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a b s t r a c t 

Membrane distillation is an emerging desalination process with important applications to the energy- 

water nexus. Its performance depends, however, on heat and mass transport phenomena that are 

uniquely challenging to simulate. Difficulties include two adjacent channel flows coupled by heat and 

mass transport across a semi-permeable membrane. Within the channels, heat and mass boundary lay- 

ers interact with the membrane surface and vortical flow structures generated by complicated geome- 

tries. The presence of multiple inlets and outlets also complicates the application of mass-conserving 

outlet conditions. Moreover, even small amounts of outlet noise affect the resolution of important near- 

membrane fluid velocities. We show these phenomena can be simulated to second-order spatial and tem- 

poral accuracy using finite volume methods with immersed boundaries and projection methods. Our ap- 

proach includes a projection method that staggers the coupled channel flows and applies Robin boundary 

conditions to facilitate mass conservation at the outlets. We also develop an immersed boundary method 

that applies Neumann boundary conditions to second-order spatial accuracy. The methods are verified 

and validated against manufactured solutions and theoretical predictions of vortex shedding. They are 

then applied to the simulation of steady and unsteady transport phenomena in membrane distillation. 

The methods have important applications to the broad field of chemical engineering and deal with long- 

standing issues in both theoretical and computational fluid dynamics. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Membrane distillation is an emerging method of desalinating

astewaters produced by industry, agriculture, and municipalities

1–3] . Though the method has attracted considerable attention as

 means of addressing global water crises, its energy efficiency

epends on heat and mass transport phenomena that are poorly

nderstood because they are difficult to simulate or observe ex-

erimentally [4] . Challenges include simultaneous heat and mass

oundary layers that interact with semi-permeable membranes

nd unsteady vortical flow structures generated by bluff bodies

ith complicated geometries. These phenomena occur in small

ow channels with gap heights on the order of 1 mm. Membrane

istillation systems are also open systems with multiple inlets and

utlets that complicate the application of mass-conserving out-

et conditions. Even small amounts of outlet noise can also affect

he resolution of important near-membrane fluid velocities that

re four to five orders-of-magnitude smaller than the largest ve-

ocity magnitudes. We show that these compounding phenomena
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an be successfully simulated to second-order spatial and temporal

ccuracy using finite volume methods with immersed boundaries

nd projection methods. Our approach includes the development

f a direct-forcing immersed boundary method that applies Neu-

ann conditions to second-order spatial accuracy. Though devel-

ped here for membrane distillation, the methods have important

pplications to the broad field of chemical engineering and deal

ith long-standing issues in computational fluid dynamics (CFD). 

We consider the common arrangement of direct contact mem-

rane distillation (DCMD) sketched in Fig. 1 ( a ). Warm feed solu-

ion and cool distilled water flow on opposite sides of a hydropho-

ic membrane. The temperature difference across the membrane

reates a difference in partial vapor pressure that causes water to

vaporate from the feed side of the membrane, travel through the

ores as vapor, and condense on the distillate side of the mem-

rane. Non-volatile solutes remain in the feed. In comparison to

everse osmosis desalination, DCMD’s primary advantage is that it

an treat higher concentration feed solutions because it is insensi-

ive to osmotic pressure. Reverse osmosis can only treat NaCl solu-

ions up to approximately 70 g/L, beyond which the required op-

rating pressure becomes economically prohibitive. In contrast, the

imit for DCMD is around 300 g/L [5] . DCMD also operates at low

https://doi.org/10.1016/j.compfluid.2020.104711
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Nomenclature 

β blockage ratio β = D c /h 

�T m transmembrane temperature difference �T m = T 
f 
m 

−
T d m 

( ◦C) 
δ membrane thickness (m) 

δT thermal boundary layer thickness (m). See Eq. (40) 

λ latent heat of water (J/kg) 

f u , f T , f c forcing terms added for benchmarking purposes 

n unit normal to surfaces 

u velocity vector (m/s) 

u ∗ provisional velocity vector in projection method 

(m/s). See Eq. (14) 

D mass diffusivity (m 
2 /s) 

μ dynamic viscosity (Pa s) 

ν kinematic viscosity (m 
2 /s) 

ν f , νd kinematic viscosity of feed and distillate fluid (m 
2 /s) 

φ intermediate variable used in projection method. 

See Eq. (15) 

ρ density (kg/m 
3 ) 

ρ f , ρd density of feed and distillate fluid (kg/m 
3 ) ̂ T non-dimensional temperature. See equation (39) 

a, b coefficients in Robin boundary conditions. See 

Eq. (26) 

a w water activity 

B vapor permeability (kg/m 
2 sPa) 

b NaCl molality (mol/kg) 

c concentration (g/L) 

C ( x ) C(x ) = cos (x ) . See Eq. (21) 

c m membrane surface concentration (g/L) 

c p specific heat capacity (J/kg K) 

C in feed concentration (g/L) 

d normal distance from a forcing point to the surface. 

See Fig. 11 

D c cylinder diameter (m). See Fig. 2 

DCMD direct Contact Membrane Distillation 

dt numerical time step (s) 

Err N spatial error. See Eq. (22) 

Err t temporal error. See Eq. (23) 

f forcing point in immersed boundary method. See 

Fig. 10 

f c dominant frequency of vortex shedding 

h channel height (m) 

j v transmembrane mass flux (kg/m 
2 s) 

k thermal conductivity (W/m 
◦C) 

k m membrane thermal conductivity (W/m 
◦C) 

L channel length (m) 

n fictitious points used to apply immersed Neumann 

conditions. See Fig. 11 

p pressure (Pa) 

p 
f 
m 

, p d m 
vapor pressure on the feed and distillate side of 

membrane (Pa) 

P sat water vapor saturation pressure (Pa) 

q c transmembrane heat conduction (W/m 
2 ) 

Re Reynolds number Re = U in h/ν
Re c critical Reynolds number for transition to vortex 

shedding 

Re d distillate Reynolds number Re d = U in h/νd 

Re f feed Reynolds number Re f = U in h/ν f 

s surface point used in immersed boundary method. 

See Fig. 11 

S ( x ) S(x ) = sin (x ) . See Eq. (21) 

St c critical Strouhal number St c = f c D c /U in 
j  
T temperature ( ◦C) 
t time (s) 

T 
f 
m 

, T d m 
membrane surface temperature on the feed and dis- 

tillate side ( ◦C) 
T 

f 
in 

, T d 
in 

feed and distillate inlet temperature ( ◦C) 
T d m 

membrane distillate surface temperature ( ◦C) 
T 

f 
m 

membrane feed surface temperature ( ◦C) 
TVD total variation diminishing 

u, v velocity component along x and y coordinates (m/s) 

U in inlet velocity (m/s) 

v m local transmembrane velocity v m = j v /ρ f measured 

from feed side of membrane (m/s) 

x, y cartesian coordinates (m) 

y + denotes a boundary condition applied on the feed 

surface of the membrane 

y − denotes a boundary condition applied on the distil- 

late surface of the membrane 

y c cylinder position relative to the membrane surface 

(m). See Fig. 2 

y d y f = y + 1 / 2 . See Eq. (21) 

y f y f = y − 1 / 2 . See Eq. (21) 

‖ ‖ ∞ Infinity norm 

eed temperatures between 40 to 90 ◦C readily produced by re-
ewable energy and industrial heat. 

DCMD is strongly influenced by two phenomena called temper-

ture and concentration polarization [3] , sketched in Fig. 1 ( a ). Tem-

erature polarization refers to the formation of thermal boundary

ayers along the feed and distillate surfaces of the membrane due

o heat transfer through the membrane, as sketched in Fig. 1 ( a ).

his reduces the temperature difference �T m and partial vapor

ressure difference across the membrane, and consequently the

ate of vapor production. Concentration polarization refers to the

ormation of a concentration boundary layer along the feed sur-

ace of the membrane. This occurs because solutes are advected

oward the membrane, where they accumulate because they are

on-volatile. Concentration polarization reduces the partial va-

or pressure of the feed solution on the membrane, and conse-

uently reduces vapor production. Concentration polarization also

auses mineral scaling, which is the precipitation of salts onto the

embrane surface. This blocks the membrane surface and causes

ermanent membrane damage. Understanding polarization is fur-

her complicated by the presence of membrane spacers. Spacers

re mesh-like materials that separate and support tightly packed

embrane sheets in filtration systems, as sketched in Fig. 1 ( b ).

pacers are present in both the feed and distillate channels of

CMD systems, where they induce three-dimensional mixing and

enerate regions of preferential solute accumulation and precipita-

ion. 

Numerous studies have made important progress in simulating

embrane distillation [4,6,7] . We nevertheless find three persis-

ent challenges. First, the accurate prediction of polarization re-

uires the simultaneous simulation of the coupled feed channel,

ransmembrane flow, and distillate channel. This complicates a

undamental issue that arises in the simulation of almost all in-

ompressible fluid flows. The pressure field in an incompressible

uid flow ensures that the velocity field remains divergence free.

ecause the pressure lacks an evolution equation, the numerical

ifficulty is to somehow determine the pressure without solving

he fully coupled Navier-Stokes and continuity equations simul-

aneously. For unsteady fluid flows, the most popular solution to

his challenge are projection methods based on pioneering work of

horin [8] and Temam [9] . Unfortunately, the application of pro-

ection methods to open systems with multiple inlets and outlets
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Fig. 1. ( a ) Sketch (not to scale) of the 2-D plate-and-frame DCMD system considered in this study. See description in text. The arrows depict streamlines. The membrane 

is shaded grey, and concentration polarization is shown by the solid dots accumulated near the membrane. The temperature profile shows the effects of temperature 

polarization. ( b ) Sketch (not to scale) of a membrane spacer. 
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Fig. 2. Sketch (not to scale) of the 2-D plate-and-frame DCMD system considered 

in this study. See description in text. 
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s not trivial, and to our knowledge, they have never been applied

o DCMD systems. 

A second challenge arises because simulations of membrane

eparation systems currently rely on body-fitted grids. For compli-

ated spacer geometries, the time required to generate such grids

ecomes so onerous that studies must limit the number of spacer

eometries that can be considered [10] . The third challenge arises

ecause the flow regime within DCMD systems is not fully under-

tood. Though studies show that with increasing Reynolds num-

er, the flow transitions from steady flow to laminar vortex shed-

ing and perhaps turbulence [7,11–18] , these transitions are not

ell understood. In fact, though spacers are often called “turbu-

ence promoters,” it is not clear whether DCMD systems typically

perate in turbulent regimes. 

We address these issues using a combination of finite volume,

rojection, and immersed boundary methods. We first show that

nsteady flow in the coupled feed and distillate channels can be

imulated using a projection method that solves the two chan-

el flows sequentially, rather than simultaneously. The projection

ethod is also derived for general Robin conditions on the nu-

erical domain to improve the application of outlet conditions.

oise at the inlet and outlet is also attenuated using a Total Vari-

tion Diminishing (TVD) scheme and a set of “buffer cells” ap-

ended to the inlets and outlets of the two channels. We next de-

elop an immersed boundary method that applies no-slip (Dirich-

et) and no-flux (Neumann) boundary conditions on spacer sur-

aces to second-order spatial accuracy. Finally, we combine these

ethods to investigate polarization and transition to vortex shed-

ing in DCMD systems. The remaining article is organized as fol-

ows. Section 2 presents the geometry and governing equations.

ections 3 and 4 present the projection and immersed boundary

ethods, respectively. Section 5 simulates vortex shedding in a

CMD system. Section 6 presents our conclusions. 

. Geometry and governing equations 

We consider a 2-D flat-sheet membrane system (called a “plate-

nd-frame” system) with feed and distillate channels of length L

nd height h , as sketched in Fig. 2 . NaCl solution enters the feed

hannel with temperature T 
f 
in 

, concentration C in , and mean veloc-

ty U in . Pure water enters the distillate channel with temperature

 
d 
in 

and the same mean velocity U in as in the feed channel. Though

ig. 2 shows the membrane as a shaded region about y = 0 , we

odel transmembrane heat and mass transport using effective in-

erface conditions that couple the feed (0 ≤ y ≤ h ) and distillate

(−h ≤ y ≤ 0) channels. To investigate vortex shedding, we consider

ylindrical spacer filaments of diameter D c , placed a distance y c 
rom the membrane. Though spacers are inherently 3D, we fo-

us first on idealized spacers because their hydrodynamic stabil-

ty is far better understood [19,20] . Their simplicity also allows us

o perform a parametric study and complementary experimental

tudy, both ongoing in our group. In contrast, industrial spacers are

ypically composed of two layers of extruded polypropylene fila-

ents oriented roughly 45 ◦ to the downstream flow direction, as
ketched in Fig. 1 ( b ). For more discussion of the various spacer de-

igns, we refer to the review of Haidari et al. [21] . 

Fluid flow in the feed and distillate channels is governed by the

ncompressible continuity and Navier-Stokes equations for Newto-

ian fluids, 

 · u = 0 , ρ

[
∂u 

∂t 
+ ( u · ∇ ) u 

]
= −∇ p + μ∇ 

2 u + f u , (1)

here u = [ u v ] , p, ρ and μ are the fluid velocity, pressure, density,

nd viscosity, respectively. The force f u is added for benchmark-

ng in Section 3.1 . In each channel, we neglect density variations

ith temperature and concentration, because the maximum den-

ity variation is within 3%. In each channel, we set the density to

hat evaluated at the inlet temperature and concentration. Though

uoyancy-driven convection can be included using the Boussinesq

pproximation, we leave that topic to a future dedicated study. 

Heat and NaCl transport are governed by the energy and

dvection-diffusion equations, 

c p 

[
∂T 

∂t 
+ (u · ∇ ) T 

]
= k ∇ 

2 T + f T , (2)

∂c 

∂t 
+ (u · ∇ ) c = D∇ 

2 c + f c , (3)

here T is the temperature, c is the concentration, c p is the fluid

eat capacity, and D is the effective mass diffusivity. The source

erms f T and f c are again added for benchmarking. For the systems

onsidered in the current study, we found that variations of μ, k ,

, and c p with temperature and concentration had an order 1%

ffect on our simulations. Though they can be included using the

rocedure in Lou et al. [4] , we neglect them here to simplify our

resentation. 

Assuming the impermeable plates and spacers are insulated, we

pply the following no-slip, no-penetration, and no-flux boundary

onditions, 

 = n · ∇c = n · ∇T = 0 , (4)

here n is the unit normal to the surface. We also apply the no-

lip condition ( u = 0 ) to the membrane surface ( y = 0 ). Though
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usually neglected, and not considered here, slip due to hydropho-

bicity can be modeled using the Navier slip condition [22] . At the

channel inlets, we apply parabolic laminar velocity profiles u in ( y )

with the desired uniform temperature T in , and concentration C in , 

u = u in (y ) , v = 0 , T = T in , c = C in . (5)

We consider two popular channel outlet conditions [23] , 

∂ f 

∂x 
= 0 , 

∂ f 

∂t 
+ U in 

∂ f 

∂x 
= 0 , (6)

where f denotes u , c , and T. The first condition is a Neumann con-

dition, while the second is a convective condition. 

The channel flows are coupled by heat and vapor transport

through the membrane. We first note that mass conservation

across the membrane requires 

ρ f v 
∣∣∣∣
y =0 + 

= ρd v 
∣∣∣∣
y =0 −

= j v , (7)

where j v is the transmembrane vapor mass flux, and ρ f and ρd 

are the liquid densities in the feed and distillate channels, respec-

tively. The superscripts “+” and “−” denote evaluation of v on the

feed and distillate sides of the membrane, respectively. Assuming

no solutes pass through the membrane, salt diffusion and advec-

tion normal to the feed membrane surface must sum to zero, 

v c 
∣∣∣∣
y =0 + 

− D 

∂c 

∂y 

∣∣∣∣
y =0 + 

= 0 . (8)

MD membranes are typically fibrous materials with pore-spaces

on the order of 1–10 μm. Experiments [4,24] show that transmem-

brane heat and vapor transport is well approximated on a macro-

scopic level using a popular model proposed by Schofield et al.

[25] . The model begins by assuming the vapor mass flux j v is lin-

early proportional to the transmembrane vapor pressure difference,

j v = −B (p f m 
− p d m 

) , (9)

where p 
f 
m 

and p d m 
are the partial vapor pressures on the feed and

distillate sides of the membrane, respectively, and B is the mem-

brane’s vapor permeability, which is determined experimentally

[4,25,26] . We evaluate p 
f 
m 

and p d m 
as the product of the vapor sat-

uration pressure P sat and water activity a w , 

p m = a w P 
sat , P sat = exp 

(
23 . 238 − 3841 

T m − 45 

)
, (10)

where P sat is determined using the Antoine equation [27] and T m 

is the local temperature on the membrane surface. The activity

is determined from the expression a w = 1 − 0 . 03112 b − 0 . 001482 b 2

[28] , where b is the NaCl molality (mol/kg). This expression is valid

from zero salinity to saturation. 

Heat transport through MD membranes occurs due to conduc-

tion through the membrane material and combined conduction

and advection in the vapor. The Schofield model [25] approximates

transmembrane heat transport due to conduction ( q c ) and advec-

tion ( q v ) as 

q c = −k m 

δ
(T f m 

− T d m 
) , q v = j v λ, (11)

where δ and k m are the membrane thickness and thermal conduc-

tivity, respectively, T 
f 
m 

and T d m 
are the local temperatures on the

feed and distillate sides of the membrane, respectively, and λ is

the latent heat per unit mass. Following common practice, we de-

termine the ratio k m / δ by fitting to experiments [4] . Conservation

of energy principles for phase changes at the liquid-vapor inter-

faces [29] produce the temperature conditions, 

−k 
∂T 

∂y 

∣∣∣∣
y =0 ±

= j v λ − k m 

δ

(
T 
∣∣
y =0 + 

− T 
∣∣
y =0 −

)
. (12)
hough well established in the membranes community, the sub-

leties of how conditions (12) account for phase-change are pro-

ided in Appendix A . Following common practice, we set λ to the

verage of the two inlet values. The thermal conductivity k on the

eft-hand-side is set to the feed value when y = 0 + , and the distil-
ate value when y = 0 −. 

. Simulation of the coupled channel flows 

This section presents our simulation of the coupled channels

ithout spacers. The primary challenge arises from the mem-

rane and outlet conditions. We address these issues separately

n Sections 3.1 and 3.2 , below. We discretize the governing equa-

ions spatially using standard second-order finite volume meth-

ds on a non-uniform staggered grid [30] . Details are presented

n Appendix B . 

.1. Application of membrane conditions 

To delay our discussion of outlet conditions, suppose we simu-

ate the coupled channel flows in Fig. 2 with the velocity, tempera-

ure, and concentration prescribed at the outlets. To implement the

embrane conditions, we develop a projection method that stag-

ers the solution of momentum transport in the coupled channel

ows. We first discretize all equations semi-implicitly in time using

he Crank-Nicolson method for linear terms and Adams-Bashforth

ethods for nonlinear terms, as below for the Navier-Stokes equa-

ion, 

u 
n +1 − u 

n 

dt 
+ 

3 

2 
NL n − 1 

2 
NL n −1 = −∇ p n +1 / 2 + 

μ

2 
∇ 

2 
(
u 
n +1 + u 

n 
)
, 

(13)

here dt is the time step, the superscript n denotes time t = n dt,

nd NL n = ρ( u n · ∇ ) u n . We enforce incompressibility using the

rojection method of Bell et al., [31] . We first compute a provi-

ional velocity u ∗ by solving Eq. (13) with the pressure from the

revious time step, 

u 
∗ − u 

n 

dt 
+ 

3 

2 
NL n − 1 

2 
NL n −1 = −∇ p n −1 / 2 + 

μ

2 
∇ 

2 ( u 
∗ + u 

n ) . (14)

ubtracting Eq. (14) from Eq. (13) , produces the relation 

 
n +1 = u 

∗ − dt 

ρ
∇φ, (15)

here φ = p n +1 / 2 − p n −1 / 2 is sometimes called the “pseudo-

ressure.” Relation (15) neglects the viscous term μ(∇ 
2 u n +1 −

 
2 u ∗) / 2 , which has a negligible impact [32] . Taking the divergence

f Eq. (15) and applying incompressibility produces a Poisson equa-

ion for φ, 

 
2 φ = 

ρ

dt 
∇ · u 

∗. (16)

Selecting boundary conditions for u ∗ and φ is a topic of consid-

rable discussion [23,32–35] . Suppose we wish to prescribe the ve-

ocity u n +1 = g (y ) on the boundary x = 0 . It now well established

hat at x = 0 , one can set u ∗ = g and ∂ φ/∂ x = 0 . These conditions

rise from Eq. (15) , which requires 

∂φ

∂x 

∣∣∣∣
x =0 

= 

ρ

dt 

[
u ∗ − u n +1 

]
x =0 . (17)

ore generally, if one wishes to set the velocity u n +1 = g on some

oundary with unit normal ̂  n , one applies the conditions 

 
∗ = g , ̂ n · ∇φ = 0 . (18)

ote that to ensure mass conservation, the above Poisson equation

nd boundary conditions must be derived using the spatially dis-

retized Navier-Stokes and continuity equations, as demonstrated

n Appendix B . 
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Fig. 3. Error results for u (squares), v (asterisks), T (triangles), c (circles). ( a ) Err N vs. N . The dashed line shows 1/ N 2 . ( b ) Err t vs. dt . The dashed line shows dt 2 . 
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To apply the above projection method to our coupled channel

ows, we discretize the membrane conditions semi-implicitly in

ime to solve the flow fields in each channel sequentially, rather

han simultaneously. Each time step begins by solving the heat and

dvection-diffusion Eqs. (2) and (3) in the channels by discretizing

he membrane conditions (8) and (12) as 

 

∂c n +1 

∂y 

∣∣∣∣
y =0 + 

= v c 
∣∣
y =0 + 

, (19) 

k 
∂T n +1 

∂y 

∣∣∣∣
y =0 ±

= −k m 

δ

(
T 
∣∣
y =0 + 

− T 
∣∣
y =0 −

)
+ j v λ, (20) 

here the overline denotes the Adams-Bashforth approximation

 c = 2 v n c n − v n −1 c n −1 . This allows us to solve for c n +1 and T n +1 in

ach channel sequentially. We then compute the vapor flux j n +1 
v 

sing Eqs. (9) and (10) , and solve the Navier-Stokes equations in

oth channels sequentially. 

We verify the spatial and temporal accuracy of our coupled

hannel flow solver with respect to the manufactured analytical

olution 

 

 

 

 

u f 
v f 
p f 
T f 
c f 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

−S(x ) C 
(
πy f / 2 

)
2 
π C(x ) S 

(
πy f / 2 

)
S(x ) S(y f ) 
3 
π C(x ) y 2 

f 

S(x ) y 2 
f 

⎤ 

⎥ ⎥ ⎥ ⎦ 

C(ωt) , 

 

 

 

u d 
v d 
p d 
T d 

⎤ 

⎥ ⎦ = 

⎡ 

⎢ ⎣ 

S(x ) C ( πy d / 2 ) 
− 2 

π C(x ) S ( πy d / 2 ) 
S(x ) S(y d ) 
1 
π C(x ) y 2 

d 

⎤ 

⎥ ⎦ C(ωt) , (21) 

here y f = y − 1 / 2 , y d = y + 1 / 2 , C = cos and S = sin . The sub-

cripts f and d denote the solutions used in the feed and dis-

illate channels, respectively. The solution assumes h = 2 , L = π,

= μ = c p = k = k m /δ = B = λ = a w = 1 , and replaces the Antoine

q. (10) with P sat = T m . This produces the transmembrane temper-

ture difference T 
f 
m 

− T d m 
= (2 /π ) cos (x ) cos (ωt) , membrane con-

entration c m = sin (x ) cos (ωt) , and transmembrane velocity v m =
(2 /π ) cos (x ) cos (ωt) . The solution satisfies the governing equa-

ions with the addition of appropriate forcing terms to Eqs. (1) –

3) and conditions (8) and (12) . On the inlets, outlets, and plates,

e set u , T , and c to the test solution. We use a uniform grid in

he x -direction and a non-uniform grid in the y -direction, given by

q. (67) of Appendix C . 

We test the spatial convergence by setting ω = 0 and integrat-

ng from u 0 = p 0 = T 0 = c 0 = 0 to steady state using N 
2 finite-

olumes in each channel ( N volumes in each direction). We then

easure the relative error of each field as, 

rr N = 

‖ f e − f N ‖ ∞ 

‖ f e ‖ ∞ 

, (22) 
here f e and f N are the exact and numerical solutions, respectively.

e test the temporal convergence by setting ω = 2 π and integrat-

ng from t = 0 to t = 1 using exact initial conditions. We then com-

ute the error 

rr t = 

‖ f e − f t ‖ ∞ 

‖ f e ‖ ∞ 

, (23) 

here f t is the numerical solution using the time step dt .

ig. 3 shows that we observe second-order spatial ( a ) and temporal

 b ) accuracy for u , T , and c . The solver satisfied incompressibility

 ∇ · u = 0 ) to machine precision. 

.2. Application of outlet conditions 

The implementation of outlet conditions are not always fully

etailed in literature. We find studies often discretize convective

onditions explicitly as 

f n +1 − f n 

dt 
+ U in 

∂ f n 

∂x 
= 0 , (24)

here ∂ f / ∂ x is approximated using first-order upwinding to add

tabilizing diffusion. Though this produces an explicit f n +1 that can

e applied as a Dirichlet condition, the resulting outlet velocity

oes not conserve mass. This is addressed by rescaling the out-

et velocity at each time step to ensure the outlet mass flow rates

alances that entering the system. This simple approach is unfor-

unately not always possible for membrane processes, because the

ass flow rate through the membrane may not be known until

fter the Navier-Stokes equation has been solved, as in reverse os-

osis systems [36] . We consequently investigate whether we can

pply the outlet conditions implicitly as 

∂ f 

∂x 

n +1 

= 0 , 
f n +1 − f n 

dt 
+ U in 

∂ f 

∂x 

n +1 

= 0 , (25)

o automatically satisfy mass conservation. 

We present two approaches of applying conditions (25) . For

hat purpose, Fig. 4 ( a ) shows an outlet boundary at x = L . To sim-

lify our presentation, we assume a uniform grid, and express the

utlet velocity conditions as a u n +1 + b(∂ u n +1 /∂ x ) = g, where b = 1

nd a = g = 0 for the Neumann condition, and a = 1 /dt, b = U in ,

nd g = u n /dt for the convective condition. These are discretized

patially as 

u e + b 

(
u e − u w 

dx 

)
= g, a 

(v e + v w 
2 

)
+ b 

(v e − v w 
dx 

)
= g, (26)

here the subscripts denote the locations labeled in Fig. 4 ( a ). 

Our first method applies the discrete Eq. (26) to u ∗, and then
odifies the outlet condition for φ to ensure u n +1 also satisfies

q. (26) exactly. We derive the required condition for φ in an anal-

gous manner to the Neumann condition (18) in Section 3.1 . We

egin with equation (15) , repeated below 

 
n +1 = u 

∗ − dt 

ρ
∇φ. (27) 
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Fig. 4. ( a ) Sketch of the staggered grid near an outlet boundary. ( b ) Spatial accuracy of u (squares) and v (asterisks) when the outlet condition for φ enforces u n +1 (solid 

lines) or the outlet pressure (dash-dotted lines). The dashed line shows 1/ N 2 . 
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When deriving the Poisson Eq. (16) for φ, we take the divergence

of Eq. (27) . This requires 

∂u n +1 

∂x 
= 

∂u ∗

∂x 
− dt 

ρ

∂ 2 φ

∂x 2 
. (28)

We now make the usual assumption that when a solving a par-

tial differential equation subject to boundary conditions, the dif-

ferential equation and conditions are both satisfied at the bound-

ary. This suggests we can combine Eqs. (27) and (28) to express

a u n +1 + b(∂ u n +1 /∂ x ) = g as 

a 
∂φ

∂x 

∣∣∣∣
x = L 

+ b 
∂ 2 φ

∂x 2 

∣∣∣∣
x = L 

= 

ρ

dt 

[
g − au ∗ − b 

∂u ∗

∂x 

]
x = L . (29)

If we apply the desired outlet condition to u ∗, this simplifies to 

a 
∂φ

∂x 

∣∣∣∣
x = L 

+ b 
∂ 2 φ

∂x 2 

∣∣∣∣
x = L 

= 0 . (30)

For b = 0 , this recovers the usual Neumann condition (18) from

Section 3.1 . Repeating the derivation on a discrete level, one finds

a 

(
φE − φP 

dx 

)
+ b 

(
φW − 2 φP + φE 

dx 2 

)
= 0 . (31)

Though condition (30) appears consistent with the underlying

differential equations, one wonders if it is well-posed, as it con-

tains a second-derivative in x . To address this issue, consider the

case a = 0 and b = 1 , for which ∂ u n +1 /∂ x = 0 and ∂ φ2 /∂ x 2 = 0 on

the outlet. To be well-posed, this requires 

∂ 2 φ

∂y 2 

∣∣∣∣
x = L 

= 

ρ

dt 

[∇ · u 
∗]

x = L , (32)

which is equivalent to the Dirichlet condition 

φ
∣∣
x = L = φL (y ) , (33)

where φL ( y ) satisfies the ordinary differential equation, 

d 2 φL 

dy 2 
= 

ρ

dt 

[∇ · u 
∗]

x = L . (34)

We have found that one can indeed solve Eq. (34) numerically at

each time step to apply the outlet condition ∂ 2 φ/∂x 2 = 0 as an

equivalent Dirichlet condition. Either method produces the same

answer, and satisfies incompressibility. 

The above analysis suggests we could also apply conditions

(25) by applying the desired outlet conditions to u ∗, and then fix
the outlet pressure to some desired p out ( y ) using the Dirichlet con-

dition 

φ
∣∣
x = L = p out (y ) − p n 

∣∣
x = L . (35)
hich is easily discretized as 

φP + φE 

2 
= p out (y ) −

3 p n P − p n W 

2 
. (36)

ote that we must extrapolate p n from interior nodes, because on

taggered grids, the pressure at the ghost nodes is unphysical [33] .

ith the above approach, u n +1 satisfies the desired outlet condi-

ion to within a small deviation comparable to that already ob-

erved for v n +1 . The Poisson equation nevertheless ensures global

ass conservation. 

In summary, both approaches apply the desired outlet condi-

ions (25) to u ∗, but differ in their treatment of φ. The first applies

ondition (30) to enforce the outlet condition for u n +1 exactly. The

econd applies the simple Dirichlet condition (35) to apply an out-

et pressure. To compare the results, we first apply them to the

anufactured solution 

 e = sin (x ) cos (y ) , v e = − cos (x ) sin (y ) , p e = sin (x ) sin (y ) . 

(37)

ig. 4 ( b ) shows the spatial accuracy of both approaches when we

olve the Navier-Stokes equations on the domain 0 ≤ x ≤ 2 π ,

 ≤ y ≤ 2 π . The outlet conditions are applied at x = 2 π, with

irichlet velocity conditions applied on all other boundaries. The

olid lines show results for u (squares) and v (asterisks) when we

nforce u n +1 . The dash-dotted lines show results using the pres-

ure condition. Surprisingly, the latter produces second-order accu-

acy, while enforcing u n +1 produces accuracy closer to first-order.

hough not shown, we found the accuracy of the first approach can

e brought to second-order using a formally second-order accurate,

ne-sided, discretization of ∂ u / ∂ x at the boundary. Typically, how-

ver, the actual spatial and temporal accuracy of outlet conditions

s of little concern in the literature. 

We next apply our outlet conditions to the simulation of flow

erturbations in a planar channel flow with impermeable walls.

e first perform a simulation with a fully-developed laminar ve-

ocity profile at the inlet, and the desired condition at the outlet.

or cases where we fixed the outlet pressure, we set p out = 0 . The

imulation is run to steady-state and the resulting flow fields, de-

oted [ U , P ], are used as the initial condition for a second simula-

ion with a disturbance v p ( y, t ) introduced to the wall-normal inlet

elocity, 

 p (y, t) = 0 . 1 U in sin 

(
2 πy 

h 

)
exp 

[
− 10 7 ( t − . 002 ) 

2 
]
. (38)

his produces a perturbation near t = 0 . 002 , with a peak ampli-

ude of 0.1 U in . We run the simulation sufficiently long to allow the

erturbation to interact with the outlet, and we plot the evolution

f the perturbation velocity ̂  u = u − U . 
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Fig. 5. Three successive snapshots of the perturbation velocity at mid-gap in a channel of aspect ratio L/h = 20 and Re = 30 0 0 . ( a ) Results for ̂  u mid without a TVD scheme. 

( b ) Results for ̂  v mid without a TVD scheme. ( c ) Results for ̂  v mid with a TVD scheme. 
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Fig. 5 shows results for a channel flow of aspect ratio L/h =
0 and Reynolds number Re = U in h/ν = 30 0 0 using the convective

utlet condition. The condition for φ enforces the outlet value of

 
n +1 exactly. Panels ( a ) and ( b ) show three snapshots of the per-

urbation velocity components at mid-gap, ̂ u mid = u (x, 0 . 5 h, t) and
  mid = v (x, 0 . 5 h, t) , respectively. Though the results for ̂ u mid are

mooth, ̂ v mid has unphysical oscillations on the order of 10 −5 U in 

hat originate at the outlet. Such noise has been observed previ-

usly by Pauley [37] for both Neumann and convective conditions.

hough likely often ignored, we prefer to attenuate outlet noise by

iscretizing all advection terms with a second-order TVD scheme

escribed in Appendix B . Panel ( c ) shows that this removes the os-

illations, and exposes rapid variations in the two cells upstream of

he outlet. These are likely what triggered the oscillations in panel

 b ). Overall, our tests showed that both Neumann and convective

onditions performed equally well, using either outlet condition for

. Further investigation of our outlet conditions for cases of vortex

hedding is presented in Appendix D . Due to the chronological or-

er in which our outlet conditions for φ were developed, the re-

aining simulations in our study apply the method that enforces

 
n +1 at the outlet exactly. 

To inhibit the spreading of outlet noise between adjacent chan-

els, further testing motivated us to append “buffer cells” at the

nlet and outlet of both channels. The membrane permeability and

hermal conductivity are set to zero in the buffers, as sketched

n Fig. 6 . All other governing equations are simulated within the

uffer, exactly as they are for internal cells. We found a buffer

ength of only two cells sufficed. When presenting simulation re-

ults, we only plot results from 0 ≤ x ≤ L . For plotting purposes,

e determine outlet values of T and c using quadratic extrapola-

ion from upstream data. In Fig. 6 , the temperature at the point

arked as an open circle would be determined using T 1 , T 2 , and

 3 . 
.3. Application to polarization phenomena 

We demonstrate our projection and outlet methods by simulat-

ng steady-state polarization in a bench-scale DCMD system with-

ut spacers. We set the channel dimensions to h = 2 mm and

 = 10 cm, the inlet temperatures to T 
f 
in 

= 80 ◦C and T d 
in 

= 20 ◦C,
nd the inlet feed concentration to 100 g/L. The inlet velocities

f both channels are set to U in = 0 . 127 m/s, producing the feed

eynolds number Re f = U in h/ν f = 600 , and the distillate Reynolds

umber Re d = U in h/νd = 252 , where ν f and νd are the feed and

istillate kinematic viscosities, respectively. The membrane prop-

rties ( k m /δ = 577 W/m 
2 K and B = 1 . 87 × 10 −6 kg/m 

2 s Pa) were

etermined experimentally by Lou et al. [4] . The thermophysical

roperties of the feed and distillate are set using correlations in

ou et al. [4] . Details of the grid and mesh-independence studies

re provided in Appendix C . The simulations are initiated using the

nlet conditions and integrated to steady state using the Neumann

utlet condition. 

Fig. 7 ( a ) shows the resulting steady-state temperature field. Dif-

erent color scales are used for the feed and distillate channels

o highlight the cooling of the feed and the heating of the dis-

illate. Fig. 7 ( b ) shows the streamwise variation of the membrane

urface temperatures in the feed ( T 
f 
m 
) and distillate ( T d m 

). We ob-

erve that T 
f 
m 

decreases monotonically from 80 to 47.6 ◦C in its
ownstream direction (rightwards), while T d m 

increases monoton-

cally from 20 to 60.7 ◦C in its downstream direction (leftward).

ig. 7 ( c ) shows that the temperature difference across the mem-

rane, �T m = T 
f 
m 

− T d m 
, varies non-monotonically from 19.3 ◦C at

 = 0 , to a minimum of 11 ◦C at x/L = 6 . 8 , and a maximum of

7.6 ◦C at x/L = 50 . 

Fig. 7 ( d ) shows the variation of the transmembrane feed ve-

ocity, v m = j v /ρ f , normalized with U in . We observe that though

T m is maximized at the outlet, v m is maximized at the inlet. This



8 J. Lou, J. Johnston and N. Tilton / Computers and Fluids 212 (2020) 104711 

Fig. 6. Sketch of the inlet and outlet buffer cells. The membrane is shaded grey and the buffer cells are indicated using dashed lines. The membrane permeability and 

thermal conductivity are set to zero in the buffers. 

Fig. 7. ( a ) Temperature field. The white arrows show the downstream directions of the feed and distillate flows. ( b ) Temperatures on the feed and distillate membrane 

surfaces. ( c ) Transmembrane temperature difference �T m . ( d ) Non-dimensional transmembrane velocity, v m / U in . 

Fig. 8. ( a ) Concentration field for 0 < y / h < 0.15. ( b ) Concentration on the membrane, c m . 
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occurs for two reasons. First, the saturation pressure P sat varies

non-linearly with temperature, such that dP sat / dT increases with

temperature, see Eq. (10) . Second, concentration polarization is

strongest at the feed outlet, where it decreases the partial va-

por pressure. This is demonstrated in Fig. 8 ( a ), which shows the

feed channel concentration field. Because the mass diffusivity D
is much smaller than the thermal diffusivity α, the concentration
oundary layer is much thinner than the thermal layer. Conse-

uently, Fig. 8 ( a ) is cropped at 0 < y / h < 0.15. Fig. 8 ( b ) shows that

he membrane surface concentration, c m ( x ), increases significantly

rom 100 g/L at the inlet to 155.4 g/L at the outlet. 

Fig. 9 ( a ) shows cross-sectional temperature profiles in the

eed channel at x = L/ 4 , L /2, 3 L /4, and L . To measure the down-

tream growth of the thermal boundary layer, we define the non-
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Fig. 9. ( a ) Temperature profiles in the feed channel at x = L/ 4 (asterisks), x = L/ 2 (triangles), x = 3 L/ 4 (squares), and x = L (crosses). ( b ) Self-similar temperature distributions. 

( c ) Numerical result (solid line) for ̂  δT vs. ̂  x . the dashed line shows the power law ̂
 δT = 0 . 2 ̂  x 0 . 36 . 

Fig. 10. Selection of forcing point and normal point. Solid regions are shaded grey. See discussion in text. 
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 (x, y ) = 

T (x, y ) − T f m 
(x ) 

T f 
in 

− T f m 
( x ) 

, (39)

o that ̂ T varies from zero on the membrane to unity when T =
 

f 
in 
. We then define the boundary layer thickness δT as the location
here 

 
 

∣∣
y = δT 

= 0 . 95 . (40)

ig. 9 ( b ) shows that the four curves in Fig. 9 ( a ) collapse to a

elf-similar curve when ̂ T is plotted with the similarity variable

= y/δT . Panel ( c ) shows that outside of the near-inlet region, δT 
rows with x as the power law δT /h = 0 . 2(x/h ) 0 . 36 . The exponent is

lose to 1/3, which often occurs in thermal boundary layers due to

n approximate balance between downstream advection and trans-

erse diffusion [see discussion in Probstein 38] . Though not shown

ere, the concentration layer satisfies a similar power law. We re-

er to Lou et al. [4] for a detailed analysis. 

. Simulating spacer surfaces 

We simulate spacer surfaces using a direct forcing method

hat extends work by Fadlun [39] and others [40–45] to simu-

ate Neumann conditions for the temperature and concentration

elds to second-order spatial accuracy. We present the method in

ection 4.1 and verify its accuracy in Section 4.2 by reproducing

anufactured solutions and theoretical results for the linear stabil-

ty of flow over a cylinder in a plane channel. We also stress here

hat during the preparation of the current manuscript, a similar

pproach was independently reported by Yousefzadeh and Battiato

46] , to whom we defer credit. 
.1. Immersed boundary method 

To demonstrate our procedure, Fig. 10 ( a ) shows nine temper-

ture grid points (solid circles) through which six grid lines are

rawn. We begin by identifying all grid points in the solid (shaded

rey) for which an adjacent point on the same grid line is in the

uid. These points, called “forcing points ,” are labeled f 1 , f 2 , and f 3 
n Fig. 10 ( a ). The point labeled nf is not a forcing point. Though it

as a neighboring point in the fluid, the two points lie on differ-

nt lines. Treating such points as forcing points does not improve

ccuracy. 

For each forcing point, we compute the shortest normal dis-

ance to the surface using a procedure similar to Majumdar et al.

40] , though we use the approach of Qin et al. [47] that lever-

ges the properties of signed distance functions. We refer to them

or details, and only summarize the procedure here. Consider the

oint f 1 in Fig. 10 ( a ). In the four boxes surrounding f 1 , we approx-

mate the surface as dashed line segments joining points where

he surface intersects grid lines, and then find the surface point s

square symbol) that produces the normal distance to f 1 . If multi-

le normal distances exist, as in Fig. 10 ( b ), we choose the shortest.

n cases where no normals exist, the surface point is set to the

losest point, as in Fig. 10 ( c ). 

Our application of Dirichlet conditions is similar to that of

acheco-Vega et al. [42] . Suppose we wish to prescribe the tem-

erature T s at the surface point s in Fig. 11 ( a ). Though s does not

ie on the grid, the temperature there can be approximated to sec-

nd order using a bi-linear interpolation with the points labeled 1,

, 3, and f , 

 s = a f T f + a 1 T 1 + a 2 T 2 + a 3 T 3 + O(d 2 ) , (41)

here d is the distance between f and s , and a f , a 1 , a 2 , a 3 are coef-

cients of the interpolation. From this interpolation, we can solve
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Fig. 11. Application of ( a ) Dirichlet and ( b ) Neumann boundary conditions. The triangular regions shaded light grey in panels ( b ) and ( c ) denote the interpolation space. 

Fig. 12. At locations where an immersed surface intersects an external boundary or cusp, as in panel ( a ), the surface is modified as in panel ( b ). 
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for the temperature T f 

T f = 

T s − a 1 T 1 − a 2 T 2 − a 3 T 3 
a f 

, (42)

that must be applied at point f to satisfy the boundary condition

to second-order spatial accuracy. 

Next, suppose we wish to apply the Neumann condition 

n · ∇T = g s , (43)

at point s in Fig. 11 ( b ). For that purpose, we introduce the fictitious

point labeled n such that s is mid-distance between points n and

f . We can then discretize the boundary condition using a centered

difference, 

T n − T f 

2 d 
= g s + O(d 2 ) . (44)

If we approximate T n using a bilinear interpolation, as in Eq. (41) ,

the accuracy of the Neumann condition will be only first-order. The

decreased accuracy is straightforward to show using a Taylor se-

ries, and occurs because bilinear interpolation produces a second-

order spatial error in the numerator of Eq. (44) . This is then di-

vided by the denominator 2 d , which is the same order as dx and

dy . To obtain second-order accuracy, we approximate T n to third

order accuracy using the interpolation 

T n = b f T f + b 1 T 1 + b 2 T 2 + b 3 T 3 + b 4 T 4 + b 5 T 5 + O(d 3 ) , (45)

where b f and b i ( i = 1 , . . . , 5 ) are interpolation coefficients. Using

interpolation (45) with the centered difference (44) produces net

second-order accuracy. 

For the case sketched in Fig. 11 ( b ), the fictitious point n lies

in the triangular interpolation space shaded light grey. When the

point lies outside this space, we interpolate as demonstrated in

Fig. 11 ( c ) to avoid extrapolation. Another special case occurs when

an immersed surface has a cusp, as in Fig. 12 ( a ). Cusps are also
enerated when an immersed surface intersects the external do-

ain of the simulation. This would occur in Fig. 12 ( a ) if the line

abeled ab was the external boundary. Such cusps project the point

 back into the solid or outside the domain. Refining the grid tends

o simply push the issue further into the cusp. We address this is-

ue as suggested by Finn and Apte [48] , by locally modifying the

mmersed surface as in Fig. 12 ( b ). 

As earlier mentioned, our approach is similar to that of Youse-

zadeh and Battiato [46] . There are some differences worth men-

ioning. We integrate the pressure field using a projection method,

hile Yousefzadeh and Battiato use the SIMPLE scheme [49] . Our

rids are non-uniform, while those of Yousefzadeh and Battiato

re uniform. While we focus on immersed Neumann and Dirich-

et conditions, Yousefzadeh and Battiato consider more general

mmersed Robin conditions. Next, while we reconstruct the im-

ersed surface using the distance function method of Qin et al.

47] , Yousefzadeh and Battiato use a ray-casting method. Finally,

n contrast to our interpolation stencils sketched in Fig. 11 , Youse-

zadeh and Battiato propose stencils that exclude the forcing point

o increase the stability and convergence of their iterative SIM-

LE scheme. In our case, we have not observed any stability issues

o date. 

.2. Verification and validation 

We verify the spatial and temporal accuracy of our direct forc-

ng method using the forced analytical solution 
 

 

 

u e 
v e 
p e 
T e 

⎤ 

⎥ ⎦ = 

⎡ 

⎢ ⎣ 

sin (x ) cos (y ) 
− cos (x ) sin (y ) 
sin (x ) sin (y ) 
sin (x ) sin (y ) 

⎤ 

⎥ ⎦ cos (ωt) . (46)

e set all thermophysical properties to unity, and solve the

ontinuity, Navier-Stokes, and heat Eqs. (1) and (2) in the do-
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Fig. 13. ( a ) Streamlines of the test solution. ( b ) Err N vs. N for u (squares), v (asterisks), and T (triangles) using the third-order interpolation for the Neumann condition. The 

crosses show Err N for T when the bi-linear interpolation is used for the Neumann condition. The dashed and dash-dotted lines show slopes of 1/ N 2 and 1/ N , respectively. ( c ) 

Instantaneous vorticity contours in a channel with an immersed cylinder when (Re, β) = (266 . 7 , 0 . 5) . This case is equivalent to that in Fig. 11 of Sahin and Owens [20] . 
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Table 1 

For the blockage ratios β = D/h in the first column, the 

remaining columns compare the critical Reynolds num- 

ber and Strouhal numbers computed in the current study 

(columns 2–3) with those of Sahin and Owens (columns 

4–5). 

Current study Sahin and Owens [20] 

β Re c St Re c St 

0.3 213 ± 2 0.317 212 0.312 

0.5 168 ± 1 0.509 167 0.505 

0.7 106 ± 0.5 0.681 106 0.707 

5
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d  
ain ( x, y ) ∈ [0, 2 π ] × [0, 2 π ] with a circular cylinder of

iameter D c = 3 centered at (x, y ) = (π, π) , as illustrated in

ig. 13 ( a ). On the cylinder surface, we apply the Dirichlet con-

ition u = u e , and the Neumann condition n · ∇T = n · ∇T e . On

he external boundaries, we apply Dirichlet conditions to u and

 . As in Section 3.1 , we test the spatial accuracy by setting

 = 0 and integrating to steady-state from the initial condition

 = p = T = 0 . Simulations were performed using a non-uniform

rid with Gauss-Lobatto-Chebyshev distributions in the x and

 -directions. 

Fig. 13 ( b ) shows that our method produces second-order spa-

ial accuracy for the velocity and temperature fields when using

he third-order interpolation for the Neumann condition. The scat-

er arises due to the nonlinear distribution of the grid points. Re-

eating the analysis with a uniform grid produces much smoother

esults. The cross symbols show that using a bi-linear interpolation

or the Neumann condition reduces the accuracy of T to first-order.

hough not shown for brevity, we also confirmed second-order

emporal accuracy, and repeated our analysis for several cylinder

ocations. 

We validate our ability to simulate vortex shedding by com-

aring to a linear stability analysis performed by Sahin and

wens [20] of fully-developed channel flow with a circular cylin-

er on the centerline. We place the cylinder at least 3 diame-

ers from the inlet and at least seven diameters from the out-

et. We define the blockage ratio β = D c /h and Reynolds number

e = U in h/ν . To compute the critical Reynolds number for transi-

ion to vortex shedding, we perform simulations to determine two

eynolds numbers Re 1 and Re 2 , for which Re 2 − Re 1 ≤ 5 and for

hich the flow is steady at Re 1 and unsteady at Re 2 . The criti-

al Reynolds number is then set to Re c = (Re 1 + Re 2 ) / 2 . At the un-

teady Reynolds number Re 2 , we compute the dominant frequency

 c of oscillation by recording the centerline velocity at a location

ownstream of the cylinder. We define the critical Strouhal num-

er as St c = f c D c /U in . Table 1 demonstrates excellent agreement be-

ween our results and those of Sahin and Owens [20] . As further

alidation, Fig. 13 ( c ) shows instantaneous vorticity contours when

(Re, β) = (266 . 7 , 0 . 5) . These show excellent agreement with those

hown in an identical simulation reported in Fig. 11 of Sahin and

wens [20] . 

b  
. Application to unsteady transport in DCMD systems 

We now use our methods to simulate polarization in a DCMD

ystem with spacers. We consider a short system of dimensions

 = 2 mm and L = 20 mm with cylinders of diameter D c = 1 mm

laced on the centerlines of both channels at x = 10 mm. The

ength ensures the spacers are a distance of 10 diameters from the

nlet and outlet. As in Section 3.3 , we set the operating temper-

tures to T 
f 
in 

= 80 ◦C and T d 
in 

= 20 ◦C, and the feed concentration
o C in = 100 g/L. The simulations are run to steady state for sub-

ritical cases, and run sufficiently long to attenuate any transient

tartup effect for supercritical cases. Simulations were repeated us-

ng both Neumann and convective outlet conditions. The difference

n the results were negligible. 

Fig. 14 shows results when U in = 2 . 11 × 10 −2 m/s. This produces

he Reynolds numbers Re f = 100 and Re d = 42 , for which the flow

s steady in both channels. The streamlines in panel ( a ) show a

air of counter-rotating vortices in the downstream wakes of each

pacer. As expected, the wake is larger in the feed channel due

o its larger Reynolds number. Panels ( b ) and ( c ) show that as the

eed and distillate flows accelerate around the spacers, the temper-

ture and concentration boundary layer thicknesses decrease, due

o the increase in downstream advection. Because the concentra-

ion layer is quite thin, panel ( c ) shows results for 0 ≤ y / h ≤ 0.2. 

The solid lines in Fig. 15 show the transmembrane temperature

ifference �T m ( a ), surface concentration c m ( b ), and transmem-

rane feed velocity v m / U ( c ). The dashed lines show results for a
in 
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Fig. 14. ( a ) Steady-state streamlines, ( b ) temperature field, and ( c ) feed concentration field for the subcritical case Re f = 100 and Re d = 42 . Different color scales are used for 

temperatures in the feed and distillate channels. The concentration field is shown for 0 < y / h < 0.2. For convenience, we present the position as both x / h and x / D c . 

Fig. 15. Steady-state results for ( a ) the transmembrane temperature difference �T m , ( b ) the membrane surface concentration c m , and ( c ) the transmembrane vapor flux 

v m / U in for the subcritical case Re f = 100 and Re d = 42 . The solid and dashed lines show results of simulations performed with and without spacers, respectively. 
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simulation performed without the cylinders. We see that the influ-

ence of the spacers is limited to a region extending roughly two

cylinder diameters up and downstream from the cylinder center.

In that region, the cylinders increase �T m , decrease c m , and in-

crease vapor production. Overall, the simulation with the spacers

produces an average transmembrane vapor flux of 9 . 4 × 10 −6 m/s,

compared to 8 . 5 × 10 −6 m/s for the case without spacers, an in-

crease of 10.6%. 

Fig. 16 shows snapshots of the streamlines ( a ), temperature

field ( b ), and concentration field ( c ) when we increase the inlet ve-

locity to U in = 8 . 46 × 10 −2 m/s, producing the Reynolds numbers

Re f = 267 and Re d = 112. Based on Re c = 168 in Table 1 , the dis-

tillate flow is subcritical and the feed flow is strongly supercritical

( Re f − Re c = 99). Note that we performed additional simulations to

determine the critical Reynolds number of the fully coupled DCMD

system, and found the presence of the membrane and transmem-

brane flow had a negligible effect on Re c . Panel ( a ) shows that in-

stability in the feed channel produces strong wake oscillations and

a pair of staggered recirculation zones that periodically appear and

travel downstream along the membrane and outer wall. The pe-
iod for the formation of these recirculation regions is identical to

hat of the vortex shedding behind the cylinder. Snapshots showing

he evolution of these wall and membrane vortices are provided in

ig. 17 . The temperature plot in Fig. 16 ( b ) suggests that the leading

dge of the recirculation zone traveling along the membrane tends

o eject near-membrane cool fluid into the bulk flow. This in turn

rings warmer bulk fluid towards the membrane. 

The concentration plot in Fig. 16 ( c ) shows that the recircula-

ion zone is not similarly able to eject high concentration fluid into

ulk. This is likely due to the fact that the concentration boundary

ayer is much thinner than the temperature layer. We also observe

 local region of salt accumulation near x/h = 6 . 3 . Closer inspec-

ion suggests that this occurs because the flow reversal within the

ecirculation zone advects solutes upstream along the membrane

urface where they meet downstream advection of solutes at the

eading edge of the recirculation zone. 

The solid lines in Fig. 18 show snapshots of �T m ( a ), c m ( b ), and

 m / U in ( c ) for the simulation with spacers. The dashed lines show

he results of a simulation performed without spacers. Though the

eed channel is strongly unsteady, the results at the membrane for
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Fig. 16. Snapshots of ( a ) the unsteady streamlines, ( b ) temperature field, and ( c ) feed concentration field for the supercritical case Re f = 267 and Re d = 112 . Different color 

scales are used for temperatures in the feed and distillate channels. The concentration field is shown for 0 < y / h < 0.2. For convenience, we present the position as both x / h 

and x / D c . 

Fig. 17. Snapshots of the streamlines at four equispaced times t 1 < t 2 < t 3 < t 4 where t n − t n −1 is approximately 3/(13 f s ), where f s = 34 Hz is the shedding frequency. 

Fig. 18. The ( a ) transmembrane temperature difference �T m , ( b ) membrane surface concentration c m , and ( c ) transmembrane vapor flux v m / U in for the supercritical case 

Re f = 267 and Re d = 112 . The solid and dashed lines show results of simulations performed with and without spacers, respectively. 
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�T m , c m , and v m are all essentially steady, showing only negligible

variations in time. Panel ( a ) shows that the spacer increases �T m ,

not only near the spacer, but also in the far downstream region.

Panel ( b ) shows that while concentration polarization is reduced

below the spacer, there is a region of preferential salt accumula-

tion near x/h = 6 . 3 . Overall, the simulation with the spacers pro-

duces an average transmembrane vapor flux of 1 . 25 × 10 −5 m/s,

compared to 1 . 10 × 10 −5 m/s without spacers, an increase of 14.3%.

Though not shown here for brevity, we found that as we further

increase U in , and consequently the Reynolds numbers, the spacers

continue to increase vapor production over what is observed with-

out spacers. Unfortunately, the maximum concentration within the

region of preferential salt accumulation also grows significantly,

suggesting that the increase in vapor production comes with a

risk of increasing salt precipitation. To our knowledge, the current

study is the first to report a potential tradeoff between vapor pro-

duction and concentration polarization in DCMD systems. Though

beyond the current scope, we can report that we have performed

preliminary simulations of spacer filaments in reverse osmosis sys-

tems, and observed similar behavior. We consequently do not be-

lieve this tradeoff to be unique to membrane distillation. Finally,

while we have focused here on polarization and vapor production,

spacer filaments have an important impact on the downstream

pressure gradients in the feed and distillate channels. For brevity,

we do not report those results here, as they are the topic of a more

in-depth parametric study currently underway. 

6. Conclusions 

In addition to DCMD’s important industrial applications, the

process touches on numerous long-standing issues in both theo-

retical and computational fluid mechanics. The numerical issues

include (1) extending projection methods to more general Robin

boundary conditions; (2) developing approximate outlet conditions

that conserve mass in open systems with multiple inlets and out-

lets; and (3) simulating complex geometries in flows with heat and

mass transport. The theoretical issues include (1) heat and mass

boundary layers with complicated wall-interactions, as opposed to

the classic case of a thermal boundary layer evolving over a wall

maintained at a constant temperature or heat flux; (2) understand-

ing transitions of flow regimes over bluff bodies; and (3) under-

standing how vortical flow structures influence mixing and interact

with adjacent surfaces. Though not discussed here, further issues

include multi-species transport in complex feed solutions, and the

physics of nucleation and precipitation. 

We showed that transport in the coupled feed and distillate

channels can be simulated using a projection method that applies

membrane boundary conditions using Adams-Bashforth extrapo-

lation to solve the two channels sequentially, instead of simul-

taneously. We also showed that mass can be automatically con-

served in the open system using Neumann and convective outlet

conditions that are applied implicitly within a projection method.

Though outside the scope of the current study, this approach is

crucial for our parallel work simulating pressure-driven membrane

separation processes such as reverse-osmosis. In these systems, the

mass flow rate through the membrane is only known after the so-

lution of the Poisson problem for φ, as discussed in Tilton et al.

[36] . 

We also showed that Neumann conditions can be simulated to

second order spatial and temporal accuracy using a direct forc-

ing immersed boundary method. We validated the method against

forced analytical solutions and theoretical predictions of a linear

stability analysis of transition to vortex shedding. We again note

that a similar approach was recently independently reported by

Yousefzadeh and Battiato [46] , to whom we defer credit. Future

work should extend this method to three-dimensions. Future work
ay also wish to explore whether it is better to formally apply

mmersed Neumann conditions to second order accuracy, as in our

tudy, or if one can achieve comparable accuracy using a simpler

rst-order approach with Adaptive Mesh Refinement (AMR) at the

mmersed surface. Our approach requires a larger stencil at the im-

ersed surface, and consequently reduces the sparsity of matrices

equired for semi-implicit temporal discretizations. This may influ-

nce memory, parallelization, and CPU time. That issue deserves

 dedicate study using optimized codes. In contrast, the current

tudy uses preliminary, un-optimized, sequential codes. 

Finally, we applied our methods to simulate heat and mass

ransport in DCMD systems with and without an idealized two-

imensional spacer filament on the channel centerlines. We note

hat our results for the case without spacers were recently re-

orted in much greater detail in a separate publication [4] . The

esults for cases with a spacer are the topic of an ongoing para-

etric study. Within the limits of the current study, we showed

hat in steady flow regimes, the spacer filaments had a net posi-

ive impact by decreasing both temperature and concentration po-

arization, and thereby increasing permeate production. In super-

ritical flow regimes, however, the spacers improved permeate pro-

uction at the expense of generating regions of preferential solute

ccumulation. That increases the risk of precipitation when treat-

ng high-concentration feed solutions, which is a major application

f interest for DCMD systems. 
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ppendix A. Transmembrane heat transport 

Here we provide a brief derivation of the Schofield model

25] of heat transport through MD membranes. Instead of sim-

ly repeating the original derivation, we provide an alternate ap-

roach that highlights heat transport at the liquid-vapor interfaces.

ig. 19 ( a ) depicts an idealized membrane whose surface is the

lane y = 0 . Liquid occupies the region y > 0. The membrane, com-

osed of a solid phase and vapor-filled pores, occupies the region

 < 0. To simplify our analysis, we neglect surface tension and as-

ume all liquid-vapor and liquid-solid interfaces lie in the plane

 = 0 , as in Fig. 19 ( a ). More detailed discussion of surface tension

ffects can be found in the work of Lawson and Lloyd [50] . We

ssume the liquid-solid and liquid-vapor interfaces are in thermal

https://doi.org/10.13039/100000001


J. Lou, J. Johnston and N. Tilton / Computers and Fluids 212 (2020) 104711 15 

e  

t  

s  

o  

t  

s

 

o

−

w  

s  

0  

a  

t  

e

−
︸

 

w  

v  

t  

a  

i  

v  

ρ

−  

 

E  

s  

a  

a  

u  

b

〈

T  

h

q

w  

t  

t  

a  

a  

b  

p  

t

q  

T  

d  

w  

m  

y

 

o

−  

w  

[  

b  

s  

F  

n  

o

−  

w

A

 

(  

u  

t  

F

w

quilibrium, such that the temperature is continuous at y = 0 . The

emperature gradient ∂ T / ∂ y is generally discontinuous. For discus-
ion of these common assumptions, we refer to the classic works

f Leal [29] and Prosperetti [51] . In the following, we consider heat

ransport across the plane y = 0 on the pore-scale. This is then up-

caled to produce a practical macroscopic model. 

At liquid-solid interfaces, heat is transported by conduction

nly, 

k l 
∂T 

∂y 

∣∣∣∣
y =0 + 

= −k s 
∂T 

∂y 

∣∣∣∣
y =0 −

(47) 

here k l and k s are the thermal conductivities of the liquid and

olid, respectively. For this Appendix, the subcripts y = 0 + and y =
 
− denote the evaluation of the gradient as y approaches zero from

bove and below, respectively. At liquid-vapor interfaces, heat is

ransported by conduction and advection. Conservation of thermal

nergy at the liquid-vapor interfaces [29,51] requires 

k l 
∂T 

∂y 

∣∣∣∣
y =0 + 

 ︷︷ ︸ 
conduction 

+ ρl v l h l 

∣∣∣∣
y =0 + ︸ ︷︷ ︸ 

advection 

= −k s 
∂T 

∂y 

∣∣∣∣
y =0 −

+ ρv v v h v 

∣∣∣∣
y =0 −

, (48)

here h is the enthalpy per unit mass, and the subscripts l and

 distinguish between properties of the liquid and vapor, respec-

ively. The left-hand-side of Eq. (48) represents heat conduction

nd advection crossing the interface from the liquid side of the

nterface, while the right-hand-side represents conduction and ad-

ection from the vapor side. Using conservation of mass ( ρl v l =
v v v ), Eq. (48) can be rewritten as 

k l 
∂T 

∂y 

∣∣∣∣
y =0 + 

+ k s 
∂T 

∂y 

∣∣∣∣
y =0 −

= ρl v l 
(
h v 

∣∣
y =0 −

− h l 
∣∣
y =0 + 

)
= ρl v l λ. (49)

To upscale the pore-scale heat transport represented by

qs. (47) and (49) , we introduce the circular averaging area A
ketched in Fig. 19 ( b ). We assume the diameter of the averaging

rea is much larger than a typical pore diameter ( D A 	 D p ) but

lso much smaller than the channel height ( D A 
 h ), which is nat-

rally satisfied in MD systems. At every point ( x, z ) on the mem-

rane surface, we define area-averaged fields of the form 

 v 〉 (x, z, t) = 

1 

A 

∫ 
A 

v 
∣∣
y =0 

dA, 

〈
∂T 

∂y 

〉
(x, z, t) = 

1 

A 

∫ 
A 

∂T 

∂y 

∣∣∣∣
y =0 

d A . 

(50) 
ig. 19. ( a ) Idealized cross-section of a membrane pore showing the liquid (L), solid (S

hich curvature due to surface tension is neglected. ( b ) Sketch of the averaging area A . 
o reproduce the Schofield model, we approximate the average

eat transport crossing the plane y = 0 from the liquid side as 

 m = −(1 − φ) k l 

〈
∂T 

∂y 

〉∣∣∣∣
0 + ︸ ︷︷ ︸ 

liquid-solid interfaces 

−φk l 

〈
∂T 

∂y 

〉∣∣∣∣
0 + 

+ ρl 〈 v l 〉〈 h l 〉 
∣∣∣∣
0 + 

, ︸ ︷︷ ︸ 
liquid-vapor interfaces 

(51) 

here φ is the area porosity of the membrane surface. The first

erm in Eq. (51) represents heat conduction across liquid-solid in-

erfaces. The second and third terms represent heat conduction

nd advection across the liquid-vapor interfaces, respectively. The

pproximation (51) assumes one effective temperature gradient for

oth the liquid-solid and liquid-vapor interfaces. Similarly, we ap-

roximate the average heat transport crossing the plane y = 0 from

he membrane side as 

 m = −(1 − φ) k s 

〈
∂T 

∂y 

〉∣∣∣∣
0 −

− φk v 

〈
∂T 

∂y 

〉∣∣∣∣
0 −

+ ρv 〈 v v 〉〈 h v 〉 
∣∣∣∣
0 −

. (52)

hough approximations (51) and (52) are intuitive, a more formal

erivation could consider the method of volume-averaging [52] ,

hich has been used extensively to model heat, mass, and mo-

entum transport across porous surfaces [53] . Such analysis is be-

ond the scope of this study. 

Equating expressions (51) and (52) , and applying conservation

f mass produces 

k l 

〈
∂T 

∂y 

〉∣∣∣∣
0 + 

= −k m 

〈
∂T 

∂y 

〉∣∣∣∣
0 −

+ j v 〈 λ〉 , (53)

here k m = (1 − φ) k s + φk v is the membrane thermal conductivity

25] . If we assume a linear temperature gradient within the mem-

rane, the area-averaged temperature gradient on the membrane

ide of the interface ( y = 0 −) can be approximated as (T d m 
− T 

f 
m 
) /δ.

urthermore, if the averaging area is small compared to the chan-

el ( D A 
 h ), the brackets can be removed from the left-hand-side

f Eq. (53) and the latent heat term so that Eq. (53) becomes 

k l 
∂T 

∂y 

∣∣∣∣
0 + 

= −k m 

δ

(
T f m 

− T d m 

)
+ j v λ, (54)

hich recovers the thermal boundary condition (12) . 

ppendix B. Spatial discretization 

Fig. 20 demonstrates our staggered grid. As sketched in panel

 a ), the variables p, T , and c are stored at the cell centroids, while

 and v are stored at cell faces. To discretize the x -component of

he Navier-Stokes equation, we consider the control volume shaded
), and vapor (V) regions. The dashed line represents the liquid-vapor interface, in 
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Fig. 20. The staggered grid. The fields u, v , and p are stored at the locations marked as squares, triangles, and solid dots, respectively. ( a ) A pressure cell (shaded grey). ( b ) 

The control volume (shaded grey) used to discretize momentum in the x -direction. ( b ) The control volume (shaded grey) used to discretize momentum in the y -direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. A corner pressure cell (shaded grey) with ghost nodes. 
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grey in Fig. 20 ( b ). We write the equation in control volume form

as ∫ 
CV 

ρ
∂u 

∂t 
d V + 

∫ 
S 

ρu ( u · n ) d A = −
∫ 
S 

p ( i · n ) d S + 

∫ 
S 

μ( ∇u · n ) d A, 

(55)

where i is the unit vector in the x -direction, n is the unit normal

vector pointing away from the control surface S of the control vol-

ume CV . We approximate the volume integral and pressure term in

Eq. (55) as ∫ 
V 

ρ
∂u 

∂t 
d V ≈ ρ

∂u P 
∂t 

d xd y, 

∫ 
S 

p ( i · n ) d S ≈ P e d y − P w dy, (56)

where dx and dy are the distances labeled in Fig. 20 ( b ). 

We approximate the advection term in Eq. (55) as ∫ 
S 

ρu ( u · n ) dA ≈ ˙ m e u e + ˙ m n u n − ˙ m w u w − ˙ m s u s , (57)

where ˙ m e = ρu e dy, ˙ m n = ρv n dx, ˙ m w = ρu w dy, and ˙ m s = ρv s dx de-
note the mass flow rates through the four faces of the volume. The

subscripts n and s denote the face locations marked with crosses

in Fig. 20 ( b ). The velocities within the mass flow rates are approxi-

mated using linear interpolation. For example, we compute the ve-

locity within ˙ m n as 

v n ≈ (1 − α) v nw + αv ne , α = 

x n − x nw 

dx 
. (58)

We considered two methods of approximating the four face val-

ues of u that multiply the mass flow rates in Eq. (57) . The first,

commonly called “centered differencing,” approximated the veloc-

ities using the same linear interpolation procedure above. The sec-

ond used a TVD scheme, which improved the outlet conditions.

We compared the performance of several TVD schemes, and the

scheme commonly called “minmod” worked well. We refer read-

ers to reference [54] for details. For demonstration, the scheme ap-

proximates u e as 

u e = u low e − φe (r e )(u 
low 
e − u high e ) , (59)

where u low e and u 
high 
e are evaluated using first-order upwinding

and centered differencing, respectively, and φ = max [0 , min (r, 1)] ,

where r is the ratio of successive gradient in the flow direction. 

Finally, we approximate the viscous term in Eq. (55) as ∫ 
S 

μ( ∇u · n ) dA ≈ μ
∂u e 
∂x 

dy + μ
∂u n 
∂y 

dx − μ
∂u w 
∂x 

dy − μ
∂u s 
∂y 

dx, (60)

where the gradients are approximated using centered differences,

such as 

∂u e 
∂x 

≈ u E − u P 
x − x 

. (61)

E P 
The above approach is repeating to discretize the y -momentum

quation using the control volume sketched in Fig. 20 ( c ). We then

nd that Eq. (15) is expressed in discrete form as 

 
n +1 
P = u ∗P −

dt 

ρ

(
φe − φw 

dx 

)
, v n +1 

P = v ∗P −
dt 

ρ

(
φn − φs 

dy 

)
, (62)

here the subscripts are explained in Fig. 20 ( b ) and ( c ). Using the

ressure cell in Fig. 20 ( a ), ee then disctretize the conservation of

ass equation as 

u n +1 
e − u n +1 

w 

dx 
+ 

v n +1 
n − v n +1 

s 

dy 
= 0 . (63)

ubstituting relations (62) into the above, we find the discrete

oisson equation 

1 

dx 

(
φE − φP 

x E − x P 
− φP − φW 

x P − x W 

)
+ 

1 

dy 

(
φN − φP 

y N − y P 
− φP − φS 

y P − y S 

)

= 

ρ

dt 

(
u ∗e − u ∗w 

dx 
+ 

v ∗n − v ∗s 
dy 

)
. (64)

Using ghost nodes, we apply the discrete Poisson equation on

oundary cells, such as that sketched in Fig. 21 . The Neumann con-

itions for the two boundaries of this corner cell are then applied

s 

φP − φW 

dx 
= 0 , 

φP − φS 

dy 
= 0 . (65)

ote that with all Neumann conditions, φ is only defined up to

 constant. To produce a non-singular matrix equation, we fix the
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onstant using a scalar Lagrange multiplier λ. Specifically, if Aφ = b

epresents the matrix problem generated by the Poisson equation

nd Neumann boundary conditions, we augment the matrix as 

A 1 
q 0 

][
φ
λ

]
= 

[
b 
0 

]
, (66) 

here q is a row of length (N x + 2)(N y + 2) zeros, except for one

ntry set to unity. This sets φ equal to unity at one of the grid

oints. After solving, we confirm that λ = 0 to machine precision.

n all cases, we find that mass conservation is indeed satisfied to

achine precision. 

ppendix C. Grid independence studies 

The simulations of Section 3.3 are performed using N x equis-

aced cells in the x -direction. The cells are concentrated in the

 -direction near the membrane and outer walls by setting the y -

oordinates of the horizontal faces to 

 i = ±(h/ 2)(1 + cos (π i/N) , i = 0 , 1 , . . . , N y , (67)

here the positive sign is used in the feed, and the negative

s used in the distillate. These are simply the Gauss-Lobatto-

hebyshev points mapped to the interval y ∈ [0, h ] and y ∈ [ −h, 0] .

or the simulations of Section 5 , we refine the grid near the cylin-

er by decomposing the x -direction into three sections, as demon-

trated in Fig. 22 ( a ). A core section of length L 1 = H is centered
ig. 22. ( a ) Demonstration of a channel grid for which N 1 = 32 , N 2 = 24 , and 

 y = 30 . ( b ) Variation of Err N with N x for u (squares), v (asterisks), c (circles) and T 

triangles). The dashed line shows 1/ N 2 . 

A
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p  

t  

r  

t  

b  

u  

t  

g  

w  

c  

s  

t  

p  

a  

C  

a

bout the cylinder, and has N 1 equispaced cells in the x -direction.

he inlet and outlet sections each have a length L 2 = (L − L 1 ) / 2

nd N 2 equispaced cells. 

To demonstrate our mesh independence studies, we consider

ere the simulation of a DCMD system with a spacer on the cen-

erline of each channel. We set the system dimensions to H =
 mm, L = 20 mm, and D c = 0 . 6 mm, producing the blockage ra-

io β = 0 . 3 . The operating conditions are set to T 
f 
in 

= 80 ◦ C, T d 
in 

=
0 ◦C, C in = 100 g/L, and U in = 0 . 021 m/s. This produced a sub-

ritical case for which the flow fields can be integrated to steady

tate. We fix the ratio N x /N y = 3 and varied N x and N y between

0 ≤ N x ≤ 600 and 30 ≤ Ny ≤ 200, respectively. We also fix the

atio N 1 /N 2 = 1 / 4 , to force 20% of the N x cells in the core region

 1 . Simulations were run to steady-state, after which the spatial

rror was evaluated using the result at (N x , N y ) = (60 0 , 20 0) as

he exact solution. Fig. 22 ( b ) shows the error is below 1% when

 x > 400. 

For cases with unsteady vortex shedding, we leverage the fact

hat v, T , and c are remarkably steady on the membrane surface.

e consequently repeat the above procedure measuring the error

ith respect to these fields on the membrane surface. To deter-

ine the time step dt for unsteady cases, we first set dt to the

aximum allowable value for which the code is numerical stable.

e then compare dt to the computed period of oscillation t p = 1 / f

nd ensure that t p / dt > 10 0 0. 

ppendix D. Outlet performance studies 

To explore the outlet conditions in the context of large-scale

ortical flow structures, we considered flow over a cylinder in a

lanar channel flow. Varying the blockage ratio and cylinder posi-

ion relative to the channel centerline allows us to generate a wide

ange of steady and unsteady vortical structures. Fig. 23 shows

wo simulations performed of a channel flow with Re = 320 and

lockage ratio β = 0 . 5 . The cylinder has been placed closer to the

pper wall. In this case, Zovatto and Pedrizzetti [55] have shown

hat the asymmetry stabilizes vortex shedding and produces elon-

ated vortical structures behind the cylinder and along the upper

all. Fig. 23 shows the results of two simulations in which the

ylinder was placed three diameters from the channel inlet. The

imulation in panel ( a ) uses a short downstream length that cuts

hrough the vortex attached to the upper wall. The simulation in

anel ( b ) shows a second simulation using a longer domain that

llows the near-wall vortex to close well upstream from the outlet.

omparing the streamlines of the two simulations shows excellent

greement. 
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Fig. 23. Comparison of two simulations of a channel flow with Re = 320 and blockage ratio β = 0 . 5 using a short ( a ) and long ( b ) domain. See discussion in text. 
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