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Highlights
Isotope-assisted metabolic flux analysis
(iMFA) is a mathematical technique that
estimates intracellular metabolic fluxes
for complex biological systems.

iMFA software uses experimental data
(extracellular fluxes, isotope labeling pat-
terns) and a curated network model as
inputs and produces a quantitative met-
abolic flux map as the output.

iMFA determines a set of flux values that
produce the best match between the
simulated and experimental mass distri-
Isotope-assisted metabolic flux analysis (iMFA) is a powerful method to mathe-
matically determine the metabolic fluxome from experimental isotope labeling
data and a metabolic network model. While iMFA was originally developed for
industrial biotechnological applications, it is increasingly used to analyze eukary-
otic cell metabolism in physiological and pathological states. In this review, we
explain how iMFA estimates the intracellular fluxome, including data and net-
work model (inputs), the optimization-based data fitting (process), and the flux
map (output). We then describe how iMFA enables analysis of metabolic com-
plexities and discovery of metabolic pathways. Our goal is to expand the use
of iMFA in metabolism research, which is essential to maximizing the impact of
metabolic experiments and continuing to advance iMFA and biocomputational
techniques.
bution vectors using an iterative optimi-
zation process.

iMFA is essential for the metabolic analy-
sis of complex systems and enables the
discovery of new metabolic pathways.

Advances in iMFA are needed to enable
analysis of dynamic metabolic states,
multicellular co-cultures, and genome-
scale networks. These new tools will sig-
nificantly advance our understanding of
metabolic complexity.
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The metabolic fluxome: a dynamic description of cellular phenotype
A detailed analysis of cellular metabolism is essential for a complete understanding of cellular
function in health and disease, and metabolism is also an important parameter for biotechnol-
ogy applications. Most cell metabolism studies focus on experimentally measured metabolite
concentrations. However, metabolite concentrations can change for varied reasons
(e.g., increased upstream vs. decreased downstream reaction rates) [1]. Alternatively, metab-
olite concentrations could remain unchanged despite changes in flux (e.g., if upstream and
downstream fluxes change by exactly the same amount). Therefore, we gain limited informa-
tion from metabolite concentrations alone.

Metabolic fluxes, defined as themetabolic reaction rate (moles/time), providemuchmore information
than metabolite concentration alone. The fluxome indicates the traffic of carbon and other elements
among metabolites and therefore provides information on both metabolite concentrations and reac-
tion rates. Since the reaction rates depend on upstream and downstream enzyme expression and
activation, the fluxome integrates the cellular metabolome with the transcriptome, proteome, and
regulome to offer a dynamic, comprehensive representation of the cell metabolic state [2,3].

Metabolic fluxes include extracellular fluxes (transport reactions that cross the cell membrane)
and intracellular fluxes. While extracellular fluxes can be directly measured by tracking metabolite
concentrations in the culture medium, intracellular fluxes cannot be directly measured. They,
therefore, must be inferred frommetabolite labeling patterns of metabolites [4]. In simple systems,
metabolic fluxes can be determined by simply measuring how an isotopically labeled nutrient is
converted to intermediate metabolites and secreted products. However, manual analysis is
usually not possible in more complex metabolic systems.

iMFA is a mathematical technique based on optimization, which determines the metabolic
fluxome by fitting metabolic labeling data onto a metabolic reaction network model [5,6]. iMFA
Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6 https://doi.org/10.1016/j.tibs.2023.02.001 553
© 2023 Elsevier Ltd. All rights reserved.

https://orcid.org/0000-0003-2462-2122
https://twitter.com/Clyne_Lab
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tibs.2023.02.001&domain=pdf
https://doi.org/10.1016/j.tibs.2023.02.001
CellPress logo


Trends in Biochemical Sciences

Glossary
Anaplerotic: reactions that replenish
intermediates of a cyclic metabolic
pathway that are diverted toward
biosynthesis, particularly in the case of
TCA cycle intermediates. An example is
the reaction pyruvate + CO2 →
oxaloacetate, which replenishes the
oxaloacetate diverted from the TCA
cycle toward the synthesis of the
aspartic family of amino acids.
Exchange flux: consider a pair of
reversible reactions A ↔ B, where one
reaction, say A → B, has flux v1 and the
other reaction B → A has flux v2 with
both v1 and v2 ≥ 0. In this case, the
exchange flux is the minimum of v1 and
v2 (min[v1, v2]).
Fluxomics: an -omics method that
measures intracellular and extracellular
metabolic reaction rates.
Instationary MFA (INST-MFA): INST-
MFA enables analysis of a system at
metabolic but not isotopic steady state.
INST-MFA requires the measurement of
isotopomer distributions over time and
preferably intracellular metabolite
concentrations. INST-MFA is
computationally more time-consuming
than steady-state iMFA.
Internal reactions: reactions that both
consume and produce metabolites and
link source and sink reactions.
Isotopic steady state: a state in which
fractional isotope enrichment is constant
over time. Isotopic steady state can be
difficult to achieve in mammalian cell
cultures because high metabolite
exchange leads to slow labeling, and
changes in the cell state may cause
metabolic variations. It is, therefore,
difficult to maintain metabolic steady
state long enough to reach isotopic
steady state.
Isotopologues: metabolites that have
different numbers of labeled atoms and
therefore mass but are otherwise
identical. Isotopologues can be
differentiated by LC-MS or GC-MSwhich
detect mass-to-charge ratios (m/z).
Isotopomers: isotopologues with the
same number of labeled atoms and
mass but different labeled atom
positions. Distinguishing isotopomers
requires position-specific information
from tandem MS or NMR.
Liquid chromatography-mass
spectrometry (LC-MS) and gas
chromatography-mass
spectrometry (GC-MS): LC-MS and
GC-MS separate samples using liquid or
gas chromatographic methods prior to
was originally developed to engineer microbial strains (metabolic engineering); however, it has
more recently been used to analyze a variety of eukaryotic systems. iMFA improves our ability
to understand metabolic complexity, and by doing so, can advance metabolomic and fluxomic
analysis beyond what is currently possible.

The goal of this review paper is to inspire more researchers to use iMFA to maximize
analytical insight from their metabolomic data. We first describe how iMFA works, including
the inputs, mathematical optimization, and output. We then describe how iMFA enables us
to analyze various aspects of metabolic complexity, including iMFA advances that are
currently being developed that will enable us to apply iMFA to even more diverse, complex
systems.

iMFA components
Input: network model
iMFA requires a metabolic network model (Figure 1), which describes the metabolic activities
of the biological system. Metabolic reactions are categorized as source, sink, or internal
reactions (see Glossary). These reactions are then organized into compartments
(e.g., cytosol, mitochondria) where they take place. Finally, atom transitions are explicitly defined
for each biochemical reaction. For example, glucose-6-phosphate loses the first carbon atom
when entering the pentose phosphate pathway (PPP). This detail must be included in the
metabolic network model for the simulation to fit the experimental isotope labeling patterns.
The final network model is a curated table of metabolites and reactions, with their corresponding
stoichiometry, compartment, and atom transitions.

Network models are typically curated by the end user via publicly available databases such as
Kyoto Encyclopedia of Genes and Genomes (KEGG) [7,8], Virtual Metabolic Human [9], and
MetaCyc [10,11]. To balance computational efficiency with metabolic accuracy, metabolic net-
workmodels should be tailored to each biological system. For example, gluconeogenic pathways
should be included in hepatocyte network models [12], while the tricarboxylic acid (TCA) cycle
can be pruned from red blood cell network models since these cells lack mitochondria [13,14].
Network construction is often iterative, since the initially curated network model may not include
all necessary metabolites, reactions, or compartmentalization. The iterative process is described
in detail in the following iMFA output section.

Challenges remain in developing comprehensive metabolic network models. While atom transi-
tion information can be attained from the literature as well as the aforementioned databases,
the available atom mapping information may be limited for specific reactions. Standardizing
atom mapping information across different databases, along with developing algorithms to
map atom transitions in complex organic reactions, will improve the accuracy of metabolic
network models.

Input: experimental data
The crucial experimental inputs to iMFA are the isotope labeling states (isotope labeling pat-
terns or isotopomer abundances) that result when cells or tissues process isotopically labeled
tracers. 13C-labeled tracers such as [U-13C6]glucose (uniformly labeled glucose), [1,2-13C2]
glucose (glucose with 13C in carbon atoms C-1 and C-2), or [U-13C5]glutamine are frequently
used to trace carbons. Isotopes of hydrogen (2H) and nitrogen (15N) can also be used to
trace the respective elements [15]. Tracer selection requires thoughtful consideration as
each tracer provides distinct metabolic information. For example, [U-13C6]glucose elucidates
overall glycolytic rate and glucose contribution to the TCA cycle but provides little information
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detection by mass spectrometry.
LC-MS has simpler sample preparation
and detects a broader metabolite range.
GC-MS better detects sterols, sugars,
and very-short-chain fatty acids.
Mass distribution vector (MDV): a
distribution of isotopologues for a given
metabolite. Each isotopologue’s
distribution is determined by dividing its
ion count by the total metabolite ion
count, which is also the sum of all
isotopologues.
Metabolic steady state: a state in
which metabolic parameters (fluxes and
metabolite concentrations) are constant
over time, resulting in no net metabolite
accumulation. Cell cultures are typically
considered at metabolic steady state
when they are not proliferating or
proliferating at a constant rate. The
metabolic steady state assumption
eliminates kinetic parameters to simplify
iMFA calculations.
Net flux: consider a pair of reversible
reactions A ↔ B, where one reaction,
say A → B, has flux v1 and the other
reaction B → A has flux v2 with both v1
and v2≥ 0. In this case, the net flux of the
reversible reaction pair is the absolute
value of the difference between v1 and v2
(|v1 – v2|).
Sink reactions: reactions that serve as
an end output for the model. Examples
include metabolite efflux (lactate
secretion) or intracellular sinks (glycogen
storage).
Source reactions: reactions that
generate metabolites that are only
consumed but not produced by other
reactions in the model. Examples
include glucose or amino acid
extracellular uptake.
Sum of squared residuals (SSR): the
sum of the magnitude of difference
between model estimates and data
measurements. In iMFA, residuals
(deviations between measured and
simulated isotopologues) are calculated
for eachmetabolite and then summed to
obtain the SSR.
Tandem mass spectrometry
(tandem MS): multiple mass detectors
are used in tandem to distinguish
isotopologues with similar m/z ratios.
After molecules are fragmented in the
first MS, the metabolites are further
fragmented in a second MS. These
‘fragments of fragments’ provide
position-specific labeling information,
improved sensitivity, and broader
coverage.
on carbon partitioning in upper glycolysis. [1,2-13C2]glucose provides superior information
on upper glycolysis and the PPP, especially at the glucose-6-phosphate dehydrogenase
(G6PD) branchpoint or in distinguishing the oxidative from the nonoxidative PPP. [U-13C5]
glutamine quantifies reductive carboxylation, gluconeogenesis, and glutamine contributions
to the TCA cycle [1,16]. The key to a successful labeling experiment is to add physiological
concentrations of labels to the culture medium to maximize experimental information. The
tracers can be metabolically rearranged in the cells into unique patterns that reflect the
underlying metabolic pathways and fluxes. Mathematical tools have been developed to en-
able researchers to decide the best tracer or best combination of tracers to investigate a
metabolic scenario [17,18].

Ideally, cells or tissues are incubated in this labeled medium until the attainment of isotopic
steady state, after which a single labeling pattern measurement is made. However, if attain-
ment of isotopic steady state is impractical or does not give flux results, the labeling pattern
has to be measured transiently en route to isotopic steady state and analyzed using
instationary MFA (INST-MFA). INST-MFA incorporates intracellular metabolite pool size to
estimate isotopomer distributions over time. INST-MFA is a more computationally demanding
approach since the isotopomer balances are ordinary differential equations. However, many of
the current software options support INST-MFA and allow users to input labeling data from
different time points.

At the end of a labeling experiment, cells or tissue are quenched to arrest metabolism, typically by
submerging in liquid nitrogen or a cold organic solvent–water mixture, after which metabolites are
extracted for analysis. The labeling state is then quantified by mass spectrometry (MS) or nuclear
magnetic resonance (NMR) imaging. If the isotope labeling is measured by MS, the fractional en-
richment of each mass isotopomer is then assembled into a mass distribution vector (MDV;
Box 1) for each metabolite of interest.

Different isotope tracers provide complementary information that can be integrated into one
holistic iMFA model. For example, [1,2-13C2]glucose could be used to provide information at
the PPP branchpoint while [U-13C5]glutamine could be used to analyze reductive carboxyla-
tion in the TCA cycle. However, when two or more tracers with the same labeled carbon
source are fed simultaneously, they can mask each other's labeling patterns and cloud our
ability to analyze metabolism. Instead, parallel labeling experiments, in which experiments
are repeated with different labeled tracers, can also be used to target multiple metabolic
pathways (e.g., labeled glucose for glycolysis and labeled glutamine for the TCA cycle).
MDVs generated from parallel labeling experiments are challenging to interpret without a
computational framework. The software tools discussed in this article enable the design
and analysis of parallel labeling experiments.

The other essential experimental iMFA inputs are extracellular flux measurements, which con-
strain the intracellular fluxes by defining the absolute metabolite quantities that enter and leave
the intracellular metabolic network. To determine extracellular fluxes, nutrients (e.g., glucose)
and metabolic byproducts (e.g., lactate) in the cell culture medium are measured by HPLC
[19–22], gas/liquid chromatography (GC/LC)-MS [23,24], enzymatic assays, or biochemistry
analyzers [25]. External biomass flux can also be determined by measuring change in cell bio-
mass (e.g., dry weight) over time. The extracellular fluxes are then calculated by dividing the
change in concentration by the time over which the change occurred. Finally, the fluxes are nor-
malized to cell number and growth rate. Confounding factors such as metabolite degradation
and liquid evaporation should also be included.
Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6 555
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Figure 1. iMFA workflow. Experimental data, includingMDVs and extracellular fluxes, and ametabolic networkmodel are inputted into the iMFA software. Each reaction
in the network model contains detailed information on the compartments of source and product metabolites, as well as the specific carbon atom transitions that occur in
the reaction. In some software, such as INCA and eiFlux, compartments can be designated by adding a suffix after the metabolite name (e.g., cytoplasmic as ‘.c’, extra-
cellular as ‘.e’, and mitochondrial as ‘.m’). The iMFA software then iteratively finds a set of fluxes that minimize the error between the simulated and experimental MDVs.
When a good fit is achieved, the iMFA software outputs flux values and associated confidence intervals for each reaction flux. This information can be visualized as a
flux map, in which arrow thickness represents the relative flux magnitude. The flux map shown here also indicates source reactions (light blue), sink reactions (dark red,
broken), and internal reactions (black). Abbreviations: iMFA, isotope-assisted metabolic flux analysis; MDV, mass distribution vector.
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Current limitations in experimental metabolite andmass isotopomer measurements decrease the
power of iMFA. Intracellular sinks and sources (e.g., glycogen) cannot be either measured or ex-
perimentally constrained, thus giving cells unknown intracellular metabolite inputs and/or outputs.
Experimental mass isotopomer data are largely restricted to a subset of metabolites, primarily
those in ‘core’ canonical metabolic pathways such as glycolysis and the TCA cycle. Experiments
alsomix metabolites from different organelle pools during quenching and extraction, making it im-
possible to measure metabolite compartmentalization inside the cell. Organelle isolation can
556 Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6
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directly quantify compartmentalized metabolites; however, organelle isolation is a lengthy pro-
cess that can itself perturb metabolism [26].

iMFA process: data fitting by mathematical optimization via iMFA software
iMFA is a mathematical optimization process that determines the intracellular metabolic fluxes
that best account for the experimental measurements, given the user-defined network model.
iMFA uses metabolite isotopomer mass balance equations to relate the amount of each
isotopomer to its precursors and products using the metabolic reaction rates. The biological sys-
tem is assumed to be at metabolic and often at isotopic steady state, which simplifies the iMFA
mathematical problem from ordinary differential equations into algebraic equations.

Practically, users enter the experimental data and network model into iMFA software such as
eiFlux [27], INCA [28,29], OpenMebius [30], METRAN, and 13CFLUX2 [31]. The iMFA software
generally begins the optimization process with an initial guess for each metabolic flux in the sys-
tem. The initial fluxes are then used to calculate a simulated MDV for each model metabolite. The
Box 1. Isotopomers are arranged into mass distribution vectors (MDVs) for each metabolite

Stable isotope labeling experiments can be quantified by measuring the incorporation of labeled atoms into metabolites.
These isotope labeling patterns are known as isotopomers. For each metabolite, there are 2n possible unique
isotopomers. Here, we provide an example of isotopomers for pyruvate, which has three carbons and can therefore have
23 = 8 possible isotopomers (Figure I). Some isotopomers have the same number of labeled atoms but differ in the position
of the labeled atoms. Isotopomers with the same total number of labeled atoms are known as isotopologues. These are
designated by the mass shift or number of labeled atoms (M + n, where n is the number of total labeled atoms) (Figure I).
The fractional or percent composition of isotopologues is referred to as anMDV. TraditionalMS tools such asGC-MSor LC-MS
can only discern between different isotopologues, while tandem MS/MS and NMR can distinguish isotopomers.
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Figure I. Isotopomers versus isotopologues for pyruvate.
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During LC-MS/GC-MS quantification, the ion count of each isotopologue is quantified. In the case of pyruvate, the unla-
beled isotopologue (M+0) has a mass-to-charge ratio (m/z) of 88. Successive isotopologues each have one additional
mass unit, with the heaviest isotopologue (M+3) having an m/z of 91. By employing chromatographic separation and
MS, each isotopologue for each detectable metabolite can be quantified (Figure II). The ion count for each isotopologue
is then normalized to the total ion count of each metabolite (the sum of ion counts for all isotopologues for the metabolite).
This yields a fractional isotopologue composition, known as the MDV. Typically, the MDV must then be corrected for
naturally occurring isotopes that can skew the calculated fractional isotopologue compositions. The final corrected MDV
then serves as an input for iMFA software.
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Figure II. Fractional isotopologue composition is normalized and corrected for natural isotope abundance to
determine the MDV.
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simulated MDVs are compared with the experimental MDVs. The difference between the simu-
lated and experimental MDVs is then represented as an error term, typically the sum of squared
residuals (SSR). This process is repeated numerous times, and the flux values that result in the
lowest SSR are returned. When the software does not achieve a satisfactory fit (SSR not low
enough), the user must reformulate the network model (described in outputs). Once the model
attains a satisfactory fit, techniques such as bootstrap Monte-Carlo [27,32] or parameter contin-
uation [28,33] can be used to estimate confidence intervals for each flux in the network (described
in detail in the next section).

Current iMFA software is being improved tomake it more efficient and offer expanded features for
biologically complex models. In most iMFA software, the state variables (isotopomers) and model
parameters (fluxes) are kept distinct from each other, which requires the isotopomer abundances
to be computed from scratch in each iteration. By contrast, eiFlux performs the optimization with
no distinction between state variables and model parameters. Thus, during each iteration of the
optimization, the system state is updated instead of being calculated from scratch. eiFlux also
uses state-of-the-art optimization solvers such as the General Algebraic Modeling System
(GAMS), thus facilitating efficient, robust parameter estimation and superior scalability to large
metabolic networks [27].

New iMFA techniques are also being developed to analyze biological systems when metabolic
steady state cannot be reached. Indeed, it is essential to study changes in cell metabolism dur-
ing dynamic processes such as differentiation, activation, and proliferation. Dynamic 13C-MFA
(DMFA) is an emerging non-steady state approach; however, DMFA has experimental and com-
putational challenges, since varying MDVs and fluxes complicates measurements and flux esti-
mation. In a recent study, curve fitting was used to estimate non-steady state glycolytic fluxes
from insulin-treated adipocytes that were metabolically sampled over time. While the DMFA
model replicated the experimental metabolic trends, the model did not achieve a statistically ac-
ceptable fit [34]. Additional progress in DMFA is essential to estimate non-steady state fluxes.
558 Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6
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iMFA is also being adapted to incorporate tandem MS, an emerging technique potentially with
the benefits of bothMS and NMR. TandemMS breaks precursor ions into product ion fragments,
which enables position-specific atom information to be acquired. Tandem MS has higher
accuracy than GC-MS or LC-MS and improved detection of low abundance isotopomers com-
pared with NMR. To incorporate tandemMS data, the mathematical iMFA framework must be ex-
panded to integrate the fragmented isotopomer information. To date, only eiFlux enables users to
input tandem MS data [27].

Finally, iMFA software is progressing to make computationally feasible genome-scale models,
which can improve the simulation fit to the experimental data. Parallelized algorithms have been
used to perform genome-scale INST-MFA with improved speed [35]. Two-scale MFA, which
uses iMFA data to constrain flux predictions in a genome-scale model, has also been implemented
[36]. However, genome-scale models with large metabolic networks and limited experimental data
can produce large flux variabilities. Parsimonious iMFA, which posits that evolutionary pressure se-
lects for minimal energy expenditure, provides one solution. Parsimonious iMFA runs a second op-
timization after standard iMFA and selects the flux solution that minimizes the weighted sum of all
fluxes [37]. Parsimonious iMFA can integrate transcriptomic data tominimize fluxes associatedwith
low gene expression [38]. Recently, a proof-of-concept study demonstrated that when compared
with traditional iMFA, parsimonious iMFA results in improved flux predictions compared with tradi-
tional iMFA. However, the computational complexity of this approach limits its applicability to
genome-scale models [37].

Output: metabolic flux map and statistical analysis
The statistical analysis of quantitative flux outputs is a key advantage of iMFA over manual tracer
analysis. After an acceptable fit is achieved, iMFA generates a quantitative metabolic flux map of
reaction flux estimates for all fluxes in the network, along with their respective confidence inter-
vals. The confidence intervals for a given flux are then compared among experimental conditions,
and if the confidence intervals do not overlap, then the fluxes are statistically significantly different.
Statistical tests could be used to further test significance. Wide confidence intervals indicate high
reaction flux uncertainty and suggest that the current experimental strategy is not suitable for flux
resolution. In this case, the experimental design should be improved, for example, by selecting
different tracers or by integrating data from parallel labeling experiments [39,40].

In some cases, iMFA does not find a set of metabolic fluxes that enable the simulation to fit the
measured metabolite concentrations. When the SSR does not fall within the acceptable range,
the user may need to change the metabolic network model (e.g., adding reaction reversibility,
compartmentalization, or alternative routes). Visualization of the experimental and simulated
MDVs with tools such as Escher-Trace [41] is helpful in determining which reactions should be
altered. This iterative process can lead to valuable insights, especially in elucidating alternative
or unique metabolic pathways.

iMFA resolves metabolic complexity
Large data sets
iMFA facilitates analysis of large data sets from parallel and instationary labeling experiments.
These labeling strategies are well suited for mammalian cells, which can be prone to slow labeling
due to high exchange rates between intracellular and extracellular metabolite pools [6,42]. Fur-
thermore, the wealth of data can more accurately resolve metabolic fluxes in the context of the
whole network, as well as buffer effects from measurement errors [43,44]. While these large
data sets would be unwieldy to analyze manually, iMFA and INST-MFA are designed to easily in-
corporate extensive metabolic data.
Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6 559
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In a recent INST-MFA study of resting and activated human platelets, the investigators used
parallel labeling with mixed tracers to study both glucose and acetate metabolism. Platelets
were incubated with either a mixture of [1,2–13C2]glucose, [U-13C6]glucose, and unlabeled glu-
cose or [1–13C]acetate, [2–13C]acetate, and unlabeled acetate. Samples were then collected
five times for each labeling experiment. The MDVs and extracellular fluxes were integrated into
an INST-MFA model using INCA. Through this approach, the authors determined that activated
platelets redirect glucose flux from the PPP and TCA cycle toward lactate [45].

INST-MFA has also been used to analyze the metabolic impact of iPSC differentiation into cardio-
myocytes [46], neural stem cell differentiation [47], brown adipose tissue cold activation [48,49],
paclitaxel treatment of cancer cells [50], and infection-induced metabolic changes [51,52]. Addi-
tional iMFA studies used parallel labeling, including combinations such as glucose/acetate [52],
[1,2-13C2]glucose/[U-

13C5]-glutamine [50,51,53–56], with and without palmitate [53]. The rigor-
ous iMFA framework transforms complex data from these experiments into intuitive quantitative
flux maps.

Cyclic pathways and reversible reactions
iMFA is especially useful in understanding labeling data from complex metabolic pathways with
cyclic pathways, reversible reactions, and exchange fluxes. The TCA cycle is a classic exam-
ple of metabolic complexity, since isotopomer labeling patterns change as metabolites pass
through multiple TCA turns (Figure 2). Whereas manual MDV analysis can usually only account
for one or two TCA cycle turns, iMFA can accurately model any number of TCA cycle turns
(from one to infinity). Inclusion of infinite TCA cycle turns can clarify TCA cycle activity. For ex-
ample, a recent study examined whether exogenous citrate was first metabolized in the cytosol
or the mitochondria in hypoxic hepatocellular carcinoma (HCC) cells [57]. When MDVs from
HCC labeled with [2,4-13C2]citrate were manually interpreted assuming only one TCA cycle
turn, TCA intermediate labeling patterns were indefinite and showed evidence of direct
metabolism in both compartments. By contrast, iMFA with infinite TCA cycle turns unveiled sig-
nificant cytosolic citrate metabolism, with exogenous citrate primarily entering the mitochondria
as α-ketoglutarate. Thus, by considering infinite TCA cycle turns, iMFA uncovered compart-
mentalization of exogenous citrate metabolism.

iMFA can also account for reversible TCA cycle reactions, in particular reductive carboxylation
of α-ketoglutarate via reversed isocitrate dehydrogenase (IDH) flux. In human bronchial epithe-
lial cells treated with cigarette smoke condensate, [U-13C5]glutamine labeling suggested in-
creased glutamine enrichment of acetyl-coenzyme A (CoA) and [M+5]citrate. iMFA showed
that cigarette smoke-treated cells completely reversed IDH flux, which was driven by glutamine
consumption [58].

Similar to the TCA cycle, the PPP is complicated by both cyclic and reversible reactions, since
fructose-6-phosphate (F6P) and glyceraldehyde-3-phosphate (G3P) are both products and sub-
strates of the PPP (Figure 3). In a recent study, iMFA revealed that oxidative PPP flux increased
over 200% during oxidative burst in neutrophils. The change was fueled by a switch to a cyclic
PPP phenotype, as well as reversal of the reaction from F6P into G6P. These insights were
then confirmed by knockout of nonoxidative PPP enzymes [59].

iMFA can also quantify bidirectional metabolite fluxes in reversible reactions. Most biochemical re-
actions are reversible or bidirectional and are defined in terms of the net flux (difference between
forward and reverse fluxes) and the exchange flux (minimum of the forward and reverse fluxes).
While the net flux indicates the magnitude and direction of the reaction, the exchange flux
560 Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6

CellPress logo


Acetyl-CoA

AKG

OAA

Citrate

CS

IDH
TCA cycle

Unlabeled carbons
Labeled carbons

1st cycles only
2nd cycle only
3rd cycle or later

1st cycle 2nd cycle 3rd cycle

TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 2. Isotope-assistedmetabolic flux helps quantify multiple tricarboxylic acid (TCA) cycle turns. Cyclic metabolic networks, such as the TCA cycle, generate
a different set of isotopomers at each turn. This simplified TCA cycle example assumes that uniformly labeled glucose and an unlabeled oxaloacetate (OAA) are the only carbon
contributors. Each color represents a different TCA cycle turn. The initial unlabeled OAA reacts with glucose-derived, fully labeled acetyl-coenzyme A (CoA) to form [M+2]
citrate via citrate synthase (CS). This citrate is then metabolized into α-ketoglutarate (AKG) via isocitrate dehydrogenase (IDH). As the AKG progresses through the TCA
cycle (metabolites not shown), ‘flipped’ isotopomers of OAA with either the first and second or the third and fourth carbons labeled can occur. When these two OAA
isopomers react with fully labeled acetyl-CoA to form [M+4] citrate in the second TCA cycle turn, two unique citrate and AKG isotopomers are created. With each turn of
the TCA cycle, more isotopomers are created in different concentrations until, with infinite TCA cycle turns, the metabolites reach metabolic steady state.
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quantifies the amount by which the label back-mixes through the reaction [60]. Similar labeling
patterns between a product and substrate metabolite (e.g., alanine and pyruvate or succinate
andmalate) often indicate high exchange fluxes. If a product and substrate metabolite are labeled
differently, this can suggest low exchange, which can then be quantified using iMFA. Alternatively,
labeling dilution can occur if there is high exchange flux with an unlabeled source [28].

Unlabeled sources and anaplerosis
iMFA can elucidate how different sources contribute to intracellular metabolic fluxes due to its
ability to integrate many input and output metabolites into a single analysis. We used iMFA to
study how inhibition of glycolytic side branch pathways (hexosamine biosynthetic pathway,
PPP, polyol pathway) impacted holistic human endothelial cell glucose metabolism. Manual
MDV analysis showed that inhibitors decreased labeling in each pathway as well as in the TCA
cycle, which we initially interpreted to indicate decreasedmetabolic activity. However, by integrat-
ing extracellular fluxes and isotopomer data into an iMFA model, we discovered that decreased
TCA cycle labeling was explained by influx of unlabeled glutamine, which diluted TCA cycle label-
ing and actually fueled increased TCA cycle activity [25].

The role of other anaplerotic substrates in metabolism can also be clarified using iMFA. Pyruvate
is particularly important for the TCA cycle, as it can generate both oxaloacetate (via pyruvate car-
boxylase) and acetyl-CoA (via pyruvate dehydrogenase). Each route generates a unique set of
isotopomers, complicating reaction flux determination from MDVs [61]. A modified iMFA model
of whole-body glucose production and gluconeogenesis was used to understand how loss of py-
ruvate carboxylase impacts metabolic homeostasis in liver-specific pyruvate carboxylase knock-
out mice. iMFA showed that liver gluconeogenesis from TCA anaplerosis in the pyruvate
Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6 561
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Figure 3. Isotope-assisted metabolic flux analysis (iMFA) helps analyze complexity from the cyclic and
reversible pentose phosphate pathway (PPP) pathway. (A) In glycolysis, glucose is metabolized into glucose-6-
phosphate (G6P), which can continue down through glycolysis or get shuttled into the PPP. The PPP is a complex
pathway due to multiple reversible reactions and cyclic interactions with the glycolytic intermediates fructose-6-phosphate
(F6P) and glyceraldehyde-3-phosphate (G3P). If cells are labeled with uniformly labeled glucose, forward PPP flux wil
generate uniformly labeled ribose-5-phosphate (R5P). However, reaction reversibility and complex atom rearrangements
can generate all 32 possible R5P isotopomers (red). Even when simplified into mass distribution vectors (MDVs), the data
can still be too complex for manual interpretation. (B) Using iMFA, we showed that endothelial cells treated with
dehydroandrosterone to inhibit the first and rate-limiting PPP reaction show decreased PPP fluxes and net fluxes in the
forward direction [21] (left). iMFA also showed that neutrophils undergoing oxidative burst have forward PPP flux reversa
of G6P isomerase activity. This causes F6P to be metabolized into G6P, fueling cyclic PPP flux [53] (right).
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carboxylase knockout mice was less than 15% of wild-type liver. However, loss of pyruvate car-
boxylase depleted NADPH and glutathione to increase liver oxidative stress and inflammation
[62]. In our study of human endothelial cell metabolism, iMFA showed that more pyruvate was
routed through pyruvate dehydrogenase than pyruvate carboxylase, and that pyruvate dehydro-
genase fluxes changed under metabolic inhibition while pyruvate carboxylase fluxes remained rel-
atively stable [25].

Pathway discovery
iMFA also enables the discovery of new metabolic pathways. When simulated MDVs cannot fit
the experimental MDVs, the metabolic network model must be modified. This process often sug-
gests alternative metabolic pathways to then be tested experimentally. In lung cancer cells grown
as spheroids or monolayers, iMFA initially could not fit simulated fluxes to the spheroid
isotopomer labeling data because citrate showed reductive carboxylation but palmitate, which
is produced from citrate, did not. The metabolic network model was then modified so that citrate
produced by reductive carboxylation in the cytosol entered the mitochondria, where it mixed with
mitochondrial citrate before being exported back to the cytosol for palmitate synthesis. This alter-
ation significantly improved the simulation fit. Cytosolic citrate transport into themitochondria was
then validated experimentally using citrate transporter knockout cells [63]. iMFA was also used to
uncover evidence that transketolase-like protein 1 (TKTL1) cleaves xylulose-5-phosphate to yield
G3P and acetyl-CoA in mammalian cells, since including the TKTL1 reaction was the only way to
achieve an acceptable fit [64]. In our study on endothelial metabolism, we initially could not fit the
simulation to the experimental data due to excess unlabeled pyruvate. By iteratively modifying the
model, we identified a novel four-carbon source that fed into the malate-pyruvate shuttle as a po-
tential source for these unlabeled carbons [25].

Compartmentalization and cell–cell interactions
iMFA can analytically parse data that were mixed experimentally back into separate model com-
partments. In a study of Chinese hamster ovary cells, the initial iMFA model produced a poor fit
due to low labeled pyruvate, alanine, lactate, and glutamate levels. A second model, which in-
cluded a mitochondrial compartment separate from the cytosol, successfully fit the data. This
model further predicted that malic enzyme, which catalyzes conversion of malate to pyruvate,
was only active in mitochondria [42].

Cell co-culture systems, which are vital to understand physiological interactions among cells,
are even more complex to analyze metabolically. Co-cultures have multiple cell types each
with their own extracellular and intracellular fluxes. Experimentally, co-cultures can be cre-
ated with varying degrees of interaction (Figure 4). Conditioned media experiments keep
the cells distinct, enabling extracellular and intracellular metabolite separation; transwell ex-
periments allow cells to interact through the media while separating cells via a permeable
membrane, enabling intracellular metabolite separation only; and direct co-culture mixes
the cells and their metabolites. A combination of these experimental techniques is likely
needed to describe metabolic interactions in a co-culture.

iMFA was used to analyze a co-culture of two Escherichia coli knockout strains without experi-
mental separation. Each cell type was modeled in silico as a separate compartment with a com-
plete metabolic reaction set. Each metabolite MDV was weighted by the fraction of each strain in
the total cell population, and secreted metabolites were allowed to exchange between the two
cell compartments. The co-culture two-compartment network model achieved a satisfactory fit
[65]. In another study, cell–cell interactions via extracellular vesicles (EVs) were analyzed via a cus-
tom Exo-MFA model with terms for EV cargo packaging, secretion, and cargo release into
Trends in Biochemical Sciences, June 2023, Vol. 48, No. 6 563
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Figure 4. A variety of experimental co-culture methods are essential to determining metabolic interactions among different cell types. In 2D culture (top
row), conditioned media from one cell type can be applied to a different cell type (A), cells can be co-cultured using a permeable insert so that they either share soluble
factors through the media (left) or directly contact each other through the membrane (right, B), or cells can be directly co-cultured together in a dish (C). These same
techniques can be used for 3D cell cultures (middle row), with cell spheroid media applied to an in vitro vessel-like network (D), cell spheroids co-cultured with a cell
monolayer using a permeable membrane (E), or cell spheroids directly cultured on a vessel-like network (F). Finally, stimuli such as flow can be applied to co-cultures to
examine metabolic interactions under more physiologically relevant conditions (bottom row). Flow can be applied to one set of cells using a cone and plate device, and
conditioned media from the flow-adapted cells can be applied to another cell culture (G). Microfluidics can also be used to apply flow to cells in contact with another
type of cells through a permeable membrane (H), or to 3D cell cultures like spheroids surrounding a perfused engineered vessel (I). Figure created with BioRender.
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recipient cells [66]. The study showed that TCA fluxes increased 6 h after EV exposure, likely due
to lactate, glutamine, and TCA intermediate cargo delivery. However, further work is required to
improve co-culture analysis, including identifying novel labeling strategies and integrating multiple
types of co-culture experiments.

In vivo flux determination
Over the past decade, iMFA has increasingly been used to interpret data from in vivo stable iso-
tope labeling experiments in animals and humans [67]. Since in vivo iMFA ismore complex (Box 2)
and metabolite uptake and secretion cannot be measured in vivo, iMFA has primarily been used
to study endogenous metabolite production. iMFA was used to investigate liver glucose produc-
tion in mice that underwent short- and long-term fasting [41] and treadmill exercise [68], renal glu-
cose production in liver-specific pyruvate carboxylase knockout mice [69], and liver ketogenesis
[70]. Notably, the latter two examples required more complex, multicompartmental network
models to integrate metabolites from multiple sources. In these studies, in vivo iMFA enabled
the authors to both calculate metabolic fluxes in vivo and quantify how diverse metabolic path-
ways (TCA cycle, gluconeogenesis, glycogen) contribute to endogenous metabolite production.
For more details, we direct the readers to other reviews on this topic [67,71,72].
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Box 2. iMFA limitations

General iMFA limitations

Although iMFA provides a quantitative, systems-level perspective of metabolism, its value relies on the quality of acquired
experimental data. When the selected tracer does not generate informative labeling patterns, the iMFA output fluxes will
have low precision and large confidence intervals [16,73]. Measurement errors can also be problematic, as they skew flux
estimates or impair model fit. These data-driven limitations can lead to erroneous conclusions, especially as the user may
add or remove pathways and thereby generate an inaccurate metabolic model in an attempt to fit the data.

Current iMFA models only account for a limited subset of metabolic pathways (glycolysis, TCA, PPP, fatty acid metabo-
lism). iMFA model sizes are limited by lack of information on atom transitions in some pathways, the inability to measure
some metabolites, and computational power [74]. However, the exclusion of nonessential pathways can bias results.

Finally, most current iMFA approaches require systems to be at metabolic steady state and can therefore not account for
metabolic changes over time, which are often essential to fully understanding biological processes. Dynamic iMFA
approaches that can estimate non-steady state metabolic fluxes approaches are still in their infancy [34,75].

In vivo-specific iMFA limitations

iMFA can also be used to determine quantitative tissue-level and whole-bodymetabolic fluxes for in vivo studies. However,
physiological complexity can greatly complicate iMFA. First, metabolite tracers must be carefully selected and validated to
ensure they are metabolized by the tissue of interest and that the labeled tracers do not alter in vivometabolic fluxes when
added at concentrations sufficient to enrich downstream metabolites. Second, repeated sampling can be harmful to
animals and therefore should be minimized for animal welfare. Thus, isotopic steady state may be difficult to measure
for iMFA, and dynamic in vivomeasurements are usually not possible for INST-MFA. Third, interorganmetabolite exchange
makes quantifying tissue-specific metabolite uptake and secretion difficult, which means that there are no constraining
extracellular fluxes for iMFA.

Labeled substrates can be introduced to animals via oral gavage [76] or liquid diet [77]. These methods can lead to
more biologically relevant metabolism but may not provide the necessary information (e.g., infusion rate) for iMFA. A
key breakthrough for in vivo iMFA was development of a minimally invasive, dual arterial-venous catheterization
technique to continuously infuse tracers [43,72]. This both minimizes stress due to repeat experimental sampling
and provides a known infusion rate, which is important for flux value estimations. Dual arterial-venous catheterization,
along with sensitive MS tools, also enables sampling of microliter volumes, which make this approach practical in small
animals [43]. Drawbacks to this method include technical complexity, cost, invasiveness, and reduced relevance for
dietary studies [67].
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Outstanding questions
iMFA co-culture analysis is compli-
cated by the experimental mixing of
metabolite pools from multiple cell
types. What experimental and compu-
tational strategies can be used to de-
termine cell-specific fluxomics and
cell–cell metabolic interactions in co-
culture models?

Currently, iMFA requires systems to be
at a metabolic steady state; however,
cell metabolism plays a critical role in
dynamic cell processes. How can we
advance iMFA approaches to analyze
dynamic metabolic systems?

Genome-scale iMFA is limited by both
experimental and computational
approaches. For experimental ap-
proaches, how can we improve MS
and NMR tools to collect additional
isotopologues? For computational
approaches, how can we increase
computational efficiency to scale and
integrate genome-scale isotopologue
data?
Concluding remarks and future perspectives
iMFA generates quantitative flux maps from complex metabolomic data, enabling the end users
to discover metabolic differences among cell states and generate new hypotheses that then can
be tested experimentally. Many iMFA discoveries could not have been intuited from manual anal-
ysis of isotope labeling. We envision that iMFA will continue to yield new insights into metabolism,
especially as larger models and dynamic approaches are developed. iMFA has great potential in
elucidating the importance of cell metabolism in stem cell differentiation, rare inherited metabolic
disorders, and diseases related to metabolic dysfunction such as cardiovascular disease, diabe-
tes, and obesity. However, to achieve this potential, iMFAmust continue to improve in its ability to
manage metabolic complexity (see Outstanding questions). As computational and experimental
techniques advance, iMFA approaches should be both increasingly accessible and increasingly
powerful for metabolism research.
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