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Abstract—LElectric load forecasting vefers to forecasting the
eleciricity demand at apgregated levels, Utilities use the pre-
dictions of this technique to keep 8 balanee between electricity
generation and consnmption at each time and make accurate
decision for power system planning, operations, and maintenance,
cte. Bused on prediction time horizon, electric load forecasting is
classified to very short-term, short-term, medinm-term, and long-
term. In this paper, a multiple output Gaussian processes with
multiple kernel learning is proposed to predict short-term clectric
load forecasting (predicting 24 load values for the next day) based
on load, temperature, and dew point values of previous days.
Mean absolute percentage ervor (MAPE) is used as a measure of
prediction accuracy. By comparing MAPE values of the propesed
methed with the persistence method, it can heen scen that the
proposed method improves the persistence method MAPE up to
44, :

Index Terms—Electric load forecasting, Gaussian processes,
mean ahsolute percentage error, multiple kernel learning, mutlti-
ple linear regression, persistence method, smart grids,

1. INTRODUCTION

Power grid has some issues such as economics, efficiency,
energy security, greenhonse gas and carbon emissions, reli-
ability, and safety, Smart grid is introduced to address these
issues. Smart grid as a two-way data communications network
integrates with the power grid, uses advanced metering infras-
tructure to acquire real-time data from smart meters [1] and
[2]. and analyzes this data to predict generation capacity and
electric load consumption. These predictions are very valuable
information for utility providers and consumers to manage the
power generation and consumption. Electricity generation and
consumption should be predicted as accurately as possible, By
underestimating load consumption, generated clectricity will
not be enough to fulfill requested power and there will be
power outage and economic loss. Also, by overestimating the
power consumplion, extra generated electricity will be wasted
that increases the cost of electricity for customers.

Electric load forccasting can improve reliability and effi-
ciency of power grid and prediction accuracy. In electric load
forecasting, electricity demand at agpregated levels is pre-
dicted. Power utilities use it fo balance electricity generation
and consumption at each time. 1t is also used for transmission
and distribution system planning, demand side management,
financial planning, revenue projection, rate design, generating
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and purchasing electric power, revente projection, load switch-
ing, infrastructure development, power system planning, op-
erations, and maintenance, ele. Electric wtilities, independent
system operators, regions! transmission organizations, regula-
tory commissions, industrial and big commercial companies,
financial institutes, trading firms, and insurance companies
need electric load forecasting,

In this paper, a mulliple outpwt Gaussian processes (MOGP)
with multiple kernel learning (MKL) is proposed and im-
plemented to predict 24 load values for the next day based
on load, dew point, and temperature values of previous days.
Load consumption is analyzed by investigating the effect of
using 1y different kemels, 2) load and temperature values of
previous days, 3) load and dew point values of previous days,
4) load, temperature, and dew point values of previous days,
on prediction accuracy of electric load values. To evaluate
the performance of MOGP with MKL, load, dew point, and
temperature vadues of 2009 and 2020 from the 1SO New
England database are used and electric loads in 2021 are
predicted. Mean absolute percentage error (MAPE) is used
as a measure of prediction accuracy.

The remainder of this paper is structured as follows, In
section 11, a Herature review for electric Joad forecasting is
provided. Section HI presents Gaussian processes and multipk:
kernel learning. Section 1V presents the results of using the
Gaussian process and mulliple kernel learning for day-ahead
short-term electric load forecasting.

1. LITERATURE REVIEW

Electric load forecasting can be classified into four cate-
gories based on the prediction time horizon: 1) very short-
term clectric load forecasting from some minutes to 1 day, 2)
short-term electric load forecasting from 1 day to 2 weeks,
3y medium-erm electric load forecasting from 2 weeks to 3
years, and 4) long term electric load forecasting from 3 years
to 30 years.

The proposed methods for electric load forecasting can be
categorized into two groups: statistical methods and astificial
intelligence methods. The difference between statistical and
machine learning techniques is that statistical technigues are
used to explore and formalize relationships between input and
output variables while machine learning technicues are used
to learn and understand the data without using explicit or rule-
based programming,.
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In the following papers, statistical techniques have been
used for electric load forecasting. In |3}, authors applied auto-
regressive integrated moving average (ARIMA), autoregres-
sive conditional heteroscedastic (ARCH), generalized ARCH
(GARCH), and hybrid ARIMA-GARCH models to forecast
the electricity load of network infrastructures in Ghana. Au-
thors of {4] deployed seasonal ARIMA (SARIMA) and Holt-
Winter methods for daily peak load energy forecast,

In the following papers, artificial imtelligence techniques
have been used for electric load forecasting. In [4], a feed
forward back propagation neural network (as an arlificial
neural network-based model) is proposed in addition to Holt-
Winter and SARIMA and then a nonlinear optimization model
is formulated to determine the best combination of these
3 methods for peak clectricity load forecasting. Some deep
neural networks and support vector regression model ace
proposed in [3] for short term load forecasting. Fuzzy time
series and probabilistic neural network were considered for
the load demand prediction in [6].

TIT. GAUSSIAN PROCESSES AND MULTIPLE KERNEL
LEARNING
Gaussian processes regression model with Gaussian noise
can be expressed as follows [7]

'_l,';::Q{'(mi}T‘u”%"hi:1%““!‘{1“[* (1)

where g, is the i-th oulput, @; is the i-th inpul vector in
training data set, w is a weight vector that is assumed to have
a Gaussian distribution with zero mean and covariance matrix
¥ .. g is an additive white Gaussian noise that has indepen-
dent, identically distributed Gaussian distribution with zero
mean and variance a2, é(a4) is a noolinear transformation
function that maps an input vector @z into an /N-dimensional
feature space, M is the number of observations.

It can be shown that the posterior predictive distribution
ply, l@,, X, y) has a Gaussian distribution with mean 7, and

variance g as follow:
T = k(2. X,

oy, = ki, @) — k(w,, X)K + a2l V(. X))+ rr%,
(2)

where
Kz, X) = ole) BuP(X)
B(X) = [plar) olxa) ... dlwar)]

o= (K+oll)y (3

K =#X)T 2, 2(X)

k({l,',,, lL',) = é(m&}TSW’;‘B(T’*):
k{wg, @y} is called a covariance function or kernel and it
is an inner product with respeet to o, 15 (i) s define as
wleg) = Ei{zz;‘:(:]:,), then, k{ey, @5} can be caleulated as a
dot product of two functions, k(x4, 25) = p(xs) p(x;) =

lre) - ols).
To predict 24 values of the eleetric foad for the next day,
24 GP (as MOGP) are used.

Tn this paper, the Tollowing kernels are used:
1) Linear kernel:

k(g m0) = anT:ng, (Y]
23 Matérn kernel:
k()=
o? V2e|ley — @2l ”I\’ V2u|lxy — xafl2
{21 ; 1

(3)
3) Radinl basis function (RBF):

xy — 233
k(ﬂ!],ﬂlg) = 02 oxp (- ” . 912 2l32)! ]
4y Rational quadratic (RQ)

; = a2 v
]-?{;I.’],;I:‘_Z) = g‘g (] -+ _gli‘gaz_‘!ug) , ‘7)

where 2 is a variance parameter, T'(.} is the gamma
function, v is a parameter that controls the smoothness of
Matém kernel, K, is a modified Bessel function, ||l
denotes the 1y norm of vector @ und I {1 > 0} is a
length-scale parameter, and c (e > 0) is a scale mixture
parameter,

To select a suitable kernel (among some kerpels) and
its hyper parameters, cross validation has been used on a
validation data set different from training data sel. As an
alternative, multiple kerne! learning techniques are introduced
that use 1 set of kemwels (instead of using one kernel and
ils hyper parameters) and try to learn linear or nonlinear
combinations of those kemels. Multiple Kernel Learning has
the following benefits; 1) dealing with heterogencous sources
of data (e.g., load, temperature, and dew point), 2) Merging or
fusing different heterogencous information sources, 3) Feature
combination (data fusion) and training is done simultaneously,
4y Reducing bias due (o kernel selection, 5) Different kernels
can measure different notions of similarity and multiple kernel
learning method can pick one kernel or combination of kernels
which works best.

Multiple kernel leaming methods can be classified into 3
categories based on different ways of combining kernels as
follows [8];

1) Methods that combine base kernels lincarly and have 2
categories: A) unweighted sum or mean of base kernels to
produce combined kernel, B) weighted sum of base kernels
which can be defined as follows:

I
kg, @) = Z fi‘;k,(;’(:é,u?&), (8)
{=]

where 3 is a coefficient for the Lth base kernel, ky(af, af)
is the [-th base kernel function, p is the number of different
sources or different kinds of data, @ = {@l}0_, is a set of
input veclors from p different sources, :r:ﬁ is the i-th input
vector of source [, and k(x,, ;) is the combination kernel.

Auliorized licensed use limited 1o; UNIVERSITY OF NEW MEXICO. Downdoaded on September 11,2023 at 17.53:18 UTC from IEEE Xplore. Restrictions apply.




2) Methods that use nondinear functions of base kernels
(e.g., multiplication, puwer, exponentiation, ¢te.):

For example, polynomial combination of base kernels can
be expressed as [9]:

Elay,ay) = Z ai

{1y =d

Bk (whad). &y (el al),
)

where d is a polynomial degree, 3, is a coefticient for the

tn-th base kernel, and &y, (2 .r"‘) is the m-th base kernel.

3) Methods that use data- dcpunduu combinativn of base
kernels and assign specific weights to base kernels for each
data instance,

In this paper, linear combination of 2 or 3 mentioned kernels
{linear, Matérn, RBF, and RQ) is used depend on how many
different kind of data is used, e.g., 2 kernels for load and
temperature or 3 kernels for load, dew point, an temperature.

IV. SIMULATION RESULTS

Load, dew point, and temperature duta from the 1SO New
England database for Northeastern Massachusetts load zone
are used in this paper. load values in 2021 are used for the
test. Normalizing the training data is done by subiracting their
means and then dividing the resulting data by their standard
deviations (section 1V-A provides a comprehensive informa-
tion about different normalization techniques). The results of
the proposed method is compared with the persistence method
(as 1 benchmark) Lo verify its ability to improve the predictions
of the persistence method. The persistent method uses the load
values of today as predicted Joad values for tomorrow,

To evaluate performance of the proposed method, & pre-
diction error metric should be used. Reference {7} provides
comprehensive information about prediction error melrics,
their categories, formulas, advantageous and drawbacks. In this
paper, nmean absolute percentage error has been used.

A. Normalization technigues

Normalization methods have been used to scale or transTorm
data to a similar range so that all data features have uniform
contributions. These methods can improve the performance of
machine learning methods by reducing effects of dominant
features and outliers that slow down the learing process in
machine learning lechniques, Also, gradient descent method
converges faster when the data is normalized [10L

Some of the normalization techniques ate:

1y Mean centering normalization:

This method removes the mean from data as follows:

i=1,...,N (10}

Iy =y — M,
where &, is the normalized data value, x; is the un-
normalized data value, & is the number of samples in
data, and g is the mean of data defined as follow:

N

M= [t Z jOT

=l

an

2) Power transformation:

i
Z

4

6)

7

8)

This technique reduces the effects of heteroscedasticity
and transforms the data into homoscedasticitya and
makes skewed distribution more symmetric. It is used
when standard deviation of the data is proportional to
the root of mean of the data [117]. Tt is defined as follows:

N
Fi= é'fi N Z\/« (12
i=1
If feature values are pegative, first, 7, = 7; — min{z;)
should be used and then (12) should be calculated.
Log transformation:
Log transformation compresses a wide range of fea-
ture values ta a narrow range of values by applying
logarithmic function on feature values, changes the
feature distribution, and makes skewed distribution more
syminetric,. It removes heteroscedasticity, but it cannot
handle zero feature values {12). 1t is defined as follows:

ZIO(ILG J-l}

i=1

= logyo(x;) — (13)
Max normalization:
This normalization scales feature values to [e, 1] or
[-1,4 where @ = min(e)fmex(jz]) and b =
maz{z;)/maz{z]). It is sensitive o oulliers and can
be defined as follows:

= __‘_‘Ll..__. {14)

max{|e;])’

Decimal scaling normalization: This methed is useful
when the feafure values have loparithmic variations,
otherwise, it is not useful. It moves the decimal points
of feature values and can be defined as follows:
Iy
1047
where § = |logio{maz{|z;|})] +1 is the smallest integer
such that max(j#]} < 1 and |z} is a floor function
that maps = to the greatest integer less than or equal 1o
x. It i3 similar 1o max normalization except it doesn’t
transter negative feature values to positive values. For
nepative values, first another method should be used to
map negative values 1o positive ones,
Adjusted decimal sealing normalization:
This method is similar to decimal scaling normalization
excepl § = logyn (rmae(fu:])) + 1.
Uit length normalization:
This method scales a vector of feature values to have a
length one and is defined as follows:

f=T (16)

IE4PY

where @ s a feature vector, jlafle is a Iz norm of @, and
4 is a normalized feature vector.
Min-max normalization;
This technigue converts feature values inlo a common
range, e.g., [0,1] or [~1,1]. It is also called range

2y = (15)
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EJ)]

10)

i

14)

normalization. The following equation maps »; (o the

range [0, 1):

- win(z,)
max (i) — min{i)

Iy (i7)

To scale feature values to a range of [a, b], the following
equation can be used:

(x¢ — min{x)}(b—a}
max(e;) - winfe,)

I= {18)
Calculating minimum and maximum can be affected
by outliers, So. min-max normalization is sensitive to
outliers.

Adjusted min-max normalization:

This techniques is defined as follows:

T; — min{z;)
(max{z;) — minfx, )}’

-

P£g =

(19}

Mean normalization:
This method is similar to min-max normalization except
in the numerator there is g as follows:

~ Iy A
£ = - . — (20)
max(i;) — winfir;)
Level normalization
This normalization can be defined as follows:
. £y — o
£y = : N (21)
Fo

Median and median absolute deviation normalization
This normalization method is defined based on median
and median absolute deviation as follows:
. a2y — median{cy}
~ median(ju; — median(x)])’

(22)

Since medinn absohiie deviation (denominalor of the
ratio) and median are not sensitive to outliers, so this
method is robust regarding outlier effect. The normalized
datta has a zero median,
Robust normalization
This normalization method is defined based on median
and interquartile range (IQR). 11 data has 2n number of
values or 2n + 1 number of values, the first quartike,
Q. is the median of the n smullest duta values, the 2nd
quartile, 2, is the media of data values, and the 3rd
quarlile, 24, is the median of the v largest data values,
IQR = @3 — 1 shows skewness of the data and it
can be used to identify outliers. Outliers are defined as
feature values that are less than @y — LAIQR and/or
higher than Q3 + 1.57Q R. Robust normalization shifts
the data to have a zero median and is robust to outliers
and can he defined as follows:
xy — median(is;) @, — Q2
IQR Qz—h
Z-score normalization;
Sometimes, Z-score is called standardization or auto
normalization. This technique is useful when there are

16}

17)

18)

19}

20y

a few outliers, atherwise, clipping technique should he

used before this normalization method. Z-score nornal-

ization is used to ensure that the distributions of the

normalized features have zero mean and unit variance if

the original features hive Gaussian distribution. Z-score

normalization can be defined as follows:
R €y —p

Iy = ooy

o
where o is the standard deviation of z,.
In clipping technique, maximum and minimum threshold
values are defined for the feature values and values
of outliers are changed to these threshold values. For
normalization techniques which are sensitive to outliers,
clipping technique should be used before them, for
other normalization methods, this technique can be used
before or after them.
Pareto normalization:
Svante Wold introduced the concept of this normaliza-
tion in 1993, This noymalization is defined similar to
Z-score nonmalization except in its denominator, il has
square root of standard deviation as follows [11]:

(24)

Iy — |
¥
Vo
Variable stability normalization:
This normalization is also called vast normalization and
defined as follows {111
P Ly — M H
:rl IR s———— Y —’
o o
Tanh based normalization: This normalization is based
on Hampel estimators, was introduced by Hampel et al.
in 1986, and defined as follows [}

1 _ 1
= E(tunh (n.mfi-j‘—) + 1), (27)

where p¥ and o are the mean and standard deviation
of the Hampel estimators, respectively.

Variant of tanh based normalization:

This method is similar to tanh based normalization
except pf and o™ arc replaced by g and o, respectively
as follows ||

b= %(umh (o.m‘r‘—‘gl‘-) + 1).

Logistic sigmoid normalization:

This methad is also called softmax normalization and is
based on the logistic sigmoid function as a squashing
tunction to limit data in range of [0, 1] as follows [11]:

(25)

“
£y =

(26)

28

T — i . 1 .

y= Fy= . 20

.’l o 1 L 1 1 '*‘ exp(—-y) ( )
Hyperbolic tangent normalization:

This method uses hyperbalic tangenl funclion to map
data in range [—1, 1] as follows [117:

y = T 1 — exp({~y)

a T 1+ exp(—y)’

(30)
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Fig. 1. MAPE values for MOGP with MKL and persistence methods using
linear or Matérn kemels for load data and using linear, Matém, RBF, or RQ
kemels for dew point dutu.
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Fig. 2. MAPE values for MOGP with MKL and persistence methods using
RBF or RQ kernels for load data and using linear, Matém, RBF, or RQ kernels
for dew point data.

B. Using previous toad and dew point data for prediction

The following experiments show the results of our simula-
tions when 1) load and dew point values of 2019 and 2020
are used for training and 2) load values of 7 consecutive days
and dew point values of 2 consecutive days are used to predict
24 load values of the next day. Fig. 1 and 2 show the effect
of using linear, Matérn, RBF, or RQ kernels on MAPE values
of MOGP with MKL and persistence methods. Based on Fig.
1 and 2, linear kernel for load data and Matérn, RBE, or RQ
kernel for dew point data should be used. Fig. 3 shows the
effect of using different number of days of load and dew point
data on MAPE values of MOGP with MKL and persistence
methods when linear kernel for load data and RQ kernel for
dew point data are used. Based on Fig, 3, load values of 7
consecutive previous days (7-day in legend) and dew point
values of 2 consecutive days (2-day in legend which includes

S = T
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) 1-gay loud, 2 day dew peinl
1-gay hac, cew pelnl
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1248

2 . .
18M BAM 12PM 2]
Time (b}

Fig. 3. MAPE values for MOGP with MKL and persistence methods using
linear kernel for lowd data and RQ kernel for dew point data with different
number of duys of load and dew point data.
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Fig. 4. MAPE values for MOGP with MKL and persistence methods using
linear or Matém kernels for load data and using linear, Matérn, RBF, or RQ
kernels for temperature data,

dew points values of the prediction day and the day before
that) should be used to get the best result of predicting load
values of the next day.

C. Using previous load and temperature data for prediction

In this section, the results of our simulations are discussed
when 1) load and temperature values of 2019 and 2020 are
used for training and 2) load values of 7 consecutive days and
temperature values of 2 consecutive days to predict 24 load
values of the next day, are used. Fig. 4 and 5 show the effect of
using linear, Matérn, RBF, and RQ kernels on MAPE values
of MOGP with MKL and persistence methods, Based on Fig.
4 and 5, a linear kernel for load data and Matérn, RBF, or RQ
for temperature data should be used.
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Fig. 5, MAPE valuss tor MOGP with MKL and persistence methods using
RBF or RQ kemels for load data and using linear, Matém, RBE, or RQ kernels
for emperuture data.
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Fig. 6. MAPE values for MOGP with MKL und persistence methods using
Tinear and RQ kemels.

D. Using load, dew point, and temperature data for prediction

In this section, the results of our simulations are discussed
when 1) load, dew point, and temperature values of 2019 and
2020 are used for training and 2) load values of 7 consecutive
days, dew point values of 2 consecutive days, and temperature
values of 2 consecutive days are used. Fig. 6 shows the
effect of using linear and RQ kernels on MAPE values of
MOGP with MKL and persistence methods. From Fig. 6, it
can been seen that the performance of MOGP with MKL
when a linear kernel for load data and RQ kernel for dew
point and temperature data are used is better than other kernel
combinations. Fig, 7 shows the effect of using linear and RQ
kernels and load, dew point, andfor temperature values on
MAPE values of MOGP with MKL and persistence methods.
From Fig. 7, it can been seen thal the performance of MOGP
with MKL when a linear kernel for load and a RQ kernel for
dew point and temperature data are used is better than other
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R el e
T A [—=Pasznme mithed
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Fig. 7. MAPE values for MOGP technique and MKI and persistence methed
using 2 different kemels and different types of dut

kernel combinations. When a linear kernel for load data and
a RQ kernel for temperature data are used, a better result is
obtained than using a linear kernel for load data and a RQ
kernel for dew point data. This means temperature data has
more effect on MAPE values of MOGP than dew point data.
Using suitable kernels with 3 types of data (load, dew point,
and temperature) gives the better result compared to using
suitable kernels with only types of data.
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