola
intersects the lines σi = ui and σ j = uj); when either v = ui (B) or v = uj (C), only
one secant is necessary; when v coincides with both ui and uj (D) (which may
occur ifC is set to 1), again only one inequality is necessary, namely the tangent
line at v .

with αi j and βi j denoting, respectively, the slope and intercept of the cor-
responding line(s) forming its convex envelope. Rearranging, we obtain
αi jσi − σ j ≤ −βi j for each line, which is encoded as a row in � with values
αi j and −1 at columns i and j, respectively (with zeros everywhere else),
and an entry in bwith value −βi j:

� b

· · · i · · · j · · ·
...

e(1)i j

e(2)i j
...

⎡
⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

0 · · · α
(1)
i j · · · 0 · · · −1 · · · 0

0 · · · α
(2)
i j · · · 0 · · · −1 · · · 0

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

σ ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

...

−β
(1)
i j

−β
(2)
i j
...

⎤
⎥⎥⎥⎥⎥⎥⎦

.

m×N N × 1 m× 1

Remark 9. The convex envelope defining the constraints can be expressed
by the linear inqualities,
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�σ ≤ b,

0 < σ ≤ rFN, (3.14)

where rFN is the vector of distances to each node’s farthest neighbor.

Hence the problem now amounts to a convex, linear program (LP) with
linear constraints:

Optimization Problem: LP Relaxation

min
σ

1ᵀσ

s.t. �σ ≤ b

0 < σ ≤ rFN, (3.15)

which can be readily solved by a variety of methods (see, e.g., Boyd & Van-
denberghe, 2004). Figures 19, 21, and 20 show the results of running this
optimization on different examples.

3.5 Sparsification. Summarizing what we have seen so far, the Gabriel
graph provides an initial estimate of connectivity,while the LPoptimization
provides minimal scales for a continuous kernel to cover those connections.
However, since the initial estimate of the discrete graph might contain in-
correct connections, its resulting optimal scales might also be inadequate.
An example of this can be seen in Figure 19: initially, two pairs of nodes are
connected across the central gap since a Gabriel ball exists between them.
This will require very large scales to “cover” these edges. Furthermore, the
Gabriel graph is based on a local connectivity rule; however, as illustrated
in Figure 16, decisions about connecting nodes across a gap should not be
local. We here address both of these issues by introducing a global statistic
based on how frequently such a gap occurs in the data. In terms of algo-
rithm 1, we are now at steps 6 and 7.

3.5.1 Volume Ratio. Because incorrect connections can be given by
Gabriel balls lying in the free space between parts of a manifold (i.e., across
the medial axis), it is tempting to simply prune the longest connections.
Note, however, that the size of a scale by itself is not necessarily important.
In both examples shown in Figure 6, the nonuniform density causes scale
sizes to vary considerably, and even the largest ones are appropriate, that
is, they are still consistent with the distances to neighboring points.

Conversely (and importantly), a scale that is excessively large will likely
cover “too many” points. That is, it will cover neighbors in excess of the
number of discrete neighbors of its corresponding node in G. We quantify
this notion by observing that an individual scale, σi, should produce kernel
values whose sum is comparable to the discrete degree, deg(i), of node i
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Figure 16: Local versus global assessment of neighborhoods. (Left) The points
inside the cropped window appear to form two well-defined clusters when
looked at up close (local estimation). However, when considered in the context
of the full data set (global estimation), the apparent gap between the top andbot-
tom groups “disappears,” well within the range of gaps observed throughout
the data. More precisely, it does not significantly deviate from the average sam-
pling interval. (Right) The converged graph G indeed connects the two groups
by edges, and the distribution of volume ratios, δ′

i (lower inset), confirms that
all edges are reasonable.

in G. As will be shown, after proper normalization, this also means σi shall
relate to a local volume element around xi, or the inverse of the local density.
Since each connection in G can be seen as having unit weight, a gaussian
kernel around xi with scale σi should distribute that same amount, deg(i),
only continuously over ambient space.

We start our derivation with a definition:

Definition 2. Let w(σi )
i j be the gaussian kernel value between xi and x j using scale

σ
(t)
i at iteration t. A (nonisolated) node’s volume ratio at iteration t, denoted by

δ
(t)
i , is defined as

δ
(t)
i ≡

∑
j∈V w

(σ (t)
i )

i j∑
j∈V ai j

, (3.16)

the ratio between node i’s weighted degree due to σ
(t)
i and its discrete degree in G(t)

(henceforth, we suppress the iteration dependency (t) to simplify notation).

An individual-scale gaussian kernel is needed to correctly assess the im-
pact of σi on the relaxation from the perspective of i alone. The multiscale
kernel here might artificially increase the weighted degree of i when other
nodes (even nonneighbors of i!) have incorrect scales. (Nevertheless, as dis-
cussed below, a corresponding ratio using the actualweights inGmay even-
tually be used for convergence purposes.)
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Now, using amean-value integral (as in Coifman et al., 2008), the numer-
ator approximates the volume under the continuous gaussian kernel over
M and can be further approximated by

∑
j

w
(σi )
i j ≈ N

vol(M)

∫
M

exp

(
−‖xi − x j‖2

σ 2
i

)
dx j (3.17)

whenM has uniform density and low curvature. In practice, the kernel will
have compact support due to numerical precision (i.e., its values become
effectively zero for sufficiently large distances), so by defining the volume
element dVi ≡ vol(N (xi))/|N (xi)| of a neighborhood N (xi) ∈ M around xi,
we may rewrite equation 3.17 as

∑
j

w
(σi )
i j dVi ≈

∫
M

exp

(
−‖xi − x j‖2

σ 2
i

)
dx j (3.18)

when the sampling is approximately uniform around xi. By further assum-
ing that σi is small and thatM can be well approximated locally by its tan-
gent space Rd, then

∫
M

exp

(
−‖xi − x j‖2

σ 2
i

)
dx j ≈

∫
Rd

exp

(
−‖xi − x j‖2

σ 2
i

)
dx j = (

√
πσi)d, (3.19)

so

∑
j

w
(σi )
i j dVi ≈ (

√
πσi)d, (3.20)

as shown in Figure 17.
An analogous derivation for the discrete degree summation is as fol-

lows. First, note that the edge weight in this case is a constant (unity); it
remains to determine its support over M. From section 3.3.3, we know
that, for simple manifolds with random sampling, the node degree deg(i)
in a Gabriel graph is approximately 2di within a region of constant intrin-
sic dimensionality, where di denotes the local intrinsic dimension around xi
(possibly different around other points in X ).5 In more general manifolds,
we expect the converged graph G	 instead to approach such a property.
This means

∑
j ai j ≈ 2di will approximate the volume of a hyperrectangle

(or box) of unit height and having a di-dimensional hypercube of side 2 as its

5
We abuse notation, therefore, when we say “d-dimensional manifold” or “M ∈ R

d .”
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Figure 17: Computing the volume ratio between continuous and discrete
degrees of a node i with neighboring points sampled uniformly over a
d-dimensional manifold M. (Top row) Using a gaussian kernel, the weighted
degree of i (sum of kernel values

∑
j w

(σi )
i j ) in G approximates the volume of a

gaussian with scale σi (equation 3.20). (Bottom row) The number of edges ad-
jacent to i in G (sum of unit weights) approximates the volume of a box with
unit height and a hypercube of side 2ρi as its base, where ρi is the radius of a lo-
cal volume element of M around xi (see equation 3.21). (Right) When the scale
σi is compatible with ρi, the volume ratio, δi, is expected to be approximately
(
√

π/2)d, and therefore is a scale-invariant quantity.

base.6 So, by defining ρi as the radius of the local volume element dVi (such
that ρi = di

√
dVi), we may write:

∑
j

ai jdVi ≈
∫ ρi

−ρi

· · ·
∫ ρi

−ρi

1dx j1 . . . dx jd = (2ρi)di , (3.21)

as illustrated in Figure 17. Hence, ρi is a kind of “neighborhood radius” of
xi.

From equations 3.20 and 3.21, equation 3.16 becomes

∑
j w

(σi )
i j∑

j ai j
=

∑
j w

(σi )
i j dVi∑

j ai j dVi
≈
(√

πσi

2ρi

)di

, (3.22)

representing the ratio between the volume of a gaussian with scale σi and
that of a box of side 2ρi and height 1 (cf. Figure 17). As the algorithm
approaches convergence, we expect σi ≈ ρi (scales are compatible with

6
This agrees with our observation (in section 3.3.3) that the unoccluded region around

xi is similar to a di-orthoplex: by placing a vertex (i.e., a neighbor) in each of its 2di facets,
we obtain a di-hypercube, the dual polytope of an orthoplex.
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neighborhood radius) and deg(i) should approach, on average, the empir-
ically observed value of 2di (meaning that the number of neighbors in G is
compatible with dimensionality of M). This results in

∑
j w

(σi )
i j∑

j ai j
≈
(√

π

2

)di

. (3.23)

Finally, we can estimate di as

d̃i ≡ log2
∑
j

ai j, (3.24)

based on the empirical degree distribution of G(t). From this, we can com-
pute a normalized volume ratio, δ′(t)

i , dividing δ
(t)
i by the value from equa-

tion 3.23:
Definition 3. A node’s normalized volume ratio is computed as

δ
′(t)
i ≡

∑
j w

(σi )
i j∑

j ai j

(
2√
π

)d̃i

. (3.25)

Nodes whose degree deviate from exactly 2di will, likewise, under- or
overestimate the local dimension, so reasonable volume estimates are still
obtained regardless. However, in order to avoid a dimension less than 1
for connected nodes, in practice when deg(i) = 1, we replace

∑
j ai j with

max{2,∑ j ai j}.
Thus, we expect δ′

i ≈ 1 for points obeying σi ≈ ρi and d̃i ≈ di. Crucially,
points for which these conditions are notmet (those having “wrong” neigh-
bors in the original Gabriel graph, G(0)) will depart from this by having
δ′
i � 1. In the next section, we use this fact to guide a sparsification of edges
in G(0) based on δ′

i .
Interestingly, δ′

i can also be interpreted as measuring how well the scale
σi fits the local volume element dVi (or, equivalently, how it counteracts the
local sampling density, 1/dVi). Since dVi = ρ

di
i (from the definition of ρi), we

may rewrite equation 3.22 as

∑
j w

(σi )
i j∑

j ai j
≈ (

√
πσi)di

2didVi
. (3.26)

Summarizing the above, when d̃i ≈ di and σi ≈ ρi we have:

Remark 10. A node’s normalized volume ratio may alternatively be ex-
pressed as
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δ
′(t)
i ≡

∑
j w

(σi )
i j∑

j ai j

(
2√
π

)d̃i

≈ (
√

πσi)di

2didVi

(
2√
π

)d̃i

≈ σ
di
i

dVi
. (3.27)

Therefore, δ′
i can be thought of as the product between kernel scale and local

density. When σi is optimal, it should be approximately equal to the inverse
of the local density, so δ′

i ≈ 1.

3.5.2 Uniformity of Sampling and Edge Pruning. Since δ
′(t)
i is evaluated for

every node xi, we can collect it across nodes and view it as a statistic. This
has two consequences: (1) it can be used to enforce consistency in sampling,
and (2) outliers in this statistic are likely candidates for edge pruning. We
address consistency of sampling first.

We have several times stated that sampling is required to be locally uni-
form, although its rate may change over the manifold. Examples of this
were shown in, for example, Figure 12, where the sampling was denser in
the center of the gaussian distribution than in the periphery. This example
differs from the regular grids in which all nearest neighbors had exactly the
same distance. Putting this together, we have:

Remark 11. Locally uniform sampling: Let node i have ki neighbors in G(t).
Among these, let rFNi denote the distance from xi to its farthest neighbor,
and rNN

i that to its nearest neighbor. When rFNi ≈ rNN
i for all i, we say the

sampling is locally uniform.

This is useful because a departure from the assumption that sampling
is locally uniform will cause δ′

i to be on average greater than 1 throughout
the data set. To see this, when sampling is not uniform, we have rFNi > rNN

i .
Now, since σi is optimized to cover all of i’s neighbors, it will have in most
cases the same order of magnitude as rFNi (minus some possible slack due
to the multiscale interaction). Therefore, the higher the variability in the
neighbors’ distances, the larger the difference between rFNi and rNN

i will be,
making σi, in turn, be larger than the distance to most neighbors of i. Ulti-
mately, thiswill increase

∑
j w

(σi )
i j beyondwhatwewould have in a uniform-

sampling scenario (in which rFNi ≈ rNN
i ).

When data are acquired using a global sampling strategy, this variability
in the neighbors’ distances should be roughly constant throughout the data
set (rather than the distances). Sowe use the scalar parameter,C, from equa-
tion 3.7 to correct for this “bias” and bring the median of the distribution of
δ

′(t)
i (denoted as 〈δ′(t)

i 〉) close to 1.7

Remark 12. Let the tunedC	(t) be that which causes 〈δ′(t)
i 〉 to be closest to 1.

7
Although the mean typically gives smoother tuning curves, the median is more ro-

bust. This matters because of the possible outlying δ′
i values.
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490 L. Dyballa and S. Zucker

Figure 18: Tuning the hyperparameter C based on the median of the distribu-
tion of normalized volume ratios, 〈δ′

i〉. (Left) Converged unweighted graph G	

obtained for the data set from Figure 19. (Center) After computing 〈δ′
i〉 for a

range of values of C ≤ 1, the optimal C	 is that resulting in a 〈δ′
i〉 closest to 1.

Histograms below show the distribution of δ′
i for different values of C, includ-

ingC	 = 0.915. (Right) The resulting weighted graph G	 afterC-tuning typically
exhibits a more uniform connectivity throughout (see Figure 13).

Typically, C	(t) < 1, which, in the scale optimization procedure, means
that the covering constraints (equation 3.10) are being relaxed using the dis-
tribution of δ′

i as a guide (see Figure 18).Note that although the tuning ofC is
not necessary for finding candidates for sparsification, it attributes a quan-
titative meaning to the value of δ′

i , so any δ′
i � 1 is guaranteed to indicate

the need for edge pruning. Such tuning should be performed at t = 0 and
repeated as needed over the iterations whenever 〈δ′(t)

i 〉 deviates too much
fromunity (whichmay happen after several edges have been pruned).Most
commonly, we find 0.5 < C	(t) < 1.

Thus, we have a data-driven way of finding an appropriate value for
C. Because it is a global constant applied to all connection constraints, it
shifts the distribution of δ′

i to have a median around 1 without changing its
general shape.

This leads us to the second use of our statistic: any node whose normal-
ized volume ratio ismuch greater than themedian of the population should
be identified as an outlier. Such nodes will have a neighbor considerably
farther than its other neighbors (relative to the median variability of such
neighboring distances throughout the data) and are candidates for the spar-
sification step.
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Figure 19: Optimal scales and associated normalized volume ratios, δ′
i , at itera-

tions 0 and 2 of algorithm 1 on the horseshoe data set (see Figure 13). (Top row)
The δ′

i statistic has a median around 1 and several outliers. These are caused by
the long edges and huge scales (middle). (Right column) G(t) after iteration 1,
with edges deleted shown in red (top) and after iteration 2 (bottom).

Remark 13. Nodes that are robust outliers according to the δ′
i statistic have

an overly distant neighbor (relative to the other neighbors for that node)
and hence are likely to be in violation of reach or other geometric con-
straints. These relatively distant neighbors are candidates for having an
edge pruned.

Given the distribution of normalized volume ratios, statistical models
can be used to define a threshold for identifying outliers (see Figures 19 to
22). It is likely that data sets with a large number of problematic connections
will exhibit a distribution with a heavy tail or that looks like a mixture of
two distributions (see the example in Figure 22), so using the distribution’s
quartiles may give amore robust result. One option that seems to work par-
ticularlywell is to use estimates of the samplemean and standard deviation
from the quartiles, as in Wan, Wang, Liu, and Tong (2014) (throughout, we
make use of the C3method derived there, setting the δ′

i threshold to 4.5 stan-
dard deviations above themean thus estimated). Still, we found that results
are typically quite invariant to this particular choice, especially in real-life
data sets. Finally, we note that our algorithm can be run interactively, so
the user can analyze the histogram of the distribution after each iteration to
judge whether the choice of threshold is reasonable and thus be confident
in the results.
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492 L. Dyballa and S. Zucker

Figure 20: Optimal scales and associated normalized volume ratios, δ′
i , at dif-

ferent iterations of algorithm 1 on the data set from Figure 6. The distribution
of δ′

i (left) indicates the connections that are least likely to represent reasonable
geodesics over the underlying manifold. The right column shows G(t) after iter-
ations 2, 5, and 6 (deleted edges in red).

Nodes with δ′
i above the threshold should have their connection to their

farthest neighbor deleted. Ideally, only one such connection is pruned af-
ter each iteration; however, should that become impractical with large data
sets, a compromise is to limit the pruning, at each iteration, to a single edge
from each node that is above the threshold (giving the chance for its δ′

i value
to be updated before the next pruning).

3.5.3 Convergence. The algorithm converges at iteration t when no point
i has an outlying δ

′(t)
i (i.e., greater than a statistical threshold). This im-

plies that no edges will be pruned, so G(t+1) = G(t), and therefore no further
changes can occur to either σ (t) or G (t). Note that convergence is guaranteed:
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Figure 21: Optimal scales and associated normalized volume ratio distributions
at different iterations of algorithm 1 on the clustered data set from Figure 6.
Pruned edges (in red) are precisely those connecting the three clusters together.

since at every iteration t an edge is removed, the algorithmmust necessarily
reach a certain t at which all outliers (if there were any to begin with) have
been pruned.

If one is solely interested in obtaining G	 (i.e., not interested in G	), an
alternative convergence condition may be adopted that looks at the distri-
bution of the (normalized) multiscale volume ratio, δ′(t)

iMS
,

δ
′(t)
iMS

≡
∑

j wi j∑
j ai j

(
2√
π

)d̃i

, (3.28)

analogous to equation 3.25 but using the weights from G (t) directly. Since
the multiscale kernel takes into account the interaction of individual scales,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/3/453/2071882/neco_a_01566.pdf by Yale U
niversity user on 12 Septem

ber 2023



494 L. Dyballa and S. Zucker

Figure 22: Optimal scales and associated normalized volume ratios, δ′
i , after

each iteration of the algorithm on the data set from Figure 28 (here, seen from
a lateral view). The number of initial connections in G(0) (Gabriel graph) is very
large, so the initial distribution of δ′

i shows two modes. However, ratios in the
right-side peak are very high and are therefore easily identified as outliers. The
algorithm converges soon after all edges crossing the gap are eliminated.

the distribution of δ′
iMS

will be typically tighter than that of δ′
i (i.e., some of

the excessively large scales might be compensated by small neighboring
scales). Therefore, one may wish to allow for an earlier convergence when
there are no remaining outliers in the distribution of δ′

iMS
.

Finally, in applicationswhere it is required thatG	 be connected, pruning
can simply be stopped before disconnection. Naturally, G	 is always con-
nected up to machine precision or some numerical tolerance.
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Figure 23: Sampled Swiss cheese results (cf. Figure 2). The original sampled
points (true holes outlined) are shown, together with the converged graphs. In
the sparse case (bottom), sampling is close to locally uniform so not all holes
are correctly inferred. As sampling gets denser (top two rows), no holes are
violated.

In closing this section,we return to one of our introductory examples and
show, in Figure 23, the resulting graphs for the sampling Swiss cheese pat-
terns (from Figure 2). When sampling is too sparse (bottom), there is only
somuch that can be inferred, and not all holes are free of edges after conver-
gence. As sampling gets denser, however, the algorithm correctly identifies
that edges across holes should be pruned (middle). When it is very dense
(top), even the initial Gabriel graph is able to correctly infer the true holes.

3.6 Comparison with Other Kernel Methods. We now compare the
data graphs obtained using our iterated adaptive neighborhoods (IAN)
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496 L. Dyballa and S. Zucker

Figure 24: (Top) The stingray data set and the converged graphs, G	 and G	;
pruned edges are shown in red. (Bottom) Other algorithms produce qualita-
tively different graphs depending on the neighborhood size parameter, k. All
graphs shown are weighted (using a continuous kernel) except for the k-nearest
neighbors graph (bottom row). Edge weights are visualized as the intensity of
the line segments (each wi j is divided by the kernel value when ri j equals the
scale, for a fair comparison across algorithms).

with those from other popular manifold learning methods. In Figure 24,
a synthetic “stingray” data set exhibits a transition of apparent dimension
from 2 (body) to 1 (tail), a variation of the scenario explored in Figure 4.
Points were uniformly sampled, with 20% deleted at random.

Our converged, unweighted graph,G	 (see the top row in Figure 24), can
be compared with the traditional k-nearest neighbors graph (bottom row),
used in a variety of methods, including Isomap (Tenenbaum et al., 2000).
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In the latter, when k = 2, the tail exhibits perfect connectivity, but the body
is too sparse. If k = 4, the body is more properly connected, but the tail be-
comes overly connected, and “folding” or “short circuits” start to appear.
Finally, for k ≥ 8, the connectivity is inappropriate as the tip of the tail con-
nects directly to the body. In contrast, G	 manages to retain a minimally
connected tail while covering the body almost everywhere, creating appro-
priate edges acrossmany of the sampling gaps (comparewith the holes that
remain in the k-NN graph with k= 4, some of which are present even when
k = 8).

Our weighted graph, G	, can be compared against methods that use a
gaussian-like kernel and where each point has an individual scale. Some
of these methods were described in section 2.1: t-SNE (van der Maaten &
Hinton, 2008), UMAP (McInnes et al., 2018), self-tuning (Zelnik-Manor &
Perona, 2004), and variable bandwidth (Berry et al., 2015; Berry & Har-
lim, 2016); their resulting connectivity can be visualized in Figure 24, where
edges have intensity proportional to their weight.

In Figure 25, we visualize the individual scales resultant from each of
these methods. Each σi is represented, around each point i, as the level set
corresponding to a (single-scale) kernel value of 0.75. At the top, we see that
the scales found by our kernel seem to nicely conform to the space between
each point and its neighbors. Especially illuminating is what happens along
the tail, where scales either “expand” or “shrink” so as to minimally cover
the spaces between neighboring points; this illustrates what our scale op-
timization achieves. Among the other methods, with few exceptions, the
scales seem to cover either too much (collapsing the tail on itself) or too
little (leaving holes in the body).

The weighted graphs in Figure 24 reveal the result of the interaction be-
tween these individual scales (namely, the edgeweights). Our G	 (top right)
manages to cover almost the entire body with edges, while keeping the tail
minimally connected—in fact, resembling the unweighted version in G	,
and therefore respecting the original curvature and reach. Other methods,
in contrast, have a hard time achieving both things with a global value
for k. In t-SNE, the scales over the body are much smaller when k ≤ 4,
so its weighted graph looks too sparse; for k ≥ 8, the scales over the tail
become too large, and therefore strong edges appear, connecting it to the
body. In UMAP, the scales do not grow as much with increasing k, but at
k = 4, the body in the weighted graph is still too sparse, while for k ≥ 8,
the tail is strongly connected to the body. With the self-tuning, scales seem
to grow faster with k, while with variable bandwidth, this growth is some-
what counteracted by the action of their global scale, ε (see equation 2.7).
In fact, the graph that most resembles our own G	 is the one using the vari-
able bandwidth kernel with k = 2, the main difference being that the big
sampling gap near the tip of the body is poorly connected, while in our
case, it is slightly overly connected (due to connections in G	 crossing that
gap).
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498 L. Dyballa and S. Zucker

Figure 25: Individual scales obtained using our algorithm (top) compared to
other methods (bottom table), as represented by their level sets for a (single-
scale) kernel value of 0.75.

4 Applications

We now provide examples of application of our kernel to three different
manifold learning tasks: dimensionality reduction, bymeans of a nonlinear
embedding algorithm; geodesic estimation, which typically finds applica-
tion in computational geometry, vision, and graphics; and local intrinsic
dimensionality estimation.

4.1 Low-Dimensional Embeddings. Dimensionality reduction is now
ubiquitous in visualization of high-dimensional data. Several methods
exist (Saul, Weinberger, Sha, Ham, & Lee, 2006; Lee & Verleysen, 2007;
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Goldberg & Ritov, 2009; van der Maaten et al., 2009), and most of the
nonlinear methods are manifold based (Roweis & Saul, 2000; Tenenbaum
et al., 2000; Roweis, Saul, & Hinton, 2001; Hinton & Roweis, 2002; Belkin
& Niyogi, 2003; Donoho & Grimes, 2003; Zhang & Zha, 2004; Coifman &
Lafon, 2006; Weinberger & Saul, 2006; van der Maaten & Hinton, 2008;
Tang, Liu, Zhang, & Mei, 2016; McInnes et al., 2018; Moon et al., 2019).
Given a collection of points in high-dimensional space sampled from a low-
dimensionalmanifoldM, the goal is to find a good parameterization for the
data in terms of intrinsic coordinates overM, which in turn can be used to
produce a low-dimensional embedding.

In surveying the literature, it is common to find a heuristic, or a range of
values, suggested for choosing the neighborhood size (see section 2.1), but
rarely do we see examples of the sensitivity of the results to that choice. In
this section, we ran a few of the most popular methods using a wide range
of values for the kernel scale parameter, k, and compared their results to
those using our own kernel.

We have limited our comparison to some of the embeddingmethods that
use a neighborhood kernel and for which pairwise information is sufficient
as input (i.e., do not require positional information): diffusion maps (Coif-
man et al., 2005; Coifman & Lafon, 2006), Isomap (Tenenbaum et al., 2000),
t-SNE (van der Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018).
As shown in Figures 26 to 28, results can vary qualitatively depending on
the choice of k. Five values were tested for each data set, spanning a wide
range of scales and different geometries. Next, we summarize each of these
methods and their results.

4.1.1 Diffusion Maps with Self-Tuning Kernel. Diffusion maps are based
on the spectral properties of the random walk matrix (normalized graph
Laplacian) over the weighted data graph; integration over all paths in
the graph makes diffusion distances, in principle, more robust to “short-
circuiting” than graph geodesics. For better comparison with IAN, instead
of the standard single-scale gaussian kernel, we use the self-tuning ap-
proach of Zelnik-Manor and Perona (2004) from equation 2.6. Our kernel
was applied to diffusion maps by directly using G	 as a similarity matrix
(weighted adjacency matrix). We use the diffusion map parameters α = 1
and t = 1 (cf. Coifman & Lafon, 2006).

With the stingray data set (see Figure 26), we see that the fully extended
tail at k = 2 becomes progressively more folded and compressed as k in-
creases. The body appears contracted at k = 2 but expands with larger k.
Using our own G	, although we obtain excellent embeddings of both body
and tail (right-most column), they are represented by separate sets of coor-
dinates (two for the body, and a third for the tail), which happens due to
the change in dimensionality.

Applying self-tuning to the spiral data set (see Figure 27), only k= 2 and
k = 4 were able to prevent folding. The bent plane (see Figure 28) was more
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500 L. Dyballa and S. Zucker

Figure 26: Running different embedding algorithms on the stingray data set
(see Figure 24). Different choices of the neighborhood size, k, may produce qual-
itatively different results, depending on the algorithm. Running those same al-
gorithms using the IAN kernel (right) typically gives a reasonable result. Refer
to the main text for details.

tolerant, with good results for all k except 64, for which the plane remained
folded. When using IAN, a good parameterization was obtained for both
data sets.

4.1.2 Variable Bandwidth Diffusion Embedding. We also tested a variant of
diffusion maps using the variable bandwidth kernel of Berry et al. (2015),
in which a distinct type of multiscale kernel is proposed, along with a
specific normalization of the weighted graph Laplacian. Because it com-
putes an other global scale, ε, based on the individual scales, in order to
apply our algorithm to this method we replaced the density estimates, qε

(see equation 2.7), with the inverse of our optimal scales. We used α = 0
and β = −1/2, as recommended in Berry and Harlim (2016); eigenvectors
were scaled by the square root of the inverse of their respective eigenvalues
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Figure 27: Running different embedding algorithms on the spiral data set (top),
in which points are sampled from a unit-speed parameterized Archimedean
spiral. Different choices of the neighborhood size, k, may produce qualitatively
different results, depending on the algorithm. Running those same algorithms
using the IANkernel (right) typically gives a reasonable result. Refer to themain
text for details.

(Saerens, Fouss, Yen, & Dupont, 2004; Noé, Banisch, & Clementi, 2016), fol-
lowing the implementation in Banisch, Thiede, & Trstanova (2017).

This method produced good embeddings for the stingray, especially for
k = 8 (see Figure 26). For the spiral (see Figure 27), using k ≤ 8 caused some
points to drift apart, and although it returned basically the original curve
when k = 16 or 32, a spectral algorithm such as this is expected to “unroll”
the spiral, finding a good (1D) parameterization of it. The same happened
with the bent plane (see Figure 28), which could not be embedded into two
coordinates for any choice of k. Using our scales, however, the algorithm
managed to find appropriate parameterizations for all three data sets.
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Figure 28: Running different embedding algorithms on the bent plane data set
(top), generated by extending a unit-speed parameterized catenary curve into
two dimensions. Different choices of the neighborhood size, k, may produce
qualitatively different results, depending on the algorithm. Running those same
algorithms using the IANkernel (right) typically gives a reasonable result. Refer
to the main text for details.

4.1.3 Isomap. Isomap applies classical multidimensional scaling (MDS)
to geodesic distances computed as shortest paths over a k-nearest neighbors
graph (see equation 2.2). Because the graph is unweighted, this method is
particularly sensitive to the choice of k. Our kernel was applied to Isomap
by directly replacing the k-NN graph with G	.

With the stingray (see Figure 26), Isomap produced a good embedding
with k = 4. The result with k = 2 was completely wrong (an additional tail
appears), andwith k= 8, the tip of the tailwas disconnected.With k= 16 and
k = 32, it essentially returned the original data, without any dimensionality
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reduction. Our G	 improved on the result of k = 4 by making the points in
the body more uniformly spread.

The spiral (see Figure 27) was properly embedded (1-dimensional) only
when k ≤ 4. With the bent plane (see Figure 28), good results were obtained
for k between 4 and 16, but k = 2 produced 1-dimensional curves, and k =
64 did not completely unfold it. Our G	 produced the correct mapping in
either case.

4.1.4 t-SNE and UMAP. t-SNE and UMAP are relatedmethods that have
gained popularity in recent years (Becht et al., 2019). Both compute sim-
ilarities between data points using individual scales based on log2 k (sec-
tion 2.1) and adopt a secondary kernel for computing similarities between
embedded points: t-SNE uses a Student t-distribution (Cauchy kernel),
while UMAP uses an nonnormalized variant requiring a hyperparame-
ter, min_dist. In t-SNE, embedding coordinates are initialized at random,
while UMAP adopts the strategy of refining an initial spectral embedding.
Both then optimize their embeddings by running gradient descent on an
information-theoretic cost function between similarities in input space ver-
sus embedded space: t-SNE minimizes the KL-divergence; UMAP uses a
variant of cross-entropy.

Alternative initializations are typically used with t-SNE (e.g., PCA)
to improve results (Kobak & Berens, 2019; Linderman, Rachh, Hoskins,
Steinerberger, & Kluger, 2019; Kobak & Linderman, 2021); in our experi-
ments, for better comparison with UMAP, we used a spectral embedding
initialization computed from its own symmetrized similarity matrix (see
equation 2.10). The IAN kernel was applied to t-SNE by replacing the in-
dividual scales (see equation 2.8) with those in σ	; with UMAP, because a
different kernel function is used, we directly replaced the weighted graph
(with adjacencies given byUi j in equation 2.12) with G	.

We executed t-SNE assigning the various k values to the perplexity pa-
rameter, leaving the remaining parameters to their defaults in the scikit-
learn implementation (Pedregosa et al., 2011). We used the Barnes-Hut
method (van der Maaten, 2014) for the cylinder data set and the “exact”
method for all others. In UMAP, the n_neighbors parameter was set to k,
with remaining parameters using default values (in particular, min_dist =
0.1). Because of the stochastic nature of both algorithms (even when using
a fixed initialization), different runs will produce slightly different results.
Therefore, in order to avoid cherry-picking, both algorithms were executed
a single time, using the same random seed.

Results for the stingray (see Figure 26) were quite analogous between
the two algorithms: both produced artificial clustering for k ≤ 8, while for
k ≥ 16, the tail began to fuse with the body. The gaps in sampling within
the body were accentuated by both algorithms, even at k = 32, where we
see a big hole in the UMAP embedding; in t-SNE, it almost breaks into two
pieces (despite the large neighborhood size). This example is illustrative of
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how much an embedding algorithm based on attractive versus repulsive
forces can end up exaggerating nonuniform sampling.

The spiral (see Figure 27) was disconnected by t-SNE for all values of k
except 8. UMAP produced reasonable results for k between 4 and 8; how-
ever, for k = 2, a multitude of clusters was obtained, and when k ≥ 16, the
curve twisted over itself. Using our kernel (right column) produced a con-
nected, non-self-intersecting curve. Neither algorithm was capable of re-
turning a good arc-length parameterization of the spiral, however.

With the bent plane (see Figure 28), although both algorithms succeeded
in unfolding it, t-SNE was only able to produce a fully two-dimensional
plane (with no gaps) when setting k = 32 (not shown) or 64, while UMAP
required k ≥ 16. Both gave reasonable results using our kernel.

4.1.5 A Higher Dimensional Example. Because all of the examples above
have d ≤ 2, we also tested our kernel when applied to a higher-dimensional
manifold, namely, a 5-dimensional cylinder (R1 × S4) with radius 1 and
length 3, sampled uniformly at random (N = 8403, ambient spaceR6). Here
we used a pure, connectedmanifold with no bottlenecks and low curvature
in order to simplify interpretation.

Figure 29 shows two-dimensional embeddings obtained by applying
our kernel to different embedding algorithms. Although all correctly pro-
duced an oblong, various degrees ofmixing of the original color labels were
observed, which can be used to qualitatively indicate the quality of the
embedding schemes. A quantitative assessment was computed as the rank
correlation coefficient, or Kendall’s tau (Kendall, 1948; Knight, 1966) be-
tween the ranking (positional order) of each point along the main axis in
the original versus embedded spaces.

Both t-SNE andUMAPproduced similar or better resultswhen using the
IAN kernel (we set k = 27 based on the mean degree found in G	, compat-
ible with d = 5; results were robust to this particular choice). Despite their
current popularity (e.g., Wattenberg, Viégas, & Johnson, 2016; Arora, Hu,
& Kothari, 2018; Chan, Rao, Huang, & Canny, 2018; Dimitriadis, Neto, &
Kampff, 2018; Becht et al., 2019; Kobak & Berens, 2019; Fujiwara, Ida, Kanai,
Kumagai, &Ueda, 2021; Kobak&Linderman, 2021;Wang,Huang, Rudin,&
Shaposhnik, 2021), they produced considerably jittered outputs, however,
implying that the original neighborhoods were not preserved. This appears
to be caused by an attempt to reproduce the spherical shape of the cylinder’s
base along the main axis, so different “slices” ended up projected on top of
one another. However, UMAP produced jittered results even when set to
return six components (as in the original space) instead of two.

Diffusion maps using IAN resulted in little mixing except near the
boundaries, so neighborhoods were better preserved. Running it with ei-
ther self-tuning or variable-bandwidth kernels using k = 27 gave compa-
rable results; Isomap also produced excellent results, with tau=0.98 (not
shown).
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Figure 29: Performance of different embedding algorithms on a 5-dimensional
cylinder (R1 × S4) sampled uniformly at random (N = 8403, ambient space R6).
(Top left) Original data, X , projected onto first two coordinates (points colored
according to their position along the cylinder’s long axis). Other plots show
embeddings using different kernels and/or algorithms. The resulting degree
of mixing of the original color labels indicates the quality of the embedding.
A quantitative assessment (plots to the left of each embedding) was computed
as the rank correlation coefficient, tau (see the main text), between the ranking
(positional order) of each point along the horizontal axis in the original versus
embedded spaces (a value closer to 1 indicates fewer exchanges in the original
order). Use of the IAN kernel produced similar or better results with both t-SNE
and UMAP (k = 27 was set based on the mean degree of G	, compatible with
d = 5). Diffusionmaps resulted in very little mixing except near the boundaries.

4.2 Geodesic Computation. Using the unweighted graph, G	, one may
immediately compute graph geodesics (shortest paths using distances in
ambient space as edge lengths) as an estimate of the geodesics over M.
The latter are likely to be underestimated by the former when sampling
is sparse (Bernstein, De Silva, Langford, & Tenenbaum, 2000), even when
the graph connectivity is correct, for example, due to curvature (cf. sec-
tion 3.3.2). It seems a good idea, then, to incorporate the continuous ker-
nel values present in its weighted counterpart, G	, as a means to possibly
improve geodesic estimation.

We propose to use the heat method for geodesic computation of Crane
et al. (2013). It consists of solving the Poisson equation to find a function,
φ, whose gradient follows a unit vector field, X , pointing along geodesics;
X can be obtained by normalizing the temperature gradient, ∇u, due to a
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506 L. Dyballa and S. Zucker

Figure 30: Geodesic estimation for the bent plane from Figure 28; yellow points
are closer to the source (marked with an arrow in the ground truth plot). (Top)
Different views of the data in 3D, with points colored according to the heat
geodesics computed from G	. (Middle) Geodesics displayed on an unbent ver-
sion of the data set: heat geodesics approximate well the true geodesics over
M, and graph geodesics computed from G	 follow closely. (Bottom) Graph
geodesics computed from k-NN graphs using different choices of k. Choosing
k = 16 gives near-perfect results, but k = 4 shows distortions, and k = 66 misses
completely.

diffusion process in which heat, u, is allowed to diffuse for a short time.
Although this method is tailored to applications where positional infor-
mation and dimensionality are known (in particular, surfaces in R

3), here
we apply it to G	, since discrete versions of the operators used (Laplacian,
gradient, and divergence) can be readily defined on a weighted graph (see
Desquesnes, Elmoataz, & Lézoray, 2013).

Despite using pairwise information only, our method produces reason-
able estimates, as shown in Figures 30 and 31. To understand why, notice
that IAN indirectly solves for a weighted graph for which a random walk
starting at node i has a higher probability of reaching a node in its discrete
neighborhood, N (i), than any other nonneighboring node. Given that ran-
dom walks are closely related to diffusion over a graph, one should expect
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Figure 31: Geodesics estimated using the heat method applied to G	 are close to
the ground truth (top). Other kernels yield suboptimal results for most choices
of k (bottom); in particular, notice how the tip of the tail is usually inferred to
be closer than it should (due to its being directly connected to the body in the
underlying graph; see Figure 24). Yellow points are closer to the source (marked
with an arrow in the ground truth plot).

G	 to be able to provide reasonable information about how a diffusion pro-
cess propagates over M. In other words, the Laplacian obtained from G	

should be a good approximation of a continuous operator over M. This is
empirically confirmed by our results.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/3/453/2071882/neco_a_01566.pdf by Yale U
niversity user on 12 Septem

ber 2023



508 L. Dyballa and S. Zucker

In Figure 30, heat geodesics computed from G	 for the bent plane data set
approximate well the true geodesics overM, and graph geodesics obtained
from G	 follow closely. Comparison with those from a naive k-NN graph
illustrates that the choice of k is critical (compare with the bottom row of
Figure 28).

In Figure 31, we compare the results using weighted graphs from vari-
ous kernels on the stingray data set; interestingly, heat geodesics computed
from G	 hold reasonably well even when facing a continuous change in di-
mensionality. (The diffusion time parameter used by the heat method was
optimized for each data set.)

4.3 Local Dimensionality Estimation. Intrinsic dimensionality (ID)
estimation is tightly associated with dimensionality reduction tasks, es-
pecially in manifold learning, where knowledge of d can help, among
others, to determine the appropriate number of embedding dimensions. In-
formally, IDmay be seen as theminimumnumber of parameters required to
accurately describe the data. In the context of manifold learning, it is typ-
ically equivalent to the topological dimension of M (e.g., a general space
curve has dimensionality 1 since it requires a single parameter, arc length).

There are many different ways to estimate it (Camastra, 2003; Camastra
& Staiano, 2016); global approaches are typically divided into two. The first
group is based on some variant of PCA(e.g., Fukunaga &Olsen, 1971; Little
et al., 2017) and uses the number of significant eigenvalues to infer dimen-
sionality; these may be applied globally or by combining local estimates.
The second group of methods, termed geometric (or fractal, when a nonin-
teger ID is computed), exploits the geometric relationships in the data, such
as neighboring distances. Some are based on estimating packing numbers
(Kégl, 2002) or on distances to nearest neighbors (Trunk, 1976; Pettis, Bai-
ley, Jain, & Dubes, 1979; Verveer &Duin, 1995; Costa, Girotra, &Hero, 2005;
Facco, d’Errico, Rodriguez, & Laio, 2017; Block et al., 2021).

Among the most popular are the correlation dimension methods (Ca-
mastra & Vinciarelli, 2002; Grassberger & Procaccia, 2004; Hein & Audib-
ert, 2005), a variant of which has been specifically applied in the context of
determining an appropriate kernel width for manifold learning (see Coif-
man et al., 2008; Berry et al., 2015; Haghverdi et al., 2015). The dimension
is computed as the slope of a log-log plot of the number of neighboring
points versus neighborhood radius (see section 2.1). A recent variation is
Kleindessner and Luxburg (2015); others cover the difficult case of high ID
(Camastra & Vinciarelli, 2002; Rozza, Lombardi, Ceruti, Casiraghi, & Cam-
padelli, 2012).

In our scenario, since we do not assume a pure manifold (section 3.1),
we focus on local (i.e., pointwise) ID estimation approaches, namely, those
in which dimension is estimated within a neighborhood around each data
point (e.g., Farahmand, Szepesvári, & Audibert, 2007; He, Ding, Jiang, Li, &
Hu, 2014). This notion can be formalized as the local Hausdorff dimension
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(Young, 1982; Camastra & Staiano, 2016), and a global estimate is typically
found by averaging over local values.

Apopular approach is the maximum likelihood estimator (MLE) of Lev-
ina and Bickel (2004), which computes local dimension based on k-nearest
neighbors:

m̂k(xi) =
⎛
⎝ 1
k − 1

k∑
j=1

log
Tk(xi)
Tj(xi)

⎞
⎠ , (4.1)

where Tj(xi) denotes the distance between xi and its jth nearest neighbor.
We use this method in our experiments, in which we compute a finalmk(xi)
by averaging m̂k(xi) over i’s neighbors in order to reduce the variance of the
local estimates (in the original, this is done over all data points).

Notice that our kernel can be readily used with this method by simply
replacing the k-NN graph with G	, therefore summing over nodes in the
neighborhood N (i) instead of over the k nearest. Additionally, we propose
a correlation dimension-based method that allows for local estimates. We
describe it next, then compare its results with those from the MLE method.

4.3.1 Algorithm: Neighborhood Correlation Dimension. Our proposed
method is adapted from the approach from Hein and Audibert (2005; also
used in Coifman et al., 2008; Haghverdi et al., 2015; Berry et al., 2015), where
an estimate of correlation dimension is obtained using a general kernel. It
consists of computing a curve, Z(σ ), over all pairwise kernel values (e.g., a
gaussian) at different values of the scale parameter σ :

Z =
N∑
i=1

N∑
j=1

exp
− ∥∥xi − x j

∥∥2
2σ 2 . (4.2)

As in Coifman et al. (2008) (and analogous to equations 3.17 to 3.19), by
assuming that for small values of σ the manifold M looks locally like its
tangent space, Rd, we have

Z ≈ N2(
√
2πσ )d

vol2(M)
, (4.3)

which, after taking the logarithm, yields

logZ ≈ d log σ + log
N2(2π )d/2

vol(M)
, (4.4)
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510 L. Dyballa and S. Zucker

so the slope of logZ× log σ can be used to estimate the global dimension-
ality of the manifold, d. To do so, one typically looks for a region where
this slope is most stable (i.e., the curve is approximately linear). Automated
ways of finding the slope of such a region are by linear regression of the
middle portion of the curve (Hein & Audibert, 2005) or by taking a point of
maximum of Z′(σ ; Berry et al., 2015; Haghverdi et al., 2015).

However, because we assume that intrinsic dimension may vary over
M, global averages cannot work in general. Moreover, nonuniform density,
curvature, ormultiple connected componentsmay all createmultiple peaks
for Z′(σ ), so inspection of the log-log plot cannot be automated.

Therefore, we modify this approach to use individual Zi(σ ) curves for
each data point xi. To keep the summation local, points are restricted to
those in the neighborhood of i in G	. Here, it is advantageous to work with
an extended neighborhood (e.g., by also including neighbors-of-neighbors)
due to the theoretical limit to the value of the dimension d that can be accu-
rately estimated given a set of N points (Eckmann & Ruelle, 1992), namely,
d < 2 log10N. In fact, ifN is large compared to d, even additional hops away
from i may be considered. Because such extension is done by following
edges in G	 (as opposed to naively expanding a ball in R

n), we may thus
obtain a larger (approximately tubular) neighborhood around xi without
ever leaving the manifold. We denote such a neighborhood N ′(i), as op-
posed to the immediate neighborhood N (i); throughout this section, both
will include the node i itself.

Our algorithm involves the following steps:

1. For each data point xi and its extended neighborhood, N ′(i), define
Zi as

Zi(σ ) =
∑

j∈|N ′(i)|
exp

− ∥∥xi − x j
∥∥2

2σ 2 . (4.5)

2. Analogous to equation 4.4, by taking the logarithm, we have that the
slope of the logZi × log σ curve, that is,

Z′
i(σ )

def= d logZi

d log σ
, (4.6)

is an estimate of di, the dimension around xi, as a function of σ . Com-
putationally, it is desirable to use the closed-form expression for ac-
curacy:

Z′
i(σ ) =

∑|N ′(i)|
j=1

∥∥xi − x j
∥∥2 exp −‖xi−x j‖2

2σ 2

σ 2
∑|N ′(i)|

j=1 exp −‖xi−x j‖2

2σ 2

. (4.7)
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3. A region of stability of Z′
i (i.e., a local maximum) is then an estimate

of the dimension around xi.

Alocalmaximum (“peak”) inZ′
i(σ ) can be interpreted as follows: as a ball

around xi is expanded, the rate at which neighbors are seen has stopped in-
creasing andmust decreasewith larger σ , since no additional neighbors can
be found after the ball encompasses all points inN ′(i). Underlying is the as-
sumption thatN ′(i) is sufficiently representative of the manifold around xi.
If neighbors are approximately uniformly distributed and dimensionality
is constant within it, then Z′

i should remain constant over some appreciable
range of σ , whence the notion of “stability.”

Even though we work with a subset of X , there may still be multiple
maxima in Z′

i, for example, when the neighbors of xi are far from uniformly
distributed around it. So operationally, we use the globalmaximumofZ′

i, as
this takes into account the information given by themajority of neighboring
points. Now, because Zi → 1 as σ → 0, and Zi → N as σ → ∞, the slope of
logZi must approach 0 at both extremes; thus, the global maximum of Z′

i
must also be a relative one (a “peak”).

We now proceed to avoid boundary effects by recentering neighborhoods.
The boundary, ∂M, of a d-dimensionalmanifold (when present) has dimen-
sionality d − 1 (Lee, 2010). The correlation integral approach often fails for
these; it typically returns d/2 for points in ∂M, since they have roughly
half the number of neighbors compared to interior points. For the same rea-
son, it tends to also underestimate d for points near the boundary. Since we
work locally over a graph, we can regularize the computation by moving
the focus to a more central, nearby point (thus regularizing over sampling
artifacts as well):

4. Letting N (i) be the set of adjacent nodes to i in G	 and including i
itself, define ῑ as the node j ∈ N (i) with the smallest median squared
distance to all points in the extended neighborhood N ′(i):

ῑ = argmin j∈N (i)median
{‖x j − xl‖2),∀l ∈ N ′(i)

}
. (4.8)

Thus, ῑ is, in effect, the most central node in i’s immediate neighbor-
hood.8

5. Use ῑ as the point from which kernel values are computed for Zi(σ )
by replacing xi with xῑ in equation 4.5, thereby shifting the center of
estimation of di. This assumes that the dimension does not change
abruptly across neighboring points. Denote the resulting estimate by
d̂i.

8
Since we know G	, graph-theoretical quantities such as shortest-path betweenness

centrality (Freeman, 1977; Brandes, 2001) may also be used here.
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6. As with theMLEmethod (see section 4.3), wemay obtain a smoother
estimate, d̂′

i, by averaging over immediate neighbors in N (i):

d̂′
i = 1

|N (i)|
∑
j∈N (i)

d̂ j. (4.9)

Finally, recall from section 3.5 that we also obtain a degree-based esti-
mate, d̃i, when computing volume ratios (see equation 3.24); we can use
this information to further improve our results. A final estimate, d	

i , is then
obtained as follows:

7. To avoid overestimating the true dimension, compute an average d̃′
i

over N (i) as

d̃′
i = 1

|N (i)|
∑
j∈N (i)

⌊
d̃ j
⌋ = 1

|N (i)|
∑
j∈N (i)

⌊
log2 deg( j)

⌋
. (4.10)

8. Compute the optimal estimate, d	
i , as

d	
i = max

{
d̂′
i, d̃

′
i

}
. (4.11)

Application of this technique and comparisonwith othermethods are given
next.

4.3.2 Experimental Results. Results of applying our neighborhood corre-
lation dimension (NCD) algorithm compared to Levina and Bickel’s MLE
estimator (see equation 4.1) are shown in Figures 32 to 34. For NCD, we
compared results using IAN against those from k-NN graphs using various
values of k (a range was chosen that included the best results for each algo-
rithm). The IAN kernel was applied by using the discrete neighborhoods of
G	, recentered using neighbors-of-neighbors at most three hops away from
i (see equation 4.8).

Using IAN, we obtained near-optimal results for the stingray and the
bent plane. For the 5-dimensional cylinder, the dimension was underes-
timated (mean 4.6). Methods based on correlation dimension are known
to underestimate the true d when the sample size is not sufficiently large
(Camastra & Staiano, 2016). In these cases, the method of Camastra and
Vinciarelli (2002) can be applied a posteriori to improve results.

For the MLE method, using large values of k tended to improve results,
but only when dimension was constant (as in the bent plane and cylin-
der data sets). For the stingray, however, no value of k gave correct results:
small values of k increased the dimension estimates due to a bias, and large
values tended to produce a uniform value throughout (thus giving better
estimates only when d is constant). We found that computing the neigh-
borhood averages using the correction of MacKay and Ghahramani (2005),
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Figure 32: Estimation of local intrinsic dimension on the stingray data set. The
top row shows results for our neighborhood correlation dimension (NCD) al-
gorithm using k-NN graphs with various k and using adaptive neighborhoods
from G	 (IAN). The bottom row shows results using Levina and Bickel’s MLE
estimator, which was sensitive to the choice of k: using a small-value grossly
overestimated the dimension over the body, and a large k ignored the geometry
of the tail. NCD using IAN gave the best results, estimating dimension 2 for the
body and 1 for the tail, with intermediate values for the transition tail-body and
the boundary.

averaging the inverse of the estimators to reduce bias when k is small,
gave slightly better results. (We did not use the final smoothing procedure,
which involves choosing two additional neighborhood-size parameters, k1
and k2.)

Finally, we confirmed these observations by testing two additional data
sets with non-uniform dimensionality (see Figure 35). Again, while our al-
gorithm achieved good results locally, there was no single value of k that
allowed MLE to find appropriate local estimates everywhere.

5 Summary and Conclusion

In theory, applying the manifold assumption requires prior knowledge
about the manifold: its geometry, topology, and how it was sampled. In
practice, however, these manifold properties are rarely known. Instead,
one typically imposes an assumption about the manifold’s dimension, d,
which in turn suggests that k = 2d nearest neighbors should suffice. This is
how many—most!—of the data graphs underlying manifold inference and
nonlinear dimensionality reduction are built. Since it is difficult to know

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/3/453/2071882/neco_a_01566.pdf by Yale U
niversity user on 12 Septem

ber 2023



514 L. Dyballa and S. Zucker

Figure 33: Estimation of local intrinsic dimension on the bent plane data set.
As with the stingray (see Figure 32), results are sensitive to the choice of k, but
here, a wider range of values work due to the constant dimension. For NCD,
results with IAN are comparable to those using the best k-NN graph (k = 16).
With MLE, larger k improved results (comparable to those using NCD).

Figure 34: Estimation of local intrinsic dimension for the 5-D cylinder data set
of Figure 29. With NCD, results using IAN underestimated the true dimension-
ality (mean 4.63), but are still better than using a k-NN graph with arbitrary k.
WithMLE, larger values of k gave tighter distributions centered near the correct
value (mean 4.86 for k = 32).

whether this assumption about dimension is accurate, it is common prac-
tice to test a few values of k and choose among the results.

Apart from the subjective nature of this choice, there are more general
problems. Manifolds may not have a fixed dimension, they may be curved
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Figure 35: Dimensionality estimation for two data sets with nonuniform local
di: a “tiara” (top row),where dimension varies smoothly from2 to 1, and a “spin-
ning top” (bottom row, middle cross-section shown), where dimension reduces
from 3 to 1 as one moves from the bulky part toward the tip. Using the optimal
k for MLE could not produce good results for the entire data set (here, k = 32
for both data sets). The NCDmethod, in contrast, was able to correctly adapt to
the local geometry by taking advantage of the data graph produced by the IAN
kernel.

or with boundary, and sampling may vary. The intrinsic dimension may
vary across the data, and so should the number of neighbors. In such cases,
finding a compromise k may be far from ideal. We suggest a different ap-
proach: that one should build the nearest-neighbor graph, and hence the
graph-Laplacian approximation, in as data-driven a manner as possible,
while being aware of the manifold properties.

Our algorithm of iterated adaptive neighborhoods (IAN) starts with a
conservative assumption: that nearest neighbors should have no “nearer”
neighbors between them.We then alternate between a discrete and a contin-
uous view of neighborhood graphs and use a volumetric statistic to check
for outliers. A linear program keeps the scales minimal while providing a
global cover. This optimization is convex, so results are deterministic; other
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approaches, such as t-SNE and UMAP, are stochastic, so depend critically
on the initialization.

Our kernel has been applied successfully to a variety of data sets,
and compared against some of the most popular algorithms available. In
all cases, our performance dominates. Furthermore, IAN can be incorpo-
rated directly into many embedding algorithms, including diffusion maps,
Isomap, UMAP, and t-SNE, improving their results. Most of these algo-
rithms involve several free parameters; we have none other than the robust
requirement for an outlier.

Other popular embedding algorithms, such as LLE (Roweis & Saul,
2000), approximate the tangent space over a local neighborhood around
each point. Although not explored here, using G	 to automatically provide
such neighborhoods is straightforward (analogous to what was done in
section 4.3 to estimate the local dimensionality). Applications to clustering
need to be explored.

Our weighted graph has also been applied to geodesic estimation,
achieving comparable results to those obtained from graph geodesics. In
contrast, the graphs obtained from other similarity kernels produced less
than optimal results.

Our unweighted graph has found application in local dimensionality
estimation. Our proposed algorithm, neighborhood correlation dimension
(NCD), takes advantage of the adaptive connectivity of our graph to im-
prove results based on correlation dimension, namely, by restricting the
correlation integral to an approximately tubular neighborhood around xi
inM. As a result, we obtained accurate estimates of the local dimension in
data sets where it is not uniform.

Several theoretical bounds are implied throughout this article; these
need to be proved. Multiscale kernels, such as those from equations 2.6 and
2.7, are known to approximate Laplacian operators asymptotically (Ting,
Huang, & Jordan, 2010; Berry & Harlim, 2016). Using our application ex-
amples as evidence, we conjecture that our version also results in good
approximations.

In conclusion, understanding the interplay between manifold geometry,
topology, and sampling lies at the heart of many data science applications.
We have taken a first step to illustrate how discrete relates to continu-
ous, how local estimates relate to global ones, and how uncertainties in
data gathering relate to both. Applying data science in a way that leads to
rigorous, scientifically appropriate conclusions must take all of these into
account.

Appendix: Greedy Splitting

As an alternative to the optimization from section 3.4 (which can be ex-
pensive when the number of edges in G is very large, mainly due to large
dimensionality), we have developed a greedy approach inwhich scales that
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“C-cover” each edge ei j are assigned in decreasing order of length, ri j (the
Euclidean distance between xi and x j in R

n). We call this algorithm greedy
splitting.

Starting with the edge ei j with largest ri j, set σi = σ j = Cri j, with C ≤ 1,
thereby satisfying σiσ j ≥ (Cri j )2 with equality: we say Cri j is evenly “split”
between σi and σ j. Moreover, since rFNi = rFNj , we know the constraints σi ≤
rFNi and σ j ≤ rFNj are also satisfied.

Continuewith the edge ei j that has the next largest length, ri j. Herewe are
metwith three possible cases inwhich a (re)assignment of scales is needed:

1. If neither of the nodes has been assigned a scale yet, evenly split the
distance between σi and σ j, as above.

2. If one of the nodes does not have a scale yet (without loss of gen-
erality, let that node be j), set σ ′

j to the minimum scale that ensures
σiσ

′
j ≥ (Cri j )2, that is, σ ′

j = (Cri j )2/σi;
3. If both nodes have previously been assigned a scale but ei j is not C-

covered by the current values of σi and σ j, then set the quotient a =
Cri j√
σiσ j

and update both scales: σ ′
i = aσi and σ ′

j = aσ j, thereby evenly
splitting the quotient between the two nodes.

After cases 2 and 3, the updated scales might need to be “rebalanced” in
order to meet the constraints σ ′

i ≤ rFNi and σ ′
j ≤ rFNj . Without loss of gener-

ality, let σ ′
i > rFNi . Then, we set σ ′′

i = rFNi and σ ′′
j = σ ′

j
σ ′
i

σ ′′
i
. Only one of the

two scales may exceed its upper bound: in case 2, this is trivially true
since only the newly assigned scale may be greater than Cri j; in case 3,
since both σi and σ j have been previously assigned, we have σi ≤ rFNi and
σ j ≤ rFNj , as well as ri j ≤ rFNi and ri j ≤ rFNj , so therefore it must be the case
that rFNi rFNj ≥ r2i j = σ ′

i σ
′
j. Note that as a corollary, both scalesmustmeet their

respective constraints after being rebalanced as above.
The above is repeated until all edges have been visited. By covering the

largest edges first, we assign the largest,most constrained scales first, allow-
ing for the later, less constrained scales, to be as small as possible. Because in
most cases this tends to evenly split the scaled edge lengthsCri j between σi
and σ j, the algorithm produces reasonable (but usually suboptimal) results
when compared to the linear program of section 3.4.2.
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