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Membrane distillation is an emerging desalination process with important applications to the energy-
water nexus. Its performance depends, however, on heat and mass transport phenomena that are
uniquely challenging to simulate. Difficulties include two adjacent channel flows coupled by heat and
mass transport across a semi-permeable membrane. Within the channels, heat and mass boundary lay-
ers interact with the membrane surface and vortical flow structures generated by complicated geome-
tries. The presence of multiple inlets and outlets also complicates the application of mass-conserving
outlet conditions. Moreover, even small amounts of outlet noise affect the resolution of important near-
membrane fluid velocities. We show these phenomena can be simulated to second-order spatial and tem-
poral accuracy using finite volume methods with immersed boundaries and projection methods. Our ap-
proach includes a projection method that staggers the coupled channel flows and applies Robin boundary
conditions to facilitate mass conservation at the outlets. We also develop an immersed boundary method
that applies Neumann boundary conditions to second-order spatial accuracy. The methods are verified
and validated against manufactured solutions and theoretical predictions of vortex shedding. They are
then applied to the simulation of steady and unsteady transport phenomena in membrane distillation.
The methods have important applications to the broad field of chemical engineering and deal with long-

standing issues in both theoretical and computational fluid dynamics.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Membrane distillation is an emerging method of desalinating
wastewaters produced by industry, agriculture, and municipalities
[1-3]. Though the method has attracted considerable attention as
a means of addressing global water crises, its energy efficiency
depends on heat and mass transport phenomena that are poorly
understood because they are difficult to simulate or observe ex-
perimentally [4]. Challenges include simultaneous heat and mass
boundary layers that interact with semi-permeable membranes
and unsteady vortical flow structures generated by bluff bodies
with complicated geometries. These phenomena occur in small
flow channels with gap heights on the order of 1 mm. Membrane
distillation systems are also open systems with multiple inlets and
outlets that complicate the application of mass-conserving out-
let conditions. Even small amounts of outlet noise can also affect
the resolution of important near-membrane fluid velocities that
are four to five orders-of-magnitude smaller than the largest ve-
locity magnitudes. We show that these compounding phenomena
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can be successfully simulated to second-order spatial and temporal
accuracy using finite volume methods with immersed boundaries
and projection methods. Our approach includes the development
of a direct-forcing immersed boundary method that applies Neu-
mann conditions to second-order spatial accuracy. Though devel-
oped here for membrane distillation, the methods have important
applications to the broad field of chemical engineering and deal
with long-standing issues in computational fluid dynamics (CFD).
We consider the common arrangement of direct contact mem-
brane distillation (DCMD) sketched in Fig. 1(a). Warm feed solu-
tion and cool distilled water flow on opposite sides of a hydropho-
bic membrane. The temperature difference across the membrane
creates a difference in partial vapor pressure that causes water to
evaporate from the feed side of the membrane, travel through the
pores as vapor, and condense on the distillate side of the mem-
brane. Non-volatile solutes remain in the feed. In comparison to
reverse osmosis desalination, DCMD’s primary advantage is that it
can treat higher concentration feed solutions because it is insensi-
tive to osmotic pressure. Reverse osmosis can only treat NaCl solu-
tions up to approximately 70 g/L, beyond which the required op-
erating pressure becomes economically prohibitive. In contrast, the
limit for DCMD is around 300 g/L [5]. DCMD also operates at low
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Nomenclature

B blockage ratio 8 = D./h

ATn transmembrane temperature difference ATy = T,,’; —
T3 (°0)

1) membrane thickness (m)

St thermal boundary layer thickness (m). See Eq. (40)

A latent heat of water (J/kg)

f., fr, fc forcing terms added for benchmarking purposes

n unit normal to surfaces

u velocity vector (m/s)

u* provisional velocity vector in projection method
(m/s). See Eq. (14)

D mass diffusivity (m?2/s)

nw dynamic viscosity (Pa s)

v kinematic viscosity (m?2/s)

v, v?  kinematic viscosity of feed and distillate fluid (m?/s)

1) intermediate variable used in projection method.
See Eq. (15)

0 density (kg/m?3)

of, p4  density of feed and distillate fluid (kg/m?3)

T non-dimensional temperature. See equation (39)

a b coefficients in Robin boundary conditions. See
Eq. (26)

Ay water activity

B vapor permeability (kg/m?2 sPa)

b NaCl molality (mol/kg)

c concentration (g/L)

C(x) C(x) = cos(x). See Eq. (21)

Cm membrane surface concentration (g/L)

Cp specific heat capacity (J/kg K)

Cin feed concentration (g/L)

d normal distance from a forcing point to the surface.
See Fig. 11

D, cylinder diameter (m). See Fig. 2

DCMD  direct Contact Membrane Distillation

dt numerical time step (s)

Erry spatial error. See Eq. (22)

Erre temporal error. See Eq. (23)

f forcing point in immersed boundary method. See
Fig. 10

fe dominant frequency of vortex shedding

h channel height (m)

Jv transmembrane mass flux (kg/m? s)

k thermal conductivity (W/m °C)

km membrane thermal conductivity (W/m °C)

L channel length (m)

n fictitious points used to apply immersed Neumann
conditions. See Fig. 11

p pressure (Pa)

p{n, pd, vapor pressure on the feed and distillate side of
membrane (Pa)

psat water vapor saturation pressure (Pa)

qc transmembrane heat conduction (W/m?)

Re Reynolds number Re = U;,;h/v

Re. critical Reynolds number for transition to vortex
shedding

Rey distillate Reynolds number Re; = Uj,h/vd

Rey feed Reynolds number Re; = Ug,h/vf

S surface point used in immersed boundary method.
See Fig. 11

S(x) S(x) = sin(x). See Eq. (21)

St critical Strouhal number St = fcD./Uj,

T temperature (°C)

t time (s)

TnJ;, T4  membrane surface temperature on the feed and dis-
tillate side (°C)

TI{; T,ﬁ feed and distillate inlet temperature (°C)

T4 membrane distillate surface temperature (°C)

Tnf; membrane feed surface temperature (°C)

TVD total variation diminishing

u, v velocity component along x and y coordinates (m/s)

Ui, inlet velocity (m/s)

Vm local transmembrane velocity vy, = jy/p/ measured
from feed side of membrane (m/s)

X,y cartesian coordinates (m)

yt denotes a boundary condition applied on the feed
surface of the membrane

v denotes a boundary condition applied on the distil-
late surface of the membrane

Ve cylinder position relative to the membrane surface
(m). See Fig. 2

Yd Y =Yy+1/2. See Eq. (21)

Vs Y=y —1/2. See Eq. (21)

[l  Infinity norm

feed temperatures between 40 to 90 °C readily produced by re-
newable energy and industrial heat.

DCMD is strongly influenced by two phenomena called temper-
ature and concentration polarization [3], sketched in Fig. 1(a). Tem-
perature polarization refers to the formation of thermal boundary
layers along the feed and distillate surfaces of the membrane due
to heat transfer through the membrane, as sketched in Fig. 1(a).
This reduces the temperature difference ATy, and partial vapor
pressure difference across the membrane, and consequently the
rate of vapor production. Concentration polarization refers to the
formation of a concentration boundary layer along the feed sur-
face of the membrane. This occurs because solutes are advected
toward the membrane, where they accumulate because they are
non-volatile. Concentration polarization reduces the partial va-
por pressure of the feed solution on the membrane, and conse-
quently reduces vapor production. Concentration polarization also
causes mineral scaling, which is the precipitation of salts onto the
membrane surface. This blocks the membrane surface and causes
permanent membrane damage. Understanding polarization is fur-
ther complicated by the presence of membrane spacers. Spacers
are mesh-like materials that separate and support tightly packed
membrane sheets in filtration systems, as sketched in Fig. 1(b).
Spacers are present in both the feed and distillate channels of
DCMD systems, where they induce three-dimensional mixing and
generate regions of preferential solute accumulation and precipita-
tion.

Numerous studies have made important progress in simulating
membrane distillation [4,6,7]. We nevertheless find three persis-
tent challenges. First, the accurate prediction of polarization re-
quires the simultaneous simulation of the coupled feed channel,
transmembrane flow, and distillate channel. This complicates a
fundamental issue that arises in the simulation of almost all in-
compressible fluid flows. The pressure field in an incompressible
fluid flow ensures that the velocity field remains divergence free.
Because the pressure lacks an evolution equation, the numerical
difficulty is to somehow determine the pressure without solving
the fully coupled Navier-Stokes and continuity equations simul-
taneously. For unsteady fluid flows, the most popular solution to
this challenge are projection methods based on pioneering work of
Chorin [8] and Temam [9]. Unfortunately, the application of pro-
jection methods to open systems with multiple inlets and outlets
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membrane—*

Fig. 1. (a) Sketch (not to scale) of the 2-D plate-and-frame DCMD system considered in this study. See description in text. The arrows depict streamlines. The membrane
is shaded grey, and concentration polarization is shown by the solid dots accumulated near the membrane. The temperature profile shows the effects of temperature

polarization. (b) Sketch (not to scale) of a membrane spacer.

is not trivial, and to our knowledge, they have never been applied
to DCMD systems.

A second challenge arises because simulations of membrane
separation systems currently rely on body-fitted grids. For compli-
cated spacer geometries, the time required to generate such grids
becomes so onerous that studies must limit the number of spacer
geometries that can be considered [10]. The third challenge arises
because the flow regime within DCMD systems is not fully under-
stood. Though studies show that with increasing Reynolds num-
ber, the flow transitions from steady flow to laminar vortex shed-
ding and perhaps turbulence [7,11-18], these transitions are not
well understood. In fact, though spacers are often called “turbu-
lence promoters,” it is not clear whether DCMD systems typically
operate in turbulent regimes.

We address these issues using a combination of finite volume,
projection, and immersed boundary methods. We first show that
unsteady flow in the coupled feed and distillate channels can be
simulated using a projection method that solves the two chan-
nel flows sequentially, rather than simultaneously. The projection
method is also derived for general Robin conditions on the nu-
merical domain to improve the application of outlet conditions.
Noise at the inlet and outlet is also attenuated using a Total Vari-
ation Diminishing (TVD) scheme and a set of “buffer cells” ap-
pended to the inlets and outlets of the two channels. We next de-
velop an immersed boundary method that applies no-slip (Dirich-
let) and no-flux (Neumann) boundary conditions on spacer sur-
faces to second-order spatial accuracy. Finally, we combine these
methods to investigate polarization and transition to vortex shed-
ding in DCMD systems. The remaining article is organized as fol-
lows. Section 2 presents the geometry and governing equations.
Sections 3 and 4 present the projection and immersed boundary
methods, respectively. Section 5 simulates vortex shedding in a
DCMD system. Section 6 presents our conclusions.

2. Geometry and governing equations

We consider a 2-D flat-sheet membrane system (called a “plate-
and-frame” system) with feed and distillate channels of length L
and height h, as sketched in Fig. 2. NaCl solution enters the feed
channel with temperature T1£ concentration C;,, and mean veloc-
ity Uj,. Pure water enters the distillate channel with temperature
Tiﬁ and the same mean velocity U;, as in the feed channel. Though
Fig. 2 shows the membrane as a shaded region about y =0, we
model transmembrane heat and mass transport using effective in-
terface conditions that couple the feed (0 < y < h) and distillate
(=h <y < 0) channels. To investigate vortex shedding, we consider
cylindrical spacer filaments of diameter D, placed a distance y.
from the membrane. Though spacers are inherently 3D, we fo-
cus first on idealized spacers because their hydrodynamic stabil-
ity is far better understood [19,20]. Their simplicity also allows us
to perform a parametric study and complementary experimental
study, both ongoing in our group. In contrast, industrial spacers are
typically composed of two layers of extruded polypropylene fila-
ments oriented roughly 45° to the downstream flow direction, as

I L 1
feed N T feed
inlet @ h outlet
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distillate 11 @ 1y ¢ distillate
outlet D—" < | inlet
C

Fig. 2. Sketch (not to scale) of the 2-D plate-and-frame DCMD system considered
in this study. See description in text.

sketched in Fig. 1(b). For more discussion of the various spacer de-
signs, we refer to the review of Haidari et al. [21].

Fluid flow in the feed and distillate channels is governed by the
incompressible continuity and Navier-Stokes equations for Newto-
nian fluids,

V.u=0, p[%l;-i-(ll'V)ll]:—Vp-i-/LVzu-i-fu, (1)

where u = [u v], p, p and p are the fluid velocity, pressure, density,
and viscosity, respectively. The force f, is added for benchmark-
ing in Section 3.1. In each channel, we neglect density variations
with temperature and concentration, because the maximum den-
sity variation is within 3%. In each channel, we set the density to
that evaluated at the inlet temperature and concentration. Though
buoyancy-driven convection can be included using the Boussinesq
approximation, we leave that topic to a future dedicated study.

Heat and NaCl transport are governed by the energy and
advection-diffusion equations,

pc,,[gaf + (u~V)T} =kV2T + fr, (2)
ac 9
§+(u~V)c=DV c+ fe, (3)

where T is the temperature, c is the concentration, ¢, is the fluid
heat capacity, and D is the effective mass diffusivity. The source
terms fr and f. are again added for benchmarking. For the systems
considered in the current study, we found that variations of u, k,
D, and cp with temperature and concentration had an order 1%
effect on our simulations. Though they can be included using the
procedure in Lou et al. [4], we neglect them here to simplify our
presentation.

Assuming the impermeable plates and spacers are insulated, we
apply the following no-slip, no-penetration, and no-flux boundary
conditions,

u=n-Vc=n VT =0, (4)

where n is the unit normal to the surface. We also apply the no-
slip condition (u =0) to the membrane surface (y =0). Though
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usually neglected, and not considered here, slip due to hydropho-
bicity can be modeled using the Navier slip condition [22]. At the
channel inlets, we apply parabolic laminar velocity profiles u;,(y)
with the desired uniform temperature T;,, and concentration Cj,,

u:uin(y)’ v=0, T =Ty, ¢ =GCip. (5)
We consider two popular channel outlet conditions [23],

of af af

3y =0 3 tUnz, =0, (6)

where f denotes u, ¢, and T. The first condition is a Neumann con-
dition, while the second is a convective condition.

The channel flows are coupled by heat and vapor transport
through the membrane. We first note that mass conservation
across the membrane requires
= jus (7)

ofv = ply

y=0* y=0-

where j, is the transmembrane vapor mass flux, and p/ and p¢
are the liquid densities in the feed and distillate channels, respec-
tively. The superscripts “+” and “~” denote evaluation of v on the
feed and distillate sides of the membrane, respectively. Assuming
no solutes pass through the membrane, salt diffusion and advec-
tion normal to the feed membrane surface must sum to zero,

-D

ve =0. (8)

y=0+

y=0* dy
MD membranes are typically fibrous materials with pore-spaces
on the order of 1-10 pm. Experiments [4,24] show that transmem-
brane heat and vapor transport is well approximated on a macro-
scopic level using a popular model proposed by Schofield et al.
[25]. The model begins by assuming the vapor mass flux j, is lin-
early proportional to the transmembrane vapor pressure difference,

jv = —B(ph - ph), 9)

where pfm and pd, are the partial vapor pressures on the feed and
distillate sides of the membrane, respectively, and B is the mem-
brane’s vapor permeability, which is determined experimentally
[4,25,26]. We evaluate pfm and p, as the product of the vapor sat-
uration pressure P% and water activity ay,

3841
Tm — 45 )
where P5% is determined using the Antoine equation [27] and Ty,
is the local temperature on the membrane surface. The activity
is determined from the expression ay = 1 — 0.03112b — 0.001482b2
[28], where b is the NaCl molality (mol/kg). This expression is valid
from zero salinity to saturation.

Heat transport through MD membranes occurs due to conduc-
tion through the membrane material and combined conduction
and advection in the vapor. The Schofield model [25] approximates
transmembrane heat transport due to conduction (q¢) and advec-
tion (qy) as

D = @ P, PSat — exp<23.238 - (10)

Ge=—S2Tf 18, = ok (an)
where § and ky; are the membrane thickness and thermal conduc-
tivity, respectively, Tnf; and T4 are the local temperatures on the
feed and distillate sides of the membrane, respectively, and A is
the latent heat per unit mass. Following common practice, we de-
termine the ratio kp/d by fitting to experiments [4]. Conservation
of energy principles for phase changes at the liquid-vapor inter-
faces [29] produce the temperature conditions,

oT - kn
kg, T i = (T =Tl ) (12)

Though well established in the membranes community, the sub-
tleties of how conditions (12) account for phase-change are pro-
vided in Appendix A. Following common practice, we set A to the
average of the two inlet values. The thermal conductivity k on the
left-hand-side is set to the feed value when y = 0", and the distil-
late value when y =0-.

3. Simulation of the coupled channel flows

This section presents our simulation of the coupled channels
without spacers. The primary challenge arises from the mem-
brane and outlet conditions. We address these issues separately
in Sections 3.1 and 3.2, below. We discretize the governing equa-
tions spatially using standard second-order finite volume meth-
ods on a non-uniform staggered grid [30]. Details are presented
in Appendix B.

3.1. Application of membrane conditions

To delay our discussion of outlet conditions, suppose we simu-
late the coupled channel flows in Fig. 2 with the velocity, tempera-
ture, and concentration prescribed at the outlets. To implement the
membrane conditions, we develop a projection method that stag-
gers the solution of momentum transport in the coupled channel
flows. We first discretize all equations semi-implicitly in time using
the Crank-Nicolson method for linear terms and Adams-Bashforth
methods for nonlinear terms, as below for the Navier-Stokes equa-
tion,

ut! —ut 3 1

NI - SN — n+1/2 ﬁ 2 (gyn+1 n
P—g— + 2NL 2NL Vp +5 v (u +u )
(13)

where dt is the time step, the superscript n denotes time t = ndt,
and NL" = p(u"- V)u". We enforce incompressibility using the
projection method of Bell et al., [31]. We first compute a provi-
sional velocity u* by solving Eq. (13) with the pressure from the
previous time step,
u—u" 3 n 1 n-1 _ n—1/2 %% 2 (4q* n

pT+§NL _ENL =-Vp +5V (u* +u"). (14)
Subtracting Eq. (14) from Eq. (13), produces the relation

ut! =u*—%v¢, (15)

where ¢ = p"t1/2 _ pn=1/2 is sometimes called the “pseudo-
pressure.” Relation (15) neglects the viscous term pu(V2u™t! —
VZ2u*)/2, which has a negligible impact [32]. Taking the divergence
of Eq. (15) and applying incompressibility produces a Poisson equa-
tion for ¢,

2 _ﬁ e
V=2V (16)

Selecting boundary conditions for u* and ¢ is a topic of consid-
erable discussion [23,32-35]. Suppose we wish to prescribe the ve-
locity u™! = g(y) on the boundary x = 0. It now well established
that at x = 0, one can set u* = g and d¢/dx = 0. These conditions
arise from Eq. (15), which requires

8¢ _ 14 * n+1
_ dt|:u S [, (17)
x=0

ax
More generally, if one wishes to set the velocity u™*! = g on some
boundary with unit normal n, one applies the conditions

n-V¢ =0. (18)
Note that to ensure mass conservation, the above Poisson equation
and boundary conditions must be derived using the spatially dis-

cretized Navier-Stokes and continuity equations, as demonstrated
in Appendix B.

u'=g,
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Fig. 3. Error results for u (squares), v (asterisks), T

To apply the above projection method to our coupled channel
flows, we discretize the membrane conditions semi-implicitly in
time to solve the flow fields in each channel sequentially, rather
than simultaneously. Each time step begins by solving the heat and
advection-diffusion Eqs. (2) and (3) in the channels by discretizing
the membrane conditions (8) and (12) as

oc+1 o
5, 0
T Kk . —
s - (T!y o T, Oi)—i—j,,);, (20)
y=0*

where the overline denotes the Adams-Bashforth approximation
UC = 2v"¢" — v~ 1¢"-1, This allows us to solve for ¢™t! and T"*! in
each channel sequentially. We then compute the vapor flux ji*!
using Eqs. (9) and (10), and solve the Navier-Stokes equations in
both channels sequentially.

We verify the spatial and temporal accuracy of our coupled
channel flow solver with respect to the manufactured analytical
solution

FupT M—=S()C(ys/2)

vy 2C(x)S(ys/2)

pr| = S(X)S(Yf) C(wt),

Ty : 2Cx)y7

LCr L S(X)yf

(us ] [ SZ(X)C(JTJ’d/Z)

Vg | _ | =2CR)S(ya/2)

po| = | Tseosye <@ 21)
] | icoy?

where y;=y-1/2, yg=y+1/2, C=cos and S=sin. The sub-
scripts f and d denote the solutions used in the feed and dis-
tillate channels, respectively. The solution assumes h=2, L=,
p=p=cp=k=kn/8§ =B=A=ay=1, and replaces the Antoine
Eq. (10) with PS% = T,,. This produces the transmembrane temper-
ature difference Tf Td (2/7m) cos(x) cos(wt), membrane con-
centration ¢, = sin(x) cos(wt), and transmembrane velocity vy =
—(2/1) cos(x) cos(wt). The solution satisfies the governing equa-
tions with the addition of appropriate forcing terms to Eqs. (1)-
(3) and conditions (8) and (12). On the inlets, outlets, and plates,
we set u, T, and c to the test solution. We use a uniform grid in
the x-direction and a non-uniform grid in the y-direction, given by
Eq. (67) of Appendix C.

We test the spatial convergence by setting w = 0 and integrat-
ing from u®=p?=T%=c=0 to steady state using N? finite-
volumes in each channel (N volumes in each direction). We then
measure the relative error of each field as,

Ilfe — full
[ fello

Erry = (22)

(triangles), c (circles). (a) Erry vs. N. The dashed line shows 1/N?. (b)

100.01 0.02 0.03
dt

0.04 0.05

Err; vs. dt. The dashed line shows dt?.

where f; and fy are the exact and numerical solutions, respectively.
We test the temporal convergence by setting w = 27 and integrat-
ing from t = 0 to t = 1 using exact initial conditions. We then com-
pute the error

llfe = fell

[ felloo
where f; is the numerical solution using the time step dt.
Fig. 3 shows that we observe second-order spatial (a) and temporal
(b) accuracy for u, T, and c. The solver satisfied incompressibility
(V .u = 0) to machine precision.

Erre = (23)

3.2. Application of outlet conditions

The implementation of outlet conditions are not always fully
detailed in literature. We find studies often discretize convective
conditions explicitly as

n+1 n n
f f Um af Oa

Codt ax
where 0f/dx is approximated using first-order upwinding to add
stabilizing diffusion. Though this produces an explicit ft! that can
be applied as a Dirichlet condition, the resulting outlet velocity
does not conserve mass. This is addressed by rescaling the out-
let velocity at each time step to ensure the outlet mass flow rates
balances that entering the system. This simple approach is unfor-
tunately not always possible for membrane processes, because the
mass flow rate through the membrane may not be known until
after the Navier-Stokes equation has been solved, as in reverse os-
mosis systems [36]. We consequently investigate whether we can
apply the outlet conditions implicitly as

n+1 n+1 n n+1
LI L
ax Codt dax
to automatically satisfy mass conservation.

We present two approaches of applying conditions (25). For
that purpose, Fig. 4(a) shows an outlet boundary at x = L. To sim-
plify our presentation, we assume a uniform grid, and express the
outlet velocity conditions as au™! + b(du"1/9x) = g, where b =1
and a =g=0 for the Neumann condition, and a = 1/dt, b = Uj,,

(24)

-0, (25)

and g=u"/dt for the convective condition. These are discretized
spatially as
Ue — Uy Ve + Vw Ve — Vw
o(52) - of5) (5 s o
ave + ix g a 3 + ix g (26)

where the subscripts denote the locations labeled in Fig. 4(a).

Our first method applies the discrete Eq. (26) to u*, and then
modifies the outlet condition for ¢ to ensure u™! also satisfies
Eq. (26) exactly. We derive the required condition for ¢ in an anal-
ogous manner to the Neumann condition (18) in Section 3.1. We
begin with equation (15), repeated below

! =u — %V(ﬁ. (27)
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N
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W a®
P E
u1] W Qiw e [ﬁ .
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Fig. 4. (a) Sketch of the staggered grid near an outlet boundary. (b) Spatial accuracy of u (squares) and v (asterisks) when the outlet condition for ¢ enforces u™"' (solid

lines) or the outlet pressure (dash-dotted lines). The dashed line shows 1/N?.

When deriving the Poisson Eq. (16) for ¢, we take the divergence

of Eq. (27). This requires
ou™l  QJu* dt 9%¢
x " ox o ox (28)

We now make the usual assumption that when a solving a par-
tial differential equation subject to boundary conditions, the dif-
ferential equation and conditions are both satisfied at the bound-
ary. This suggests we can combine Eqs. (27) and (28) to express
au™! 4+ b(du"t1/9x) = g as

2 *
99 p20 é’t[g au* —b%’;]m. (29)

ai —_
ox 0x2
If we apply the desired outlet condition to u*, this simplifies to

aa(b‘ +b82—¢

0x2

x=L x=L

=0. (30)
x=L

For b =0, this recovers the usual Neumann condition (18) from
Section 3.1. Repeating the derivation on a discrete level, one finds

<¢de¢p) N <¢>w§¢;+¢f) “o. 61)

Though condition (30) appears consistent with the underlying
differential equations, one wonders if it is well-posed, as it con-
tains a second-derivative in x. To address this issue, consider the
case a =0 and b = 1, for which du™t1/3x = 0 and d¢?/9x* = 0 on
the outlet. To be well-posed, this requires

9%¢

—— V. 2
9y2 " dt[ u ] x=L’ (32)
which is equivalent to the Dirichlet condition

9|, =0, (33)
where ¢, (y) satisfies the ordinary differential equation,

¢y p .

T E[V uw] . (34)

We have found that one can indeed solve Eq. (34) numerically at
each time step to apply the outlet condition 92¢/0x2 =0 as an
equivalent Dirichlet condition. Either method produces the same
answer, and satisfies incompressibility.

The above analysis suggests we could also apply conditions
(25) by applying the desired outlet conditions to u*, and then fix
the outlet pressure to some desired poyu:(y) using the Dirichlet con-
dition

¢|X=L = Pour (V) — P"|X=L~ (35)

which is easily discretized as

PAP ) - 2P P (36)

Note that we must extrapolate p" from interior nodes, because on
staggered grids, the pressure at the ghost nodes is unphysical [33].
With the above approach, u™*! satisfies the desired outlet condi-
tion to within a small deviation comparable to that already ob-
served for v™1. The Poisson equation nevertheless ensures global
mass conservation.

In summary, both approaches apply the desired outlet condi-
tions (25) to u*, but differ in their treatment of ¢. The first applies
condition (30) to enforce the outlet condition for u™! exactly. The
second applies the simple Dirichlet condition (35) to apply an out-
let pressure. To compare the results, we first apply them to the
manufactured solution
—cos(x) sin(y),

U = sin(x) cos(y), Ve= Pe = sin(x) sin(y).

(37)

Fig. 4(b) shows the spatial accuracy of both approaches when we
solve the Navier-Stokes equations on the domain 0 < x < 2w,
0 < y < 2m. The outlet conditions are applied at x = 2w, with
Dirichlet velocity conditions applied on all other boundaries. The
solid lines show results for u (squares) and v (asterisks) when we
enforce u™1, The dash-dotted lines show results using the pres-
sure condition. Surprisingly, the latter produces second-order accu-
racy, while enforcing u™! produces accuracy closer to first-order.
Though not shown, we found the accuracy of the first approach can
be brought to second-order using a formally second-order accurate,
one-sided, discretization of du/dx at the boundary. Typically, how-
ever, the actual spatial and temporal accuracy of outlet conditions
is of little concern in the literature.

We next apply our outlet conditions to the simulation of flow
perturbations in a planar channel flow with impermeable walls.
We first perform a simulation with a fully-developed laminar ve-
locity profile at the inlet, and the desired condition at the outlet.
For cases where we fixed the outlet pressure, we set pgy: = 0. The
simulation is run to steady-state and the resulting flow fields, de-
noted [U, P], are used as the initial condition for a second simula-
tion with a disturbance vy(y, t) introduced to the wall-normal inlet
velocity,

Up(y.t) = 0.1Uj, sm(zh )exp[—107(t 002)°]. (38)

This produces a perturbation near t = 0.002, with a peak ampli-
tude of 0.1U;,. We run the simulation sufficiently long to allow the
perturbation to interact with the outlet, and we plot the evolution
of the perturbation velocity u = u — U.
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Fig. 5. Three successive snapshots of the perturbation velocity at mid-gap in a channel of aspect ratio L/h = 20 and Re = 3000. (a) Results for u,,;; without a TVD scheme.

(b) Results for D,y without a TVD scheme. (c) Results for ¥,y with a TVD scheme.

Fig. 5 shows results for a channel flow of aspect ratio L/h =
20 and Reynolds number Re = U;;h/v = 3000 using the convective
outlet condition. The condition for ¢ enforces the outlet value of
u™1 exactly. Panels (a) and (b) show three snapshots of the per-
turbation velocity components at mid-gap, U,y = u(x, 0.5h,t) and
Vmia = V(x,0.5h, t), respectively. Though the results for i, are
smooth, U,,;; has unphysical oscillations on the order of 107Uy,
that originate at the outlet. Such noise has been observed previ-
ously by Pauley [37] for both Neumann and convective conditions.
Though likely often ignored, we prefer to attenuate outlet noise by
discretizing all advection terms with a second-order TVD scheme
described in Appendix B. Panel (c) shows that this removes the os-
cillations, and exposes rapid variations in the two cells upstream of
the outlet. These are likely what triggered the oscillations in panel
(b). Overall, our tests showed that both Neumann and convective
conditions performed equally well, using either outlet condition for
¢. Further investigation of our outlet conditions for cases of vortex
shedding is presented in Appendix D. Due to the chronological or-
der in which our outlet conditions for ¢ were developed, the re-
maining simulations in our study apply the method that enforces
u™1 at the outlet exactly.

To inhibit the spreading of outlet noise between adjacent chan-
nels, further testing motivated us to append “buffer cells” at the
inlet and outlet of both channels. The membrane permeability and
thermal conductivity are set to zero in the buffers, as sketched
in Fig. 6. All other governing equations are simulated within the
buffer, exactly as they are for internal cells. We found a buffer
length of only two cells sufficed. When presenting simulation re-
sults, we only plot results from 0 < x < L. For plotting purposes,
we determine outlet values of T and ¢ using quadratic extrapola-
tion from upstream data. In Fig. 6, the temperature at the point
marked as an open circle would be determined using T;, T,, and
Ts.

3.3. Application to polarization phenomena

We demonstrate our projection and outlet methods by simulat-
ing steady-state polarization in a bench-scale DCMD system with-
out spacers. We set the channel dimensions to h=2 mm and
L =10 cm, the inlet temperatures to TI’; =80 °C and Tlg =20 °C,
and the inlet feed concentration to 100 g/L. The inlet velocities
of both channels are set to U, = 0.127 m/s, producing the feed
Reynolds number Re; = Uj,h/vy = 600, and the distillate Reynolds
number Rey = Uj,h/vg = 252, where vy and vy are the feed and
distillate kinematic viscosities, respectively. The membrane prop-
erties (km/8 =577 W/m? K and B = 1.87 x 10-% kg/m? s Pa) were
determined experimentally by Lou et al. [4]. The thermophysical
properties of the feed and distillate are set using correlations in
Lou et al. [4]. Details of the grid and mesh-independence studies
are provided in Appendix C. The simulations are initiated using the
inlet conditions and integrated to steady state using the Neumann
outlet condition.

Fig. 7(a) shows the resulting steady-state temperature field. Dif-
ferent color scales are used for the feed and distillate channels
to highlight the cooling of the feed and the heating of the dis-
tillate. Fig. 7(b) shows the streamwise variation of the membrane
surface temperatures in the feed (Tn’:) and distillate (T4). We ob-
serve that Trﬁ decreases monotonically from 80 to 47.6 °C in its
downstream direction (rightwards), while T¢ increases monoton-
ically from 20 to 60.7 °C in its downstream direction (leftward).
Fig. 7(c) shows that the temperature difference across the mem-
brane, ATy :Tn’: —Tn‘i, varies non-monotonically from 19.3 °C at
x =0, to a minimum of 11 °C at x/L = 6.8, and a maximum of
27.6 °C at x/L = 50.

Fig. 7 (d) shows the variation of the transmembrane feed ve-
locity, vm = jy/pf, normalized with U;,. We observe that though
ATy, is maximized at the outlet, v, is maximized at the inlet. This
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Fig. 6. Sketch of the inlet and outlet buffer cells. The membrane is shaded grey and the buffer cells are indicated using dashed lines. The membrane permeability and

thermal conductivity are set to zero in the buffers.
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Fig. 7. (a) Temperature field. The white arrows show the downstream directions of the feed and distillate flows. (b) Temperatures on the feed and distillate membrane
surfaces. (c) Transmembrane temperature difference ATy. (d) Non-dimensional transmembrane velocity, Vi, /U;,.
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Fig. 8. (a) Concentration field for 0 < y/h < 0.15. (b) Concentration on the membrane, cp,.

occurs for two reasons. First, the saturation pressure Py varies
non-linearly with temperature, such that dPs/dT increases with
temperature, see Eq. (10). Second, concentration polarization is
strongest at the feed outlet, where it decreases the partial va-
por pressure. This is demonstrated in Fig. 8(a), which shows the
feed channel concentration field. Because the mass diffusivity D
is much smaller than the thermal diffusivity «, the concentration

boundary layer is much thinner than the thermal layer. Conse-
quently, Fig. 8(a) is cropped at 0 < y/h < 0.15. Fig. 8(b) shows that
the membrane surface concentration, c;(x), increases significantly
from 100 g/L at the inlet to 155.4 g/L at the outlet.

Fig. 9(a) shows cross-sectional temperature profiles in the
feed channel at x =L/4, L/2, 3L/4, and L. To measure the down-
stream growth of the thermal boundary layer, we define the non-
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Fig. 9. (a) Temperature profiles in the feed channel at x = L/4 (asterisks), x = L/2 (triangles), x = 3L/4 (squares), and x = L (crosses). (b) Self-similar temperature distributions.
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Fig. 10. Selection of forcing point and normal point. Solid regions are shaded grey. See discussion in text.

dimensional temperature

T(x,y) — T}(%)

39
T/~ T(x) (39)

T(x,y) =

so that T varies from zero on the membrane to unity when T =
T1£ We then define the boundary layer thickness §7 as the location
where

T|y=5r =0.95. (40)
Fig. 9(b) shows that the four curves in Fig. 9(a) collapse to a
self-similar curve when T is plotted with the similarity variable
n =y/6r. Panel (c) shows that outside of the near-inlet region, 5t
grows with x as the power law 8;/h = 0.2(x/h)%-36, The exponent is
close to 1/3, which often occurs in thermal boundary layers due to
an approximate balance between downstream advection and trans-
verse diffusion [see discussion in Probstein 38]. Though not shown
here, the concentration layer satisfies a similar power law. We re-
fer to Lou et al. [4] for a detailed analysis.

4. Simulating spacer surfaces

We simulate spacer surfaces using a direct forcing method
that extends work by Fadlun [39] and others [40-45] to simu-
late Neumann conditions for the temperature and concentration
fields to second-order spatial accuracy. We present the method in
Section 4.1 and verify its accuracy in Section 4.2 by reproducing
manufactured solutions and theoretical results for the linear stabil-
ity of flow over a cylinder in a plane channel. We also stress here
that during the preparation of the current manuscript, a similar
approach was independently reported by Yousefzadeh and Battiato
[46], to whom we defer credit.

4.1. Immersed boundary method

To demonstrate our procedure, Fig. 10(a) shows nine temper-
ature grid points (solid circles) through which six grid lines are
drawn. We begin by identifying all grid points in the solid (shaded
grey) for which an adjacent point on the same grid line is in the
fluid. These points, called “forcing points,” are labeled f, f5, and f3
in Fig. 10(a). The point labeled nf is not a forcing point. Though it
has a neighboring point in the fluid, the two points lie on differ-
ent lines. Treating such points as forcing points does not improve
accuracy.

For each forcing point, we compute the shortest normal dis-
tance to the surface using a procedure similar to Majumdar et al.
[40], though we use the approach of Qin et al. [47] that lever-
ages the properties of signed distance functions. We refer to them
for details, and only summarize the procedure here. Consider the
point f; in Fig. 10(a). In the four boxes surrounding f;, we approx-
imate the surface as dashed line segments joining points where
the surface intersects grid lines, and then find the surface point s
(square symbol) that produces the normal distance to f;. If multi-
ple normal distances exist, as in Fig. 10(b), we choose the shortest.
In cases where no normals exist, the surface point is set to the
closest point, as in Fig. 10(c).

Our application of Dirichlet conditions is similar to that of
Pacheco-Vega et al. [42]. Suppose we wish to prescribe the tem-
perature Ts at the surface point s in Fig. 11(a). Though s does not
lie on the grid, the temperature there can be approximated to sec-
ond order using a bi-linear interpolation with the points labeled 1,
2,3, and f,

Tszafo-l-a1T1 +(12T2+(13T3+0(d2), (41)
where d is the distance between f and s, and ay, a;, ay, as are coef-
ficients of the interpolation. From this interpolation, we can solve



10 J. Lou, J. Johnston and N. Tilton /Computers and Fluids 212 (2020) 104711

(¢)

=
[E—
—@

/ f

Fig. 11. Application of (a) Dirichlet and (b) Neumann boundary conditions. The triangular regions shaded light grey in panels (b) and (c) denote the interpolation space.
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Fig. 12. At locations where an immersed surface intersects an external boundary or cusp, as in panel (a), the surface is modified as in panel (b).

for the temperature Ty
Ts—aiTh —ay, — asT-:
T; = 11 -2~ 00 (42)
ag
that must be applied at point f to satisfy the boundary condition
to second-order spatial accuracy.
Next, suppose we wish to apply the Neumann condition

n-VT =g, (43)

at point s in Fig. 11(b). For that purpose, we introduce the fictitious
point labeled n such that s is mid-distance between points n and
f. We can then discretize the boundary condition using a centered
difference,

T, - Ty
2d
If we approximate T, using a bilinear interpolation, as in Eq. (41),
the accuracy of the Neumann condition will be only first-order. The
decreased accuracy is straightforward to show using a Taylor se-
ries, and occurs because bilinear interpolation produces a second-
order spatial error in the numerator of Eq. (44). This is then di-
vided by the denominator 2d, which is the same order as dx and
dy. To obtain second-order accuracy, we approximate T, to third

order accuracy using the interpolation

Tn :bfo+b1T1 + b, T, +b3T3+b4T4+b5T5+O(d3), (45)

where by and b; (i=1,...,5) are interpolation coefficients. Using
interpolation (45) with the centered difference (44) produces net
second-order accuracy.

For the case sketched in Fig. 11(b), the fictitious point n lies
in the triangular interpolation space shaded light grey. When the
point lies outside this space, we interpolate as demonstrated in
Fig. 11(c) to avoid extrapolation. Another special case occurs when
an immersed surface has a cusp, as in Fig. 12(a). Cusps are also

=g +0(d). (44)

generated when an immersed surface intersects the external do-
main of the simulation. This would occur in Fig. 12(a) if the line
labeled ab was the external boundary. Such cusps project the point
n back into the solid or outside the domain. Refining the grid tends
to simply push the issue further into the cusp. We address this is-
sue as suggested by Finn and Apte [48], by locally modifying the
immersed surface as in Fig. 12(b).

As earlier mentioned, our approach is similar to that of Youse-
fzadeh and Battiato [46]. There are some differences worth men-
tioning. We integrate the pressure field using a projection method,
while Yousefzadeh and Battiato use the SIMPLE scheme [49]. Our
grids are non-uniform, while those of Yousefzadeh and Battiato
are uniform. While we focus on immersed Neumann and Dirich-
let conditions, Yousefzadeh and Battiato consider more general
immersed Robin conditions. Next, while we reconstruct the im-
mersed surface using the distance function method of Qin et al.
[47], Yousefzadeh and Battiato use a ray-casting method. Finally,
in contrast to our interpolation stencils sketched in Fig. 11, Youse-
fzadeh and Battiato propose stencils that exclude the forcing point
to increase the stability and convergence of their iterative SIM-
PLE scheme. In our case, we have not observed any stability issues
to date.

4.2. Verification and validation

We verify the spatial and temporal accuracy of our direct forc-
ing method using the forced analytical solution

Ue sin(x) cos(y)

Ve —cos(x) sin(y)

e | = | sin(osingy) | €OS@0- (46)
Te sin(x) sin(y)

We set all thermophysical properties to unity, and solve the
continuity, Navier-Stokes, and heat Egs. (1) and (2) in the do-
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Fig. 13. (a) Streamlines of the test solution. (b) Erry vs. N for u (squares), v
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(asterisks), and T (triangles) using the third-order interpolation for the Neumann condition. The

crosses show Erry for T when the bi-linear interpolation is used for the Neumann condition. The dashed and dash-dotted lines show slopes of 1/N? and 1/N, respectively. (c)
Instantaneous vorticity contours in a channel with an immersed cylinder when (Re, 8) = (266.7,0.5). This case is equivalent to that in Fig. 11 of Sahin and Owens [20].

main (x, ¥) € [0, 2w] x [0, 2mw] with a circular cylinder of
diameter D, =3 centered at (x,y)= (;r,m), as illustrated in
Fig. 13(a). On the cylinder surface, we apply the Dirichlet con-
dition u =u,, and the Neumann condition n- VT =n.VT.. On
the external boundaries, we apply Dirichlet conditions to u and
T. As in Section 3.1, we test the spatial accuracy by setting
w =0 and integrating to steady-state from the initial condition
u=p=T=0. Simulations were performed using a non-uniform
grid with Gauss-Lobatto-Chebyshev distributions in the x and
y-directions.

Fig. 13(b) shows that our method produces second-order spa-
tial accuracy for the velocity and temperature fields when using
the third-order interpolation for the Neumann condition. The scat-
ter arises due to the nonlinear distribution of the grid points. Re-
peating the analysis with a uniform grid produces much smoother
results. The cross symbols show that using a bi-linear interpolation
for the Neumann condition reduces the accuracy of T to first-order.
Though not shown for brevity, we also confirmed second-order
temporal accuracy, and repeated our analysis for several cylinder
locations.

We validate our ability to simulate vortex shedding by com-
paring to a linear stability analysis performed by Sahin and
Owens [20] of fully-developed channel flow with a circular cylin-
der on the centerline. We place the cylinder at least 3 diame-
ters from the inlet and at least seven diameters from the out-
let. We define the blockage ratio 8 = D./h and Reynolds number
Re = Uj,h/v. To compute the critical Reynolds number for transi-
tion to vortex shedding, we perform simulations to determine two
Reynolds numbers Re; and Re;, for which Re; —Re; <5 and for
which the flow is steady at Re; and unsteady at Re,. The criti-
cal Reynolds number is then set to Re. = (Re; + Re;)/2. At the un-
steady Reynolds number Re,, we compute the dominant frequency
fc of oscillation by recording the centerline velocity at a location
downstream of the cylinder. We define the critical Strouhal num-
ber as St. = fcD¢/Uy,. Table 1 demonstrates excellent agreement be-
tween our results and those of Sahin and Owens [20]. As further
validation, Fig. 13(c) shows instantaneous vorticity contours when
(Re, B) = (266.7,0.5). These show excellent agreement with those
shown in an identical simulation reported in Fig. 11 of Sahin and
Owens [20].

Table 1

For the blockage ratios 8 = D/h in the first column, the
remaining columns compare the critical Reynolds num-
ber and Strouhal numbers computed in the current study
(columns 2-3) with those of Sahin and Owens (columns

4-5).
Current study Sahin and Owens [20]
B Rec St Re. St
03 213 +2 0317 212 0312
05 168 +1 0.509 167  0.505
0.7 106 +0.5 0.681 106  0.707

5. Application to unsteady transport in DCMD systems

We now use our methods to simulate polarization in a DCMD
system with spacers. We consider a short system of dimensions
h=2 mm and L = 20 mm with cylinders of diameter D, = 1 mm
placed on the centerlines of both channels at x =10 mm. The
length ensures the spacers are a distance of 10 diameters from the
inlet and outlet. As in Section 3.3, we set the operating temper-
atures to TI{; =80 °C and Tlﬂ =20 °C, and the feed concentration
to G, = 100 g/L. The simulations are run to steady state for sub-
critical cases, and run sufficiently long to attenuate any transient
startup effect for supercritical cases. Simulations were repeated us-
ing both Neumann and convective outlet conditions. The difference
in the results were negligible.

Fig. 14 shows results when Uj, = 2.11 x 10~2 m/s. This produces
the Reynolds numbers Rey = 100 and Rey = 42, for which the flow
is steady in both channels. The streamlines in panel (a) show a
pair of counter-rotating vortices in the downstream wakes of each
spacer. As expected, the wake is larger in the feed channel due
to its larger Reynolds number. Panels (b) and (c) show that as the
feed and distillate flows accelerate around the spacers, the temper-
ature and concentration boundary layer thicknesses decrease, due
to the increase in downstream advection. Because the concentra-
tion layer is quite thin, panel (c) shows results for 0 < y/h < 0.2.

The solid lines in Fig. 15 show the transmembrane temperature
difference ATy (a), surface concentration ¢y, (b), and transmem-
brane feed velocity vin/Uj, (c). The dashed lines show results for a
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Fig. 14. (a) Steady-state streamlines, (b) temperature field, and (c) feed concentration field for the subcritical case Re; = 100 and Rey = 42. Different color scales are used for
temperatures in the feed and distillate channels. The concentration field is shown for 0 < y/h < 0.2. For convenience, we present the position as both x/h and x/D..
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Fig. 15. Steady-state results for (a) the transmembrane temperature difference AT, (b) the membrane surface concentration cp, and (c) the transmembrane vapor flux
Vin[Ujy, for the subcritical case Re; = 100 and Rey = 42. The solid and dashed lines show results of simulations performed with and without spacers, respectively.

simulation performed without the cylinders. We see that the influ-
ence of the spacers is limited to a region extending roughly two
cylinder diameters up and downstream from the cylinder center.
In that region, the cylinders increase ATy, decrease cp, and in-
crease vapor production. Overall, the simulation with the spacers
produces an average transmembrane vapor flux of 9.4 x 10-6 m/s,
compared to 8.5 x 1076 m/s for the case without spacers, an in-
crease of 10.6%.

Fig. 16 shows snapshots of the streamlines (a), temperature
field (b), and concentration field (c¢) when we increase the inlet ve-
locity to U, = 8.46 x 10~2 my/s, producing the Reynolds numbers
Ref = 267 and Rey = 112. Based on Re. = 168 in Table 1, the dis-
tillate flow is subcritical and the feed flow is strongly supercritical
(Res — Rec = 99). Note that we performed additional simulations to
determine the critical Reynolds number of the fully coupled DCMD
system, and found the presence of the membrane and transmem-
brane flow had a negligible effect on Re.. Panel (a) shows that in-
stability in the feed channel produces strong wake oscillations and
a pair of staggered recirculation zones that periodically appear and
travel downstream along the membrane and outer wall. The pe-

riod for the formation of these recirculation regions is identical to
that of the vortex shedding behind the cylinder. Snapshots showing
the evolution of these wall and membrane vortices are provided in
Fig. 17. The temperature plot in Fig. 16(b) suggests that the leading
edge of the recirculation zone traveling along the membrane tends
to eject near-membrane cool fluid into the bulk flow. This in turn
brings warmer bulk fluid towards the membrane.

The concentration plot in Fig. 16(c) shows that the recircula-
tion zone is not similarly able to eject high concentration fluid into
bulk. This is likely due to the fact that the concentration boundary
layer is much thinner than the temperature layer. We also observe
a local region of salt accumulation near x/h = 6.3. Closer inspec-
tion suggests that this occurs because the flow reversal within the
recirculation zone advects solutes upstream along the membrane
surface where they meet downstream advection of solutes at the
leading edge of the recirculation zone.

The solid lines in Fig. 18 show snapshots of ATy, (a), ¢y (b), and
vn/U;, (c) for the simulation with spacers. The dashed lines show
the results of a simulation performed without spacers. Though the
feed channel is strongly unsteady, the results at the membrane for
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Fig. 16. Snapshots of (a) the unsteady streamlines, (b) temperature field, and (c) feed concentration field for the supercritical case Re; = 267 and Re; = 112. Different color
scales are used for temperatures in the feed and distillate channels. The concentration field is shown for 0 < y/h < 0.2. For convenience, we present the position as both x/h
and x/D..

Fig. 17. Snapshots of the streamlines at four equispaced times t; < t; < t3 < t4 where t, — t,_; is approximately 3/(13f;), where f; = 34 Hz is the shedding frequency.
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Fig. 18. The (a) transmembrane temperature difference AT, (b) membrane surface concentration cn, and (c) transmembrane vapor flux v,,/U;, for the supercritical case
Rey =267 and Rey = 112. The solid and dashed lines show results of simulations performed with and without spacers, respectively.
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AT, cm, and vy, are all essentially steady, showing only negligible
variations in time. Panel (a) shows that the spacer increases ATy,
not only near the spacer, but also in the far downstream region.
Panel (b) shows that while concentration polarization is reduced
below the spacer, there is a region of preferential salt accumula-
tion near x/h = 6.3. Overall, the simulation with the spacers pro-
duces an average transmembrane vapor flux of 1.25 x 10~ m/s,
compared to 1.10 x 105 m/s without spacers, an increase of 14.3%.
Though not shown here for brevity, we found that as we further
increase Uy, and consequently the Reynolds numbers, the spacers
continue to increase vapor production over what is observed with-
out spacers. Unfortunately, the maximum concentration within the
region of preferential salt accumulation also grows significantly,
suggesting that the increase in vapor production comes with a
risk of increasing salt precipitation. To our knowledge, the current
study is the first to report a potential tradeoff between vapor pro-
duction and concentration polarization in DCMD systems. Though
beyond the current scope, we can report that we have performed
preliminary simulations of spacer filaments in reverse osmosis sys-
tems, and observed similar behavior. We consequently do not be-
lieve this tradeoff to be unique to membrane distillation. Finally,
while we have focused here on polarization and vapor production,
spacer filaments have an important impact on the downstream
pressure gradients in the feed and distillate channels. For brevity,
we do not report those results here, as they are the topic of a more
in-depth parametric study currently underway.

6. Conclusions

In addition to DCMD’s important industrial applications, the
process touches on numerous long-standing issues in both theo-
retical and computational fluid mechanics. The numerical issues
include (1) extending projection methods to more general Robin
boundary conditions; (2) developing approximate outlet conditions
that conserve mass in open systems with multiple inlets and out-
lets; and (3) simulating complex geometries in flows with heat and
mass transport. The theoretical issues include (1) heat and mass
boundary layers with complicated wall-interactions, as opposed to
the classic case of a thermal boundary layer evolving over a wall
maintained at a constant temperature or heat flux; (2) understand-
ing transitions of flow regimes over bluff bodies; and (3) under-
standing how vortical flow structures influence mixing and interact
with adjacent surfaces. Though not discussed here, further issues
include multi-species transport in complex feed solutions, and the
physics of nucleation and precipitation.

We showed that transport in the coupled feed and distillate
channels can be simulated using a projection method that applies
membrane boundary conditions using Adams-Bashforth extrapo-
lation to solve the two channels sequentially, instead of simul-
taneously. We also showed that mass can be automatically con-
served in the open system using Neumann and convective outlet
conditions that are applied implicitly within a projection method.
Though outside the scope of the current study, this approach is
crucial for our parallel work simulating pressure-driven membrane
separation processes such as reverse-osmosis. In these systems, the
mass flow rate through the membrane is only known after the so-
lution of the Poisson problem for ¢, as discussed in Tilton et al.
[36].

We also showed that Neumann conditions can be simulated to
second order spatial and temporal accuracy using a direct forc-
ing immersed boundary method. We validated the method against
forced analytical solutions and theoretical predictions of a linear
stability analysis of transition to vortex shedding. We again note
that a similar approach was recently independently reported by
Yousefzadeh and Battiato [46], to whom we defer credit. Future
work should extend this method to three-dimensions. Future work

may also wish to explore whether it is better to formally apply
immersed Neumann conditions to second order accuracy, as in our
study, or if one can achieve comparable accuracy using a simpler
first-order approach with Adaptive Mesh Refinement (AMR) at the
immersed surface. Our approach requires a larger stencil at the im-
mersed surface, and consequently reduces the sparsity of matrices
required for semi-implicit temporal discretizations. This may influ-
ence memory, parallelization, and CPU time. That issue deserves
a dedicate study using optimized codes. In contrast, the current
study uses preliminary, un-optimized, sequential codes.

Finally, we applied our methods to simulate heat and mass
transport in DCMD systems with and without an idealized two-
dimensional spacer filament on the channel centerlines. We note
that our results for the case without spacers were recently re-
ported in much greater detail in a separate publication [4]. The
results for cases with a spacer are the topic of an ongoing para-
metric study. Within the limits of the current study, we showed
that in steady flow regimes, the spacer filaments had a net posi-
tive impact by decreasing both temperature and concentration po-
larization, and thereby increasing permeate production. In super-
critical flow regimes, however, the spacers improved permeate pro-
duction at the expense of generating regions of preferential solute
accumulation. That increases the risk of precipitation when treat-
ing high-concentration feed solutions, which is a major application
of interest for DCMD systems.
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Appendix A. Transmembrane heat transport

Here we provide a brief derivation of the Schofield model
[25] of heat transport through MD membranes. Instead of sim-
ply repeating the original derivation, we provide an alternate ap-
proach that highlights heat transport at the liquid-vapor interfaces.
Fig. 19(a) depicts an idealized membrane whose surface is the
plane y = 0. Liquid occupies the region y > 0. The membrane, com-
posed of a solid phase and vapor-filled pores, occupies the region
y < 0. To simplify our analysis, we neglect surface tension and as-
sume all liquid-vapor and liquid-solid interfaces lie in the plane
y =0, as in Fig. 19(a). More detailed discussion of surface tension
effects can be found in the work of Lawson and Lloyd [50]. We
assume the liquid-solid and liquid-vapor interfaces are in thermal
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equilibrium, such that the temperature is continuous at y = 0. The
temperature gradient dT/dy is generally discontinuous. For discus-
sion of these common assumptions, we refer to the classic works
of Leal [29] and Prosperetti [51]. In the following, we consider heat
transport across the plane y = 0 on the pore-scale. This is then up-
scaled to produce a practical macroscopic model.

At liquid-solid interfaces, heat is transported by conduction
only,

aT

= s@ (47)

gy .

y=0-
where k; and ks are the thermal conductivities of the liquid and
solid, respectively. For this Appendix, the subcripts y = 0" and y =
0~ denote the evaluation of the gradient as y approaches zero from
above and below, respectively. At liquid-vapor interfaces, heat is
transported by conduction and advection. Conservation of thermal
energy at the liquid-vapor interfaces [29,51] requires

: (48)
y=0-

+ puyhy
y=0-

+ oivihy

ka—T = ka—T
Ty T oy

y=0+ y=0+

conduction advection

where h is the enthalpy per unit mass, and the subscripts [ and
v distinguish between properties of the liquid and vapor, respec-
tively. The left-hand-side of Eq. (48) represents heat conduction
and advection crossing the interface from the liquid side of the
interface, while the right-hand-side represents conduction and ad-
vection from the vapor side. Using conservation of mass (p;v; =
PyVy), Eq. (48) can be rewritten as

aT

aT
—kl@

+ ks@

‘ = PV <h|}|y:07 — hl|y=0+) = ,Oll/[)\. (49)
y=0+ y=0-

To wupscale the pore-scale heat transport represented by
Egs. (47) and (49), we introduce the circular averaging area A
sketched in Fig. 19(b). We assume the diameter of the averaging
area is much larger than a typical pore diameter (D4 > Dp) but
also much smaller than the channel height (D4 « h), which is nat-
urally satisfied in MD systems. At every point (x, z) on the mem-
brane surface, we define area-averaged fields of the form

1 aT

1 oT
(V) (x.z,t) = 1 /Av|y=0d/\, <ay>(x,z, t) = Al ay dA.

y=0

(50)

To reproduce the Schofield model, we approximate the average
heat transport crossing the plane y = 0 from the liquid side as

aT
()
0+ \dy

liquid-solid interfaces

. (51)
o+

= —(1 —¢>kz<§§> + o) (hy)

o+

liquid-vapor interfaces

where ¢ is the area porosity of the membrane surface. The first
term in Eq. (51) represents heat conduction across liquid-solid in-
terfaces. The second and third terms represent heat conduction
and advection across the liquid-vapor interfaces, respectively. The
approximation (51) assumes one effective temperature gradient for
both the liquid-solid and liquid-vapor interfaces. Similarly, we ap-
proximate the average heat transport crossing the plane y = 0 from

the membrane side as
oT
— okl 2L
. ¢ <v< 3y >

qm =—(1— ¢)ks<g§>
Though approximations (51) and (52) are intuitive, a more formal
derivation could consider the method of volume-averaging [52],
which has been used extensively to model heat, mass, and mo-
mentum transport across porous surfaces [53]. Such analysis is be-
yond the scope of this study.

Equating expressions (51) and (52), and applying conservation
of mass produces

aT oT
*k] @ = 7km Biy
0+

where ki = (1 — ¢)ks + ¢k, is the membrane thermal conductivity
[25]. If we assume a linear temperature gradient within the mem-
brane, the area-averaged temperature gradient on the membrane
side of the interface (y = 0~) can be approximated as (T4 — T,ﬂ)/&
Furthermore, if the averaging area is small compared to the chan-
nel (D4 « h), the brackets can be removed from the left-hand-side
of Eq. (53) and the latent heat term so that Eq. (53) becomes

oT km

— f d ;
gy, = —5 (T = T3) + Juh, (54)

. (52)
.

+ pv{vy) (hy)

0-

0-

which recovers the thermal boundary condition (12).

Appendix B. Spatial discretization

Fig. 20 demonstrates our staggered grid. As sketched in panel
(a), the variables p, T, and c are stored at the cell centroids, while
u and v are stored at cell faces. To discretize the x-component of
the Navier-Stokes equation, we consider the control volume shaded

Fig. 19. (a) Idealized cross-section of a membrane pore showing the liquid (L), solid (S), and vapor (V) regions. The dashed line represents the liquid-vapor interface, in

which curvature due to surface tension is neglected. (b) Sketch of the averaging area A.
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Fig. 20. The staggered grid. The fields u, v, and p are stored at the locations marked as squares, triangles, and solid dots, respectively. (a) A pressure cell (shaded grey). (b)
The control volume (shaded grey) used to discretize momentum in the x-direction. (b) The control volume (shaded grey) used to discretize momentum in the y-direction.

grey in Fig. 20(b). We write the equation in control volume form
as

—dv+f,ou(u n)dA = — /p(l n)dS+fu(Vu n)dA,
(55)

where i is the unit vector in the x-direction, n is the unit normal

vector pointing away from the control surface S of the control vol-

ume Cv. We approximate the volume integral and pressure term in
(55)

/ foRucas Yav ~ ~p 88utp dxdy, /p(l n)ds ~ P.dy — R,dy, (56)
where dx and dy are the distances labeled in Fig. 20(b).

We approximate the advection term in Eq. (55) as
/Spu(u -M)dA ~ Melle + Mply — My Uy — Misls, (57)
where m,e = puedy, my = pvpdx, my = puywdy, and ms = pvsdx de-

note the mass flow rates through the four faces of the volume. The
subscripts n and s denote the face locations marked with crosses
in Fig. 20(b). The velocities within the mass flow rates are approxi-
mated using linear interpolation. For example, we compute the ve-
locity within m, as
xﬂ - XTlW
dx
We considered two methods of approximating the four face val-
ues of u that multiply the mass flow rates in Eq. (57). The first,
commonly called “centered differencing,” approximated the veloc-
ities using the same linear interpolation procedure above. The sec-
ond used a TVD scheme, which improved the outlet conditions.
We compared the performance of several TVD schemes, and the
scheme commonly called “minmod” worked well. We refer read-
ers to reference [54] for details. For demonstration, the scheme ap-
proximates ue as

te = U™ — e(re) (U™ — ™),
high

Un ~ (1 = &) Vnw + Ve, (58)

(59)

where ul® and ug®" are evaluated using first-order upwinding

and centered dlfferencmg, respectively, and ¢ = max[0, min(r, 1)],

where r is the ratio of successive gradient in the flow direction.
Finally, we approximate the viscous term in Eq. (55) as

Juy

/M(Vu-n)dAwM%deru dxfuaﬂdy—u%dx,
s d9x ay

ax ay
where the gradients are approximated using centered differences,
such as

du, _ug—up
0X  Xp—Xp

(60)
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Fig. 21. A corner pressure cell (shaded grey) with ghost nodes.

The above approach is repeating to discretize the y-momentum
equation using the control volume sketched in Fig. 20(c). We then
find that Eq. (15) is expressed in discrete form as

ul,;+1 _ u}; _ ; <¢e dxd)w)’ Ugﬂ — vP ’ <¢ndy¢s)’ (62)

where the subscripts are explained in Fig. 20(b) and (c). Using the
pressure cell in Fig. 20(a), ee then disctretize the conservation of
mass equation as

u2+l

_yn+l 1
w

ot =0

Substituting relations (62) into the above, we find the discrete
Poisson equation
T (=t _o—dw) 1 (Iv=-¢r or—¢s
dx\ Xg —Xp  Xp—Xw dy\yn—yr  Yp—Ys

_p (u* —uy, n vy —v;‘).

T de dx dy

Using ghost nodes, we apply the discrete Poisson equation on

boundary cells, such as that sketched in Fig. 21. The Neumann con-

ditions for the two boundaries of this corner cell are then applied
as

¢P_¢W ¢P_¢S
T =0 T =0

Note that with all Neumann conditions, ¢ is only defined up to
a constant. To produce a non-singular matrix equation, we fix the

_ Un+l

(63)

(64)

(65)
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constant using a scalar Lagrange multiplier A. Specifically, if Ap = b
represents the matrix problem generated by the Poisson equation
and Neumann boundary conditions, we augment the matrix as

-1

where q is a row of length (Nx +2)(Ny + 2) zeros, except for one
entry set to unity. This sets ¢ equal to unity at one of the grid
points. After solving, we confirm that A = 0 to machine precision.
In all cases, we find that mass conservation is indeed satisfied to
machine precision.

Appendix C. Grid independence studies

The simulations of Section 3.3 are performed using Ny equis-
paced cells in the x-direction. The cells are concentrated in the
y-direction near the membrane and outer walls by setting the y-
coordinates of the horizontal faces to

yi==+(h/2)(1 + cos(wi/N), i=0,1,...,Ny, (67)

where the positive sign is used in the feed, and the negative
is used in the distillate. These are simply the Gauss-Lobatto-
Chebyshev points mapped to the interval y € [0, h] and y € [-h, 0].
For the simulations of Section 5, we refine the grid near the cylin-
der by decomposing the x-direction into three sections, as demon-
strated in Fig. 22(a). A core section of length L = H is centered

(a)

300 400 500

100 200
N

Fig. 22. (a) Demonstration of a channel grid for which Ny =32, N, =24, and
Ny, = 30. (b) Variation of Erry with Ny for u (squares), v (asterisks), c (circles) and T
(triangles). The dashed line shows 1/N2.

about the cylinder, and has N; equispaced cells in the x-direction.
The inlet and outlet sections each have a length L, = (L—L;)/2
and N, equispaced cells.

To demonstrate our mesh independence studies, we consider
here the simulation of a DCMD system with a spacer on the cen-
terline of each channel. We set the system dimensions to H =
2 mm, L =20 mm, and D, = 0.6 mm, producing the blockage ra-
tio B = 0.3. The operating conditions are set to T1£ =80°C, T,.g =
20 °C, G, =100 g/L, and Uy, = 0.021 m/s. This produced a sub-
critical case for which the flow fields can be integrated to steady
state. We fix the ratio Ny/Ny =3 and varied Ny and N, between
90 < Ny < 600 and 30 < Ny < 200, respectively. We also fix the
ratio Ny/N, = 1/4, to force 20% of the Ny cells in the core region
L,. Simulations were run to steady-state, after which the spatial
error was evaluated using the result at (Nx, Ny) = (600,200) as
the exact solution. Fig. 22(b) shows the error is below 1% when
Ny > 400.

For cases with unsteady vortex shedding, we leverage the fact
that v, T, and c are remarkably steady on the membrane surface.
We consequently repeat the above procedure measuring the error
with respect to these fields on the membrane surface. To deter-
mine the time step dt for unsteady cases, we first set dt to the
maximum allowable value for which the code is numerical stable.
We then compare dt to the computed period of oscillation t, = 1/f
and ensure that tp/dt > 1000.

Appendix D. Outlet performance studies

To explore the outlet conditions in the context of large-scale
vortical flow structures, we considered flow over a cylinder in a
planar channel flow. Varying the blockage ratio and cylinder posi-
tion relative to the channel centerline allows us to generate a wide
range of steady and unsteady vortical structures. Fig. 23 shows
two simulations performed of a channel flow with Re = 320 and
blockage ratio S = 0.5. The cylinder has been placed closer to the
upper wall. In this case, Zovatto and Pedrizzetti [55] have shown
that the asymmetry stabilizes vortex shedding and produces elon-
gated vortical structures behind the cylinder and along the upper
wall. Fig. 23 shows the results of two simulations in which the
cylinder was placed three diameters from the channel inlet. The
simulation in panel (a) uses a short downstream length that cuts
through the vortex attached to the upper wall. The simulation in
panel (b) shows a second simulation using a longer domain that
allows the near-wall vortex to close well upstream from the outlet.
Comparing the streamlines of the two simulations shows excellent
agreement.
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®)

Fig. 23. Comparison of two simulations of a channel flow with Re = 320 and blockage ratio 8 = 0.5 using a short (a) and long (b) domain. See discussion in text.
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