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ARTICLE INFO ABSTRACT

Keywords: Reverse Osmosis has important applications to seawater desalination and advanced water treatment. Its

Reverse osmosis efficiency depends, however, on unsteady fluid flow and solute transport that are challenging to simulate.

CFD " The challenges arise due to interactions between solute boundary layers and unsteady vortical flow structures

&Ounsary conditions generated by complicated geometries. These flow structures also interact with semi-permeable membranes
embrane

through which the permeate flow depends on the local pressure. We show that this additional pressure coupling
causes the temporal accuracy of traditional projection methods to drop to first-order. We track the source of
this accuracy drop to the treatment of viscous terms in the derivation of the Poisson equation used to update
the velocity and pressure fields. This allows us to propose a modified projection method that recovers second-
order temporal accuracy. Finally, we show that the modified projection method can be coupled to convective
outlet conditions and immersed boundary conditions to simulate reverse osmosis in steady and unsteady flow

Finite volume methods
Projection methods

regimes.

1. Introduction

Reverse osmosis (RO) plays a key role in the water—energy—climate
nexus due to its applications to desalination and wastewater treatment
[1,2]. The energy efficiency of RO systems depend, however, on un-
steady fluid flow and solute transport that are challenging to observe
experimentally or simulate numerically. The numerical challenges arise
because RO systems include unsteady vortical flow structures generated
by bluff bodies with complicated geometries. These flow structures
also interact with semipermeable membranes through which the fluid
velocity is a function of the local pressure on the membrane. This
additional pressure-velocity coupling is not straightforward to apply,
particularly when RO systems are simulated using projection methods.
Projection methods are the preferred method of simulating unsteady
incompressible fluid flows, because they are efficient, non-iterative, and
produce second-order spatial and temporal accuracy for the velocity
field when implemented using classic finite-volume methods [3]. Their
accuracy for the pressure field, however, can be as low as first-order [4—
6]. The current study shows that this issue is important for RO, because
the velocity—pressure coupling on the membrane causes the accuracy
of the velocity field to also drop to first-order. A final challenge arises
because mass exits RO systems through both an outlet and membrane.
Due to the dependence of the transmembrane flow on the pressure,
the mass flow rates exiting the membrane and outlet are not known
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at the beginning of each time step. This complicates the application of
mass-conserving boundary conditions.

The current study addresses these issues using semi-implicit pro-
jection methods and immersed boundary methods. Fig. 1(a) shows
the geometry of typical “plate-and-frame” RO systems used in bench-
scale experiments. A high-pressure feed solution of water and solutes
enters from the left (x = 0) and flows beneath an impermeable
flat plate and above a semi-permeable membrane sheet. The plate
and membrane are separated by a channel height A, typically around
1 mm. The pressure difference between the high-pressure feed and low-
pressure permeate opposite the membrane drives water through the
membrane while blocking most solutes. To simplify the presentation of
our methods, we hereinafter assume “complete solute rejection” such
that the solute concentration of the permeate is zero. In practice, RO
systems often reject around 98% of solutes [7]. Typical feed pressures
vary between 10 to 80 bar, while the permeate pressure is often
near atmospheric. The coupling between the transmembrane permeate
velocity and the pressure field is often modelled using the following
Darcy-type boundary condition,

0, (%, 2,1) = K[pm(x, 20 —p, - M(x,7, z)], ¢})

where « is the membrane permeance (SI units ms~'Pa~1), v, is the
velocity of the local transmembrane flow, p,, is the local pressure on
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Nomenclature

B Blockage ratio f = D,/h

At Time step (s)

K Membrane permeance (m/s Pa)

n Unit normal to surfaces

u Velocity vector (m/s)

u* Provisional velocity vector in projection
method (m/s). See Eq. (17)

D Mass diffusivity (m?/s)

" Dynamic viscosity (Pa s)

w Frequency (1/s)

¢ Intermediate variable used in projection
method. See Eq. (20)

i Osmotic pressure IT = Ac (Pa)

p Density (kg/m?)

A Osmotic pressure constant (Pa 1/ g)

c Concentration (g/1)

C, Membrane surface concentration (g/1)

Ci, Feed concentration (g/1)

D, Cylinder diameter (m)

h Channel height (m)

Jo Average transmembrane permeate flux
(LMH)

L Channel length (m)

p Pressure (Pa)

Re Reynolds number Re = U,,h/v

t Time (s)

u, v Velocity component along x and y coordi-
nates (m/s)

U, Inlet velocity (m/s)

Up, Velocity through the membrane (m/s)

X, y Cartesian coordinates (m)

Xe» Ve Cylinder position (m). See Fig. 2

LMH Litre per metre squared per hour (I/m? h)

P, Outlet pressure

Re, Critical Reynolds number for transition to
vortex shedding

RO Reverse osmosis

TVD Total variation diminishing

the membrane feed surface, p, is the permeate pressure, and I7 is the
osmotic pressure. Eq. (1) is written so that v,, is positive when permeate
exits the feed channel. We stress that v, p,,, and IT all vary along the
membrane surface. Pressure variations in the permeate, however, are
often negligible, and p, is usually set to the reference value p, = 0 for
convenience. Note that the permeance « differs from the permeability

(a)

impermeable plate
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k used in the classical Darcy equation [8]. The two are related by
k = k/(ud), where u and d are the feed viscosity and membrane
thickness, respectively. The osmotic pressure is often approximated as
II = Ac, where ¢ is the solute concentration and A is a constant of
proportionality. More general quadratic or cubic polynomials can also
be determined [9].

RO is an inherently energy intensive process because the feed pres-
sure must exceed the osmotic pressure to force permeate through the
membrane. Moreover, the osmotic pressure at the membrane surface
is often much higher than that of the incoming feed. This is due to
concentration polarization, which refers to solute accumulation adja-
cent to the membrane surface, as illustrated in Fig. 1(a). Polarization
occurs because solutes are advected towards the membrane where
they form a thin boundary layer in which there is a large increase in
solute concentration. Concentration polarization is a serious technical
challenge for RO because it increases the required operating pressure
and reduces the fraction of water recovered from the feed. It also
leads to mineral scaling, which is the precipitation of solutes onto the
membrane surface. This impedes filtration, reduces membrane life, and
increases maintenance costs.

Concentration polarization in RO is further complicated by the
presence of feed spacers. These are plastic mesh-like materials placed in
the feed channel to support the membrane and provide space for feed
flow tangential to the membrane , as sketched in Fig. 1(b). In plate-and-
frame systems, feed spacers separate the membrane from the opposing
flat plate. In industrial systems, the plate is replaced with a second
membrane. In addition to separating membranes, feed spacers play
an important role in polarization and mineral scaling by generating
regions of preferential solute accumulation and precipitation on the
membrane surface [10-21]. The fundamental mechanics of this process,
however, are not fully understood.

Numerous CFD studies have made important contributions to sim-
ulating RO. For reviews, we refer readers to [22-24]. Here, we focus
on simulations of RO systems with feed spacers. Due to the numerical
challenges, simulations of feed channels with spacers often replace the
membrane with an impermeable wall [25-37]. This approach is useful
for studying the effects of spacer geometry on membrane shear stresses
and downstream pressure drops. Other studies include transmembrane
flow and concentration polarization, but for operating conditions that
produce steady or quasi-steady feed flow [35,38-40]. Such studies have
advanced our understanding of biofouling [35,38] and mineral scaling
[39,40]. The current study is motivated by the fact that RO systems
typically operate for feed Reynolds numbers in the range 10 < Re <
1000, where Re = pU;,h/u is defined using the mean inlet velocity
U,, and density p. For this range, studies suggest that spacer filaments
generate unsteady vortex shedding or even turbulence [41,42], though
the Reynolds numbers for these transitions are not fully understood.
Further studies suggest that vortex shedding plays an important role
in polarization [27,43-46]. The development of an efficient projection
method for simulating unsteady flow in RO would provide an important
tool for studying the transition to vortex shedding and its impacts on
polarization. It would also help address the broader issue that published

membrane—*

Fig. 1. (a) Sketch (not to scale) of a plate-and-frame RO system. Feed enters at x = 0 and flows between an impermeable plate at y = 4 and a semi-permeable membrane at y = 0.
Concentrate exits the channel downstream at x = L. The formation of a concentration polarization layer is shown in grey. (b) Sketch (not to scale) of feed spacers.
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Fig. 2. Sketch (not to scale) of the 2-D RO flow channel with a spacer considered in
this study. Solution enters the channel with concentration C;, and mean velocity U,,.
The spacer has a diameter D,.

simulations of RO rarely detail how they implement membrane and
outlet conditions, and rarely demonstrate the order-of-accuracy of their
methods.

Thus motivated, the current study explores the application of two
projection methods to RO. We begin with the classical method of
Bell et al. [3]. For fluid systems with Dirichlet velocity conditions on
all boundaries, this method produces second-order spatial-temporal
accuracy for the velocity field, but can produce lower accuracy for the
pressure. We then consider a class of projection methods proposed by
Kim and Moin [47], Brown et al. [4], and Guy and Fogelson [5] that
try to increase the accuracy of the pressure to second order [6]. We
explore the spatial and temporal accuracy of both approaches using
manufactured solutions. We first explore how the treatment of inlet
and outlet conditions affect conservation of mass, mesh-independence,
and flow structures exiting the domain. Finally, we use the methods
to simulate RO systems with unsteady vortex shedding generated by a
single spacer filament. The filament is simulated using recent immersed
boundary methods detailed in Lou et al. [41].

The remaining study is organized as follows. Section 2 presents the
geometry and governing equations. Section 3 investigates the projec-
tion methods. Section 4 explores the application of inlet and outlet con-
ditions. Section 5 applies our methods to simulations of unsteady vortex
shedding in an RO system with a single spacer filament. Section 6
presents our conclusions.

2. Problem formulation and discretization

We consider the incompressible flow of a Newtonian fluid in a
2D plate-and-frame RO system of length L and channel height A, as
sketched in Fig. 2. A cylindrical spacer filament of diameter D, is
located at (x,y) = (x.,y.). Feed enters the system at x = 0 with a
uniform concentration C;, and mean velocity U,,. At the channel outlet,
x = L, we fix the pressure to P,,. This mimics bench-scale RO systems
that control the inlet feed rate using a positive displacement pump and
that set the outlet pressure using a back pressure regulator.

2.1. Governing equations

Fluid flow in the feed channel is governed by the incompressible
Navier-Stokes and continuity equations

ou _ 2
p(at+u V) = =Vp+ uV2u+b, @
V-u=0, 3)

where u = [u 0] is the velocity vector. The body force b is added for
benchmarking performed in Section 3. We consider solute transport
governed by the advection-diffusion equation

g—i+u-Vc:DV2c+q, 4
where D is the effective mass diffusion coefficient and ¢ is measured
in grams of solute per litre of water. The source term ¢ is again

added for benchmarking. Variations of thermo-physical properties are
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typically on the order of 1% [9] for the system lengths considered
here. We consequently neglect them to simplify our presentation. They
can nevertheless be included as demonstrated in Lou et al. [48]. We
set p,u, D to those evaluated at the inlet conditions using relations
(A.1)-(A.3) in Appendix A. These assume an inlet feed temperature of
T, =25 °C.

At the inlet, we apply a uniform concentration C;, and fully-
developed laminar velocity profile with mean velocity U;,,
y yz] ov

=G howl ox

=0. 5)

x=0

c

u

x=0 x=0

=6U,, [

At the outlet, we apply the convective conditions [49]
a d
_f + Uin _f = 0’
ot 0x | _p

where f = [u, v, c]. On the upper plate and spacer surface, we apply the
no-slip, no-penetration, and no flux conditions

©

u=v=n-Vec=0,

where n is the unit normal to the surface. On the membrane at y = 0,
the tangential velocity satisfies the no-slip condition (u = 0), which
is well established for RO membranes. The transmembrane velocity
(v) satisfies the Darcy condition (1) with p, = 0. To simplify the
presentation of our methods, we approximate the osmotic pressure
as IT = Ac, though higher-order polynomial approximations pose no
challenge. The Darcy condition (1) can then be written as

v| =—x [p - Ac] + s, )
y=0 =0
where s is an added source term that is zero, except for benchmarking
purposes discussed in Section 3. We determined the osmotic pres-
sure constant A = 77,170 Pa 1/g by performing a linear fit to the
Harvie-Moller-Weare formulation of the Pitzer model [50]. This value
produces a relative error below 1% when 0 < ¢ < 100 g/l. Assum-
ing no transmembrane solute flux (called “complete rejection” in the
membrane community) requires solute advection and diffusion normal
to the membrane to sum to zero,

[vc - D"—c] =7 ®
dy =0

where y is an added source term for benchmarking purposes. Consid-

eration of partial rejection is straightforward, but neglected here for

brevity.

2.2. Discretization of governing equations

We discretize the governing equations (2)—(4) spatially using stan-
dard second-order finite-volume methods on a staggered grid [51], as
sketched in Fig. 3(a). The velocities u (squares) and v (triangles) are
stored on cell faces, while p and ¢ are stored at cell centroids (solid
dots). In our presentation below, we assume a uniform grid to simplify
our discussion. The discretization for non-uniform grids is provided in
Appendix B.

Consider the x-component of the Navier-Stokes Egs. (2) in control
volume form,

p/ a—”dv+/ pu(u-n)ds:/ [—@ +uVu+b*| dv, 9)
cy Ot cs cv | ox

where CV and CS are the control volume and surface, respectively,
shaded grey in Fig. 3(b), and b* is the x-component of b. We discretize
the volume integrals as

ou ()uP
=dV = p——dxdy, 10
p/cvdt P dxdy (10)

/ —9P V| av = [_”e_”“’ +;Nju+bX] dxdy, an
cv | ox dx P
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Fig. 3. (a) Sketch of the staggered grid. The flow fields u, v, p, and ¢ are stored at the locations marked with squares, triangles, and solid dots, respectively. (b) The control
volume (shaded grey) for discretizing the x-component of the Navier-Stokes equations. The locations n and s marked with cross symbols are not actual grid points. (c) The control
volume used to discretize the y-component of the Navier-Stokes. (d) Application of boundary conditions using ghost nodes.

where V;” is the centred difference approximation

V2= uy, —2up +ug + ug —2up +uy
d dx? dy?

The subscripts denote evaluation of u, v, and p at the corresponding

points labelled in Fig. 3(b). The advection term is discretized as

(12)

/ pu(u - n)ds = i u, + m,u, — M, — Mg, 13)
cs

where m, = pu,dy, m,, = pu,dy, m, = pv,dx, and m; = pv,dx. For now,
we assume all velocities in Eq. (13) are approximated using standard
centred differences, such as u, = (up +ug)/2 and v, = (v, + v,,.)/2. In
Section 4, however, we report that outlet noise can be attenuated by
discretizing advection terms with a TVD scheme.

The y-component of the Navier-Stokes equations is discretized as
demonstrated above, using the control volume illustrated in Fig. 3(c).
We then discretize the Navier-Stokes equations semi-implicitly in time
using the second-order backwards Euler method for the linear terms
and second-order Adams-Bashforth extrapolation for the nonlinear
terms [51,52]. The discretized Navier—Stokes equations can then be
written as

3upt! — 4w+l
24t

V= [pedxpw] - [pndyps]j,

where i and j are unit vectors in the x and y directions, respectively, At
is the time step, the superscript n denotes time 7 = nAt, NL refers to the
nonlinear advection term, and V, is the discretized gradient operator.
We use the backwards Euler method because it discretizes the pressure
at the current time step, p"*!. In contrast, the popular Crank-Nicholson
method discretizes the pressure at an intermediate time p"t!/2, which

P + INL" — NLn—I — _Vdpn+l + Hvdzunﬂ + bn+], (14)

is inconsistent with the discretization of the Darcy membrane condition
in Eq. (16) below.

The boundary conditions on the spacer surfaces are applied using
the second-order immersed boundary method detailed in Lou et al.
[41]. Boundary conditions on the inlet, outlet, plate, and membrane are
applied using ghost nodes. To demonstrate, suppose we wish to apply
the Robin conditions au + bou/dy = g, and av + bov/dy = g, on the
boundary sketched in Fig. 3(d). We discretize these as

n+1 n+l1 n+1 n+1 n+1 n+1
u, +u1 Uy, —u _ U, — U _
a 2 +b =g, au+b|——| =g,

dy dy

(15)

The membrane condition (8) for the solute is discretized as

n+1 n+1

C —C ¢y +c

2 1 — n.n n—1 _n—1 _ Y 2
D |:d—y:| = 2U1Cm - Ul Cm 5 Cn = _2 N

where the subscripts denote the locations marked in Fig. 3(d) and
we approximate the nonlinear term explicitly, using Adams-Bashforth
extrapolation. The Darcy condition (1) is discretized as

3 1
U = i (i - A, p, = 32— 3P3. 16)
Note that we extrapolate p,, from the interior grid points because pro-
jection methods can produce nonphysical pressures at ghost nodes [5].
Implementation of these conditions in our projection methods is dis-
cussed in Section 3. We delay discussion of outlet conditions to Sec-
tion 4.



J. Johnston et al.
3. Projection methods

We consider two projection methods for estimating p"*! in the
discretized Navier—-Stokes Eq. (14). The first is that of Bell et al. [3],
which we refer to as the “base method”. The second is similar to
those proposed by Kim and Moin [47], Brown et al. [4], and Guy and
Fogelson [5], which we refer to as the “improved method”. Both methods
begin by solving the incremental equation

3u* —4u” + u!
g 241

where u* estimates u"*! using the pressure p" from the previous time
step. Subtracting Eq. (17) from Eq. (14), we find that

+2NL" — NLn—l — _Vdpn + ”deu* + bn+1’ (17)

u”P+1 =u} —aV,p+ oz,uVa,2 (u’][,+1 -u}), (18)

where a = 24¢/3p, and
b=pt 19
3.1. The base method

The projection method of Bell et al. neglects the viscous term in
(18), so that

wit = ul, - aVe. (20)

To determine an equation for ¢, we consider the pressure cell shaded
grey in Fig. 4(a), on which we discretize the continuity Eq. (3) as

un+1 _ un+] Un+l _ U'f+1

e — w + n dys =0. [©1))

Substituting Eq. (20) into the discretized continuity equation
produces

1 [k —u v =0t
Vz -2 e w + n s , 29
i a dx dy @2

which is the well-known discretized Poisson equation V2¢ = (V - u*) /a.

Choosing boundary conditions for ¢ is a topic of considerable dis-
cussion [4-6,49,53]. Suppose we wish to apply the Dirichlet condition
! = u, on the boundary sketched in Fig. 4(b). It is now well
established in the literature [3-5] that we can begin by applying u* =
u, when solving for the intermediate velocity. Eq. (20) then requires us
to set ¢ = ¢p in Fig. 4(b) to ensure that v"*! = v,. This is equivalent
to applying d¢/dy = 0 on the lower boundary. In summary, Dirichlet
conditions are applied by setting

u*=u, n-Vé=0, (23)

where n is the unit normal to the boundary.

To apply the Darcy membrane condition, we begin each time step
by solving the advection—diffusion Eq. (4) for the concentration field
¢"*1. We then apply the membrane condition to v* in Fig. 4(b) as

" 3 1
U;:—K(Ep';,—zp’;v—Ac;H), (24)

using p" because p"*! is still unknown. To determine the required
membrane condition for ¢, we subtract condition (24) from the desired
membrane condition for v?“

3 1
U§'+1 = —x (Epr;)+1 _ zpr;\}i-l _ Ac:«ﬂ+1 ) . (25)
With the help of Eq. (20), this produces the following boundary condi-
tion for ¢"*!,

205 (S0 i) o
This is equivalent to the Robin condition d¢/dy — (x/a)¢ = 0. Though
this condition can be derived in a continuous sense, the discrete deriva-
tion explains that d¢/dy must be approximated using a centred dif-
ference, while (x/a)¢p must be extrapolated. Note that when « = 0,
condition (26) recovers condition (23) for an impermeable wall.
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To explore the accuracy of the base method, we consider the man-
ufactured solution,

u, = sin(x) cos(y) cos(wt),

v, = —cos(x) sin(y) cos(wt) — k sin(x) cos(wr), 27)

p. = sin(x) sin(y) cos(wt) + sin(x) cos(wt),

¢, = cos(x) cos(y) cos(wt),

in the domain (x,y) € (0,2x) X (0,2x), with a membrane on the lower
boundary (y = 0). Solution (27) satisfies the governing equations (2)—
(4) and membrane boundary conditions (7)—(8) with the addition of
appropriate forcing terms b, ¢, s, and y. The solution is steady when
® = 0 and unsteady otherwise. On the left (x = 0) and right (x = 2x)
boundaries, we apply u = u, and ¢ = ¢,. On the top boundary, we apply
u=u, and dc/dy = dc,/dy.

We test the spatial accuracy by setting w = 0 and integrating from

w’ = p° = ¥ = 0 to steady-state using N finite-volumes in each

direction. We then measure the relative error of each field as,

Erry = e~ Inlls. 28
I fello

where f, and fy are the exact and numerical solutions, respectively.
We found that the base method is spatially second-order accurate for
all variables. The results are not shown for brevity.

We test the temporal accuracy by setting w = 2z and integrating
from ¢ = 0 to ¢ = 1 using exact initial conditions. To isolate the temporal
error, we use the approach of Karam et al. [54]. We first calculate a
reference solution f,,, for which the temporal error is negligible in
comparison to the spatial error. For that, we use the small time step
At = 1075, We then define the temporal error as

E ”ft_fref”oo
rr, = ——————,
! ”fref”co

where f, is the solution using the larger time step 4r > 107> and the
same spatial resolution as f,,,. This definition of Err, removes the
spatial error and isolates the temporal error.

We evaluate the temporal accuracy for the permeances x = 0,0.001,
and 0.01, such that the simulated velocity through the membrane is
0%,0.1%, or 1% of the maximum velocity. These produce challenging
test cases compared to traditional RO systems for which the transmem-
brane velocity is typically five orders of magnitude smaller than the
inlet feed velocity. When « = 0, there is no coupling between the
pressure and the velocity, and we found that the velocity maintains
second-order accuracy in time. When x is non-zero, however, the
temporal accuracy of the base method is less than second-order for all
variables. Fig. 5(a) shows that when « = 0.01, the error for v, p, and
¢ is second-order for large Ar (shaded grey), but then deviates as At
decreases. The error for u is not shown because it is indistinguishable
from that for v. The order of accuracy for velocity decreases to approx-
imately 1.17, while that for ¢ tends to roughly 1.5. The decrease in
temporal accuracy is observed for ¥ = 0.001 as well, and persists when
osmotic pressure effects are removed by setting A = 0. This leaves the
coupling between v,, and p,, as the likely culprit.

(29)

3.2. The improved method

We hypothesize that the deviation from second-order temporal ac-
curacy of the base method occurs due to the viscous term V7 (w5 —u3,)
that was neglected in Eq. (18). This hypothesis is motivated by the
projection method of Kim and Moin [47], which neglects p" when
computing u*. In that case, several studies [4,5,47] have shown that
neglecting the viscous term in Eq. (18) generates errors in the pressure
field, particularly near the domain boundaries. These errors can be
mitigated by either using p” when computing u*, as in Bell et al. [3],
or by including the viscous term in Eq. (18), as in Kim and Moin [47].
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Fig. 5. Temporal accuracy of the (a) base method and (b) improved method when K = 0.01.

To explore our hypothesis, we include the viscous term by defining
a new auxiliary variable ¢ such that

P = =g - auV?. (30
It can be shown that u;’}“ and uj are then related by
uZ+1 =u’ - avd$p, 31)

where $ satisfies the same Poisson Eq. (22) as ¢. In summary, our
improved method uses p" when computing u*, as in Bell et al. [3],
but uses the definition of ¢ similar to Kim and Moin [47]. We apply
Dirichlet conditions as in Bell et al. [3], by applying

n-vé=0. (32)

ut =u,,

Note that this differs from the method of Kim and Moin [47]. Repeating
our derivation of the membrane condition, it can be shown that ¢ must
satisfy the condition

$p - $S K (3~ 1~ 304 124

T C U DR C A2 R 33)
where the subscripts denote the node location labelled in Fig. 4(b). A
detailed derivation is provided in Appendix C. Though initial versions
of our code used condition (33), subsequent versions used the Poisson
Eq. (22) to express the condition more simply as

1
2

b, — &, ST
pdys Z(3 1 ) Kﬂ<3

e SVup—3Vuy ). (34)
which is equivalent to the Robin condition d¢/dy—(x/a)d = —(xu/®)V,-
u*.

Repeating the benchmarking procedure outlined in Section 3.1, we

find that the spatial and temporal accuracy of the improved method

are both second-order. The temporal results for k = 0.01 are shown
in Fig. 5(b). This confirms our hypothesis that neglecting the viscous
terms in Eq. (18) lowers the temporal accuracy of the base method.

4. Application of outlet conditions

To explore the application of outlet conditions, we consider a bench-
scale RO system of height # = 1 mm and length L = 10 cm without
a feed spacer. We set the inlet feed concentration to C;, = 1 g/1 of
NaCl, and the outlet pressure to P,, = 20 bar. We consider the typical
membrane permeance x = 2.5x107!2 ms~1Pa~! [7]. The inlet velocity is
varied to consider Reynolds numbers between 50 < Re < 500, for which
the system converges to a steady-state. To allow flow perturbations
to exit the domain, we apply the convective conditions (6). Though
not always discussed in prior literature, these are often discretized
explicitly in time as
fn+1 _ fn ) fn

I~/ .y,
At " ox

0.

This allows the outlet conditions for u”*! to be expressed as equivalent
Dirichlet conditions. The resulting outlet profile for «"*!, however, must
be rescaled to ensure mass conservation. This approach is not possible
for RO, because the permeate mass flow is not known a-priori. We
consequently use the procedure of Lou et al. [41] that discretizes the
outlet condition implicitly as

fn+] — fn afn+l
U; =0.
At Yo% (35)

This produces a Robin condition that is applied to u* as in Eq. (15).



J. Johnston et al.

To fix the outlet pressure using the base method, we apply the
following outlet condition to ¢,

¢ ) (36)

x= x=L
which follows from Eq. (19). Using the nodes labelled in Fig. 6(a), this
is discretized as

Pw + ¢ u
¢ = %
x=L

=Paut_pn

3

1 — —ph
L 3Pw T 3Pww-

Note again that we must extrapolate p" . When using the improved

. . X= . e e
method, we fix the outlet pressure using the following outlet condition
for [ﬁ,

|- anid| = Pu-v| . @7)

x=L

which follows from Eq. (30). Here, Viq’; must be extrapolated from the
interior of the domain. In a similar fashion to Eq. (34), we use the
Poisson Eq. (22) to express the outlet condition as

(3% - 2wy ). (38)
The combination of outlet conditions (35)-(36) was previously studied
by Lou et al. [41], who showed they conserve mass to machine preci-
sion while allowing flow structures to exit the domain. As reported by
Lou et al. [41], we also found that flow perturbations exit the domain
more cleanly when we discretize the advection terms in Eq. (13) using
a “minmod” TVD scheme. We refer to [41] and [55] for details.

To explore the performance of outlet conditions (33)-(35), we first
perform a series of mesh-independence studies. For that purpose, we set
the number of cells in the y-direction to N, = 200 and vary the number
of cells in the x-direction between 32 < N, < 768. For each N, we run
the simulation to steady state and compute the spatial error

Ifn, = freslloo

=T el

where fy is the solution using N, cells. The spatial error in the y-
direction is similarly calculated by setting N, = 400 and varying N,
between 32 < N, < 512. We find that mass is well conserved in all
cases, such that V, -u was on the order of 10~!2. We find that the error
is second-order for all variables except for ¢, which shows roughly first-
order accuracy. Similar results were obtained for the error with N,.
Further investigation showed that the errors were maximized near the
channel inlet and outlet. Fig. 6(b) shows that if we exclude 1% of the
domain length at the inlet and outlet in the computation of Ey_, we
recover second-order accuracy for all variables. Though not shown here
for brevity, we also explored the impact of outlet conditions on spatial—
temporal accuracy by repeating the benchmarking procedure outlined
in Section 3.1. For that purpose, the exact velocity u, was applied to
u* on all boundaries during prediction; however, the pressure was fixed
to p, on the right boundary (x = 2x) using Eq. (38). For consistency,
we also discretized all advection terms using the minmod TVD scheme.
The results showed second-order spatial-temporal accuracy.

The sensitivity of RO systems to inlet and outlet conditions is
relatively well documented [56-58]. As suggested by Tilton et al. [56],
we explored the application of “permeability buffers” in which the
membrane permeance is smoothly ramped down to zero at the inlet
and outlet. We found this method recovered second-order accuracy.
However, given that this approach consumes more than 1% of the
system length at the inlet and outlet, we decided they were not war-
ranted. In addition to the tests reported here, further tests found that
the outlet conditions performed well in the presence of a feed spacer,
as demonstrated in Appendix E.

=P

n
out — P
x=L

¢

x=L

N (39)

5. Reverse osmosis with a feed spacer

We now use our numerical method to explore transition to vortex
shedding in a 2D plate-and-frame RO system with a single spacer
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filament. We consider a system of height » = 1 mm and length L =
12 cm. We place a filament of diameter D, = 0.5 mm (4/2) on the
channel centre-line (y, = //2) a distance of 5 diameters from the inlet
(x, = 5D,). We set the inlet concentration, membrane permeance, and
operating pressure to C;, = 35 g/l NaCl, « = 2.5 x 1072 ms~'Pa~1, and
P,,, = 40 bar, which is typical of seawater RO. We vary the Reynolds
number Re = pU,,h/u between 50 < Re < 350 to capture both steady
and unsteady laminar flow regimes. For comparison, simulations are
repeated both with and without spacers. Transition to vortex shedding
occurred at Re = 170 + 2. This compares well with the critical Reynold
numbers predicted by a theoretical study of flow over a cylinder in a
channel with impermeable walls [42].

Fig. 7 shows steady-state results for the sub-critical Reynolds num-
ber Re = 50 (U, = 4.6 x 1072 m/s). The streamlines in panel (a)
show a pair of counter-rotating vortices in the cylinder wake. Panel
(b) shows the concentration field near the membrane, y/h < O0.1.
The concentration is equal to the inlet value C,;, everywhere except
in a thin boundary layer near the membrane. The dashed white line
shows the concentration boundary layer thickness, 6(x), at which ¢ =
1.002C;,. The filament redirects and accelerates low concentration bulk
fluid towards the membrane surface, compressing the boundary layer
beneath the filament. Panel (c) shows the downstream variation of the
concentration on the membrane, C, (x), normalized with C;,. Panel
(d) shows the local permeate flux v,(x), normalized with U;,. We
define v,, as positive when permeate leaves the channel. The dashed
lines show the corresponding results without a spacer. We see that the
spacer has a strong influence one diameter upstream and 6-7 diameters
downstream. C,, has a local minimum beneath the filament and then
slowly tends downstream to the result observed without the spacer.
Note that spatial variations in the pressure field p were found to be less
than 0.01% of P,,. The variations in v,,(x) in Fig. 7(d) consequently
arise due to osmotic pressure effects.

Fig. 8 shows results for the super-critical case Re = 300 (U;, =
0.276 m/s). Panels (a) and (b) show snapshots of the instantaneous
streamlines and vorticity @ = dv/dx — du/dv, respectively. Instability
causes periodic shedding of vortices in the filament wake. The vortices
then dissipate as they are advected downstream. Though w varies
between roughly —33000 < @ < 33000 s—!, we set the limits of
the colour scale in Fig. 8(b) to —2000 < w < 2000 s~! to better
highlight these vortical structures. The streamlines in panel (a) also
show the appearance of vortical structures on the membrane and outer
plate. These structures periodically appear near x/h = 3.5, travel
downstream, and dissipate near x/h = 4.5. Panel (c) shows a snapshot
of the concentration field near the membrane, y/h < 0.1. Panels (d)
and (e) show the corresponding membrane concentration C,,(x)/C;,
and permeate flux v,,(x)/U,,, respectively. As observed for Re = 50,
the filament redirects low concentration fluid towards the membrane,
decreasing polarization below the spacer. Downstream, however, we
observe localized solute accumulation on the membrane near x/h = 3.5.
This occurs in the region over which the vortical structure travels
along the membrane. Fig. 9 shows four sequential snapshots of the
concentration field and streamlines in the region of solute accumula-
tion. These suggest that solute accumulation occurs due to flow reversal
beneath the travelling vortex, which advects solutes upstream. The
mechanism can be explained using the points labelled a — d in the
snapshot labelled #;. As feed flows downstream from point a to point
b, its concentration increases as solvent passes through the membrane.
Similarly, flow moving upstream from point ¢ to point d also increases
in concentration. The concentration consequently tends to accumulate
near the leading edge of the vortex.

Fig. 8(f) shows the downstream variation of the membrane feed
surface pressure p,, for Re = 300. Results are shown both with (solid
line) and without (dashed line) the spacer filament. Overall, we see that
for a single filament in a short system, downstream pressure variations
are small. This lends support to CFD studies in the membrane filtration
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Fig. 7. Results when Re = 50. For convenience, we present the position as both x/h and x/D,. (a) Streamlines. (b) Concentration field near membrane, y/h < 0.1. The dashed
white line shows the concentration boundary layer. (c) Concentration on the membrane with spacer (solid line) and without (dashed line). (d) Permeate flux v, /U,, with spacer

(solid line) and without (dashed line).

community that approximate the membrane condition (1) as

-p, -1 ]

to remove the coupling of v,, to the local pressure field. For realistic
RO systems with tightly packed filaments, and a system length near
1 metre, this assumption remains to be explored.

Fig. 10 shows the variation of the average permeate flux j, and

maximum concentration C,,,, with Reynolds number, where

P,

Um:K[ out

Sh
=5 ;

These are computed for the region 0 < x/h < 5 to focus on the
near-spacer region. Results are shown with the spacer (solid lines) and
without (dashed lines). For the parameters considered in this study,
we find that the average flux increases monotonically with Reynolds
number, and the filament increases permeate production by roughly
2%. When no spacer is present, the maximum concentration decreases
monotonically with Reynolds number. When the spacer is present, how-

ever, C,,. initially decreases for sub-critical Reynolds numbers, and

Jo Uly=gdx.

then increases after transition to vortex shedding. Similar behaviour
is seen in simulations of spacer filaments in direct contact membrane
distillation. In that case, Lou et al. [41] suggest there might be a trade
off between increasing permeate production and increased risk of salt
precipitation.

6. Conclusions

We showed that the temporal accuracy of the popular projection
method of Bell et al. [3] drops to first order when simulating reverse
osmosis systems. The drop in accuracy occurs due to the coupling
between the velocity and the pressure fields in the membrane bound-
ary conditions, which causes errors in the pressure field to pollute
the velocity field. We showed, however, that second-order accuracy
can be recovered using a modified intermediate variable ¢, as shown
in Eq. (30). In addition to the unique coupling between the velocity and
pressure fields, RO systems present further challenges at the inlet and
outlet. To that end, we showed the improved projection method can
accommodate outlet conditions that fix the operating pressure while
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Fig. 8. Results when Re = 300. (a) Instantaneous streamlines. (b) Instantaneous vorticity. (c) Instantaneous concentration field near membrane. The dashed white line shows the
concentration boundary layer. (d) Concentration on the membrane with spacer (solid line) and without (dashed line). (e) Permeate flux v,,/U,, with spacer (solid line) and without

(dashed line). (f) Membrane pressure p,, with spacer (solid line) and without (dashed line).

allowing flow perturbations to exit the domain, all while satisfying
conservation of mass.

To test our methods, we coupled the improved projection method
with the immersed boundary method of Lou et al. [41] to simulate the
impact of vortex shedding on concentration polarization in a plate-and-
frame RO system with a single spacer filament. Within the limits of
the current study, we showed that in steady flow regimes, the spacer
filament reduces the concentration on the membrane and increases the
permeate production in comparison to when no spacer is present. In
the super-critical regime, we found that the spacer increases permeate
production, but generates a region of preferential solute accumulation
that could lead to mineral scaling. Though beyond the scope of the
current study, we are now performing a parametric study of 2D fil-
ament arrays to explore the impact of vortex shedding for a broad
range of operating conditions and membrane permeances. We are also
expanding our methods to 3D and performing parallel experiments
for comparison. Finally, we note that the current study focuses on
projection methods because they are popular for simulating unsteady,
incompressible flows. Future work may want to similarly investigate
the impact of Darcy-type boundary conditions on the spatial-temporal
accuracy of SIMPLE-type schemes [51,59] or the more recent methods
developed by Griffith and colleagues [60-62].
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Appendix A. Thermophysical properties

The dynamic viscosity u(T,c), density p(T,c), and mass diffusivity
D(c) of the NaCl solution are evaluated using the relationships,

u(T,¢) = A, (T)c* + B,(T)c> + C(T)c? + D, (T)c + E,(T). A.D
A, =-1.63x107"% B, =157x10"", C,=1.04x1077,
D,=135x10"° E,=890x107%.
— 3 2

p(T,c)=A,c”+B,c*+Cpc+ D, (A.2)

— —7 — —4 — —
A,=156x1077, B,=-192x10"*, C,=068, D,=997.

" Ag+ ST Bye
D(c) = 10~ (A.3)
1+ 8% c,c+ Dd(l()()()c)

Ay =1418, B, =1159x10""", C, =850x1072, D, =1.514x10"%,
where M = 5844 g/mol is the molecular weight of NaCl. These

relationships assume 7}, = 25 °C. The correlations for u(T, ¢) and p(T, ¢)
were derived using the OLI Stream Analyzer database (OLI Systems,
Morris Plains, NJ). We obtained the correlation for D(c) from the
Ref. [9].

Appendix B. Discretization on non-uniform grids

To demonstrate our discretization of the governing equations (2)—
(4), consider the x-component of the Navier-Stokes Egs. (2) written in
control volume form as

/ p%dV+/p(u-n)dA:—/p(i~ﬁ)ds+/MVu‘ndA,
cv 0x s s s

where i is the unit vector in the x- direction, n is the unit normal vector
pointing away from the control surface S of the control volume CV
sketched in Fig. B.11(a). We approximate the unsteady and pressure
terms as

(B.1)

oJu
/ p@dV p—dxdy, (B.2)
c

P 5 /Sp(i‘n) =dy(p, = Pw)-

where dx and dy are labelled in Fig. B.11(a). The advection term is
discretized using the “minmod” TVD scheme [55], as detailed in Lou
et al. [41]. Finally, we approximate the viscous terms using Fig. B.11(b)
as,

ou, du, du,, duy
u(Vu-ndA~ py—dy+y—dx — y—dy — y—dx,

s ax dy o0x dy
where the gradients are approximated using centred differences, such

as

(B.3)

% ~ M. (B.4)
0x  XxXp—Xp

We similarly discretize the y-momentum equation using the control
volume sketched in Fig. B.11(b). We then find that Eq. (20) is expressed

in discrete form as

where the subscripts denote the locations labelled in Fig. B.11(a)
and (b). Using the pressure cell in Fig. B.11(c), we discretize the
conservation of mass equation as

(B.5)

n+l _ o n+l n+l _ o+l
U, Uy Un Us

=0. (B.6)

dx dy
Substituting relations (B.5) into the above, we find the discrete Poisson
equation
1 ¢ — ¢p _ bp — Py + L 1
dx dy

<¢N ¢p  bp— ¢s>

Xg—Xp Xp—Xy Yp  Yp~— Vs

(G
a dx dy ’

For the base projection method, we apply the discrete Poisson equa-
tion using ghost nodes on boundary cells, such as that sketched in

(B.7)
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Fig. D.13. Demonstration of grid using N, = 90, N, = 30.

Fig. D.14. Variations of spatial error with N, for u (squares), v (triangles), and ¢
(asterisks). The dashed line shows 1/N2.

Fig. C.12(a). The Neumann conditions for the two boundaries of this
corner cell are then applied as

$p—dbw _ . b5

IPTW _g, TS o

B.
dx dy (B-8)

Appendix C. Membrane boundary conditions

To demonstrate the derivation of the membrane conditions for
¢, consider a grid of uniform spacing dx and dy. Subtracting the
discretized Eq. (17) from (14) it is straightforward to show that

~ 2UAt 5 ~
Pt =ph+ dp — =—Vidp.

3 (Cn

where Vf{ is the discrete Laplacian defined Eq. (12).
To derive the membrane condition for ¢, we first discretize the
membrane conditions for v"*! and v* as

1_ 1 1
vt = K@y + Bpyth) (C.2)

v} = -K(4p} + Bp)) (C.3)

where 4 and B are coefficients used for extrapolation based off of
location of the nodes labelled in Fig. C.12(b). For uniform grids A = 3/2,



J. Johnston et al.

Computers and Fluids 232 (2022) 105189

x/D_

Fig. E.15. Comparison of two simulations of a channel flow with Re =320 and a blockage ratio f = 0.5 using a short (a) and long (b) domain.

B = —1/2. Subtracting (C.3) from (C.2)
vt = v = =K [4G - i) + Byt - p)

and substituting

U';—l _ Ui; = —a ¢x ;y¢xx ,
we find that
)
e = =K [ - ) + BT = p)] - €4
Finally, we can express p"*! — p” in terms of ¢ using Eq. (C.1).
o e R ©5)

ady é’\sw - 2(2;5 + (z;se + $ss — 2$s + $n
dx? dy?

B — 20, + B, b, — 26, + b,
+aBM[¢nw u+ Gne | b =20 %]_

dx? dy?

Once again, we can use Eq. (22) to replace the Laplacian term. The

boundary condition for ¢ using the base projection method is the same

as in Eq. (C.5) except the viscous terms are set to zero

_o ¢s - ¢ss
K dy

Repeating this derivation on a non-uniform grid, one can show that

the discrete Laplace operators on the right hand side of Eq. (C.5) are
replaced with the Laplace operator demonstrated in Eq. (B.7).

=—id, — B, (C.6)

Appendix D. Grid independence studies

Our simulations of RO systems concentrate cells near the membrane
and outer wall by setting the y-coordinates of the horizontal faces to

¥i = (h/2)(1 +cos(xi/N,)), i=0,1,....N,,

, (D.1)

which are the Gauss-Lobatto-Chebyshev points mapped to interval
y € [0, h]. Simulations without spacers use N, equispaced cells in the
x-direction. Simulations with spacers refine the grid near the cylinder
by decomposing the x-direction into three sections, as demonstrated in
Fig. D.13. The core section, L,, begins one cylinder diameter upstream
of the cylinder centre and ends two cylinder diameters downstream
of the cylinder centre. This section has N, equispaced cells in the
x-direction. For the purposes of this study N, = N,. For the other
sections, Ny and N; are determined such that Ny + N, + N; = N, and

12

that the cells in the first and third sections each share the same cell size
in the x-direction. The sharp transition in cell sizes is then smoothed by
looping through each point and setting its x value to be the average of
its two neighbours in the x-direction. This process is repeated 20 times
for the grid in Fig. D.13.

To demonstrate our mesh independence studies, we consider here
the simulation shown in Fig. 7, for which the flow fields can be
integrated to steady state. We fix the ratio N,/N, = 3 and vary N,
and N, between 180 < N, < 600 and 60 < N, < 200, respectively.
Simulations were run to steady-state, after which the spatial error,
ERRy, was evaluated using the result at (N,, N,) = (600,200) as the
exact solution. Fig. D.14 shows the error is below 1% when N, > 300.

Appendix E. Outlet study with feed spacer

To gauge how well the outlet conditions perform when vortical
flow structures are present, we considered flow over a cylinder in a
planar channel flow. Fig. E.15 shows two simulations performed for
Re = 320 and blockage ratio p = 0.5 with the cylinder located closer
to the upper wall. Zovatto and Pedrizzetti [63] have shown that the
asymmetry stabilizes vortex shedding and produces elongated vortical
structures behind the cylinder and along the upper wall. The cylinder
is placed three diameters downstream of the inlet. Fig. E.15(a) shows
a simulation using L, = 3.5 mm such that the outlet cuts through the
vortex. Panel (b) shows the simulation using L, = 6 mm. Comparison
of the streamlines shows minimal upstream influence of the outlet
conditions.
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