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A B S T R A C T

Reverse Osmosis has important applications to seawater desalination and advanced water treatment. Its
efficiency depends, however, on unsteady fluid flow and solute transport that are challenging to simulate.
The challenges arise due to interactions between solute boundary layers and unsteady vortical flow structures
generated by complicated geometries. These flow structures also interact with semi-permeable membranes
through which the permeate flow depends on the local pressure. We show that this additional pressure coupling
causes the temporal accuracy of traditional projection methods to drop to first-order. We track the source of
this accuracy drop to the treatment of viscous terms in the derivation of the Poisson equation used to update
the velocity and pressure fields. This allows us to propose a modified projection method that recovers second-
order temporal accuracy. Finally, we show that the modified projection method can be coupled to convective
outlet conditions and immersed boundary conditions to simulate reverse osmosis in steady and unsteady flow
regimes.
1. Introduction

Reverse osmosis (RO) plays a key role in the water–energy–climate
nexus due to its applications to desalination and wastewater treatment
[1,2]. The energy efficiency of RO systems depend, however, on un-
teady fluid flow and solute transport that are challenging to observe
xperimentally or simulate numerically. The numerical challenges arise
ecause RO systems include unsteady vortical flow structures generated
y bluff bodies with complicated geometries. These flow structures
lso interact with semipermeable membranes through which the fluid
elocity is a function of the local pressure on the membrane. This
dditional pressure–velocity coupling is not straightforward to apply,
articularly when RO systems are simulated using projection methods.
rojection methods are the preferred method of simulating unsteady
ncompressible fluid flows, because they are efficient, non-iterative, and
roduce second-order spatial and temporal accuracy for the velocity
ield when implemented using classic finite-volume methods [3]. Their
ccuracy for the pressure field, however, can be as low as first-order [4–
]. The current study shows that this issue is important for RO, because
he velocity–pressure coupling on the membrane causes the accuracy
f the velocity field to also drop to first-order. A final challenge arises
ecause mass exits RO systems through both an outlet and membrane.
ue to the dependence of the transmembrane flow on the pressure,
he mass flow rates exiting the membrane and outlet are not known
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at the beginning of each time step. This complicates the application of
mass-conserving boundary conditions.

The current study addresses these issues using semi-implicit pro-
jection methods and immersed boundary methods. Fig. 1(a) shows
the geometry of typical ‘‘plate-and-frame’’ RO systems used in bench-
scale experiments. A high-pressure feed solution of water and solutes
enters from the left (𝑥 = 0) and flows beneath an impermeable
flat plate and above a semi-permeable membrane sheet. The plate
and membrane are separated by a channel height ℎ, typically around
1 mm. The pressure difference between the high-pressure feed and low-
pressure permeate opposite the membrane drives water through the
membrane while blocking most solutes. To simplify the presentation of
our methods, we hereinafter assume ‘‘complete solute rejection’’ such
that the solute concentration of the permeate is zero. In practice, RO
systems often reject around 98% of solutes [7]. Typical feed pressures
vary between 10 to 80 bar, while the permeate pressure is often
near atmospheric. The coupling between the transmembrane permeate
velocity and the pressure field is often modelled using the following
Darcy-type boundary condition,

𝑣𝑚(𝑥, 𝑧, 𝑡) = 𝜅
[

𝑝𝑚(𝑥, 𝑧, 𝑡) − 𝑝𝑝 −𝛱(𝑥, 𝑧, 𝑡)
]

, (1)

where 𝜅 is the membrane permeance (SI units ms−1Pa−1), 𝑣𝑚 is the
velocity of the local transmembrane flow, 𝑝𝑚 is the local pressure on
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Nomenclature

𝛽 Blockage ratio 𝛽 = 𝐷𝑐∕ℎ
𝛥𝑡 Time step (s)
𝜅 Membrane permeance (m/s Pa)
𝐧 Unit normal to surfaces
𝐮 Velocity vector (m/s)
𝐮∗ Provisional velocity vector in projection

method (m/s). See Eq. (17)
 Mass diffusivity (m2/s)
𝜇 Dynamic viscosity (Pa s)
𝜔 Frequency (1/s)
𝜙 Intermediate variable used in projection

method. See Eq. (20)
𝛱 Osmotic pressure 𝛱 = 𝐴𝑐 (Pa)
𝜌 Density (kg/m3)
𝐴 Osmotic pressure constant (Pa l/ g)
𝑐 Concentration (g/l)
𝐶𝑚 Membrane surface concentration (g/l)
𝐶𝑖𝑛 Feed concentration (g/l)
𝐷𝑐 Cylinder diameter (m)
ℎ Channel height (m)
𝑗𝑣 Average transmembrane permeate flux

(LMH)
𝐿 Channel length (m)
𝑝 Pressure (Pa)
𝑅𝑒 Reynolds number 𝑅𝑒 = 𝑈𝑖𝑛ℎ∕𝜈
𝑡 Time (s)
𝑢, 𝑣 Velocity component along 𝑥 and 𝑦 coordi-

nates (m/s)
𝑈𝑖𝑛 Inlet velocity (m/s)
𝑣𝑚 Velocity through the membrane (m/s)
𝑥, 𝑦 Cartesian coordinates (m)
𝑥𝑐 , 𝑦𝑐 Cylinder position (m). See Fig. 2
LMH Litre per metre squared per hour (l/m2 h)
P𝑜𝑢𝑡 Outlet pressure
Re𝑐 Critical Reynolds number for transition to

vortex shedding
RO Reverse osmosis
TVD Total variation diminishing

the membrane feed surface, 𝑝𝑝 is the permeate pressure, and 𝛱 is the
osmotic pressure. Eq. (1) is written so that 𝑣𝑚 is positive when permeate
exits the feed channel. We stress that 𝑣𝑚, 𝑝𝑚, and 𝛱 all vary along the
membrane surface. Pressure variations in the permeate, however, are
often negligible, and 𝑝𝑝 is usually set to the reference value 𝑝𝑝 = 0 for
convenience. Note that the permeance 𝜅 differs from the permeability
2

p

𝑘 used in the classical Darcy equation [8]. The two are related by
𝜅 = 𝑘∕(𝜇𝑑), where 𝜇 and 𝑑 are the feed viscosity and membrane
thickness, respectively. The osmotic pressure is often approximated as
𝛱 = 𝐴𝑐, where 𝑐 is the solute concentration and 𝐴 is a constant of
proportionality. More general quadratic or cubic polynomials can also
be determined [9].

RO is an inherently energy intensive process because the feed pres-
sure must exceed the osmotic pressure to force permeate through the
membrane. Moreover, the osmotic pressure at the membrane surface
is often much higher than that of the incoming feed. This is due to
concentration polarization, which refers to solute accumulation adja-
cent to the membrane surface, as illustrated in Fig. 1(a). Polarization
occurs because solutes are advected towards the membrane where
they form a thin boundary layer in which there is a large increase in
solute concentration. Concentration polarization is a serious technical
challenge for RO because it increases the required operating pressure
and reduces the fraction of water recovered from the feed. It also
leads to mineral scaling, which is the precipitation of solutes onto the
membrane surface. This impedes filtration, reduces membrane life, and
increases maintenance costs.

Concentration polarization in RO is further complicated by the
presence of feed spacers. These are plastic mesh-like materials placed in
the feed channel to support the membrane and provide space for feed
flow tangential to the membrane , as sketched in Fig. 1(b). In plate-and-
frame systems, feed spacers separate the membrane from the opposing
flat plate. In industrial systems, the plate is replaced with a second
membrane. In addition to separating membranes, feed spacers play
an important role in polarization and mineral scaling by generating
regions of preferential solute accumulation and precipitation on the
membrane surface [10–21]. The fundamental mechanics of this process,
however, are not fully understood.

Numerous CFD studies have made important contributions to sim-
ulating RO. For reviews, we refer readers to [22–24]. Here, we focus
on simulations of RO systems with feed spacers. Due to the numerical
challenges, simulations of feed channels with spacers often replace the
membrane with an impermeable wall [25–37]. This approach is useful
for studying the effects of spacer geometry on membrane shear stresses
and downstream pressure drops. Other studies include transmembrane
flow and concentration polarization, but for operating conditions that
produce steady or quasi-steady feed flow [35,38–40]. Such studies have
dvanced our understanding of biofouling [35,38] and mineral scaling
39,40]. The current study is motivated by the fact that RO systems
ypically operate for feed Reynolds numbers in the range 10 ≤ 𝑅𝑒 ≤
000, where 𝑅𝑒 = 𝜌𝑈𝑖𝑛ℎ∕𝜇 is defined using the mean inlet velocity
𝑖𝑛 and density 𝜌. For this range, studies suggest that spacer filaments
enerate unsteady vortex shedding or even turbulence [41,42], though
he Reynolds numbers for these transitions are not fully understood.
urther studies suggest that vortex shedding plays an important role
n polarization [27,43–46]. The development of an efficient projection
ethod for simulating unsteady flow in RO would provide an important
ool for studying the transition to vortex shedding and its impacts on

olarization. It would also help address the broader issue that published
Fig. 1. (a) Sketch (not to scale) of a plate-and-frame RO system. Feed enters at 𝑥 = 0 and flows between an impermeable plate at 𝑦 = ℎ and a semi-permeable membrane at 𝑦 = 0.
Concentrate exits the channel downstream at 𝑥 = 𝐿. The formation of a concentration polarization layer is shown in grey. (b) Sketch (not to scale) of feed spacers.



Computers and Fluids 232 (2022) 105189J. Johnston et al.

T

s
o
m

p
B
a
a
p
K
t
e
m
a
a
t
s
b

n

𝑢

t
i
(
p
a
c

𝑣

w
p
s
H
p
i
m
t

d
s
s
d
o
A

v

𝜌

Fig. 2. Sketch (not to scale) of the 2-D RO flow channel with a spacer considered in
this study. Solution enters the channel with concentration 𝐶𝑖𝑛 and mean velocity 𝑈𝑖𝑛.
he spacer has a diameter 𝐷𝑐 .

imulations of RO rarely detail how they implement membrane and
utlet conditions, and rarely demonstrate the order-of-accuracy of their
ethods.
Thus motivated, the current study explores the application of two

rojection methods to RO. We begin with the classical method of
ell et al. [3]. For fluid systems with Dirichlet velocity conditions on
ll boundaries, this method produces second-order spatial–temporal
ccuracy for the velocity field, but can produce lower accuracy for the
ressure. We then consider a class of projection methods proposed by
im and Moin [47], Brown et al. [4], and Guy and Fogelson [5] that
ry to increase the accuracy of the pressure to second order [6]. We
xplore the spatial and temporal accuracy of both approaches using
anufactured solutions. We first explore how the treatment of inlet
nd outlet conditions affect conservation of mass, mesh-independence,
nd flow structures exiting the domain. Finally, we use the methods
o simulate RO systems with unsteady vortex shedding generated by a
ingle spacer filament. The filament is simulated using recent immersed
oundary methods detailed in Lou et al. [41].
The remaining study is organized as follows. Section 2 presents the

geometry and governing equations. Section 3 investigates the projec-
tion methods. Section 4 explores the application of inlet and outlet con-
ditions. Section 5 applies our methods to simulations of unsteady vortex
shedding in an RO system with a single spacer filament. Section 6
presents our conclusions.

2. Problem formulation and discretization

We consider the incompressible flow of a Newtonian fluid in a
2D plate-and-frame RO system of length 𝐿 and channel height ℎ, as
sketched in Fig. 2. A cylindrical spacer filament of diameter 𝐷𝑐 is
located at (𝑥, 𝑦) = (𝑥𝑐 , 𝑦𝑐). Feed enters the system at 𝑥 = 0 with a
uniform concentration 𝐶𝑖𝑛 and mean velocity 𝑈𝑖𝑛. At the channel outlet,
𝑥 = 𝐿, we fix the pressure to 𝑃𝑜𝑢𝑡. This mimics bench-scale RO systems
that control the inlet feed rate using a positive displacement pump and
that set the outlet pressure using a back pressure regulator.

2.1. Governing equations

Fluid flow in the feed channel is governed by the incompressible
Navier–Stokes and continuity equations

𝜌
( 𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮
)

= −∇𝑝 + 𝜇∇2𝐮 + 𝐛, (2)

∇ ⋅ 𝐮 = 0, (3)

where 𝐮 = [𝑢 𝑣] is the velocity vector. The body force 𝐛 is added for
benchmarking performed in Section 3. We consider solute transport
governed by the advection–diffusion equation
𝜕𝑐
𝜕𝑡

+ 𝐮 ⋅ ∇𝑐 = ∇2𝑐 + 𝑞, (4)

where  is the effective mass diffusion coefficient and 𝑐 is measured
in grams of solute per litre of water. The source term 𝑞 is again
added for benchmarking. Variations of thermo-physical properties are
3

typically on the order of 1% [9] for the system lengths considered
here. We consequently neglect them to simplify our presentation. They
can nevertheless be included as demonstrated in Lou et al. [48]. We
set 𝜌, 𝜇, to those evaluated at the inlet conditions using relations
(A.1)–(A.3) in Appendix A. These assume an inlet feed temperature of
𝑇𝑖𝑛 = 25 ◦C.

At the inlet, we apply a uniform concentration 𝐶𝑖𝑛 and fully-
developed laminar velocity profile with mean velocity 𝑈𝑖𝑛,

𝑐||
|𝑥=0

= 𝐶𝑖𝑛, 𝑢||
|𝑥=0

= 6𝑈𝑖𝑛

[

𝑦
ℎ
−

𝑦2

ℎ2

]

, 𝜕𝑣
𝜕𝑥

|

|

|

|𝑥=0
= 0. (5)

At the outlet, we apply the convective conditions [49]
[

𝜕𝑓
𝜕𝑡

+ 𝑈𝑖𝑛
𝜕𝑓
𝜕𝑥

]

𝑥=𝐿
= 0, (6)

where 𝑓 = [𝑢, 𝑣, 𝑐]. On the upper plate and spacer surface, we apply the
o-slip, no-penetration, and no flux conditions

= 𝑣 = 𝐧 ⋅ ∇𝑐 = 0,

where 𝐧 is the unit normal to the surface. On the membrane at 𝑦 = 0,
he tangential velocity satisfies the no-slip condition (𝑢 = 0), which
s well established for RO membranes. The transmembrane velocity
𝑣) satisfies the Darcy condition (1) with 𝑝𝑝 = 0. To simplify the
resentation of our methods, we approximate the osmotic pressure
s 𝛱 = 𝐴𝑐, though higher-order polynomial approximations pose no
hallenge. The Darcy condition (1) can then be written as

|

|

|𝑦=0
= −𝜅

[

𝑝 − 𝐴𝑐
]

𝑦=0
+ 𝑠, (7)

here 𝑠 is an added source term that is zero, except for benchmarking
urposes discussed in Section 3. We determined the osmotic pres-
ure constant 𝐴 = 77,170 Pa l/g by performing a linear fit to the
arvie–Moller–Weare formulation of the Pitzer model [50]. This value
roduces a relative error below 1% when 0 ≤ 𝑐 ≤ 100 g/l. Assum-
ng no transmembrane solute flux (called ‘‘complete rejection’’ in the
embrane community) requires solute advection and diffusion normal
o the membrane to sum to zero,
[

𝑣𝑐 − 𝜕𝑐
𝜕𝑦

]

𝑦=0
= 𝛾, (8)

where 𝛾 is an added source term for benchmarking purposes. Consid-
eration of partial rejection is straightforward, but neglected here for
brevity.

2.2. Discretization of governing equations

We discretize the governing equations (2)–(4) spatially using stan-
ard second-order finite-volume methods on a staggered grid [51], as
ketched in Fig. 3(a). The velocities 𝑢 (squares) and 𝑣 (triangles) are
tored on cell faces, while 𝑝 and 𝑐 are stored at cell centroids (solid
ots). In our presentation below, we assume a uniform grid to simplify
ur discussion. The discretization for non-uniform grids is provided in
ppendix B.
Consider the 𝑥-component of the Navier–Stokes Eqs. (2) in control

olume form,

∫𝐶𝑉

𝜕𝑢
𝜕𝑡

𝑑𝑉 + ∫𝐶𝑆
𝜌𝑢(𝐮 ⋅ 𝐧)𝑑𝑠 = ∫𝐶𝑉

[

−
𝜕𝑝
𝜕𝑥

+ 𝜇∇2𝑢 + 𝑏𝑥
]

𝑑𝑉 , (9)

where 𝐶𝑉 and 𝐶𝑆 are the control volume and surface, respectively,
shaded grey in Fig. 3(b), and 𝑏𝑥 is the 𝑥-component of 𝐛. We discretize
the volume integrals as

𝜌∫𝐶𝑉

𝜕𝑢
𝜕𝑡

𝑑𝑉 = 𝜌
𝜕𝑢𝑃
𝜕𝑡

𝑑𝑥𝑑𝑦, (10)

[

−
𝜕𝑝

+ 𝜇∇2𝑢 + 𝐛𝑥
]

𝑑𝑉 =
[

−
𝑝𝑒 − 𝑝𝑤 + 𝜇∇2𝑢 + 𝑏𝑥𝑝

]

𝑑𝑥𝑑𝑦, (11)
∫𝐶𝑉 𝜕𝑥 𝑑𝑥 𝑑
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Fig. 3. (a) Sketch of the staggered grid. The flow fields 𝑢, 𝑣, 𝑝, and 𝑐 are stored at the locations marked with squares, triangles, and solid dots, respectively. (b) The control
volume (shaded grey) for discretizing the 𝑥-component of the Navier–Stokes equations. The locations 𝑛 and 𝑠 marked with cross symbols are not actual grid points. (c) The control
volume used to discretize the 𝑦-component of the Navier–Stokes. (d) Application of boundary conditions using ghost nodes.
T



where ∇2
𝑑𝑢 is the centred difference approximation

∇2
𝑑𝑢 =

𝑢𝑊 − 2𝑢𝑃 + 𝑢𝐸
𝑑𝑥2

+
𝑢𝑆 − 2𝑢𝑃 + 𝑢𝑁

𝑑𝑦2
. (12)

The subscripts denote evaluation of 𝑢, 𝑣, and 𝑝 at the corresponding
points labelled in Fig. 3(b). The advection term is discretized as

∫𝐶𝑆
𝜌𝑢(𝐮 ⋅ 𝐧)𝑑𝑠 = 𝑚̇𝑒𝑢𝑒 + 𝑚̇𝑛𝑢𝑛 − 𝑚̇𝑤𝑢𝑤 − 𝑚̇𝑠𝑢𝑠, (13)

here 𝑚̇𝑒 = 𝜌𝑢𝑒𝑑𝑦, 𝑚̇𝑤 = 𝜌𝑢𝑤𝑑𝑦, 𝑚̇𝑛 = 𝜌𝑣𝑛𝑑𝑥, and 𝑚̇𝑠 = 𝜌𝑣𝑠𝑑𝑥. For now,
e assume all velocities in Eq. (13) are approximated using standard

centred differences, such as 𝑢𝑒 = (𝑢𝑃 + 𝑢𝐸 )∕2 and 𝑣𝑛 = (𝑣𝑛𝑤 + 𝑣𝑛𝑒)∕2. In
Section 4, however, we report that outlet noise can be attenuated by
discretizing advection terms with a TVD scheme.

The 𝑦-component of the Navier–Stokes equations is discretized as
demonstrated above, using the control volume illustrated in Fig. 3(c).
We then discretize the Navier–Stokes equations semi-implicitly in time
using the second-order backwards Euler method for the linear terms
and second-order Adams–Bashforth extrapolation for the nonlinear
terms [51,52]. The discretized Navier–Stokes equations can then be
ritten as
3𝐮𝑛+1𝑃 − 4𝐮𝑛𝑃 + 𝐮𝑛−1𝑃

2𝛥𝑡
+ 2𝐍𝐋𝑛 − 𝐍𝐋𝑛−1 = −𝛁𝑑𝑝𝑛+1 + 𝜇∇2

𝑑 𝐮
𝑛+1 + 𝑏𝑛+1, (14)

𝛁𝑑𝑝 =
[ 𝑝𝑒 − 𝑝𝑤

𝑑𝑥

]

𝐢 +
[

𝑝𝑛 − 𝑝𝑠
𝑑𝑦

]

𝐣,

here 𝐢 and 𝐣 are unit vectors in the 𝑥 and 𝑦 directions, respectively, 𝛥𝑡
is the time step, the superscript 𝑛 denotes time 𝑡 = 𝑛𝛥𝑡, 𝐍𝐋 refers to the
nonlinear advection term, and 𝛁𝑑 is the discretized gradient operator.
We use the backwards Euler method because it discretizes the pressure
at the current time step, 𝑝𝑛+1. In contrast, the popular Crank–Nicholson
method discretizes the pressure at an intermediate time 𝑝𝑛+1∕2, which
4

is inconsistent with the discretization of the Darcy membrane condition
in Eq. (16) below.

The boundary conditions on the spacer surfaces are applied using
the second-order immersed boundary method detailed in Lou et al.
[41]. Boundary conditions on the inlet, outlet, plate, and membrane are
applied using ghost nodes. To demonstrate, suppose we wish to apply
the Robin conditions 𝑎𝑢 + 𝑏𝜕𝑢∕𝜕𝑦 = 𝑔𝑢 and 𝑎𝑣 + 𝑏𝜕𝑣∕𝜕𝑦 = 𝑔𝑣 on the
boundary sketched in Fig. 3(d). We discretize these as

𝑎

[

𝑢𝑛+12 + 𝑢𝑛+11
2

]

+ 𝑏

[

𝑢𝑛+12 − 𝑢𝑛+11
𝑑𝑦

]

= 𝑔𝑢, 𝑎𝑣1 + 𝑏

[

𝑣𝑛+12 − 𝑣𝑛+11
𝑑𝑦

]

= 𝑔𝑣.

(15)

he membrane condition (8) for the solute is discretized as
[

𝑐𝑛+12 − 𝑐𝑛+11
𝑑𝑦

]

= 2𝑣𝑛1𝑐
𝑛
𝑚 − 𝑣𝑛−11 𝑐𝑛−1𝑚 , 𝑐𝑚 =

𝑐1 + 𝑐2
2

,

where the subscripts denote the locations marked in Fig. 3(d) and
we approximate the nonlinear term explicitly, using Adams–Bashforth
extrapolation. The Darcy condition (1) is discretized as

𝑣𝑛+11 = −𝜅
(

𝑝𝑛+1𝑚 − 𝐴𝑐𝑛+1𝑚
)

, 𝑝𝑚 = 3
2
𝑝2 −

1
2
𝑝3. (16)

Note that we extrapolate 𝑝𝑚 from the interior grid points because pro-
jection methods can produce nonphysical pressures at ghost nodes [5].
Implementation of these conditions in our projection methods is dis-
cussed in Section 3. We delay discussion of outlet conditions to Sec-
tion 4.
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3. Projection methods

We consider two projection methods for estimating 𝑝𝑛+1 in the
iscretized Navier–Stokes Eq. (14). The first is that of Bell et al. [3],
hich we refer to as the ‘‘base method’’. The second is similar to
hose proposed by Kim and Moin [47], Brown et al. [4], and Guy and
ogelson [5], which we refer to as the ‘‘improved method ’’. Both methods
egin by solving the incremental equation

3𝐮∗ − 4𝐮𝑛 + 𝐮𝑛−1
2𝛥𝑡

+ 2𝐍𝐋𝑛 − 𝐍𝐋𝑛−1 = −𝛁𝑑𝑝𝑛 + 𝜇∇2
𝑑 𝐮

∗ + 𝐛𝑛+1, (17)

where 𝐮∗ estimates 𝐮𝑛+1 using the pressure 𝑝𝑛 from the previous time
step. Subtracting Eq. (17) from Eq. (14), we find that

𝐮𝑛+1𝑃 = 𝐮∗𝑃 − 𝛼𝛁𝑑𝜙 + 𝛼𝜇∇2
𝑑
(

𝐮𝑛+1𝑃 − 𝐮∗𝑃
)

, (18)

where 𝛼 = 2𝛥𝑡∕3𝜌, and

𝜙 = 𝑝𝑛+1 − 𝑝𝑛. (19)

3.1. The base method

The projection method of Bell et al. neglects the viscous term in
(18), so that

𝐮𝑛+1𝑃 = 𝐮∗𝑃 − 𝛼𝛁𝑑𝜙. (20)

To determine an equation for 𝜙, we consider the pressure cell shaded
grey in Fig. 4(a), on which we discretize the continuity Eq. (3) as

𝑢𝑛+1𝑒 − 𝑢𝑛+1𝑤
𝑑𝑥

+
𝑣𝑛+1𝑛 − 𝑣𝑛+1𝑠

𝑑𝑦
= 0. (21)

Substituting Eq. (20) into the discretized continuity equation
roduces

2
𝑑 𝜙 = 1

𝛼

[ 𝑢∗𝑒 − 𝑢∗𝑤
𝑑𝑥

+
𝑣∗𝑛 − 𝑣∗𝑠
𝑑𝑦

]

, (22)

hich is the well-known discretized Poisson equation ∇2𝜙 = (𝛁 ⋅ 𝐮∗) ∕𝛼.
Choosing boundary conditions for 𝜙 is a topic of considerable dis-

ussion [4–6,49,53]. Suppose we wish to apply the Dirichlet condition
𝑛+1 = 𝐮𝑏 on the boundary sketched in Fig. 4(b). It is now well
stablished in the literature [3–5] that we can begin by applying 𝐮∗ =
𝑏 when solving for the intermediate velocity. Eq. (20) then requires us
to set 𝜙𝑆 = 𝜙𝑃 in Fig. 4(b) to ensure that 𝑣𝑛+1𝑠 = 𝑣𝑏. This is equivalent
to applying 𝜕𝜙∕𝜕𝑦 = 0 on the lower boundary. In summary, Dirichlet
conditions are applied by setting

𝐮∗ = 𝐮𝑏, 𝐧 ⋅ 𝛁𝜙 = 0, (23)

where 𝐧 is the unit normal to the boundary.
To apply the Darcy membrane condition, we begin each time step

by solving the advection–diffusion Eq. (4) for the concentration field
𝑐𝑛+1. We then apply the membrane condition to 𝑣∗𝑠 in Fig. 4(b) as

𝑣∗𝑠 = −𝜅
( 3
2
𝑝𝑛𝑃 − 1

2
𝑝𝑛𝑁 − 𝐴𝑐𝑛+1𝑚

)

, (24)

using 𝑝𝑛 because 𝑝𝑛+1 is still unknown. To determine the required
membrane condition for 𝜙, we subtract condition (24) from the desired
membrane condition for 𝑣𝑛+1𝑠

𝑣𝑛+1𝑠 = −𝜅
( 3
2
𝑝𝑛+1𝑃 − 1

2
𝑝𝑛+1𝑁 − 𝐴𝑐𝑛+1𝑚

)

. (25)

With the help of Eq. (20), this produces the following boundary condi-
tion for 𝜙𝑛+1,
𝜙𝑃 − 𝜙𝑆

𝑑𝑦
− 𝜅

𝛼

( 3
2
𝜙𝑃 − 1

2
𝜙𝑁

)

= 0. (26)

This is equivalent to the Robin condition 𝜕𝜙∕𝜕𝑦 − (𝜅∕𝛼)𝜙 = 0. Though
his condition can be derived in a continuous sense, the discrete deriva-
ion explains that 𝜕𝜙∕𝜕𝑦 must be approximated using a centred dif-
erence, while (𝜅∕𝛼)𝜙 must be extrapolated. Note that when 𝜅 = 0,
condition (26) recovers condition (23) for an impermeable wall.
5

To explore the accuracy of the base method, we consider the man-
ufactured solution,

𝑢𝑒 = sin(𝑥) cos(𝑦) cos(𝜔𝑡),

𝑣𝑒 = −cos(𝑥) sin(𝑦) cos(𝜔𝑡) − 𝜅 sin(𝑥) cos(𝜔𝑡), (27)
𝑝𝑒 = sin(𝑥) sin(𝑦) cos(𝜔𝑡) + sin(𝑥) cos(𝜔𝑡),

𝑐𝑒 = cos(𝑥) cos(𝑦) cos(𝜔𝑡),

in the domain (𝑥, 𝑦) ∈ (0, 2𝜋) × (0, 2𝜋), with a membrane on the lower
boundary (𝑦 = 0). Solution (27) satisfies the governing equations (2)–
(4) and membrane boundary conditions (7)–(8) with the addition of
appropriate forcing terms 𝑏, 𝑞, 𝑠, and 𝛾. The solution is steady when
𝜔 = 0 and unsteady otherwise. On the left (𝑥 = 0) and right (𝑥 = 2𝜋)
boundaries, we apply 𝐮 = 𝐮𝑒 and 𝑐 = 𝑐𝑒. On the top boundary, we apply
𝐮 = 𝐮𝑒 and 𝜕𝑐∕𝜕𝑦 = 𝜕𝑐𝑒∕𝜕𝑦.

We test the spatial accuracy by setting 𝜔 = 0 and integrating from
𝐮0 = 𝑝0 = 𝑐0 = 0 to steady-state using 𝑁 finite-volumes in each
direction. We then measure the relative error of each field as,

𝐸𝑟𝑟𝑁 =
‖𝑓𝑒 − 𝑓𝑁‖∞

‖𝑓𝑒‖∞
, (28)

here 𝑓𝑒 and 𝑓𝑁 are the exact and numerical solutions, respectively.
e found that the base method is spatially second-order accurate for
ll variables. The results are not shown for brevity.
We test the temporal accuracy by setting 𝜔 = 2𝜋 and integrating

rom 𝑡 = 0 to 𝑡 = 1 using exact initial conditions. To isolate the temporal
rror, we use the approach of Karam et al. [54]. We first calculate a
eference solution 𝑓𝑟𝑒𝑓 for which the temporal error is negligible in
omparison to the spatial error. For that, we use the small time step
𝑡 = 10−5. We then define the temporal error as

𝑟𝑟𝑡 =
‖𝑓𝑡 − 𝑓𝑟𝑒𝑓‖∞
‖𝑓𝑟𝑒𝑓‖∞

, (29)

where 𝑓𝑡 is the solution using the larger time step 𝛥𝑡 > 10−5 and the
same spatial resolution as 𝑓𝑟𝑒𝑓 . This definition of 𝐸𝑟𝑟𝑡 removes the
spatial error and isolates the temporal error.

We evaluate the temporal accuracy for the permeances 𝜅 = 0, 0.001,
and 0.01, such that the simulated velocity through the membrane is
0%, 0.1%, or 1% of the maximum velocity. These produce challenging
test cases compared to traditional RO systems for which the transmem-
brane velocity is typically five orders of magnitude smaller than the
inlet feed velocity. When 𝜅 = 0, there is no coupling between the
pressure and the velocity, and we found that the velocity maintains
second-order accuracy in time. When 𝜅 is non-zero, however, the
temporal accuracy of the base method is less than second-order for all
variables. Fig. 5(a) shows that when 𝜅 = 0.01, the error for 𝑣, 𝑝, and
𝑐 is second-order for large 𝛥𝑡 (shaded grey), but then deviates as 𝛥𝑡
decreases. The error for 𝑢 is not shown because it is indistinguishable
from that for 𝑣. The order of accuracy for velocity decreases to approx-
imately 1.17, while that for 𝑐 tends to roughly 1.5. The decrease in
temporal accuracy is observed for 𝜅 = 0.001 as well, and persists when
osmotic pressure effects are removed by setting 𝐴 = 0. This leaves the
coupling between 𝑣𝑚 and 𝑝𝑚 as the likely culprit.

.2. The improved method

We hypothesize that the deviation from second-order temporal ac-
uracy of the base method occurs due to the viscous term ∇2

𝑑
(

𝐮𝑛+1𝑃 − 𝐮∗𝑃
)

hat was neglected in Eq. (18). This hypothesis is motivated by the
rojection method of Kim and Moin [47], which neglects 𝑝𝑛 when
omputing 𝐮∗. In that case, several studies [4,5,47] have shown that
eglecting the viscous term in Eq. (18) generates errors in the pressure
field, particularly near the domain boundaries. These errors can be
mitigated by either using 𝑝𝑛 when computing 𝐮∗, as in Bell et al. [3],
or by including the viscous term in Eq. (18), as in Kim and Moin [47].
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Fig. 4. Enforcing mass conservation on a pressure cell for (a) an internal cell and (b) a boundary cell.
Fig. 5. Temporal accuracy of the (a) base method and (b) improved method when 𝐾 = 0.01.
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To explore our hypothesis, we include the viscous term by defining
a new auxiliary variable 𝜙 such that

𝑝𝑛+1 − 𝑝𝑛 = 𝜙 − 𝛼𝜇∇2𝜙. (30)

It can be shown that 𝐮𝑛+1𝑝 and 𝐮∗𝑝 are then related by

𝐮𝑛+1𝑝 = 𝐮∗𝑝 − 𝛼∇𝑑𝜙𝑝, (31)

where 𝜙 satisfies the same Poisson Eq. (22) as 𝜙. In summary, our
improved method uses 𝑝𝑛 when computing 𝐮∗, as in Bell et al. [3],
but uses the definition of 𝜙 similar to Kim and Moin [47]. We apply
Dirichlet conditions as in Bell et al. [3], by applying

𝐮∗ = 𝐮𝑏, 𝐧 ⋅ 𝛁𝜙 = 0. (32)

Note that this differs from the method of Kim and Moin [47]. Repeating
our derivation of the membrane condition, it can be shown that 𝜙 must
satisfy the condition

𝜙𝑝 − 𝜙𝑆

𝑑𝑦
− 𝜅

𝛼

( 3
2
𝜙𝑃 − 1

2
𝜙𝑁

)

+ 𝜅𝜇
( 3
2
∇2
𝑑 𝜙𝑃 − 1

2
∇2
𝑑 𝜙𝑁

)

= 0, (33)

where the subscripts denote the node location labelled in Fig. 4(b). A
detailed derivation is provided in Appendix C. Though initial versions
of our code used condition (33), subsequent versions used the Poisson
Eq. (22) to express the condition more simply as

𝜙𝑝 − 𝜙𝑆

𝑑𝑦
− 𝜅

𝛼

( 3
2
𝜙𝑃 − 1

2
𝜙𝑁

)

= −
𝜅𝜇
𝛼

(3
2
𝛁𝑑 ⋅ 𝐮∗𝑃 − 1

2
𝛁𝑑 ⋅ 𝐮∗𝑁

)

, (34)

hich is equivalent to the Robin condition 𝜕𝜙̂∕𝜕𝑦−(𝜅∕𝛼)𝜙̂ = −(𝜅𝜇∕𝛼)𝛁𝑑 ⋅
∗.
Repeating the benchmarking procedure outlined in Section 3.1, we

ind that the spatial and temporal accuracy of the improved method
6

T

re both second-order. The temporal results for 𝜅 = 0.01 are shown
n Fig. 5(b). This confirms our hypothesis that neglecting the viscous
erms in Eq. (18) lowers the temporal accuracy of the base method.

4. Application of outlet conditions

To explore the application of outlet conditions, we consider a bench-
scale RO system of height ℎ = 1 mm and length 𝐿 = 10 cm without
a feed spacer. We set the inlet feed concentration to 𝐶𝑖𝑛 = 1 g/l of
NaCl, and the outlet pressure to 𝑃𝑜𝑢𝑡 = 20 bar. We consider the typical
membrane permeance 𝜅 = 2.5×10−12 ms−1Pa−1 [7]. The inlet velocity is
varied to consider Reynolds numbers between 50 ≤ Re ≤ 500, for which
the system converges to a steady-state. To allow flow perturbations
to exit the domain, we apply the convective conditions (6). Though
ot always discussed in prior literature, these are often discretized
xplicitly in time as

𝑓 𝑛+1 − 𝑓 𝑛

𝛥𝑡
+ 𝑈𝑖𝑛

𝜕𝑓 𝑛

𝜕𝑥
= 0.

This allows the outlet conditions for 𝐮𝑛+1 to be expressed as equivalent
Dirichlet conditions. The resulting outlet profile for 𝑢𝑛+1, however, must
be rescaled to ensure mass conservation. This approach is not possible
for RO, because the permeate mass flow is not known a-priori. We
consequently use the procedure of Lou et al. [41] that discretizes the
outlet condition implicitly as

𝑓 𝑛+1 − 𝑓 𝑛

𝛥𝑡
+ 𝑈𝑖𝑛

𝜕𝑓 𝑛+1

𝜕𝑥
= 0. (35)

his produces a Robin condition that is applied to 𝐮∗ as in Eq. (15).
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To fix the outlet pressure using the base method, we apply the
following outlet condition to 𝜙,

𝜙
|

|

|

|𝑥=𝐿
= 𝑃𝑜𝑢𝑡 − 𝑝𝑛

|

|

|

|𝑥=𝐿
, (36)

which follows from Eq. (19). Using the nodes labelled in Fig. 6(a), this
is discretized as

𝜙
|

|

|

|𝑥=𝐿
=

𝜙𝑊 + 𝜙𝐸
2

, 𝑝𝑛
|

|

|

|𝑥=𝐿
= 3

2
𝑝𝑛𝑊 − 1

2
𝑝𝑛𝑊𝑊 .

Note again that we must extrapolate 𝑝𝑛||
|𝑥=𝐿

. When using the improved
method, we fix the outlet pressure using the following outlet condition
for 𝜙,
[

𝜙 − 𝛼𝜇∇2
𝑑 𝜙

]

𝑥=𝐿
= 𝑃𝑜𝑢𝑡 − 𝑝𝑛

|

|

|

|𝑥=𝐿
, (37)

which follows from Eq. (30). Here, ∇2
𝑑 𝜙̂ must be extrapolated from the

interior of the domain. In a similar fashion to Eq. (34), we use the
Poisson Eq. (22) to express the outlet condition as

𝜙̂
|

|

|

|𝑥=𝐿
= 𝑃𝑜𝑢𝑡 − 𝑝𝑛

|

|

|

|𝑥=𝐿
+ 𝜇

( 3
2
𝛁𝑑 ⋅ 𝐮∗𝑊 − 1

2
𝛁𝑑 ⋅ 𝐮∗𝑊𝑊

)

. (38)

The combination of outlet conditions (35)–(36) was previously studied
y Lou et al. [41], who showed they conserve mass to machine preci-
ion while allowing flow structures to exit the domain. As reported by
ou et al. [41], we also found that flow perturbations exit the domain
ore cleanly when we discretize the advection terms in Eq. (13) using
‘‘minmod’’ TVD scheme. We refer to [41] and [55] for details.
To explore the performance of outlet conditions (33)–(35), we first

erform a series of mesh-independence studies. For that purpose, we set
he number of cells in the 𝑦-direction to 𝑁𝑦 = 200 and vary the number
f cells in the 𝑥-direction between 32 ≤ 𝑁𝑥 ≤ 768. For each 𝑁𝑥, we run
he simulation to steady state and compute the spatial error

𝑁𝑥
=

‖𝑓𝑁𝑥
− 𝑓768‖∞

‖𝑓768‖∞
, (39)

here 𝑓𝑁𝑥
is the solution using 𝑁𝑥 cells. The spatial error in the 𝑦-

irection is similarly calculated by setting 𝑁𝑥 = 400 and varying 𝑁𝑦
etween 32 ≤ 𝑁𝑦 ≤ 512. We find that mass is well conserved in all
ases, such that 𝛁𝑑 ⋅𝐮 was on the order of 10−12. We find that the error
s second-order for all variables except for 𝑐, which shows roughly first-
rder accuracy. Similar results were obtained for the error with 𝑁𝑦.
Further investigation showed that the errors were maximized near the
channel inlet and outlet. Fig. 6(b) shows that if we exclude 1% of the
omain length at the inlet and outlet in the computation of 𝐸𝑁𝑥

, we
ecover second-order accuracy for all variables. Though not shown here
or brevity, we also explored the impact of outlet conditions on spatial–
emporal accuracy by repeating the benchmarking procedure outlined
n Section 3.1. For that purpose, the exact velocity 𝐮𝐞 was applied to
∗ on all boundaries during prediction; however, the pressure was fixed
o 𝑝𝑒 on the right boundary (𝑥 = 2𝜋) using Eq. (38). For consistency,
e also discretized all advection terms using the minmod TVD scheme.
he results showed second-order spatial–temporal accuracy.
The sensitivity of RO systems to inlet and outlet conditions is

elatively well documented [56–58]. As suggested by Tilton et al. [56],
e explored the application of ‘‘permeability buffers’’ in which the
embrane permeance is smoothly ramped down to zero at the inlet
nd outlet. We found this method recovered second-order accuracy.
owever, given that this approach consumes more than 1% of the
ystem length at the inlet and outlet, we decided they were not war-
anted. In addition to the tests reported here, further tests found that
he outlet conditions performed well in the presence of a feed spacer,
s demonstrated in Appendix E.

. Reverse osmosis with a feed spacer

We now use our numerical method to explore transition to vortex
hedding in a 2D plate-and-frame RO system with a single spacer
7

ilament. We consider a system of height ℎ = 1 mm and length 𝐿 =
2 cm. We place a filament of diameter 𝐷𝑐 = 0.5 mm (ℎ∕2) on the
hannel centre-line (𝑦𝑐 = ℎ∕2) a distance of 5 diameters from the inlet
𝑥𝑐 = 5𝐷𝑐). We set the inlet concentration, membrane permeance, and
perating pressure to 𝐶𝑖𝑛 = 35 g/l NaCl, 𝜅 = 2.5 × 10−12 ms−1Pa−1, and
𝑜𝑢𝑡 = 40 bar, which is typical of seawater RO. We vary the Reynolds
umber 𝑅𝑒 = 𝜌𝑈𝑖𝑛ℎ∕𝜇 between 50 ≤ 𝑅𝑒 ≤ 350 to capture both steady
nd unsteady laminar flow regimes. For comparison, simulations are
epeated both with and without spacers. Transition to vortex shedding
ccurred at 𝑅𝑒 = 170 ± 2. This compares well with the critical Reynold
umbers predicted by a theoretical study of flow over a cylinder in a
hannel with impermeable walls [42].
Fig. 7 shows steady-state results for the sub-critical Reynolds num-

er 𝑅𝑒 = 50 (𝑈𝑖𝑛 = 4.6 × 10−2 m∕s). The streamlines in panel (a)
how a pair of counter-rotating vortices in the cylinder wake. Panel
b) shows the concentration field near the membrane, 𝑦∕ℎ ≤ 0.1.
he concentration is equal to the inlet value 𝐶𝑖𝑛 everywhere except
n a thin boundary layer near the membrane. The dashed white line
hows the concentration boundary layer thickness, 𝛿(𝑥), at which 𝑐 =
.002𝐶𝑖𝑛. The filament redirects and accelerates low concentration bulk
luid towards the membrane surface, compressing the boundary layer
eneath the filament. Panel (c) shows the downstream variation of the
oncentration on the membrane, 𝐶𝑚(𝑥), normalized with 𝐶𝑖𝑛. Panel
d) shows the local permeate flux 𝑣𝑚(𝑥), normalized with 𝑈𝑖𝑛. We
efine 𝑣𝑚 as positive when permeate leaves the channel. The dashed
ines show the corresponding results without a spacer. We see that the
pacer has a strong influence one diameter upstream and 6–7 diameters
ownstream. 𝐶𝑚 has a local minimum beneath the filament and then
lowly tends downstream to the result observed without the spacer.
ote that spatial variations in the pressure field 𝑝 were found to be less
han 0.01% of 𝑃𝑜𝑢𝑡. The variations in 𝑣𝑚(𝑥) in Fig. 7(d) consequently
rise due to osmotic pressure effects.
Fig. 8 shows results for the super-critical case Re = 300 (𝑈𝑖𝑛 =

.276 m∕s). Panels (a) and (b) show snapshots of the instantaneous
treamlines and vorticity 𝜔 = 𝜕𝑣∕𝜕𝑥 − 𝜕𝑢∕𝜕𝑣, respectively. Instability
causes periodic shedding of vortices in the filament wake. The vortices
then dissipate as they are advected downstream. Though 𝜔 varies
between roughly −33000 ≤ 𝜔 ≤ 33000 𝑠−1, we set the limits of
the colour scale in Fig. 8(b) to −2000 ≤ 𝜔 ≤ 2000 𝑠−1 to better
highlight these vortical structures. The streamlines in panel (a) also
show the appearance of vortical structures on the membrane and outer
plate. These structures periodically appear near 𝑥∕ℎ = 3.5, travel
downstream, and dissipate near 𝑥∕ℎ = 4.5. Panel (c) shows a snapshot
of the concentration field near the membrane, 𝑦∕ℎ ≤ 0.1. Panels (d)
and (e) show the corresponding membrane concentration 𝐶𝑚(𝑥)/𝐶𝑖𝑛
and permeate flux 𝑣𝑚(𝑥)/𝑈𝑖𝑛, respectively. As observed for 𝑅𝑒 = 50,
the filament redirects low concentration fluid towards the membrane,
decreasing polarization below the spacer. Downstream, however, we
observe localized solute accumulation on the membrane near 𝑥∕ℎ = 3.5.
This occurs in the region over which the vortical structure travels
along the membrane. Fig. 9 shows four sequential snapshots of the
concentration field and streamlines in the region of solute accumula-
tion. These suggest that solute accumulation occurs due to flow reversal
beneath the travelling vortex, which advects solutes upstream. The
mechanism can be explained using the points labelled 𝑎 − 𝑑 in the
snapshot labelled 𝑡3. As feed flows downstream from point 𝑎 to point
𝑏, its concentration increases as solvent passes through the membrane.
Similarly, flow moving upstream from point 𝑐 to point 𝑑 also increases
in concentration. The concentration consequently tends to accumulate
near the leading edge of the vortex.

Fig. 8(f ) shows the downstream variation of the membrane feed
surface pressure 𝑝𝑚 for 𝑅𝑒 = 300. Results are shown both with (solid
line) and without (dashed line) the spacer filament. Overall, we see that
for a single filament in a short system, downstream pressure variations

are small. This lends support to CFD studies in the membrane filtration
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Fig. 6. (a) Application of outlet condition (36) (b) Grid independence study excluding 1% of domain at inlet and outlet.
Fig. 7. Results when 𝑅𝑒 = 50. For convenience, we present the position as both 𝑥∕ℎ and 𝑥∕𝐷𝑐 . (a) Streamlines. (b) Concentration field near membrane, 𝑦∕ℎ ≤ 0.1. The dashed
white line shows the concentration boundary layer. (c) Concentration on the membrane with spacer (solid line) and without (dashed line). (d) Permeate flux 𝑣𝑚∕𝑈𝑖𝑛 with spacer
(solid line) and without (dashed line).
community that approximate the membrane condition (1) as

𝑣𝑚 = 𝜅
[

𝑃𝑜𝑢𝑡 − 𝑝𝑝 −𝛱
]

,

to remove the coupling of 𝑣𝑚 to the local pressure field. For realistic
RO systems with tightly packed filaments, and a system length near
1 metre, this assumption remains to be explored.

Fig. 10 shows the variation of the average permeate flux 𝑗𝑣 and
maximum concentration 𝐶𝑚𝑎𝑥 with Reynolds number, where

𝑗𝑣 = 1
5ℎ ∫

5ℎ

0
𝑣|𝑦=0𝑑𝑥.

hese are computed for the region 0 ≤ 𝑥∕ℎ ≤ 5 to focus on the
ear-spacer region. Results are shown with the spacer (solid lines) and
ithout (dashed lines). For the parameters considered in this study,
e find that the average flux increases monotonically with Reynolds
umber, and the filament increases permeate production by roughly
%. When no spacer is present, the maximum concentration decreases
onotonically with Reynolds number. When the spacer is present, how-
ver, 𝐶 initially decreases for sub-critical Reynolds numbers, and
8

𝑚𝑎𝑥
then increases after transition to vortex shedding. Similar behaviour
is seen in simulations of spacer filaments in direct contact membrane
distillation. In that case, Lou et al. [41] suggest there might be a trade
off between increasing permeate production and increased risk of salt
precipitation.

6. Conclusions

We showed that the temporal accuracy of the popular projection
method of Bell et al. [3] drops to first order when simulating reverse
osmosis systems. The drop in accuracy occurs due to the coupling
between the velocity and the pressure fields in the membrane bound-
ary conditions, which causes errors in the pressure field to pollute
the velocity field. We showed, however, that second-order accuracy
can be recovered using a modified intermediate variable 𝜙̂, as shown
in Eq. (30). In addition to the unique coupling between the velocity and
pressure fields, RO systems present further challenges at the inlet and
outlet. To that end, we showed the improved projection method can
accommodate outlet conditions that fix the operating pressure while
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Fig. 8. Results when 𝑅𝑒 = 300. (a) Instantaneous streamlines. (b) Instantaneous vorticity. (c) Instantaneous concentration field near membrane. The dashed white line shows the
concentration boundary layer. (d) Concentration on the membrane with spacer (solid line) and without (dashed line). (e) Permeate flux 𝑣𝑚∕𝑈𝑖𝑛 with spacer (solid line) and without
dashed line). (f ) Membrane pressure 𝑝𝑚 with spacer (solid line) and without (dashed line).
llowing flow perturbations to exit the domain, all while satisfying
onservation of mass.

To test our methods, we coupled the improved projection method
ith the immersed boundary method of Lou et al. [41] to simulate the
mpact of vortex shedding on concentration polarization in a plate-and-
rame RO system with a single spacer filament. Within the limits of
he current study, we showed that in steady flow regimes, the spacer
ilament reduces the concentration on the membrane and increases the
ermeate production in comparison to when no spacer is present. In
he super-critical regime, we found that the spacer increases permeate
roduction, but generates a region of preferential solute accumulation
hat could lead to mineral scaling. Though beyond the scope of the
urrent study, we are now performing a parametric study of 2D fil-
ment arrays to explore the impact of vortex shedding for a broad
ange of operating conditions and membrane permeances. We are also
xpanding our methods to 3D and performing parallel experiments
or comparison. Finally, we note that the current study focuses on
rojection methods because they are popular for simulating unsteady,
ncompressible flows. Future work may want to similarly investigate
he impact of Darcy-type boundary conditions on the spatial–temporal
ccuracy of SIMPLE-type schemes [51,59] or the more recent methods
eveloped by Griffith and colleagues [60–62].
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9

Fig. 9. Snapshots of the concentration field super-imposed with streamlines in the
region of concentration accumulation 3 ≤ 𝑥∕ℎ ≤ 4.5, 0 ≤ 𝑦∕ℎ ≤ 0.1. Snapshots are taken
at equispaced times 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4, where 𝑡2 − 𝑡1 = 4×10−3 s. The points labelled 𝑎− 𝑑
are discussed in the text.
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behaviour of the base projection method. Finally, we thank Drs. Paul
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Appendix A. Thermophysical properties

The dynamic viscosity 𝜇(𝑇 , 𝑐), density 𝜌(𝑇 , 𝑐), and mass diffusivity
(𝑐) of the NaCl solution are evaluated using the relationships,

𝜇(𝑇 , 𝑐) = 𝐴𝜈 (𝑇 )𝑐4 + 𝐵𝜈 (𝑇 )𝑐3 + 𝐶𝜈 (𝑇 )𝑐2 +𝐷𝜈 (𝑇 )𝑐 + 𝐸𝜈 (𝑇 ). (A.1)

𝐴𝜈 = −1.63 × 10−14, 𝐵𝜈 = 1.57 × 10−11, 𝐶𝜈 = 1.04 × 10−9,

𝜈 = 1.35 × 10−6, 𝐸𝜈 = 8.90 × 10−4.

𝜌(𝑇 , 𝑐) = 𝐴𝜌𝑐
3 + 𝐵𝜌𝑐

2 + 𝐶𝜌𝑐 +𝐷𝜌. (A.2)

𝐴𝜌 = 1.56 × 10−7, 𝐵𝜌 = −1.92 × 10−4, 𝐶𝜌 = 0.68, 𝐷𝜌 = 997.

(𝑐) = 10−09 ×
𝐴𝑑 + 1000

 𝐵𝑑𝑐

1 + 1000
 𝐶𝑑𝑐 +𝐷𝑑 (

1000𝑐
 )2

. (A.3)

𝐴𝑑 = 1.418, 𝐵𝑑 = 1.159×10−01, 𝐶𝑑 = 8.50×10−02, 𝐷𝑑 = 1.514×10−05,

where  = 58.44 g/mol is the molecular weight of NaCl. These
relationships assume 𝑇𝑖𝑛 = 25 ◦C. The correlations for 𝜇(𝑇 , 𝑐) and 𝜌(𝑇 , 𝑐)
were derived using the OLI Stream Analyzer database (OLI Systems,
Morris Plains, NJ). We obtained the correlation for (𝑐) from the
Ref. [9].
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Appendix B. Discretization on non-uniform grids

To demonstrate our discretization of the governing equations (2)–
(4), consider the 𝑥-component of the Navier–Stokes Eqs. (2) written in
ontrol volume form as

𝐶𝑉
𝜌 𝜕𝑢
𝜕𝑥

𝑑𝑉 + ∫𝑆
𝜌(𝐮 ⋅ 𝐧)𝑑𝐴 = −∫𝑆

𝑝(𝐢 ⋅ 𝑛̂)𝑑𝑠 + ∫𝑆
𝜇∇𝑢 ⋅ 𝐧𝑑𝐴, (B.1)

here 𝐢 is the unit vector in the 𝑥- direction, 𝐧 is the unit normal vector
ointing away from the control surface 𝑆 of the control volume 𝐶𝑉
ketched in Fig. B.11(a). We approximate the unsteady and pressure
erms as

𝐶𝑉
𝜌 𝜕𝑢
𝜕𝑡

𝑑𝑉 = 𝜌
𝜕𝑢𝑝
𝜕𝑡

𝑑𝑥𝑑𝑦, ∫𝑆
𝑝(𝐢 ⋅ 𝐧) = 𝑑𝑦(𝑝𝑒 − 𝑝𝑤), (B.2)

here 𝑑𝑥 and 𝑑𝑦 are labelled in Fig. B.11(a). The advection term is
iscretized using the ‘‘minmod’’ TVD scheme [55], as detailed in Lou
t al. [41]. Finally, we approximate the viscous terms using Fig. B.11(b)
s,

𝑆
𝜇(∇𝑢 ⋅ 𝐧)𝑑𝐴 ≈ 𝜇

𝜕𝑢𝑒
𝜕𝑥

𝑑𝑦 + 𝜇
𝜕𝑢𝑛
𝜕𝑦

𝑑𝑥 − 𝜇
𝜕𝑢𝑤
𝜕𝑥

𝑑𝑦 − 𝜇
𝜕𝑢𝑠
𝜕𝑦

𝑑𝑥, (B.3)

where the gradients are approximated using centred differences, such
as
𝜕𝑢𝑒
𝜕𝑥

≈
𝑢𝐸 − 𝑢𝑃
𝑥𝐸 − 𝑥𝑃

. (B.4)

We similarly discretize the 𝑦-momentum equation using the control
volume sketched in Fig. B.11(b). We then find that Eq. (20) is expressed
in discrete form as

𝑢𝑛+1𝑃 = 𝑢∗𝑃 − 𝛼
(

𝜙𝑒 − 𝜙𝑤
𝑑𝑥

)

, 𝑣𝑛+1𝑃 = 𝑣∗𝑃 − 𝛼
(

𝜙𝑛 − 𝜙𝑠
𝑑𝑦

)

, (B.5)

where the subscripts denote the locations labelled in Fig. B.11(a)
nd (b). Using the pressure cell in Fig. B.11(c), we discretize the
onservation of mass equation as

𝑢𝑛+1𝑒 − 𝑢𝑛+1𝑤
𝑑𝑥

+
𝑣𝑛+1𝑛 − 𝑣𝑛+1𝑠

𝑑𝑦
= 0. (B.6)

Substituting relations (B.5) into the above, we find the discrete Poisson
equation

1
𝑑𝑥

(

𝜙𝐸 − 𝜙𝑃
𝑥𝐸 − 𝑥𝑃

−
𝜙𝑃 − 𝜙𝑊
𝑥𝑃 − 𝑥𝑊

)

+ 1
𝑑𝑦

(

𝜙𝑁 − 𝜙𝑃
𝑦𝑁 − 𝑦𝑃

−
𝜙𝑃 − 𝜙𝑆
𝑦𝑃 − 𝑦𝑆

)

= 1
𝛼

( 𝑢∗𝑒 − 𝑢∗𝑤
𝑑𝑥

+
𝑣∗𝑛 − 𝑣∗𝑠
𝑑𝑦

)

. (B.7)

For the base projection method, we apply the discrete Poisson equa-
tion using ghost nodes on boundary cells, such as that sketched in

https://doi.org/10.1016/j.compfluid.2021.105189
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Fig. B.11. The staggered grid. The fields 𝑢, 𝑣, and 𝑝 are stored at the locations marked as squares, triangles, and solid dots, respectively. (a) The control volume (shaded grey)
used to discretize momentum in the 𝑥-direction. (b) The control volume (shaded grey) used to discretize momentum in the 𝑦-direction.(c) A pressure cell (shaded grey).
Fig. C.12. (a) A corner pressure cell (shaded grey) with ghost nodes. (b) Membrane Boundary Condition Requires Additional Modification.
Fig. D.13. Demonstration of grid using 𝑁𝑥 = 90, 𝑁𝑦 = 30.
m

𝑣

𝑣

w

Fig. D.14. Variations of spatial error with 𝑁𝑥 for 𝑢 (squares), 𝑣 (triangles), and 𝑐
(asterisks). The dashed line shows 1/𝑁2.

Fig. C.12(a). The Neumann conditions for the two boundaries of this
corner cell are then applied as

𝜙𝑃 − 𝜙𝑊
𝑑𝑥

= 0,
𝜙𝑃 − 𝜙𝑆

𝑑𝑦
= 0. (B.8)
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Appendix C. Membrane boundary conditions

To demonstrate the derivation of the membrane conditions for
𝜙, consider a grid of uniform spacing 𝑑𝑥 and 𝑑𝑦. Subtracting the
discretized Eq. (17) from (14) it is straightforward to show that

𝑝𝑛+1𝑃 = 𝑝𝑛𝑃 + 𝜙𝑃 −
2𝜇𝛥𝑡
3𝜌

∇2
𝑑𝜙𝑃 , (C.1)

where ∇2
𝑑 is the discrete Laplacian defined Eq. (12).

To derive the membrane condition for 𝜙̂, we first discretize the
embrane conditions for 𝑣𝑛+1 and 𝑣∗ as

𝑛+1
𝑆 = −𝐾(𝜆𝑝𝑛+1𝑠 + 𝐵𝑝𝑛+1𝑛 ) (C.2)

∗
𝑆 = −𝐾(𝜆𝑝𝑛𝑠 + 𝐵𝑝𝑛𝑛) (C.3)

here 𝜆 and B are coefficients used for extrapolation based off of
ocation of the nodes labelled in Fig. C.12(b). For uniform grids 𝜆 = 3∕2,
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Fig. E.15. Comparison of two simulations of a channel flow with 𝑅𝑒 = 320 and a blockage ratio 𝛽 = 0.5 using a short (a) and long (b) domain.
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𝐵 = −1∕2. Subtracting (C.3) from (C.2)
𝑛+1
𝑆 − 𝑣∗𝑆 = −𝐾

[

𝜆(𝑝𝑛+1𝑠 − 𝑝𝑛𝑠 ) + 𝐵(𝑝𝑛+1𝑛 − 𝑝𝑛𝑛)
]

,

nd substituting

𝑛+1
𝑆 − 𝑣∗𝑆 = −𝛼

𝜙𝑠 − 𝜙𝑠𝑠
𝑑𝑦

,

e find that

− 𝛼
𝜙𝑠 − 𝜙𝑠𝑠

𝑑𝑦
= −𝐾

[

𝜆(𝑝𝑛+1𝑠 − 𝑝𝑛𝑠 ) + 𝐵(𝑝𝑛+1𝑛 − 𝑝𝑛𝑛)
]

. (C.4)

inally, we can express 𝑝𝑛+1 − 𝑝𝑛 in terms of 𝜙̂ using Eq. (C.1).

− 𝛼
𝐾

𝜙𝑠 − 𝜙𝑠𝑠
𝑑𝑦

= −𝜆𝜙𝑠 − 𝐵𝜙𝑛+ (C.5)

𝜆𝜇

[

𝜙𝑠𝑤 − 2𝜙𝑠 + 𝜙𝑠𝑒

𝑑𝑥2
+

𝜙𝑠𝑠 − 2𝜙𝑠 + 𝜙𝑛

𝑑𝑦2

]

+ 𝛼𝐵𝜇

[

𝜙𝑛𝑤 − 2𝜙𝑛 + 𝜙𝑛𝑒

𝑑𝑥2
+

𝜙𝑠 − 2𝜙𝑛 + 𝜙𝑛𝑛

𝑑𝑦2

]

.

Once again, we can use Eq. (22) to replace the Laplacian term. The
boundary condition for 𝜙 using the base projection method is the same
as in Eq. (C.5) except the viscous terms are set to zero

𝛼
𝐾

𝜙𝑠 − 𝜙𝑠𝑠
𝑑𝑦

= −𝜆𝜙𝑠 − 𝐵𝜙𝑛. (C.6)

epeating this derivation on a non-uniform grid, one can show that
he discrete Laplace operators on the right hand side of Eq. (C.5) are
eplaced with the Laplace operator demonstrated in Eq. (B.7).

ppendix D. Grid independence studies

Our simulations of RO systems concentrate cells near the membrane
nd outer wall by setting the 𝑦-coordinates of the horizontal faces to

𝑖 = (ℎ∕2)(1 + cos(𝜋𝑖∕𝑁𝑦)), 𝑖 = 0, 1,… , 𝑁𝑦, (D.1)

hich are the Gauss–Lobatto–Chebyshev points mapped to interval
∈ [0, ℎ]. Simulations without spacers use 𝑁𝑥 equispaced cells in the
-direction. Simulations with spacers refine the grid near the cylinder
y decomposing the 𝑥-direction into three sections, as demonstrated in
ig. D.13. The core section, 𝐿2, begins one cylinder diameter upstream
f the cylinder centre and ends two cylinder diameters downstream
f the cylinder centre. This section has 𝑁2 equispaced cells in the
-direction. For the purposes of this study 𝑁2 = 𝑁𝑦. For the other
ections, 𝑁 and 𝑁 are determined such that 𝑁 +𝑁 +𝑁 = 𝑁 and
12

1 3 1 2 3 𝑥
hat the cells in the first and third sections each share the same cell size
n the 𝑥-direction. The sharp transition in cell sizes is then smoothed by
ooping through each point and setting its 𝑥 value to be the average of
ts two neighbours in the 𝑥-direction. This process is repeated 20 times
or the grid in Fig. D.13.
To demonstrate our mesh independence studies, we consider here

he simulation shown in Fig. 7, for which the flow fields can be
ntegrated to steady state. We fix the ratio 𝑁𝑥∕𝑁𝑦 = 3 and vary 𝑁𝑥
nd 𝑁𝑦 between 180 ≤ 𝑁𝑥 ≤ 600 and 60 ≤ 𝑁𝑦 ≤ 200, respectively.
imulations were run to steady-state, after which the spatial error,
𝑅𝑅𝑁 , was evaluated using the result at (𝑁𝑥, 𝑁𝑦) = (600, 200) as the
xact solution. Fig. D.14 shows the error is below 1% when 𝑁𝑥 > 300.

ppendix E. Outlet study with feed spacer

To gauge how well the outlet conditions perform when vortical
low structures are present, we considered flow over a cylinder in a
lanar channel flow. Fig. E.15 shows two simulations performed for
𝑒 = 320 and blockage ratio 𝛽 = 0.5 with the cylinder located closer
o the upper wall. Zovatto and Pedrizzetti [63] have shown that the
symmetry stabilizes vortex shedding and produces elongated vortical
tructures behind the cylinder and along the upper wall. The cylinder
s placed three diameters downstream of the inlet. Fig. E.15(a) shows
simulation using 𝐿𝑥 = 3.5 mm such that the outlet cuts through the
ortex. Panel (b) shows the simulation using 𝐿𝑥 = 6 mm. Comparison
f the streamlines shows minimal upstream influence of the outlet
onditions.
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