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Abstract—In this paper, we investigate the problem of decoder
error propagation for spatially coupled low-density parity-check
(SC-LDPC) codes with sliding window decoding (SWD). This
problem typically manifests itself at signal-to-noise ratios (SNRs)
close to capacity under low-latency operating conditions. In
this case, infrequent but severe decoder error propagation can
sometimes occur. To help understand the error propagation
problem in SWD of SC-LDPC codes, a multi-state Markov model
is developed to describe decoder behavior and to analyze the
error performance of spatially coupled LDPC codes under these
conditions. We then present two approaches - check node (CN)
doping and variable node (VN) doping - to combating decoder
error propagation and improving decoder performance. Next we
describe how the performance can be further improved by em-
ploying an adaptive approach that depends on the availability of
a noiseless binary feedback channel. To illustrate the effectiveness
of the doping techniques, we analyze the error performance of
CN doping and VN doping using the multi-state decoder model.
We then present computer simulation results showing that CN
and VN doping significantly improve the performance in the
operating range of interest at a cost of a small rate loss and
that adaptive doping further improves the performance. We also
show that the rate loss is always less than that resulting from
encoder termination and can be further reduced by doping only
a fraction of the VNs at each doping position in the code graph
with only a minor impact on performance. Finally, we show how
the encoding problem for VN doping can be greatly simplified by
doping only systematic bits, with little or no performance loss.

Index Terms—Code doping, spatially coupled LDPC codes,
sliding window decoding, decoder error propagation.

I. INTRODUCTION

PATIALLY coupled low-density parity-check (SC-LDPC)
codes, also known as LDPC convolutional (LDPCC)
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codes [1], have been shown to have capacity achieving
performance over memoryless binary-input symmetric-output
channels. Specifically, SC-LDPC codes derived from regular
LDPC block codes (LDPC-BCs) exhibit threshold saturation,
i.e., the suboptimal belief propagation (BP) iterative decoding
threshold of SC-LDPC code ensembles coincides with the
optimal maximum a posteriori (MAP) threshold of their under-
lying LDPC-BC ensembles [2]-[5]. Further, regular SC-LDPC
code ensembles not only have capacity approaching iterative
decoding thresholds, but they are asymptotically good, i.e.,
their minimum distance grows linearly with the frame length
[6]. Therefore, SC-LDPC codes combine the best features of
both regular and irregular LDPC-BCs.

An iterative belief propagation sliding window decoding
(SWD) algorithm was proposed for SC-LDPC codes in [7]
in order to reduce decoding latency, memory, and complexity.
Assuming an additive white Gaussian noise (AWGN) channel,
in order to achieve the best possible performance over a
range of signal-to-noise ratios (SNRs), Huang et al. showed
empirically in [8] that the decoder window size W should be
at least six times the decoding constraint length. However, in
practice, lower latency operation is often desirable, thereby
necessitating a smaller window size. In this case, infrequent
but severe decoder error propagation can sometimes occur
when using SWD, particularly at SNRs below the BP threshold
of the underlying LDPC-BC. More specifically, during the
SWD process, when a decoding error occurs, the decoding
of subsequent symbols can also be affected, and a continuous
string of decoding errors can result. This decoder error prop-
agation phenomenon can result in unacceptable performance
loss in continuous (streaming) transmission or large frame
length applications or result in an unacceptable rate loss if
frequent encoder termination is employed.

The effect of decoder error propagation on the performance
of SWD of SC-LDPC codes was first mentioned in [9],
whereas the first detailed study of decoder error propagation in
SWD was done for the related class of braided convolutional
codes in [10], [11]. For SWD of SC-LDPC codes, Klaiber et al.
[12] proposed adapting the number of decoder iterations and/or
shifting the window position in order to limit the effects of
error propagation, both of which involve altering the decoding
procedure. Using a different approach, we proposed check
node (CN) doped SC-LDPC codes in [13], which employ
reduced-degree CNs spaced throughout the coupled graph
to help the decoder recover from error propagation. Similar
to [12], this also requires altering the decoding procedure
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whenever a doping position is reached. More recently, we
proposed variable node (VN) doped SC-LDPC codes by fixing
the code bits corresponding to certain VNs spaced throughout
the coupled graph to a predetermined value [14]. Sokolovskii
et al. subsequently studied the finite length scaling behavior
of VN doped SC-LDPC codes on the binary erasure channel
(BEC) in [15] and showed that doping effectively works by
initiating a decoding wave at a doping position similar to what
is observed at the beginning of an undoped coupled graph.!
Unlike CN doping and the techniques of [12], VN doping
allows recovery from error propagation without altering the
decoding procedure, although fixing the value of certain VNs
can present encoding challenges. Since the required pre-
determined distribution of doped positions in CN and VN
doping may not completely eliminate error propagation, an
adaptive doping strategy for SC-LDPC codes that relies on
the availability of a noiseless binary feedback channel was
proposed in [16]. Finally, a general model to compute the
decoder error rate of SWD of SC-LDPC codes and predict
the performance improvement achievable with doping was
presented in [17].

Notably, the encoding challenges of doping were not ad-
dressed in these papers. With this in mind, we introduced
a systematic doping procedure to simplify both the process
of encoding and the procedure for recovering the decoded
information sequence in VN doping [18]. Systematic doping
employs systematic encoding and only dopes a fraction of
the VN, i.e., only systematic bits, at each doping position.
This allows the doping to be done prior to encoding, thus
greatly simplifying the encoding process, and also results
in a straightforward procedure for recovering the decoded
information sequence. This is particularly advantageous in
the case of adaptive doping, where these operations must be
performed “on the fly”.

In this paper, we explain the problem of decoder error
propagation in SWD of SC-LDPC codes and propose means of
mitigating its effects on decoder error performance. Specifical-
ly, the CN doping, VN doping, adaptive doping, and systematic
VN doping techniques introduced in [13], [14], [16], [18]
to combat error propagation are summarized and presented
in a unified framework. These doping techniques are shown
to mitigate the effects of decoder error propagation without
terminating encoding, thus enabling streaming transmission
or large frame length applications. In addition, the rate loss
due to doping is shown to be always less than that resulting
from encoder termination. Finally, to better understand the
error propagation problem in SWD of SC-LDPC codes, the
multi-state decoder model introduced in [17] is used to analyze
the behavior of decoders that suffer from error propagation.
This modeling capability allows one to determine the effect
of doping on the performance of different code designs over
a broad range of encoder/decoder parameters and channel
conditions.

'The concept of code doping was first introduced in a different context
by ten Brink [20].

II. REVIEW OF SC-LDPC CcODES WITH SWD DECODING
A. SC-LDPC Codes with SWD

The construction of SC-LDPC codes can be viewed as
a protograph-based edge-spreading technique [6] in which a
sequence of L disjoint (dy, d.)-regular LDPC-BC protographs
are coupled together into a single graphical chain, where
dy(d.) represents the VN(CN) degree, L — oo results in
an unterminated coupled chain, and finite L results in a
terminated coupled chain. We demonstrate the approach using
(3,6)-regular SC-LDPC codes as an example, but this can be
generalized in a straightforward way, as shown in Sec. V.B
for (3,9)-regular and (4,6)-regular codes. We begin with the
independent (uncoupled) sequence of (3,6)-regular LDPC-BC
protographs formed from an n. X n, = 1 X 2 base parity-
check matrix B = [3, 3] shown in Fig. 1(a), where each multi-
edge protograph contains n. = 1 CN and n, = 2 VNs,
dy = 3n. = 3 and d. = 3n, = 6, and the LDPC-BC design
rate is R=1— fl—: =1- Z—i = % Fig. 1(b) shows the result-
ing unterminated (3,6)-regular SC-LDPC code chain obtained
by applying the edge-spreading technique to the uncoupled
protographs. The edge spreading in this case is defined by a
set of component base matrices Bo = By = By = [1 1] that
must satisfy B = Bg + B; + Bs, where m = 2 is referred to
as the coupling width, and the base parity-check matrix of the
coupled chain is illustrated in Fig. 1(c). In general, an arbitrary
edge spreading must satisfy

B=Y " B, (1)

and termination after L time units results in an additional m
CNs at the end of the graph. As a consequence, letting n/,
(n!,) be the number of CNs (VNs) in the coupled chain, the
design rate of the SC-LDPC code of length L is given by
Ry =1—2 = 1—nellim) _ _(Lim) (1 _ R) Applying
a lifting factor M to the SC-LDPC protograph of Fig. 1(b)
results in an unterminated ensemble of (3,6)-regular SC-LDPC
codes in which each time unit represents a block of 2M coded
bits (VNs).

Sliding window decoding (SWD) of SC-LDPC codes [7], as
opposed to using a standard flooding decoding schedule over
the entire terminated graph, can be employed to reduce de-
coding latency, memory, and complexity for long code chains
and for unterminated streaming (continuous transmission)
applications. For example, in Fig. 1(b), the red rectangular box
represents a decoding window of size W = 5 (blocks). For an
AWGN channel, SWD consists of (I) applying a BP flooding
schedule to all the nodes in the window until some stopping
criterion is met or some maximum number of iterations [, .
is reached, @) decoding the block of n, M target symbols in
the first window position according to the signs of their log-
likelihood ratios (LLRs), 3 shifting the window one time unit
(block) to the right. Decoding continues in the same fashion
until the entire chain is decoded, where the decoding latency
in symbols is given by n,MW.

B. Error propagation in SWD

In SWD of SC-LDPC codes, when a block of target symbols
at time ¢ is decoded, the window shifts to include the most
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Fig. 1. A (3,6)-regular SC-LDPC code protograph obtained from an under-
lying (3,6)-regular LDPC-BC protograph. The black circles represent VNs
and the “plus” squares represent CNs. The figure illustrates (a) a sequence
of independent (uncoupled) LDPC-BC protographs, (b) spreading edges to
the m = 2 nearest neighbors to form an SC-LDPC protograph, and (c) the
resulting coupled parity-check matrix.

recent block of received symbols at time ¢+ W, and decoding
commences on the block of target symbols at time ¢+ 1. During
the decoding of the time ¢ + 1 block, the final LLRs of the m
past decoded blocks, from time t — m + 1 to time ¢, remain
involved in the decoding process, although these LLRs are no
longer updated, as illustrated in Fig. 2 for the (3, 6)-regular
SC-LDPC code example with W = 3 and m = 2.

Once a block of n, M target symbols has been decoded, we
say that a block error has occurred if it contains one or more
LLRs with incorrect sign. Typically, if only a few symbols
have incorrect LLRs and most of the correct symbols have
strong LLRs, the LLRs of the incorrectly decoded block will
have only a small effect on the decoding of subsequent blocks,
and the decoder will recover and continue to decode correctly.
This type of operation typically results in randomly distributed
block errors.

However, if an error block contains a large number of
incorrect LLRs, particularly if they have large absolute values
and many of the LLRs associated with the correctly decoded

Fig. 2. Final VN LLRs at times ¢ — 1 and ¢ are used to update the CNs in
the window during the decoding of the target symbols at time ¢ + 1.

symbols have small absolute values, those “unreliable” LLRs
can negatively affect the decoding of the next block of target
symbols, causing a block error that would not have occurred
under normal operating conditions. This, in turn, can trigger
additional block errors, resulting in decoder error propagation,
i.e., a continuous sequence or burst of incorrectly decoded
blocks.

In an application where information is transmitted in frames
of length L, with graph termination following the last block
of transmitted VNs, any error propagation will be limited and
decoding will start fresh with the next frame. However, if
the frame length L is large, a significant number of blocks
can be affected by error propagation, thus severely degrading
performance. In a streaming application, with no termination,
the situation could be catastrophic,” resulting in a block error
rate (BLER) that asymptotically tends to 1.

III. MODELING AND ANALYSIS OF SWD

Before proceeding with a discussion of methods to circum-
vent decoder error propagation, it is instructive to consider
the difficulty of assessing the extent of the problem using
conventional Monte Carlo simulation techniques. Typically,
in order to limit the time duration of submitted simulation
jobs, decoded BLERs are determined by simulating some
number N of frames, each of length L, such that the total
number of simulated code symbols n, M LN is large enough
to gather reliable error statistics. Under normal operating
conditions, when block errors occur randomly, this process
works perfectly well. But when the decoder experiences error
propagation, the assumption of randomly distributed block
errors is no longer valid, and BLER statistics can be severely
affected by the particular combination of L and N chosen for
the simulation.

We now give an example illustrating the effect of decoder
error propagation on simulated BLER statistics, assuming
an AWGN channel with binary phase-shift-keyed (BPSK)

2This behavior is analogous to the well-known phenomenon of catas-
trophic error propagation in classical convolutional codes. However, in that
case, the problem is caused by poor encoder design, whereas here it is due
to the decoder design.
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Fig. 3. SWD BLER performance of a (3,6)-regular SC-LDPC code for three
different combinations of frame length and number of frames simulated, all
with the same total number of simulated blocks.

signaling. The simulated BLER performance of SWD of a
(3,6)-regular SC-LDPC code based on the coupled protograph
in Fig. 1 is shown in Fig. 3, where W = 12 and M = 2000.
The figure represents the simulation of a total of LN = 5x 10°
blocks (or nyMLN = 2 x 100 bits) for three different
combinations of L and N. From the figure, we observe that,
with increasing L, the BLER performance becomes worse,
even though there are relatively few error propagation frames
overall, thus confirming the above observation.’ Indeed, the
worst scenario occurs when a single long frame is used to
gather error statistics. In this case, once error propagation
begins, it continues all the way to the end of the simulation
job, causing the BLER to grow without bound.

Based on the fact that SC-LDPC codes have better BP
decoding thresholds than their underlying LDPC-BCs, it is
desirable to operate at values of Ej/Ny below the LDPC-BC
threshold, while keeping the window size W (latency) as small
as possible. From the above example, however, we see that
decoder error propagation can present a significant challenge
to the reliable operation of SWD under such operating condi-
tions. Thus, in order to understand the behavior of SWD under
these conditions and assess the need for methods of mitigating
decoder error propagation, we now introduce a general Markov
decoder model for SWD. The model characterizes the decoded
BLER as a function of the extent to which unreliable LLRs
from past decoding decisions can negatively affect future
decoding decisions. It includes a random error state for normal
decoder behavior, some number of intermediate states that
account for finite-length error bursts, and a burst error state
that allows for the possibility of unlimited decoder error
propagation. The state transition diagram of the decoder model
is shown in Fig. 4, where S, represents the random error state,
Si,i=1,2,...,J —1, represents the intermediate states, and
Sj represents the burst error state. We let ¢; denote the block
error rate (BLER) in state S;, © =0,1,2,...,J.

Referring to Fig. 4, the decoder starts in the random error

3Fig. 3 represents only a narrow range of Ej/No values, below the BP
decoding threshold of the underlying (3,6)-regular LDPC-BC ensemble, where
error propagation presents a significant problem. For larger values of Fj/Ng
and/or W, SWD typically recovers from error propagation without terminating
the frame.

Fig. 4. The state transition diagram of a general decoder model for SWD.

state Sy, transitions to intermediate state S; with probability
qo when the first block error occurs, and then either makes a
second block error and transitions to state So with probability
g1 or decodes correctly and returns to state Sy with probability
1 — ¢4, resulting in a single block decoding error. Generally,
q1 > qo since one block decoded in error means that there are
some incorrectly decoded symbols connected to the window
(see Fig. 2) that influence the decoding of the next block. If,
with probability g2, a third block error occurs and the decoder
transitions to state Ss, the decoding window now contains
incorrectly decoded symbols from the past two blocks, which,
using the same reasoning as above, implies that ¢o > q1 > qq,
while the decoder returns to state Sy with probability 1 — go,
resulting in a double burst error. Extending the same argument,
we have that ¢;_1 > g2 > ... > q1 > qo, and a correctly
decoded block in intermediate state S; causes the decoder to
return to state Sy and results in a length ¢ burst error, i =
1,2,...,J—1.If J consecutive block errors occur, the decoder
transitions to the burst error state S; and remains there with
probability g; > ¢;—1 as long as decoding errors continue,
returning to state Sy with probability 1 — ¢, resulting in a
burst error of length J or more.* If the influence of the m
previously decoded incorrect blocks is strong enough, such
that ¢; — 1, unlimited error propagation can result, i.e., the
decoder will typically not be able to escape the burst error
state.

For a given spatially coupled protograph, the channel pa-
rameter E, /Ny, the decoder parameter W, and the code
parameter M will all influence the probabilities qg, q1, ..., ¢J-
Generally, these probabilities are decreasing functions of all
three of these parameters. However, as M increases, the larger
number of decoded symbols still connected to the window has
a stronger influence on future decoded blocks. As a result,
strong codes and decoders (large M and W) have smaller
values of go and thus are less likely to reach state S, but
once they enter the burst state they have a high probability of
staying there, i.e., a high probability of unlimited decoder error

4We note here that, when the decoder returns to state Sq after one or
more blocks errors, there are up to m — 1 incorrectly decoded blocks still
connected to the window, which could effect the value of go. The fact that the
most recent block was decoded correctly, however, suggests that this effect is
minor, so we choose to ignore it in the model.
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propagation. Typically, they suffer only a very few short burst
errors, and their BLER performance is therefore dominated
by error propagation. Weak codes and decoders (small M and
W), on the other hand, have larger values of qg, and thus reach
state S ; more often, but are less likely to suffer from unlimited
decoder error propagation. Instead, their BLER performance
is typically dominated by larger numbers of burst errors of
varying lengths.?

We now proceed to derive expressions for the decoded
BLER, as functions of qo,q1,...,q5, of SC-LDPC codes
based on this model, for unterminated (I — oo) transmission.®
The derivation of the expressions for the BLER for terminated
(finite L) transmission is given in Appendix A, and a procedure
for estimating the model parameters and predicting the BLER
performance from a single simulation run is presented in
Appendix B.

Case I: No intermediate states (J = 1), L — 00.”

Let p; be the probability of being in state S;, i = 0,1, ..., J.
Then po = po (1 — o) +p1 (1 — ¢1), and hence

Po—po(l—qo P0qo
p1= ( ) = : 2
1-aq 1—aq
Now the average BLER can be written as
Pl;(sio) = Poqo + P1G1 = Pogo + Poq1 (1 1 )
—q1
3)
= o ( q0 ) '
1-—q
Since po + p1 = po + Po (1 ql) = po (”ﬂ%) =1,
1-—q
Po=—"""—; 4)
T 1-q+a
and using (4) in (3) it follows that
P(oo) q0 1 (5)
1—q1+q 1—Q1+7‘1’
where 7, 2 ¢o. Note that when ¢; — 1, lim1 P]gio) =1,
q1—

which corresponds to unlimited error propagation.

Example 1: Choose ¢y = 0.01,¢; = 0.99.% Then Péio) =
0.5.0

Case II: One intermediate state (J = 2), L — oo.

In this case, we have

{po—Po(l—QO)+p1(1—Q1)+p2(1—Q2) ©
D1 = pogo, P2 = P1q1 + P2qe,
where p, can also be written as py = py 1~ q2 = po12L-. Since
po+p1+p2 =po+pogo +poitis =1, it follows that
1 1—¢ 7
Po = .
1+qo+ L T 1 g2+ 4o — o2 + o ™

5The relative strength of a code increases with m as well as with M,
while decoder strength increases with both W and Iax.

SThis is equivalent to deriving the steady state probabilities in a Markov
process.

7J = 1 is the “pure” error propagation case, where a single error puts
SWD in the burst state S'j.

8The parameter values here and in the subsequent examples were chosen
to be representative of those encountered in practice.

Now the average BLER can be written as

Péoﬁ’) = Poqo + P1q1 + pP2q2
_ 4o — 9092 + o1 _ T2 (®)
l—g+q —qe+aon 1—qg+r’

where 7o = qo (1 —¢2+ ¢1). Again we see that lim P]gL) =
q2—1

1 (unlimited error propagation).

Example 2: Choose go = 0.01, ¢1 = 0.1, g2 = 0.99. Then
ry = 0.0011 and P> = 0.099. O

Case III: More than two intermediate states (J > 3), L —
0.

Starting with J = 3, we have

po=po(1—qo)+p1 (1 —q1)+p2(1—q2)+p3(1l—gs),
P1 = poq0, P2 = P1q1,

P3 = p2g2 + P3g3 = p19192 + P393 = Poqoqi92 + p3(J3a(9)

909192

from which it follows that ps = pg s

p1 + p2 + ps = 1, we have

. Now, since py +

1
Po =
14 qo+qoq1 + qfqlq‘f (10)
1—gqs3

1 — g3+ g0 — qogs + 9001 — 909143 + G091 G2

Deﬁning T3 é q0 (1 — ({3 + q1 — q193 + Q1QQ), it follows that
the average BLER can be expressed as

—_ —as
Po = Tog34r3°

Péio) = poqo + P1q1 + P2q2 + P3q3

0914293
= poqgo + PoGoq1 + Poqdoq1G2 +Pow (11)
1 —gs
T3 T3
= Po = )
l—q3 1—-gq3+rs

and hm P}gL %) _

Example 3: Choose gp = 0.01, ¢ = 0.1, g2 = 0.5, and
g3 = 0.9999. Then r3 = 5.011 x 10~* and PBL) = 0.834.°

O
For J > 3,

= 1 (unlimited error propagation).

Ty éqo{l_QJ+q1{1—QJ+Q2 l—qr+-+qi—2 (1—QJ+QJ—1)}}}

, and the general expression for the average BLER is given
by

pl =1 12

Pl —gr+ry (12

IV. CODE DOPING

In order to mitigate the decoder error propagation problem
in SWD, we present three code doping techniques: (i) CN
doping based on occasionally inserting additional CNs into
the protograph of a regular SC-LDPC code, (ii) VN doping
based on occasionally inserting known VNs into a coupled
protograph, and (iii) adaptive doping based on inserting doping
positions into a coupled chain in response to requests from
the decoder transmitted over a noiseless binary feedback
channel. In each case, the resulting structured irregularity

Note that the large value of g3 in this case leads to significant decoder
error propagation, which severely degrades performance.
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slightly reduces the code rate but has the beneficial effect of
partitioning a long or continuous graph into shorter “sections”,
thus limiting the effects of error propagation. To illustrate
the doping process, we again consider the (3,6)-regular SC
protograph of Fig. 1(b) as an example, while noting that the
design can be applied in the same way to any (d., d.)-regular
SC protograph.

A. Construction of a CN Doped Protograph

For the (3,6)-regular SC protograph example, all the VNs
have degree 3, while all the CNs, except the ones at the
graph boundaries, have degree 6, where we note that the
reliable information generated by the reduced-degree CNs
at the boundaries is responsible for the threshold saturation
property of SC-LDPC codes [2]-[5]. Motivated by this fact
and our desire to limit the effects of decoder error propagation
in long frames, the CN doped code design introduces similar
reduced-degree CNs at different positions in the coupled chain,
as shown in Fig. 5, where the VNs at time t = 77 (colored
red) spread their three edges to the CNs at times ¢ = 71 + 1,
t=m7+2,and t = 71 + 3; the red VNs at time ¢t = 7
spread their three edges to the CNs at times t = 75 + 2,
t=7+ 3, and t = 75 + 4, and so on, i.e., if the red VNs at
time ¢ = 7; are chosen as the jth doping position, their edges
are connected to the CNs at times 7; + j, 7; + 7 + 1, and
7; + J + 2. Additionally, the VNs between doping positions
(colored black) are coupled in the same way as the preceding
red VN pair. This construction has the effect of inserting an
additional CN at each doping position, and as a result three
degree 4 CNs (colored green) are generated. At a cost of
a slight rate loss, these reduced degree CNs at the doping
positions result in stronger “local” codes compared to the
standard (3,6)-regular design, which facilitates the ability of a
SWD to truncate decoder error propagation.'® In the special
case where the doping positions are equally spaced in the
coupled chain, ie., 7, = 71 + (k—1)s, the chain is said
to be periodically doped with doping period s, and we refer
to this as periodic CN doping.'!

To decode a CN doped (3,6)-regular SC-LDPC code, SWD
can be applied to the doped chain, with a slight difference
in the way the window shifts compared to standard (3,6)-
regular SWD. The window-shifting schedule for CN doped
(3,6)-regular SC-LDPC codes is illustrated in Fig. 5. For a
window of size W, the block of 2M symbols at the leftmost
position in the window represents the target symbols. BP
decoding is performed within the window, either using a fixed
number of iterations or a stopping rule. After a block of target
symbols is decoded, the window shifts by one time unit. When
a doping position (red VN pair) becomes the target block,
the window shifts by one VN time unit to include one new
block of VNs, as before, but it shifts by two CN time units
to include two new blocks of CNs (and thus still including

19The CN doping technique described here can also be viewed as a form
of code extension.

"Whenever the doping positions must be fixed in advance, periodic doping
gives the best performance (see Sec. IV.D).

the same total number of CNs).'? After the red target symbols
are decoded, the window again shifts by one time unit until
the next doping position is reached, and the same process is
repeated. Generally, for the VN block of (red) target symbols
at doping position 7;, the decoding window covers the VNs
from times 7; to 7; + W — 1 and the CNs from time 7; + j
ot +7+W -1

B. Construction of a VN Doped Protograph

Although CN doping is very effective at reducing decoder
error propagation, as we will see later in this section, it requires
alterations to the decoding procedure, as illustrated in Fig. 5.
VN doping is based on occasionally inserting known (or fixed)
VNs into a coupled chain protograph. Similar to CN doping,
this facilitates the truncation of any error propagation in the
iterative decoding process, again at a cost of a slight rate loss.

Fig. 6 shows a general VN doping scheme for a (3,6)-
regular SC-LDPC code, where each time unit again represents
a block of 2M coded symbols. The VNs at time t = 7
(the green empty circles) are doped by setting the 2M coded
bits corresponding to these VNs to be “0”. As a result, the
CNs at times t = 71,7 + 1, and 71 + 2 (colored red and
shaded) can be viewed as degree 4, rather than degree 6, CNs,
thus emulating CN doping without actually altering the graph
structure. Similarly, if the VNs at time ¢ = 75 are doped,
the CNs at times ¢t = 79,79 + 1, and 75 + 2 (colored red
and shaded) can be viewed as degree-4 CNs.'3 Similar to
CN doping, inserting doped VNs periodically into the coupled
chain, i.e., periodic VN doping, results in the doping positions
being equally spaced in the coupled chain. In this case, the
doping positions (the green VNs) at times ¢ = 7y, 79, and 73
shown in Fig. 6 are fixed to known values and spaced s time
units apart, i.e., 7, = 71 + (k — 1)s.

The decoding process is the same as for undoped codes,
except that the code symbols at the doping positions are treated
as known, i.e., during the decoding process we set the LLRs
of the doped symbols to a large constant positive value I'.
These known symbols have the effect of transmitting perfectly
reliable information to their neighbour nodes, thus helping
the decoder recover from error propagation. An important
implementation advantage of VN doping compared to CN
doping is that the shape of the decoding window remains
unaltered, so the decoding procedure is essentially the same
as for undoped codes.

C. Adaptive Doping

A modification of the doping process, called adaptive
doping, can be applied to both CN and VN doping to fur-
ther improve decoder performance when a noiseless binary
feedback channel is available. For simplicity, we assume that
the feedback is instantaneous, although it is not difficult to
incorporate some fixed feedback delay into the analysis.

12We note here that the time scales differ for VNs and CNs, since CN
doping interrupts the regular pattern of exactly one CN for every two VNs,
i.e., at every doping position there is an extra CN corresponding to the pair
of VNs.

3The VN doping technique described here can be viewed as a form of
code shortening.
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Fig. 5. CN doping for a (3,6)-regular SC-LDPC code with occasional CNs of reduced degree spaced throughout the chain.
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Fig. 6. VN doping for a (3,6)-regular SC-LDPC code with occasional fixed VNs spaced throughout the coupled chain.

In contrast to periodic doping, adaptive doping inserts dop-
ing positions into the coupled chain on an “as needed” basis,
depending on the average LLR magnitudes in some number
of recently decoded target blocks. In this case, (typically un-
equally spaced) doping positions at times ¢t = 71, T, T3, . . . are
inserted into the coupling chain in response to requests from
the decoder. To trigger a doping request in the SWD process,
after completing all the iterations necessary to decode the
target block at time ¢, if the average decoded LLR magnitude
L; satisfies

A 1 M1
t

L, =2 37 Z ILLR| < n, (13)

where |LLR!| is the LLR 'of the ith VN at time t, i =

0,1,...,2M —1, and n is some pre-determined threshold, we

consider the target block at time ¢ as failed. If we experience
some preset number NN, of consecutive failed target blocks, a
doping request is submitted and the next block of VNs entering
the far end of the window is assumed to be doped.

D. BLER Analysis of Doping

We now make use of the analysis of the BLER of SWD
of SC-LDPC codes presented in Sec. III to illustrate the
advantages of doping. Let A;,j7 € [0,1,...,0—1] denote
the number of blocks in each section of the graph (between
doping positions), where [ represents the number of sections
in a frame. Referring to Fig. 5, for a frame of length L, it
follows that Y°' "0 \; = L, where \; = 741 — 75, 70 = 0,

and 7; E L. We now make the assumption that, if the decoder
is in the burst error state Sy at the end of the ith section, it

will leave state Sj, i.e., error propagation will be truncated,
at the end of that section.'* This allows us to apply the
analysis of Sec. III independently to each section of length

Aj, j€1[0,1,...,1—1], and we can write the overall average
BLER as
-1
> A PoLo,
=0
P, doped = (14)

where Pgp », represents the BLER of the jth section.

To determine the best doping points for a fixed number of
sections [, (14) can in general be treated as an optimization
problem with respect to the \; parameters. But, under error
propagation conditions, we see from Fig. 3 that, for the
same channel and code parameters, Ppr »; is an increasing
function of A;, which implies that sections of equal length
will minimize Pgi, doped- Hence we consider only the special
case of periodic doping, where the doping positions are equally

spaced in the coupled chain (i.e., \; = s, j € [0,1,...,1 —1]),
in which case (14) can be written as
PgL,doped = PBL,Aj [N j=s, J=0,1,...,1—1, (15)

where s is the doping period.

Before presenting examples of how to apply the analysis
of Sec. III to doping, we distinguish two cases: () a “strong
code/decoder” case in which the protograph lifting factor M
and the decoder window size W are both large, and @ a

14This assumption is supported by extensive simulations showing that dop-
ing is effective in limiting decoder error propagation, as will be demonstrated
by the numerical results presented in Sec. IV.F.
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“weak code/decoder” case in which M and W are both small.
As noted in Sec. III, the analysis model can be assumed to
have go < 1 and ¢q; =~ 1 for strong codes, while qq is larger
and ¢y is smaller for weak codes. In other words, strong
codes have very low block error rates in state Sy and a very
small probability of reaching state S;, but once they reach
state .Sy they typically experience unlimited error propagation.
For this reason, large frame lengths can suffer significant
performance degradation in this case. For weak codes, on the
other hand, the block error rate is much higher in state Sy,
making them unsuitable for capacity-approaching applications,
but the decoder can sometimes recover from error propagation,
so large frame lengths are not necessarily catastrophic.

The doping methods presented in this section typically result
in much smaller values of ¢;, thus allowing the decoder to
escape more quickly from state S; and significantly improving
the decoded block error rate Ppy,, particularly at SNR oper-
ating points near capacity. For periodic doping, the transition
probability from state Sy to state Sy can be approximated as
1—qy = 2/s, where we make the reasonable assumption that,
on average, we enter state S; in the middle of a doping period,
i.e., s/2 time units from the next doping point. For adaptive
doping, the transition probability from state .S to state Sy can
be approximated as 1 — ¢y = 1/ (W + N, — 1), since, once
the decoder enters state Sy, it takes W + N, — 1 time units
before a retransmission requesting a doping position is sent
over the feedback channel.!

We now calculate Ppgr,, using the asymptotic analysis model,
for both strong code and weak code examples, where doping
is accounted for by adjusting the value of ¢, as discussed
above. Based on these calculations, we then compare the
predicted Pgy, performance of undoped, periodically doped,
and adaptively doped codes. For simplicity, we choose the
case J = 2, i.e., a 3-state model, but the same conclusions
hold for any value of J.

Example 5 (strong code): Choose g9 = 0.01, ¢ =
0.1, g2 = 0.999.

For the undoped case (1 — g2 = 0.001), the BLER is
calculated using (8) as Ppr?°P*? = 0.5025. For periodic

doping (s = 200, 1 — gz = 2/s = 0.01), PEeMe%e = 0.0991,
and for adaptive doping (W = 18, N, = 2, 1 — g = 0.0526),
PRIAPEve — 0,0282. O

For the chosen parameters, we see that both periodic and
adaptive doping significantly reduce Ppg;, compared to the
undoped case, which suffers from unlimited error propaga-
tion, with adaptive doping performing significantly better than
periodic doping.

Remark: Here we chose g2 = 0.999 since strong codes
almost never recover from decoder error propagation, s = 200
since this limits the burst length to 100 on average, W = 18 =
6(m+1) (a strong decoder - six times the decoding constraint
length) since this gives near optimal SWD performance at
moderate-to-high SNRs, and N, = 2, since anything more
than single isolated errors typically indicates decoder error
propagation has begun.

5Here the time it takes to reach a doping position is fixed.

Example 6 (weak code): Choose ¢o = 0.02, ¢7 = 0.2,
q2 = 0.99.

For the undoped case (1 — g2 = 0.01), the BLER is
calculated using (8) as P ! = 0.2968. For periodic
doping (s = 100, 1 — gz = 2/s = 0.02), P5"°%¢ = 0.1803,
and for adaptive doping (W = 12, N, =4, 1 — g2 = 0.066),
Palartive — 00746, O

For the chosen parameters, we again see that both periodic
and adaptive doping significantly reduce Pgr, compared to the
undoped case, with adaptive doping performing much better
than periodic doping.

Remark: Here we chose ¢o = 0.99 to reflect the fact that
weak codes are less likely than strong codes to suffer from
unlimited decoder error propagation, s = 100 since weak
codes are more likely to reach state S; and thus need more
frequent doping, W = 12 = 4(m + 1) (a weaker decoder
than in Example 5), and N, = 4 to reflect the fact that, for
weak codes, we must wait longer before declaring that error
propagation has begun and sending a doping request.

In general, either with or without doping, strong codes
perform much better than weak codes due to the smaller
value of ¢y, since strong codes are much more resilient
to channel errors. Also, for smaller values of L, the gains
achieved by doping are expected to be less dramatic, since
error propagation is not as damaging for small frame lengths.
Finally, we note that the finite L analysis of Appendix A can
also be used for periodic doping to draw similar conclusions
by choosing L = s.

E. Rate Loss

The design rate of CN doped SC-LDPC codes with frame
length L and d doping positions is given by
! L4+m+d)n
RN _q_ ey (LdmEdine
L 2 Ln,

:1_(L+7L”+d) (1-R),

where R = 1 — n./n, is the design rate of the uncoupled
LDPC-BC protograph [6], d = L/s is fixed in the periodic
case, and d is variable, depending on the frequency with which
the threshold test of (15) fails IN,. consecutive times, in the
adaptive case.

Compared to the design rate R, = 1 — (££2) (1 - R)
of undoped SC-LDPC codes [6], we see from (16) that the
design rate R$N of CN doped SC-LDPC codes is smaller,
i.e., CN doping results in some rate loss. However, we note
that encoder termination at the doping positions, which also
truncates error propagation, would result in a larger rate loss.
Below, the design rates of periodic CN doping for different
values of d are calculated.

Example 7: Consider the (3,6)-regular SC-LDPC codes of Fig.
1(b) with frame length L = 1000.

(16)

Case 1: d = 0 RIOOO =1- (100052) (1 ) = 0.499.
Case 2:d =1, R{{}, = 1— (10010;60“) (1— = 0.4985 >
Rsoo =1 — (50(”2) (1 —0.5) = 0.498 for termmatlon

Case 3: d = 3, R{{jy = 1— (1290243 (1 — 0.5) = 0.4975 >
Roso =1 — (25%2) (1 - 0.5) = 0.496 for termlnation.
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Fig. 7. BER distribution per block of CN doped and undoped (3,6)-regular
SC-LDPC codes.

From these results, we note that, even though CN doping
results in some rate loss, the rate loss of termination is greater.
O

The design rate of VN doped SC-LDPC codes with frame
length L and d doping positions is given by
g (L4 m)ne

—1—
n' (L—d)ny

v

=1-[(L+m)/(L—-d)](1-R).

RVN -1
B (17)

Similar to the CN doping case, VN doping results in some
rate loss, but the rate loss of termination is greater. Also,
since in general (L+m)/(L—d) > (L+m+d) /L, the
rate loss of VN doping is always greater than the rate loss of
CN doping, but the difference is very slight for large values
of L. O

From this analysis and the results of Examples of 5, 6, and
7, we see that doped SC-LDPC codes have improved BLER
performance compared to undoped SC-LDPC codes, at a cost
of a slight rate loss due to the doping, and that adding more
doping positions further improves the BLER performance,
with some additional rate loss. Also, we note that the ability
of SC-LDPC codes to interrupt decoder error propagation and
improve BLER performance is achieved without having to
frequently terminate the code graph into short frames.

F. Numerical Results

In order to verify the effectiveness of code doping, the bit
error rate (BER) distribution per block of a typical frame
subject to error propagation in SWD of both CN doped and
undoped (3,6)-regular SC-LDPC codes is plotted in Fig. 7,
where M = 2000, W = 18, I,.x = 50, and L = 250. Two
examples of CN doping are included, one with a single doping
position at time 7; = 125, and one with two doping positions
at ; = 83 and 75 = 166. From the figure, we can see that
CN doping effectively truncates the error propagation and that
adding more doped CNs truncates the error propagation earlier.

Next, for M = 2000, W = 12, I,ax = 50, and L = 500,
Fig. 8(a) shows the BER and BLER performance comparison
between an undoped (3,6)-regular SC-LDPC code with rate
R500 = 0.498 and CN and VN doped (3,6)-regular SC-LDPC
codes with a single doping position at time 7; = 250 and rate
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Fig. 8. Performance comparison of (a) CN doped, VN doped, and undoped
and (b) undoped, periodically VN doped, and adaptively VN doped (3,6)-
regular SC-LDPC codes.

RSN = RYS = 0.497.'® We note that the doped codes gain
more than two orders of magnitude in BER and nearly one
order of magnitude in BLER compared to the undoped code
at SNR operating points of interest (below the threshold of the
underlying LDPC-BC).!” Also, the fact that the performance of
both doping methods is essentially equivalent corroborates our
earlier observation that VN doping emulates the CN doping
process while not requiring any alteration to the shape of the
decoding window.

In order to verify the effectiveness of adaptive doping, the
BLER performance of the undoped, periodically VN doped,
and adaptively VN doped (3,6)-regular SC-LDPC codes of
Fig. 1(b) with SWD is shown in Fig. 8(b) for M = 2000,
W =12, N, = 2, Lihax = 50, L = 1000, 2 doping positions
per frame for periodic doping, and a maximum of 2 doping
positions per frame for adaptive doping.'® The results confirm
our analysis above that, when low latency operation is desired
at the lower SNRs typically used in practice, code doping
significantly improves the BLER performance, with adaptive
doping outperforming periodic doping.

16In the case of VN doping, we set the LLRs of the doped symbols to
I' = +10.

17The performance gain affects only a limited range of SNRs, since doping
makes little difference for either “very good” or “very bad” channels.

18We limit the number of doping points for adaptive doping so that its
rate loss can never exceed that of periodic doping.
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V. SYSTEMATIC VN DOPING

In this section, we introduce the notion of fractional VN
doping, in which only a portion of the VNs at a doping
position are affected. Then we consider systematic encoding
and only doping a fraction of the VN, i.e., the systematic bits,
at each doping position. This systematic VN doping allows
the doping to be done prior to encoding, thus simplifying
the encoding process, and it also results in a straightforward
procedure for recovering the decoded information sequence.
This is particularly advantageous in the case of adaptive
doping, where these operations must be performed “on the
fly”.

A. Fractional VN Doping

Fractional VN doping is illustrated in Fig. 9 for the case
of (3,6)-regular SC-LDPC codes, where the slashed circles
represent the fractionally doped nodes and the solid circles
represent undoped nodes.! At each time unit, the two proto-
graph nodes represent a total of 2/ symbols. Let 0 < § < 1
represent the doping fraction, i.e., the fraction of doped bits
at each doping position. Then, for example, at time 7y, 26 M
bits are doped, where we note that § = 0 corresponds to no
doping and § = 1 corresponds to full doping. We classify the
2M symbols at each time unit into two sets: a doped set D
and an undoped set D.

Now consider SWD of SC-LDPC codes. In the case of
fractional doping, let Lf, 1 < ¢ < 2M, denote the channel
LLR used for decoding the ith bit at time unit ¢. Then we

have
r,
LE = { Lé,ch

1 )

1€D

ieD {19
where L1" denotes the received channel LLR of the ith bit at
time unit ¢ and, as in Sec. IV.F, I' = +10 is chosen to denote
the known LLR value corresponding to a doped bit 0. Note
that (18) has the effect of assigning certainty to the doped bits
during the decoding process.

In the case of fractional doping, we can choose which bits
at a protograph node to dope and which to leave undoped.
Two fractional doping patterns, adjacent doping and periodic
doping, are illustrated in Fig. 10 for doping fraction § = 0.5,
where the white circles represent doped bits and the black
circles represent undoped bits. As can be seen from Fig. 10,
in adjacent doping 26 M consecutive bits are doped, whereas
in periodic doping, the 20 M doped bits are spaced uniformly
across the 2M bits at a time unit. At a doping position, in the
case of § = 0.5, we see that adjacent doping is equivalent to
doping all the VNs in one protograph node and no VNs in the
other, whereas periodic doping spreads the doped VNs evenly
over both protograph nodes.

It is also possible to spread fractional doping over a doping
span of o consecutive positions, where o is a positive integer,
such that the equivalent of ¢ positions is fully doped. The

19Fractional doping can also be applied to CN doping, but we focus only
on fractional VN doping here.

10

design rate of fractionally VN doped SC-LDPC codes with
frame length L is given by

ne L+m
—1- <L05>(1—R). (19)

B. Systematic VN Doping

As noted above, VN doping involves fixing certain bits in
the encoded sequence to have known values. This implies that
an encoder for VN doped SC-LDPC codes must be designed to
ensure that the value of the encoded bits in the doped positions
remains constant for all possible information sequences. This
requirement has the effect that certain information sequences
are invalid inputs to the encoder, thus resulting in rate loss.

In order to see this, consider an example of a general
(nonsystematic) convolutional encoder in which the length K
information sequence u = (ug,u1,...,ux—1) produces the
length N encoded sequence v = (vg,v1,...,un—1) and a
particular encoded bit, say v;, must be a “0”. Since every
encoded bit is the sum of some subset of information bits, v,
can be expressed as v; = 0 = u;1 +ujo +- - - +ujr, where the
indices j1,ja2,...,Jk € {0,1,..., K — 1} represent the subset
of k, 0 < k < K, information bits that contributes to v;. It
follows that changing the value of any one of the bits in the
subset, while leaving the others unchanged, will change the
value of v; from “0” to “1”, which implies that all information
sequences that contain this particular subset of information bits
are invalid. Moreover, all information sequences containing
any combination of these bits that gives odd parity are also
invalid. As a consequence, not all 2% possible information
sequences are valid when code doping is used, which leads to
rate loss.

Based on the above discussion, we conclude that designing a
non-systematic encoder with doped code bits (or a systematic
encoder with doped parity bits) in general leads to a highly
complex encoding process. Moreover, in the decoding of
LDPC codes, the decoding process results in an estimated
code sequence, which must then be inverted according to the
same highly complex encoding rule in order to recover the
estimated information sequence. Furthermore, in the case of
adaptive VN doping [16], these complex encoding and encoder
inverse operations must be done “on the fly”, whenever the
feedback channel requests the insertion of doped bits into
the encoded sequence. This difficulty motivates us to restrict
our attention to systematic encoding rules and to limit doping
to systematic bits only, which we refer to as systematic VN
doping. This follows from the fact that (I) doping can now be
done directly on the information sequence, prior to encoding,
thus greatly simplifying the encoding process, and (@) the
encoder inverse operation is trivial in this case, since all the
information bits appear unchanged as code bits in the encoded
sequence, and thus the estimated information sequence can be
determined directly from the estimated code sequence.?’ Since
only a fraction of the bits (depending on the design rate R

20We note that such a strategy can be implemented with only minor
modifications to the encoding process by occasionally fixing input symbols to
a standard systematic encoder and removing those symbols after recovering
the decoded information sequence.
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Fig. 9. Fractional VN doping for a (3,6)-regular SC-LDPC code with occasional partially doped VNs spaced throughout the coupled chain.
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Fig. 10. Adjacent and periodic doping patterns for fractional VN doping with 6 = 0.5.
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Fig. 11. Systematic VN doping with § = R=0.5and 0 = 1/R = 2.

of the underlying LDPC-BC) at each position are systematic,
a systematic doping strategy necessitates spreading fractional
doping over a span of ¢ > 1 positions in order to dope the
same number of bits as full doping of all the protograph nodes
at any one position. However, as we will see in Sec. V.C,
this can be achieved with essentially no loss in performance,
and even fractional systematic doping at one position can
sometimes perform as well as full doping.

To illustrate the procedure, we again use (3,6)-regular SC-
LDPC codes as an example, for which R = 1/2. In order
to dope the same number of bits as full doping of a single
position, systematic VN doping requires doping a fraction
d < R=1/2 of bits over ¢ > 1/R = 2 consecutive doping
positions such that 0§ = 1, where only systematic VNs
are doped. This is illustrated in Fig. 11 for § = 0.5 and
o = 2, where the white circles represent the doped systematic
protograph nodes and we assume that the upper protograph
node at each position contains systematic bits only, while
the lower protograph node contains parity bits only, which
corresponds to the adjacent doping pattern shown in Fig.
10(a). At each doping position, say ¢ = 73, only a fraction
0 = R = 0.5 of the protograph nodes are doped and a second
systematic protograph node is doped at the next position
t = 7 + 1, making fractional (§ = 0.5) systematic doping

over a span of o = 2 positions equivalent to full doping of a
single position, which necessarily entails the doping of parity
bits. Similarly, at time units ¢ = 7o,t = 73,..., systematic
doping covers a span of o = 2 positions, such that o6 = 1.%!

Systematic doping can be applied in the same manner
to general (dy,d.)-regular SC-LDPC codes with underlying
LDPC-BC design rate R = 1 — d,/d.. Here, we consider
(3,9)-regular SC-LDPC codes with rate R = 2/3 and (4,6)-
regular SC-LDPC codes with R = 1/3 as examples. In the
R = 2/3 (3,9)-regular case with coupling memory m,; = 2,
derived from the n. x n, = 1 x 3 LDPC-BC base matrix
B = [3 3 3], the coupled chain formed by applying the edge-
spreading technique to the uncoupled protograph is shown in
Fig. 12, where d, = 3n. = 3, d. = 3n, = 9, and we see that
there are three protograph VNs at each time unit. Therefore,
in order to implement systematic doping, we can consider two
options:

e doping span o = 2. In this case, systematic doping
operates over ¢ = 2 time units, as shown in Fig. 13(a),
where two systematic protograph nodes are doped at time

2In general, we note that o, the equivalent number of fully doped
positions, need not equal 1. In other words, as long as 6 < R, systematic VN
doping can be spread over any number o of consecutive positions.
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Fig. 12. Coupled chain for (3,9)-regular SC-LDPC codes.

71 and one systematic protograph node is doped at time
T1 + ].

e doping span o0 = 3. In this case, systematic doping
operates over ¢ = 3 time units, as shown in Fig. 13(b),
where one systematic protograph node is doped at times
71,71+ 1, and 71 + 2.

CO0e0Cee 00000 Hee

Time unit 7, Time unit 7, +1 Time unit 7, Time unit 7, +1 Time unit7, +2

(a) doping span ¢ =2 (b) doping spanc =3
Fig. 13. Systematic doping options for (3,9)-regular SC-LDPC codes.

In the R = 1/3 (4,6)-regular case with coupling memory
m = 1, formed from the n. x n, = 2 x 3 LDPC-BC base

matrix
B [

applying edge spreading results in the coupled chain shown in
Fig. 14, where d, = 2n. = 4 and d. = 2n, = 6. Since there

222}7 20)

2 2 2

Fig. 14. Coupled chain for (4,6)-regular SC-LDPC codes.

are three protograph nodes at each time unit, one protograph
node can be considered as the systematic node and the other
two as the parity check nodes. Thus, for systematic doping,
only one protograph node can be doped at each position, which
results in the doping option shown in Fig. 13(b).

C. Numerical Results

In order to verify the effectiveness of systematic VN doping,
we first consider a (3,9)-regular SC-LDPC code with design
rate R = 2/3 and coupling memory m = 2 lifted from the
coupled chain shown in Fig. 12, where we use the systematic
doping option of Fig. 13(b). The simulated performance for
M = 1000, W = 12, Ipax = 50, L = 500, and RER = 0.665
is presented in Fig. 15(a). We see that systematic doping
i.e., fractional doping of ¢ = 3 protograph nodes, achieves
essentially the same BER and BLER performance as full
doping of a single position, which involves a much more
complex encoding process. We also note that the total number
of doped VNs is 300 M = 3M, both for systematic doping
(6 =1/3,0 = 3) and full doping (6 = 1,0 = 1).

107!

10-2 L

BER/BLER

10°®

10

104

—oe— Systematic Doping BER
H- ©- Systematic Doping BLER
—&o— Full Doping BER

- - Full Doping BLER

10-6 L L L
1.68 1.7 1.72 1.74 1.76 1.78 1.8
Ey/N, (dB)
(@)
1072 T T T T
8. —o— Systematic Doping BER
AR 4 - ©- Systematic Doping BLER
RS N —¢—Full Doping BER
1073 N e, |- ¢- Full Doping BLER
o~
€3}
-
8 10t
ot
[€a)
M
105 ¢
10

0.65 0.7 0.75 0.8

E,/Ny (dB)
(b)

0.5 0.55 0.6

Fig. 15. Performance comparison between full doping and systematic doping
for (a) a (3,9)-regular and (b) a (4,6)-regular SC-LDPC code.

We then consider a (4,6)-regular SC-LDPC code with design
rate B = 1/3 and coupling memory m = 1 lifted from
the coupled chain shown in Fig. 14, where again we use the
systematic doping option of Fig. 13(b). For the same set of
parameters as in Fig. 15(a)*? and RY® = 0.331, the simulation
results are shown in Fig. 15(b), where we see only a very
slight (< 0.025 dB) performance loss for systematic doping
at BER/BLER > 1075/10~* compared to the much more
complex full doping of a single position, and we again note
that the total number of doped VNs is 3M in both cases.

Finally, in order to test the effectiveness of general (sys-
tematic or nonsystematic) fractional VN doping at reducing
rate loss, we simulated the (3,6)-regular SC-LDPC code of
Fig. 9 with M = 2000, W = 18, I;nax = 50, and L = 500
at an SNR of E,/Ny = 0.9 dB. A single (c = 1) doping
position was placed in the middle of the coupled chain and the
doping fraction ¢ was varied between 0 (no doping) and 1 (full
doping). From Fig. 16(a), we see that even a small amount of
fractional doping yields significant performance improvement,
with § = 0.2 (20% doping, RYR = 0.498) giving essentially
the same result as § = 1.0 (full doping, RYN = 0.497). This is
consistent with the analytical results of [15] for a BEC, where
the authors show that doping operates like a switch, i.e., a
decoding wave is either initiated or it is not, and suggests

221n Fig. 15(b), we use W = 8, four decoding constraint lengths, the
same as for Fig. 15(a)
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that the systematic doping results presented above can also
be achieved by doping only a single position, thus reducing
the rate loss due to doping, as long as R exceeds some
critical doping fraction. To test this hypothesis, we simulated
the (3,6)-regular SC-LDPC code with M = 2000, W = 12,
Inax = 50, and L = 250. A single (¢ = 1) doping position
was placed in the middle of the coupled chain, with doping
fraction 6 = 0.5. The results are shown in Fig. 16(b), where
we see that fractional systematic doping with § = 0.5 achieves
essentially the same the BER and BLER performance as full
doping, and the rate in this case increases from RYN = 0.494
to RER = (0.495. Finally, we note that these results suggest
that fractional doping of multiple positions in a coupled chain
will be more effective at mitigating decoder error propagation
than fully doping a single position.

BER
- 8 -BLER

b-8--g--p-w0--8--B--0- -4

BER/BLER
)
o

0 0.2 0.4 0.6 0.8 1
Doping fraction ¢
(a)

BER/BLER

—e—Full doping, BER
10 £- ©- Full doping, BLER

—#— Fractional doping, BER
- #- Frational doping, BLER

10°° : :
0.7 0.75 0.8 0.85 0.9

By /Ny (dB)
(b)

0.95

Fig. 16. Performance of a fractionally doped (3,6)-regular SC-LDPC code
for (a) M = 2000, W = 18, L = 500, and E,/No = 0.9 dB and (b)
M = 2000, W =12, L = 250, and § = 0.5.

VI. CONCLUSION

In this paper we studied the use of code doping techniques
for SC-LDPC codes with SWD to mitigate the decoder error
propagation problem, which can severely degrade code per-
formance when low latency operation at SNRs below the BP
threshold of the underlying LDPC-BC is required. Doping was
shown to effectively combat decoder error propagation without
terminating encoding, thus enabling streaming transmission
or large frame length applications. We began by introducing
a multi-state decoder model to describe the behavior and
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analyze the BLER performance of SWD affected by error
propagation. Then three doping methods (CN doping, VN
doping, and adaptive doping) were presented to limit the
effects of error propagation. An analysis of the BLER of
doped SC-LDPC codes based on the multi-state decoder model
indicated that doping results in substantially improved BLER
performance under low latency operating conditions and that
further improvement can be obtained by increasing the number
of doping positions. This improved performance comes at a
cost of some slight rate loss, which was shown to be always
less than that resulting from encoder termination. Computer
simulation results were also used to demonstrate the beneficial
effects of code doping and the additional improvement that
can be achieved by employing a feedback channel to adapt
the doping to the observed decoder behavior. Finally, the
encoding problem associated with doping was shown to be
easily solved without any significant effect on performance
by assuming a systematic encoder and restricting the doping
to systematic bits only, i.e., by only doping a fraction of the
bits at each position. As a result, systematic VN doping of
SC-LDPC codes represents a practical approach to achieving
near capacity performance with limited decoding latency.

APPENDIX A

Here we modify the analysis of Sec. III to cover the case
of terminated (finite L) transmission.

Case Al: No intermediate states (J = 1), finite L.

Let dy = 1/qo denote the average dwell time in state Sy,
i.e., the average number of time units the decoder stays in
the random error state, and let d; = 1/ (1 — ¢1) denote the
average dwell time in state S;. In this case, there is one cycle
in the graph, the average cycle time is given by

1 1 1—q1+ l—q+r
t=dy+d = — + _ @1 t490 al 1

o l-a q@l-—q) QO(1*(I1£’
21

and the average number of cycles is y = L/x.%
Now write y = |y| +2, where 2 < 1. Let Uy = @ = doflﬁdl
be the average fraction of a cycle spent in Sy, Uy =1—Uy =
dDdTldl be the average fraction of a cycle spent in Sy, 1o be
the average number of block errors in state Sy, and 71 be the

average number of block errors in state .S;. Since the decoder
makes an error each time it leaves state Sy, we have

fo = { ly] dogo = |y] ,for z < Uy (since dogo = 1) 22)
(ly] + 1) dogo = |y] + 1,for z > U,
- ] diqn = y] T2 for 2 < Uy o3
n = (2=Uo) 1
(LyJ + TD) ﬁﬁafor z 2 U07
and the average BLER can be expressed as
R =BT, 4)

Example Al: Choose L = 1000, ¢p = 0.01, and ¢; = 0.99.
Hence we have dy = 100, d; = 100, x = 200, y = 5, z = 0,

Z3Unlike the asymptotic analysis, the finite I analysis must introduce the
concepts of average dwell time and average cycle time to account for the fact
that frames typically end somewhere in the middle of a cycle.
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and Uy = U; = 0.5. Substituting these values into (22) and
(23), we obtain ng = 5, n; = 495, and the average BLER is
given by PSLOOO) = 51'%%%5 =0.5.

In this case, for any L > dy = 100, if ¢ — 1, we have

d1—>oo,x—>oo,y=z:£>U0:d?°,andLyj:0.

x

Then 7ig = 1, 11 = 25%%dyq1 = (L —do) @1 = L — 100, and
hm P( ) — w = 1. Finally, we note that, for any L

such that z = 0, i.e., when the decoder traverses an integral
number of cycles, PiY) = PU®). O

Case A2: One intermediate state (J = 2), finite L.

In this case, there are two possible cycles: S.51.5; and
50515250, called type 1 (denoted C'V)) and type 2 (denoted
C®), respectively. Denote the average dwell times in each
cycle as d,(;k),i =0,1,2,k = 1,2, where d(l) d(2) = qlo
dgl) = d(12) = 1, and d(;) =0, de) = —q, reflecting the
facts that the dwell time in the intermediate state is always 1
time unit and state So is never reached i m cycle (D,

Now let z(1) = do( )+ dy M = L 4 1 pe the aver-
age cycle tlme for CV, 22 = do(z) + d1(2) + d2(2) =
qo + 14+ -—— be the average cycle time for C'®), and
r=azMP (Cgl)) + 22 (0(2 ) be the overall average cycle
time, where P (C®)) is the probability that a cycle is of type
k,k = 1,2. Then, since P (CV) =1 — g, P (C?¥) = ¢,
and P (C’(l)) + P (0(2)) =1, we have

1+ +(1+q)(1—
U o PR (0 G 0N e 238
o q0 (1 — g2) (25)
_ l—g+qp(l—-—g+aq) _l-gtmr
g (1 —q2) q0 (1 — g2)

Next let y = % =
= qV

ly| + 2, z < 1, be the average number

of cycles, dy = d((f) = qio, dy = dgl) — dg2) — 1

and dy = dgl) - P (C(l)) +dy? . p (0(2)) = 13—1(12 be the
overall average dwell time in state So. Then Uy = ‘? = q%a:
is the average fraction of a cycle spent in Sy, Uy = <+ = %

— E _

is the average fraction of a cycle spent in Sy, and Us
m is the average fraction of a cycle spent in Sy, where

1 1
U0+U1+U2=7+*+L
gor x (l1—g¢)=x

14
ly) dago = |y)] 22 for z < Uy + Uy
ng = 2—Up—U “ (29)
(LM*‘%)% for z > Uy + Uy,
and the average BLER can be written as
Péi) = w (30)

L

Example A2: Choose L = 1000, go = 0.01, ¢; = 0.1, and
g2 = 0.99. Then 7 = 0.0011, dy = 100, d, = 1, do = 10,
x =111, y = 9.009, |y] =9, z =0.009, Uy = 0.9009, U; =
0.009, and Uy = 0.0901 (z < Uy < Uy + Uy). Now using
27), (28), and (29), we obtain ng = 9, n1; = 0.9, Ny = 89.1,
and P20 — 1830 = 0.099. In this case, P(lOOO) ~ P(OO)
(from Ex. 2), since the last cycle never reaches state Sg on
the average (z < Uy + Uy). O

Case A3: J > 3, finite L.

From (21) and (25), it follows that x = 31;(’11"7_‘;;‘; is the
general expression for the average cycle time and
d;
Uy=—, 1=0,1,...,J. 31
x
Letting C*) represent cycle S0S1Ss...S:50, k =
1,2,...,J, we can write
P (C(l)) =1- q1
P(C®) =qigp-qer (L= a) ki =23,...,0 =1 (32)

P (C(J)> =q192 - q4Jj-1,

where each graph contains exactly J cycles. Now it follows
that the overall average dwell times are

- 1

dO = Czl = 17
q0
B i—1
d; :1—213(0(’“)) = e Gty i = 2,3, — 1
k=1
d; = q192 - qj-1
1—ygy
(33)
where the average dwell times di(k) =1Lk=J—-i—-1,J—

i,...,dJ, for each intermediate state + = 1,2,...,J — 1.
The average number of block errors in each state is then
given by

_ do(]o for z < Uy
_(1-@)+e(—q9)+qpn 26) ng = { (LL;J I 1)dOL(§/0J ly] + 1 for 2> Uy (34)
qo (1 —q)z
_ 1@t 1. lyl djq; =yl qige -+~ qj, for z<Upg+ Uy +---+ U,
o1 -gq)x ap =14 (lwl+1djg; = (lyl + Va2 qj, (35)
Letting n; be the average number of block errors in state j=L2,...,J-1forz>Uy+ Ui +---+Uj
S;,4=0,1,2, we then have®* ly] dsqs = |y] Wdl - for 2 < Ug+Ur + -+ +Uja
Tio = { LyJ Joqo = LyJ for z < Uo (27) ny= (I—yj + szofU}]; —Uj_ 1) q11qi'é'JQJ’
(ly] + 1) dogo = |y] +1 for z>Up forz > Uy + Uy + -+ Uy_q,
(36)
7y = { ly| diqi = |y| 1 for z < Uy + Uy (28)and the average BLER is given by
(ly) + V) dvgr = (ly] + D for z>Up+Us J
Pl =S m/L, (37)

24We note that (1) the decoder makes exactly one error in state So per
cycle, (2) the decoder makes an error in state Sp with probability g1 per
cycle, and (3) during cycle C<2), the decoder makes errors in state So with
probability g2.

i=0
which represents the general expression for the BLER in the
finite L case.
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APPENDIX B

We now describe how the model parameters can be estimat-
ed from the results of a single simulation run. First, choose
an operating channel SNR of interest, typically below the
iterative decoding threshold of the underlying LDPC-BC. Then
simulate the BLER performance of the SC-LDPC code at that
SNR and produce a data file of the burst length distribution
of all finite-length error bursts, i.e., error bursts that return to
state Sy. Given that a total of IV frames have been simulated,
each of length L, for a total of LN simulated blocks??, this
data file gives the total number of finite-length error bursts of
each length contained in all N frames. Then produce a second
data file that gives the burst length distribution of all end of
frame (EOF) error bursts, i.e., bursts of one or more block
errors at the end of a frame.

Next decide the number of states to be included in the
model, i.e., set the value of J. Typically, most finite-length
error bursts are short, since longer bursts tend to lead to
unlimited error propagation. In order to limit the size of the
model, normally J is chosen just large enough to include
those burst lengths that occur most often, while combining the
occasional longer finite-length bursts with the EOF bursts.?®

Once J has been set, it is straightforward to determine the
model parameters. Begin by letting A; be the number of burst
errors of length j, j =1,2,...,J, where A\j = ApL, + AgoF,
ArL, is the number of finite-length error bursts of length J or
greater (if any), and Agor is the number of EOF bursts. Also
let 67 = dFr, +0roF be the total number of block errors in the
error bursts that comprise A;. Then, recalling that the dwell
time in each intermediate state is exactly one time unit, the
total number of time units 7 spent in state S is

Tj:i)\i, j=12,....J—1, (38)
the total number of:tZlock errors F/; made in state S; is

E; = zJ:/\i, j=12,....J—1, 39
and it follows that '

g =E;/T;, j=12,...,J -1 (40)

To find g, note that the total number of time units 7j spent in
state Sy equals the total number of correctly decoded blocks,
which is given by

J-1
Ty=LN =Y iXi—dy, (41)
i=1
the total number of block errors Ey made in state Sy is
J
Bo=)Y X\i=T, (42)
i=1

25Each simulated frame actually contains I + W time units, but only the
first L decoded blocks are considered for the burst length distribution. This
is done to avoid the decoding window overlapping the termination nodes in
the graph, since frame termination is not taken into account in the model.

26Tn the case that there are EOF bursts of length less than J, the burst
length distribution data files are modified to count these as finite-length bursts
rather than as EOF bursts.

15

and it follows that gy = Fy/Tp. Finally, to compute ¢z, note
that the total number of time units 7'; spent in state .Sy equals
0y minus the number of block errors that occurred prior to
reaching S;. So T; = 6; — (J — 1)\, the total number of
block errors E; made in state S;?7 is E; = Ty — As, and
q7=E;/T;.

Example BI: N = 20,000 frames of length L. = 5000 were
simulated for the SC-LDPC code of Fig. 1(b) with M = 1000,
Imax = 50, W =12, and E}/Ny = 0.9 dB, which is 0.2 dB
below the BP threshold of the underlying (3,6)-regular LDPC-
BC, resulting in a decoded BLER = 0.4670.2% The results of
the simulation were then used to create a model with J =5,
where J was chosen to be the smallest burst length with less
than 100 simulated block errors of that length. From the data
files, we determined that \; = 7957, Ay = 1762, A3 = 666,
Ay = 261, Ap, = 178, Agpor = 15,104, ép, = 118,157,
and dgor = 46,557,890. Based on these empirical results,
the model parameters gy = 4.866 x 1074, q; = 0.6931, ¢ =
0.9020, g3 = 0.9589, g4 = 0.9832, and ¢5 = 0.9997 can be
calculated using the above procedure. Then, from (12), the
asymptotic average BLER is given by P]gio) = 0.4670, where
we note that the agreement with the simulated result in this
case is due to the fact that the simulated frames were quite
long (L = 5000).

Now considering the finite length analysis, (12) and (31)
- (36) can be used to compute the average number of block
errors in each state as ng = 1, n; = 0.6931, ny = 0.6252,
ng = 0.5995, iy = 0.5894, and 15 = 1797.2976, from which
we see that almost all the block decoding errors occur in state
S5, the burst error state. It follows from (37) that the average
simulated BLER is given by P = 0.3602.° O

Finally, we note that the models developed from a single
simulation at a given frame length L can be used to estimate
BLER performance for different frame lengths, and hence to
predict the performance gain of the code doping techniques
presented in this paper, without having to recalculate the model
parameters. This follows from the reasonable assumption
that the probability of a finite-length error burst that returns
the decoder to state Sy does not depend on the length of
the frame being simulated, and hence the model parameters
90+q1,---,qs—1 are essentially independent of L.3° Also, the
value of ¢; can be modified by adjusting the lengths of the
simulated error propagation bursts to account for different
values of L. With this modification, it is then straightforward to
predict the performance of doping by performing the analysis
for frame length L /2, which corresponds to a single doping
position.

Example Bl (Cont.): For L = 2500, we left the values of

270nce in the burst error state S 7, the decoder remains there after each
subsequent decoding error and only returns to the random error state Sp after
a finite-length burst error (of length J or greater) or an EOF burst.

28A low SNR value was chosen for the simulation in order to illustrate
the problems caused by decoder error propagation, which typically has little
effect on performance at high SNRs.

29The analysis here assumes that the dwell times in states So and Sy are
always equal to their average values. It is more realistic to assume that these
dwell times can be modeled by a binomial probability distribution, which
improves the accuracy of the results at a cost of some added complexity.

30For the same reason noted in Footnote 4, this statement is not exact.
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90,41, - - - ,q4 unchanged and modified the value of g5 to reflect
the fact that the maximum length of an error propagation burst
is now only 2500. This results in the slightly modified value
g5 = 0.9996.3! Again using (12) and (31) - (37), we obtain
Péisoo) = 0.1781,%? a roughly 50% reduction in the estimated
BLER compared to L = 5000, which reflects the expected
performance gain that can be achieved with doping.>* The
simulated BLER in this case is given by ngoo) = 0.2967,
which also represents a substantial reduction compared to the

simulated BLER for L = 5000. [J
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