No-Regret Caching via Online Mirror Descent

TAREQ SI SALEM?, Inria, Université Cote d’Azur, France
GIOVANNI NEGLIA®, Inria, Université Cote d’Azur, France
STRATIS IOANNIDIS", Northeastern University, USA

We study an online caching problem in which requests can be served by a local cache to avoid retrieval costs
from a remote server. The cache can update its state after a batch of requests and store an arbitrarily small
fraction of each file. We study no-regret algorithms based on Online Mirror Descent (OMD) strategies. We
show that bounds for the regret crucially depend on the diversity of the request process, provided by the
diversity ratio R/h, where R is the size of the batch, and A is the maximum multiplicity of a request in a given
batch. We characterize the optimality of OMD caching policies w.r.t. regret under different diversity regimes.
We also prove that, when the cache must store the entire file, rather than a fraction, OMD strategies can be
coupled with a randomized rounding scheme that preserves regret guarantees, even when update costs cannot
be neglected. We provide a formal characterization of the rounding problem through optimal transport theory,
and moreover we propose a computationally efficient randomized rounding scheme.

CCS Concepts: « Theory of computation — Caching and paging algorithms.
Additional Key Words and Phrases: Randomized algorithms, Gradient methods, Adversarial analysis

ACM Reference Format:

Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. 2023. No-Regret Caching via Online Mirror Descent.
ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 1, Article 1 (January 2023), 30 pages. https://doi.org/10.1145/
3605209

1 INTRODUCTION

Caches are deployed at many different levels in computer systems: from CPU hardware caches to
operating system memory caches, from application caches at clients to CDN caches deployed as
physical servers in the network or as cloud services like Amazon’s ElastiCache [3]. They aim to
provide faster service to the user and/or to reduce the computation/communication load on other
system elements, like hard disks, file servers, etc.

The ubiquity of caches has motivated extensive research on the performance of existing caching
policies, as well as on the design of new policies with provable guarantees. To that end, most prior
work has assumed that caches serve requests generated according to a stochastic process, ranging
from the simple, memory-less independent reference model [17] to more complex models trying to
capture temporal locality effects and time-varying popularities (e.g., the shot-noise model [58]). An
alternative modeling approach is to consider an adversarial setting. Assuming that the sequence of
requests is generated by an adversary, an online caching policy can be compared to the optimal
offline policy that views the sequence of requests in advance. Caching was indeed one of the
first problems studied by Sleator and Tarjan in the context of the competitive analysis of online

Authors’ addresses: Tareq Si Salem, tareq.si-salem@inria.fr, tareq.si-salem@inria.fr, Inria, Université Cote d’Azur, Sophia
Antipolis, France; Giovanni Neglia, giovanni.neglia@inria.fr, giovanni.neglia@inria.fr, Inria, Université Cote d’Azur, Sophia
Antipolis, France; Stratis Ioannidis, ioannidis@ece.neu.edu, ioannidis@ece.neu.edu, Northeastern University, Boston, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2376-3639/2023/1-ART1 $15.00

https://doi.org/10.1145/3605209

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3605209
https://doi.org/10.1145/3605209
https://doi.org/10.1145/3605209

1:2 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

algorithms [57]. In competitive analysis, the metric of interest is the competitive ratio, i.e., the
worst-case ratio between the costs incurred by the online algorithm and the optimal offline dynamic
algorithm. This line of work led to the study of metrical task systems [9], a popular research area
in the algorithms community [34].

Recently, Paschos et al. [48, 49] proposed studying caching as an online convex optimization
(OCO) problem [26]. OCO considers again an adversarial setting, but the metric of interest is the
regret, i.e., the difference between the costs incurred over a time horizon T by the algorithm and by
the optimal offline static solution. Online algorithms whose regret grows sublinearly with T are
called no-regret algorithms, as their time-average regret becomes negligible for large T. Paschos
et al. proposed a no-regret caching policy based on the classic online gradient descent method
(OGD), under the assumption that (1) the cache can store arbitrarily small fractions of each file (the
so-called fractional setting), and (2) the cache state is updated after each request.

In this paper, we extend and generalize the analysis of Paschos et al. in three different directions:

(1) We assume the cache can update its state after processing a batch of R > 1 requests. This is
of interest both in high-demand settings, as well as in cases when updates are infrequent,
because they are costly w.r.t. either computation or communication.

(2) We consider a family of caching policies based on online mirror descent (OMD); OGD,
employed by Paschos et al., is a special instance of this family.

(3) We also depart from the fractional setting, extending our analysis to the case when the cache
can only store entire files (the integral setting).

Batching is a generalization from the point of view of the practical application to caching: online
algorithms applied to caching have considered until now a single request R = 1 [7, 42, 47, 49],
whereas in this work, we consider a more general operation, and we recover the basic one for R = 1.
In particular, OCO learning algorithms applied to caching suffer from a time complexity that is
dependent on the catalog size [26], which can be extremely large. Therefore, despite their theoretical
guarantees, their computational overhead is difficult to justify if requests are processed individually,
especially when cache updates are costly and can then occur only sporadically. However, this
difficulty can be overcome through batching, where a batch includes the requests arriving between
two consecutive cache updates. Batching amortizes the computational cost of the different policies,
reducing the cost per request by the batch size R. Moreover, the batch size R could simply be a
characteristic of the caching system instead of being a design choice.

Our contributions are summarized as follows. First, applying the analysis of OMD by Bubeck [11]

to the caching setting, we show that the O (\/T) regret of OGD observed by Paschos et al. in

the fractional setting extends to general OMD caching policies. We also show that constants in
regret bounds depend on the diversity of the request process. In particular, the regret depends on
the diversity ratio R/h, where R is the size of the batch, and h is the maximum multiplicity of a
request in a given batch. Second, we characterize the optimality of OMD caching policies w.r.t.
regret under different diversity regimes. We observe that, for a large region of possible values of
the diversity ratio, the optimum is either OGD or OMD with a neg-entropy mirror map (OMDNg).
In particular, OGD is optimal in the low diversity regime, while OMDxyg is optimal in the high
diversity regime. Third, OMD algorithms include a gradient update followed by a projection to
guarantee that the new solution is in the feasible set (e.g., it does not violate the cache capacity
constraints). The projection is often the most computationally expensive step of the algorithm. We
show that efficient polynomial algorithms exist both for OGD (slightly improving the algorithm
in [49]) and for OMDxg. Finally, OMD algorithms work in a continuous space, and are therefore
well-suited for the fractional setting originally studied by Paschos et al. Still, we show that, if
coupled with opportune rounding techniques, they can also be used when the cache can only

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:3

store a file in its entirety, while preserving their regret guarantees. To the best of our knowledge,
this is the first paper to provide a formal characterization of the randomized rounding problem
in caching, wherein the objective is to maintain the regret guarantees for the expected service
cost, while minimizing the update costs. This characterization casts the rounding problem as an
optimal transport problem in Sec. 6.1. Moreover, we further prove that an opportune modification
of Madow’s sampling [8, 28, 39, 47] enables to guarantee sublinear expected update costs.

The remainder of this paper is organized as follows. After an overview of the related work in
Sec. 2, we introduce our model assumptions in Sec. 3 and provide technical background on gradient
algorithms in Sec. 4. Section 4.3 presents our main results on the regret of OMD caching policies
and their computational complexity. A discussion about extending the model to include cache
update costs, in Sec. 5, is required to introduce the integral setting in Sec. 6. Finally, numerical
results are presented in Sec. 7.

2 RELATED WORK

The caching problem has been extensively studied in the literature under different assumptions on
the request process. When the requests occur according to a given stochastic process, the analysis
leads usually to complex formulas even in simple settings. For example, even the hit ratio of a
single cache managed by the LRU eviction policy under the independent reference model is hard to
precisely characterize [20, 32]. The characteristic time approximation (often referred to as Che’s
approximation) significantly simplifies this analysis by assuming that a file, in absence of additional
requests for it, stays in the cache for a random time sampled independently from requests for other
files. Proposed by Fagin [19] and rediscovered and popularized by Che et al. [14], the approximation
has been justified formally by several works [22, 29, 30] and has allowed the study of a large number
of existing [23] and new [24, 35] caching policies. It also applies to networked settings [1, 6, 16, 21]
and to more general utilities beyond the hit ratio [18, 44], all under stochastic requests.

Online caching policies based on gradient methods have also been studied in the stochastic
request setting, leading to Robbins-Monro/stochastic approximation algorithms (see, e.g., [27, 28]).
Though related to OCO, guarantees are very different than the regret metric we study here. Many
works have also explored the offline, network-wide static allocation of files, presuming demand is
known [10, 51, 55]. We differ from the work above, as we consider adversarial requests.

Caching under adversarial requests has been studied since Sleator and Tarjan’s seminal paper [57]
through the competitive ratio metric. An algorithm is said to be a-competitive when its competitive
ratio is bounded by « over all possible input sequences. The problem has been generalized by
Manasse et al. [40] under the name k-server problem, and further generalized by Borodin et al. under
the name metrical task systems (MTS) [9]. The literature on both the k-server and MTS problems is
vast. A recent trend is to apply continuous optimization techniques to solve these combinatorial
problems. Bansal et al. [4] study the k-server problem on a weighted star metric space. In the
same spirit, Bubeck et al. [12] use the framework of continuous online mirror descent to provide
an o(k)-competitive algorithm for the k-server problem on hierarchically separated trees. In this
paper, we focus on regret rather than competitive ratio as the main performance metric. Andrew
et al. [2] give a formal comparison between competitive ratio and regret and prove that there is
an intrinsic incompatibility between the two: no algorithm can have both sub-linear regret and a
constant competitive ratio. At the same time, they propose an algorithm with sub-linear regret and
slowly increasing competitive ratio.

Online convex optimization (OCO) was first proposed by Zinkevich [60], who showed that
projected gradient descent attains sublinear regret bounds in the online setting. OCO generalizes
previous online problems like the experts problem [38], and has become widely influential in
the learning community [26, 53]. To the best of our knowledge, Paschos et al. [48, 49] were the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

Notational Conventions Rrn Set of possible adversarial requests
[n] Set of integers {1, 2,..., n} r: Batch of request at timeslot #
Caching fre Cost received at timeslot #
N Catalog set with size |[N| = N UGy, Update cost of the cache at timeslot ¢
k Cache capacity w/w Service / update costs in RY
X Set of fractional cache states Online Learning
Xs=XN[8,1]N The S-interior of X T The time horizon
Z=Xn{0,1}N Setof integral cache states n Learning rate
Xt Fractional cache state at timeslot ¢ UCr, (x4,x+1) Update cost at timeslot ¢
4 Integral cache state at timeslot # Regretr (\A) Regret of policy A over T
z; Random integral cache state at timeslot ¢ | E-Regret; (A, E) Extended regret of policy A over T
X Optimal cache allocation in hindsight D(x) Mirror map
R Number of files’ requests in a batch Do (x,y) Bregman divergence associated to ¢
h Maximum multiplicity of a requested file H% (y) The projection onto B under Dy

Table 1. Notation Summary

first to apply the OCO framework to caching. Besides proposing OGD for the single cache, they
extended it to a simple networked scenario, where users have access to a set of parallel caches
that store pseudo-random linear combinations of the files. They proposed no-regret algorithms
in both settings. Bhattacharjee et al. [7] extended this work proving tighter lower bounds for
the regret and proposing new caching policies for the networked setting that do not require file
coding; Mukhopadhyay and Sinha [42] accounted for switching costs due to file retrievals. Our
work drops assumption A2 and A6 stated by Bhattacharjee et al. [7] under both fractional and
integral caching settings, because we account for the update cost associated to changing the cache
state, and moreover, we permit in our caching model to have multiple requests be processed in a
single timeslot R > 1. In particular, in Sec. 4, only assumptions A3-A5 are needed for the proposed
algorithms OGD and OMDyg, and in Sec. 6, we also require assumption Al, i.e., the cache can
fetch files that are not necessarily requested in the previous timeslot. Paria and Sinha [47] studied
integral caching over bipartite network topologies. They employ a randomized rounding scheme
(Madow’s sampling [39]) which is also the starting point for our rounding scheme (Online Rounding
in Alg. 3), however, they only provide update cost guarantees under a strong stochastic regularity
assumption over the request process. In this work, an opportune modification of the Madow’s
sampling scheme, motivated by an optimal transport [50] formulation of the randomized rounding
problem, guarantees sublinear update cost even under adversarial requests. Li et al. [36], building
on our proposed randomized rounding scheme, studied integral caching networks under arbitrary
topology and adversarial requests. We depart from these works in considering OMD algorithms, a
more general request process, and allowing for integral cache states obtained through randomized
rounding.

This work is an extension of our previous work [56]. In particular, (1) we analyze and derive
regret bounds for a family of OMD algorithms (g-norm mirror maps), and (2) we extend our analysis
to the integral caching setting.

3 SYSTEM DESCRIPTION

Remote Service and Local Cache. We consider a system in which requests for files are served
either remotely or by an intermediate cache of finite capacity; a cache miss incurs a file-dependent
remote retrieval cost. Formally, we consider a sequence of requests for files of equal size from a
catalog N = {1,2,..., N}. These requests can be served by a remote server at cost w; € R, per
request for file i € N. This cost could be, e.g., an actual monetary cost for using the network
infrastructure, or a quality of service cost incurred due to fetching latency. Costs may vary across
files, as each file may be stored at a different remote location. We denote by w = [w;];cn € RY the
vector of costs and assume that w is known.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:5

A local cache of finite capacity is placed in between the source of requests and the remote

server(s). The local cache’s role is to reduce the costs incurred by satisfying requests locally. We
denote by k € {1,2,..., N} the capacity of the cache. The cache is allowed to store fractions of
files (this assumption will be removed in Sec. 6). We assume that time is slotted, and denote by
x:; € [0,1] the fraction of file i € N stored in the cache at timeslot t € {1,2,...,T}. The cache
state is then given by vector x; = [x:;]iep € X, where X is the capped simplex determined by the
capacity constraint, i.e., X = {x e o, 1]V : fil X = k}.
Requests. We assume that a batch of multiple requests may arrive within a single timeslot. The
number of requests (i.e., the batch size) at each timeslot is given by R € N. A file may be requested
multiple times (e.g., by different users, whose aggregated requests form the stream reaching the
cache) within a single timeslot. We denote by r;; € N the multiplicity of file i € N, i.e., the number
of requests for i, at time t, and by r, = [r;];cpy € NV the vector of such requests, representing
the entire batch. We also assume that the maximum multiplicity of a file in a batch is bounded by
h € N. As a result, r; belongs to set Ry, = {r e{0,....,n}N: fil ri = R} .

Intuitively, the ratio % defines the diversity of request batches in a timeslot. For example, when
% = 1, all R requests are concentrated on a single file. When }—; = N, requests are spread evenly
across the catalog N. In general, % is a lower bound for the number of distinct files requested in
the batch. For that reason, we refer to % as the diversity ratio.! We note that our request model
generalizes the setting by Paschos et al. [49], which can be seen as the case R = h = 1, i.e., the batch
contains only one request per timeslot. We make no additional assumptions on the request arrival
process; put differently, we operate in the adversarial online setting, where a potential adversary
may select an arbitrary request sequence {rt}tT:1 in Rgp to increase system costs.

Service Cost Objective. When a request batch r; arrives, the cache incurs the following cost:

fr. (x:) = Zf\il wirsi(1— Xz;). (1)

In other words, for each file i € N, the system pays a cost proportional to the file fraction (1 — x ;)
missing from the local cache, weighted by the file cost w; and by the number of times r;; file i is
requested in the current batch r;.

The cost objective (1) captures several possible real-life settings. First, it can be interpreted as a

QoS cost paid by each user for the additional delay to retrieve part of the file from the server. Second,
assuming that the R requests arrive and are served individually (e.g., because they are spread-out
within a timeslot), Eq. (1) can represent the load on the servers or on the network to provide the
missing part of the requested files. Our model also applies when all requests for the same file are
aggregated and served simultaneously by a single fetch operation. In this case, r;; in Eq. (1) should
be interpreted as the indicator variable denoting if file i was requested; correspondingly, R then
indicates the total number of distinct files requested, and h = 1.
Online Caching Algorithms and Regret. Cache files are determined online as follows. The
cache has selected a state x; € X at the beginning of a timeslot.? The request batch r; arrives, and
the linear cost f;, (x;) is incurred; the state is subsequently updated to x;,;. Formally, the cache
state is determined by an online policy (A, i.e., a sequence of mappings {?{t}fz‘ll, where for every
t>1, A : (Rrp x X)! — X maps the sequence of past request batches and decisions {(rs,x;)}:_,
to the next state x;,; € X. We assume that the policy starts from a feasible state x; € X.

I This definition of diversity is consistent with other notions of diversity, such as, e.g., the entropy; indeed the diversity
ratio provides a lower bound on the entropy of the normalized batch vector 7%, as E (7£) > lo R 37, Lemma 3], where
p Py R R g\ n

E(p) = - 2; pilog(p;) is the entropy function.
2We neglect the cost associated with the initial population of the cache since it is a fixed one-time cost.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

We measure the performance of an online algorithm (A in terms of regret, i.e., the difference
between the total cost experienced by a policy A over a time horizon T and that of the best static
state x, in hindsight. Formally,

Regret;(A)= sup {Xi f,(x) = 20, f, (x)}, ()

{rira,...r:} Eﬂg‘h

where x, = argmin, .y S I, f,(x) is the optimal static cache state (in hindsight). Note that, by
taking the supremum in Eq. (2), we indeed measure regret in the adversarial setting, i.e., against an
adversary that potentially picks requests in Ry, trying to jeopardize cache performance.
Update Costs. An online algorithm A updating the cache state at timeslot t may require moving a
portion of a file from a remote server to the cache to implement this update. The update cost of the
online algorithm is not explicitly modeled in our cost and regret (Egs. (1) and (2), respectively). We
postpone the discussion of such cost in Sec. 5. For the moment we observe that updates come “for
free” for files requested in the current timeslot. The main algorithms studied in this paper (OGD
and OMDyg) implement cache updates by fetching parts of files that have been requested in the
previous timeslot. As a result, to implement these updates we can piggyback the traffic created to
serve the user, and the cost of this traffic is already accounted for in our service cost model (1). As
a result, the update cost is zero (see also Proposition 5.1). We note that this property does not hold
for randomized integral caching policies in Sec. 6, which may require to store files that have not
been requested.

4 FRACTIONAL CACHING AND GRADIENT-BASED ALGORITHMS

Inspired by offline minimization, it is natural to design a policy that, upon seeing r;, selects as x4
the state that would have minimized (on hindsight) the aggregate cost up to time ¢ (i.e., \/_, fro ().
Unfortunately, such a policy has poor regret:

ProPOSITION 4.1. The aggregate cost minimization policy is a policy A that selects for every
timeslot t € [T — 1] the state x;41 = argmin, .y Yb_; fr. (x). This policy has linear (worst-case)
regret, i.e., Regret(A) = Q(T).

The proof follows the same argument of Shalev-Shwartz [53, Example 2.2]. A more conservative
approach, that indeed leads to sublinear regret, is to take gradual steps, moving in the direction of
a better decision according to the latest cost; we present algorithms of this nature in this section.

4.1 Online Gradient Descent (OGD)

In OGD, introduced by Paschos et al. [49] for online caching, the cache is initialized with a feasible
state x; € X and updated as follows. Upon receiving a request batch r;, the cost f;, (x;) is incurred
and the next state becomes:

X1 =Ix (x, -0V, (x;)), forallte[T—1], (3)

where I1x(-) is the Euclidean projection onto X, that ensures feasibility, and n € R, is called
the learning rate. Note that the state x,.; obtained according to Eq. (3) is indeed a function of
{(re,x1)} € {(rs,x;)}._, for every t > 1; hence, OGD is indeed an online caching policy as defined
in Sec. 3. Paschos et al. [49] show that OGD attains sub-linear regret when R = h = 1; more
specifically:

THEOREM 4.2.([49, Theorem 2]) When R = h = 1, the regret of OGD is bounded as follows:

Regret;(OGD) < [lw]|., ¥Vmin(2k, 2(N — k))T. (4)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:7

Algorithm 1 Online mirror descent (OMDy)

Require: x; = argmin®(x) ,n € Ry

xeXND
1: fort < 1,2,...,T do > Incur a cost fr, (x;), and receive a gradient Vf;, (x)
2 Xt — VO(xy) > Map primal point to dual point
3 U1 < Xt — Ve, (x4) » Take gradient step in the dual space
4: yrr1 — (VO (§,41) > Map dual point to a primal point
5 Xip] — H%m@ (Yr+1) > Project new point onto feasible region X
6: end for

In other words, OGD attains an O (\/T) regret when R = h = 1. In this paper, we study a broader

class of gradient descent algorithms that include OGD as a special case. As we will see below (see
Thm. 4.8), the regret attained by OGD is not necessarily the tightest possible when R # 1 # h;
broadening the class of algorithms we consider allows us to improve upon this bound.

4.2 Online Mirror Descent (OMD)

OMD [26, Sec. 5.3] is the online version of the mirror descent (MD) algorithm [5] for convex
optimization of a fixed, known function. The main premise behind mirror descent is that variables
and gradients live in two distinct spaces: the primal space, for variables, and the dual space, for
gradients. The two are linked via a function known as a mirror map. Contrary to standard gradient
descent, updates using the gradient occur on the dual space; the mirror map is used to invert
this update to a change on the primal variables. For several constrained optimization problems of
interest, mirror descent leads to faster convergence compared to gradient descent [11, Sec. 4.3].
OMD arises by observing that MD is agnostic to whether the gradients are obtained from a fixed
function, or a sequence revealed adversarially.

OMD for Caching. Applied to our caching problem, OMD takes the form summarized in Algo-
rithm 1. In our case, both the primal and dual spaces are RN. To disambiguate between the two, we
denote primal points by x,y € RN and dual points by %, € RY, respectively. Formally, OMD is
parameterized by (1) a fixed learning rate n € R,, and (2) a differentiable map ® : D — R, strictly
convex over D and p-strongly convex over X N D, where X is included in the closure of D; that is

X C closure(D). (5)

Function @ is called the mirror map, that links the primal to the dual space.
Given 1 and @, an OMD iteration proceeds as follows. After observing the request batch r; and
incurring the cost f;, (x;), the current state x, is first mapped from the primal to the dual space via:

xp = Vo(xy). (6)
Then, a regular gradient descent step is performed in the dual space to obtain an updated dual point:
Yor = X0 =V Jr, (x2). (7)

This updated dual point is then mapped back to the primal space using the inverse of mapping V&,
ie.

Y1 = (Vcb)il(gtﬂ)' 8)
The resulting primal point y;,; may lie outside the constraint set X. To obtain the final feasible

point x;4; € X, a projection is made using the Bregman divergence associated with the mirror
map ®; that is, instead of the orthogonal projection used in OGD, the final cache state becomes:

X1 = H?{fn@(ym), ©)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

where I}, (-) is the Bregman projection, which we define formally below, in Definition 4.3.

Together, steps (6)—(9) define OMD. Note that, as it was the case for OGD, x;, is a function
of {(ry,x;)} C {(rs,xs)}._,, hence OMD is indeed an online algorithm. Two additional technical
assumptions on ® and 9 must hold for steps (8) and (9) to be well-defined.? First, the gradient
of ® must diverge at the boundary of D; this, along with strict convexity, ensures the existence
and uniqueness of the Bregman projection in (9). Second, the image of D under the gradient of ®
should take all possible values, that is V&(D) = RN this, along again with strict convexity, ensures
that V& is one-to-one and onto, so its inverse exists and Eq. (8) is well-defined.

Setting ®(x) = 3 ||x||5 and O = RN yields the identity mapping V®(x) = x, for all x € D.
Furthermore, the Bregman divergence associated with this map is just the Euclidean distance
Do (x,y) = % llx — y||2. Thus, this Euclidean version of OMD is equivalent to OGD, and OMD can
be seen as a generalization of the OGD to other mirror maps.

To conclude our description of OMD, we define the Bregman projection [33].

Definition 4.3. The Bregman projection denoted by H?{, RN — X N D, is defined as

no -
%5 @) = argmin Do(x,y), where Dg(x,y) = 0(x) - ®(y) - Vo(y) (x —y) (10)
xeXN

is the Bregman divergence associated with the mirror map ®.

4.3 Analysis of Online Mirror Descent Algorithms

We present our main results regarding the application of OMD under several different mirror
maps to the online caching problems. We will be concerned with both (1) the regret attained, and
(2) computational complexity issues, particularly pertaining to the associated Bregman projection.
Our key observation is that the regret of different algorithms is significantly influenced by demand
diversity, as captured by the diversity ratio %. In particular, our analysis allows us to characterize
regimes of the diversity ratio in which OGD outperforms other mirror maps, and vice versa.

4.4 g-Norm Mirror Maps

A natural generalization of the OGD algorithm to a broader class of OMD algorithms is via g-norm
mirror maps, whereby:

1
O(x) = 3 lx||?, wherege (1,2], and D =RV, (11)

It is easy to verify that ® and D, defined as above, satisfy all technical requirements set in Sec. 4.2
on a mirror map and its domain. We define OMDy norm to be the OMD Algorithm 1 with ® and
q given by Eq. (11). Note that this map generalizes OGD, which corresponds to the special case
g = 2. In what follows, we denote by || - ||, the dual norm of || - [|4. Then, p € [2, o) is such that

% + é = 1. Note that sometimes OMDy.norm is referred to as a p-norm algorithm [53].

4.4.1 Regret Analysis. We begin by providing a regret bound for OMDyg o1 algorithms:

(g-1)k? (k*%_N*%)

THEOREM 4.4. Forn = , the regret of OMDg norm over X satisfies:

2
wliZn?(5)? T

1 _2 2
Regret; (OMDy norm) < [[wlle hk ()7 \/ = (k PN ,,) T. (12)
3 All hold for the algorithms we consider in Sec. 4.3.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:9

- L =001

% =008 Fig. 1. Numerical characterization of ¢* € [1, 2] as a function of the diversity ratio
+ E00s R/h, for different cache capacities k expressed as fractions of the catalog size (N = 100).
* ko007 Given R/h, the optimal g* is determined as the value in [1, 2] that minimizes the upper-
bound in Eq. (12). Higher values of R/h represent more diverse requests. Under small
diversity, OGD is optimal; as diversity increases, mirror maps for which g < 2 attain a
more favorable upper bound than OGD.

The proof can be found in Appendix A.2. We use an upper bound on the regret of general OMD
from [11, Theorem 4.2] and relate it to our setting; in doing so, we bound the diameter of X w.r.t.
Bregman divergence under ® as well as the dual-norm || - ||, of the gradients Vf;, (x;).

Comparing Theorem 4.4 to Theorem 4.2, we see that both attain an O (\/T) regret. A natural

question to ask when comparing the two bounds is whether there are cases where OMDy norm
with g # 2 outperforms OGD (i.e., OMD3_porm). The constants in the r.h.s. of Eq. (12) depend on the
diversity ratio %; this, in turn, affects which is the optimal g, i.e., the one that minimizes the bound
inEq. (12). Let ¢* = arginf ¢y 5 ub(g) be the optimal ¢, where ub : (1,2] — R, is the upper bound
in Eq. (12). Note that ¢* € [1, 2]. Figure 1 shows ¢* as a function of the diversity ratio, for different
values of cache capacity k. We observe that OGD (g = 2) is optimal for lower diversity regimes
and larger caches; when diversity % increases or cache capacity k decreases, values g < 2 become
optimal. The transition from g* = 2 to ¢* = 1 is sharp, and becomes sharper as k increases.

4.4.2 Optimality Regimes. Motivated by these observations, we turn our attention to formally
characterizing the two regimes under which optimality transitions from ¢* = 2 to ¢* = 1. We
first determine the upper bound on the regret for these two regimes. Indeed, by setting g = 2 in
Theorem 4.4, we obtain the following bound, generalizing Theorem 4.2 to the case R/h > 1:

_k
COROLLARY 4.5. Forn = ||kw(|1|2—}11VR)T the regret of OGD, satisfies:

Regret, (OGD) < ||w||., vhRk (1 — k/N) T. (13)

This a direct consequence of Theorem 4.4 by replacing g = 2 in Eq. (12). We note that, in this result,
we tighten the bound of Paschos et al. [49]: for R = h = 1, the bound in Eq. (13) is smaller than the
one in Theorem 4.2 by at least a V2 factor.

We also characterize the limiting behavior of OMDy o as g converges to 1.

COROLLARY 4.6. As q converges to 1, the upper bound on OMDg.qorm regret given by Eq. (12)

converges to:
lwllo hk+/21og (N/k) T. (14)

The proof can be found in Appendix A.3. This limit is precisely the bound on the regret attained
under the neg-entropy mirror map (see Theorem 4.10 below). Armed with Corollaries 4.5 and 4.6,
we can formally characterize the regimes in which either of the two strategies become dominant:

THEOREM 4.7. The regret bound for OMDy norm in Eq. (12) is minimized for g = 2, when % <k

In other words, when the diversity ratio is smaller than the cache size, it is preferable to update
the cache via OGD. The proof, in Appendix A.4, establishes that the upper bound in Eq. (12) is
monotonically decreasing w.r.t q in the specified interval % < k. Our next result characterizes then
the neg-entropy (g converges to 1) mirror map outperforms OGD:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

THEOREM 4.8. The limit, as q converges to 1, of the OMD g.norm regret bound in Eq. (14) is smaller
than the corresponding bound for OGD (OMDy_norm With q = 2) when % > 2VNk.

The proof is provided in Appendix A.5. We stress that Theorem 4.8 implies the sub-optimality
of OGD in the regime %’ > 2VNk. The experiments in Fig. 1 suggest the bound in Theorem 4.8 is
quite tight: for example for k = 7 the bounds suggest g = 1 should be optimal when R/h exceeds
27100 X 7 = 52.9, while experiments show that it is optimal when R/h exceeds 45. On the contrary,
we observe that the bound in Theorem 4.7 seems to be loose and the transitions we observe in
Fig. 1 are sharper than what one would predict from the bounds.

4.4.3 Dual-Primal Update and Bregman Projection. Having characterized the regret of OMDg norm
algorithms, we turn our attention to implementation issues. The map to the dual space and back in
Eq. (6) and Eq. (8) (Lines 2 and 4 in Algorithm 1), have the following expression [25], respectively:

X = (VO(xy)); = Sign(xt,i)|xt,i|q71/||xt||g_2, forall i € N, (15)
—1 /A . ~ ~ _ ~ -2 .
Yersi = (VD)™ @), = sign(@rond) [Gesral? ™ /Gy forall ie A (16)

Finally, for all g € (1, 2] the Bregman projection in Eq. (9) (Line 5 in Algorithm 1) involves solving
a convex optimization problem, in general. For the OGD Algorithm however (g = 2) the projection
is the usual Euclidean projection. The following theorem holds:

THEOREM 4.9. The Euclidean projection requires O (N?) operations per iteration, for general values
of R and h, and only O (N) operations, when % =1

For general values of R and h the Euclidean projection is performed using the projection algorithm
by Wang and Lu [59] in O (N?) time. Specifically when % =1, only a single coefficient is updated
through the gradient step (Lines 2—4 in Algorithm 1) per iteration, and Paschos et al. [49] provide
an algorithm that performs the projection in O (N) time.*

4.5 Neg-Entropy Mirror Map

To conclude this section, we turn our attention to the neg-entropy mirror map that, as discussed
earlier, attains the same regret performance as OMD g o as g converges to 1. Beyond its improved
performance in terms of regret in the high diversity ratio regime, the neg-entropy mirror map comes
with an additional computational advantage: the Bregman projection admits a highly efficient
implementation.

Formally, OMD under the neg-entropy mirror map uses:

N
D(x) = Z x;log (x;), and D =RY,. 17)

i=1
Note that, as per the requirements in Sec. 4.2, X C closure(D). Also, V® indeed diverges at the
boundary of D, and V&(D) = RN as

20 _ g4 log(x;), forallie N. (18)

axi

We refer to the resulting algorithm as OMDyg.

4To be precise, the projection algorithm as presented in [49] requires at each iteration a preliminary step with complexity
O (Nlog(N)) to sort a vector of size N, followed by O (N) steps. However, it is possible to replace sorting by O (log(N))
binary search and insertion operations reducing the complexity to O (N) per iteration.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:11

Algorithm 2 Neg-Entropy Bregman projection onto the capped simplex

Require: N; k; ||y|l;; P; Partially sorted yny > --- > > Appropriate b is found
YN—k+1 = Yi, Vi S N -k 5: fori >b+1 do
> y is the intermediate cache state, and P is a scaling 6: y; < 1/(mpP)
factor initialized to 1 7: end for
1: YN+ & + 8: P «— myP
2: for be {N,...,N—-k+1} do 9: return yP > yP is the result of the projection
3 my e (k+b-N) /(llgll, - TN, viP) 10: endif
4 if ypmpP <1 < ypympP then 11: end for

4.5.1 Regret Analysis. We first characterize the regret of OMDyg:

THEOREM 4.10. Forn = | /% the regret of OMDng satisfies:

Regret;(OMDng) < ||wll., hkv21og(N/k). (19)

The proof, in Appendix A.7, is similar to the proof of Theorem 4.4. Using again the general bound
of the regret of OMD algorithms in Bubeck [11, Theorem 4.2], we bound the diameter of X w.r.t. to
the Bregman divergence as well as the dual norm || - ||, of gradients Vf;, (x;). Crucially, we observe
that OMDyg indeed attains the same regret bound as the one in Corollary 4.6, namely, the bound
on OMDy orm When g converges to 1. This immediately implies the advantage of OMDyg over
OGD in high diversity ratio regimes, as described in Sec. 4.4.2 and Theorem 4.8.

4.5.2 Dual-Primal Update and Bregman Projection. As V®(x) is given by Eq. (18), the inverse
mapping is given by ((V®) ™" (§,,,)); = exp(s; — 1). Hence, the map to the dual space and back in
Eq. (6)-Eq. (8) (Lines 2—4 in Algorithm 1) can be concisely written as:

_Ofry(x¢)

Yrs1,i = €XP (fct,i - Uaf'a’—g’) - 1) = exp (log(xt,i) - naf'a’—g’)) =x;;e ' o forallie N. (20)

In other words, OMD under the neg-entropy mirror map adapts the cache state via a multiplicative
rule (namely, the one implied by the above equation), as opposed to the additive rule of OGD (see
Eq. (3)). In Theorem A.2 we prove that OMD orm When g converges to 1 also adapts the cache
state via a multiplicative update rule; moreover, it is equivalent to OMDyg over the simplex. This
justifies why the regret bounds for the two algorithms in Eq. (14) and Eq. (19) are identical.

Finally, the projection algorithm onto the capped simplex can be implemented in O (N + k log(k))
time for arbitrary R and h values using a waterfilling-like algorithm. The full procedure is presented
in Algorithm 2. The algorithm receives as input the top-k elements of y, sorted in descending order.
It then identifies via a linear search which elements exceed an appropriate threshold and set them
to one. The other elements are scaled by a constant factor to satisfy the capacity constraint. The
following theorem holds:

THEOREM 4.11. Algorithm 2 returns the projection H?mz) (y) onto the capped simplex X under the
neg-entropy ®. It requires O (N + k log(k)) operations per iteration, for general values of R and h, and
only O (k) operations, when % =1

The proof is given in Appendix A.8. To prove this theorem, we characterize the KKT conditions
of the minimization problem. Then we show that these conditions can be checked in O (k) time.
Finally, we show how maintaining y in a partially sorted list across iterations leads to the reported
complexity results. Theorem 4.11 implies that OMDNg has significant computational savings when
compared to OGD (cf. Theorem 4.9), both when % = 1 and for general values of R and h.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

5 UPDATE COST

The model presented in Sec. 3 can be extended by adding the cost to update the cache state after
the batch of R requests has been served. This cost may quantify the additional load on the server
or on the network. This update cost is often called movement cost [11] or switching cost [2]. As the
state changes from x; to x;41, the cache evicts part of the file i if x;41; < x;; and stores additional
bytes of it if x441; > x;;. We make the following assumptions:
(1) Evictions do not engender update costs, as the cache can perform them autonomously;
(2) Insertions of (part of) files which have been requested do not engender update costs, as these
files have already been retrieved by the cache in their entirety to satisfy the requests.
(3) Insertions of (part of) files which have not been requested incur a cost proportional to the
fraction of file retrieved.

We can then define the update cost at time slot ¢ as
UCy, (%1, X141) = Vigsupp(rs) W) max {0, Xp41; — X1}, (21)

where supp(r;) = {i eEN:ry,; # 0} denotes the support of r,, i.e., the set of files that have been
requested during the ¢-th timeslot, and w] € R, is the cost to retrieve the whole file i, and can in
general be different from the cost w; appearing in (1).
If the update cost is introduced in the model, the extended regret can be defined as follows:
E-Regret, (A) = sup (S fo,(x0) + UGy, (X1, 141) — ey fr, (%)} (22)

{"1,"2,--.,":}97_";,,

Sllp {Zz;l f"t (xt) - Z—=1 ﬁ't(x*)} + Sup {Zz;l Ucrt(xt’x“‘l)} : (23)

{rira,..ri}eRy, {rira,..ri}eRy,

IA

Equation (23) shows that the regret of an arbitrary online algorithm can be bounded by considering
the regret we have derived so far (Eq. (2)), ignoring update costs, and subsequently accounting
for an additional term corresponding to the update. Note that the optimal static allocation does

not incur any update cost. Equation (23) implies that any policy with O (\/T) regret and O (\/T)

update cost in expectation has also O (\/T) extended regret.

One of the reasons why we did not introduce directly the update cost is that, in the fractional
setting, OMD update cost is zero both for the Euclidean (OGD) and the neg-entropy (OMDyg)
mirror maps. Formally, we have:

PROPOSITION 5.1. For any request batchr; received at time slot t € [T], the update of fractional
cache state fromx; € X tox;,; € X obtained by OMDng or OGD has no cost, i.e., UCy, (x,%141) = 0.

The proof is provided in Appendix A.9. In fact, the gradient step increases the fraction x;; only
for files i that have been requested, and the projection step reduces the fraction for all other files in
order to satisfy the capacity constraint. It follows that x;41 ; —x;; > 0 if and only if i € supp(r;), and
thus UC,, (x4, x¢+1) = 0. Hence, the O (\/T) regret guarantees we proved in the previous sections

for OGD and OMDyg, extend to the more general definition in (22). In the next section, we show
that update costs cannot be neglected when caches are forced to store files in their entirety.

6 INTEGRAL CACHING

In the previous sections, we assumed that the cache can store arbitrarily small chunks of a file, and
this allowed us to design no-regret policies that employ fractional caching. However, this assumption
can be too strong in some applications. For example, when the catalog is composed of small-sized
files, the discreteness of chunks sizes cannot be neglected; moreover, the metadata needed for

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:13

each chunk can cause memory and computational overheads. These observations motivate us to
study the case when the cache can only store the entire file. We refer to this setting as the integral
caching. Formally, we restrict the cache states to belong to the set Z = {{ € {0, 1}V : 3,0 & = k-
Note that the set Z is a restriction of the set of fractional caching states X to its corners, i.e.,
Z = XnHo, l}N ; thus, we maintain the same definition of the requests and the service cost
objective in Sec. 3. In this setting, we allow policies to be randomized. This extension turns out to
be necessary in order to have a sublinear regret policy; formally, we have:

PROPOSITION 6.1. Any deterministic policy restricted to select integral cache states in Z has the
following lower bound on its regret: Regret;(A) > k(1 —k/N)T.

To prove the proposition, we show that an adversary can exploit the deterministic nature of the
policy by continuously requesting the files that are not stored in the cache. We provide the proof in
Appendix B.1.

We thus turn our attention to randomized policies. In particular, we focus on a special class of
randomized policies, constructed by (1) a fractional online caching policy A, i.e., of the type we
have studied so far (see Sec. 3), combined with (2) a randomized rounding scheme =, that maps
fractional caching states to integral ones. In particular, for every ¢t > 1 the randomized rounding
scheme E : X’ x Z'™' x [0,1] — Z maps the previous fractional cache states {x;}/Z] € X',
the current fractional cache state x; € X, the previous random cache states {z; é;i e Z" ! anda
source of randomness® & € [0,1] to a new random cache state z; € Z where

E[Zt] =X;. (24)
Note that the rounding function takes into account not only the current fractional state x;, which
determines its expectation, but also the past fractional and integral states ({(2s,x;)}!_}); this is in
fact instrumental in attaining a sublinear extended regret (see Theorems 6.3 and B.1 below).
We extend the definitions of the regret and the extended regret as follows:
Regret, (A, E) = sup {E[Xi £ (z0)] - 2ot £ (20}, (25)

{rl,rz,...,rt}eﬂgh
and
E-Regret; (A, E) = sup (E[ZL, £,(2:) + UGy, (21,2001 | = S, frn ()}, (26)
{rl,rz,A..,rt}e’R;h

where the expectation is taken over the random choices of the rounding scheme E, and

z, = argming ;> >/, f7,(2) (27)
is the optimal static integral cache state (in hindsight). By restricting our focus to such randomized
policies, we obtain a regret that is equal to the fractional caching policy’s regret. Formally, we have:

PROPOSITION 6.2. Any randomized caching policy constructed by an online policy A combined
with a randomized rounding scheme = has the same regret as A, i.e, Regret; (A, E) = Regret;(A),
given by (25) and (2), respectively.

The result follows from the linearity of the cost functions and the expectation operator; moreover,
the static optimum can always be selected to be integral from the integrality of the capacity
constraint and linearity of the objective function. The proof is provided in Appendix. B.2.

Proposition 6.2 thus implies that regret guarantees for a fractional policy A readily transfer to
the integral regime, when coupled with rounding =. Unfortunately, when considering the extended

5In this section, we assume the adversary is oblivious [26, Sec. 5.5], i.e., he selects the request process adversarially ahead of
time, independently of the decisions of the online learner.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

Algorithm 3 ONLINE ROUNDING

1: procedure ONLINE ROUNDING(x € X, & € [0,1]) > In online independent rounding, ONLINE ROUNDING is
2: =0 called with arguments (x, £;), where x; are provided by
3: fori=12,..., N do algorithm A and {&; tT:_ll are ii.d., sampled u.a.r. from
iU i} i X5 x> &+ [T, [0,1].
4: I; — J . . .
i otherwise. > In online coupled rounding, a & is sampled once u.a.r.
5. end for from [0, 1]; then, ONLINE ROUNDING is called with argu-
6: returnz — Yep €; ments (x;, &), i.e., using the same & for all x; provided

by algorithm A.
> Both return an integral r.v. z; s.t. E[z;] = x;, with the
expectation being over {&; th_ll and &, respectively.

7: end procedure

regret (Eq. (26)) instead, naive rounding policies can arbitrarily evict and fetch objects to the cache
causing large update costs (see Theorem 6.3). Thus, unless rounding is carefully designed, we may
fail to have sublinear regret guarantees when accounting for update costs. In the next section, we
show how a randomized rounding scheme E can be selected to avoid incurring large update costs.

6.1 Rounding Schemes and Extended Regret

6.1.1 Online Independent Rounding. If we consider a fractional caching state x; € X, then a random
integral caching state z, € Z with the marginal E[z,;] = x, exists and can be sampled in polynomial
time (see, e.g., [8, 28, 39]). Thus, a rounding scheme = can be constructed with such a strategy
that takes as input the current fractional cache state x; ignoring the previous fractional cache
states {x;}!_] € X’"!, and previous random cache states {2,}'_} € Z'~!. We provide pseudocode
for this procedure in Algorithm 3.° Because at any time t the random cache states are sampled
independently from previous random cache states, we refer to this rounding as online independent
rounding. Unfortunately, when considering the extended regret (26), any caching policy coupled

with this rounding scheme loses its O (\/T) regret guarantee. Formally, we have the following:

THEOREM 6.3. Any randomized caching policy constructed by an online policy A combined with
online independent rounding as a randomized rounding scheme = has linear (worst-case) extended
regret, i.e, E-Regret; (A, E) = Q(T).

The proof is provided in Appendix B.3. Online independent rounding causes frequent cache
updates, as it samples a new state from z, ignoring the previous state {;_; sampled from z;_;.
Intuitively, imposing dependence (coupling) between the two consecutive random states may
significantly reduce the expected update cost.

6.1.2 Online Coupled Rounding. To address this issue, our proposed online coupled rounding scheme
is described also in Algorithm 3, using however the same randomization source across all timeslots.
In particular, the coupling across states comes from the use of the same uniform random variable &.
A consequence of this coupling is that the next integral state can be computed efficiently and leads
to small movement costs. Note that Algorithm 3 does not necessarily find an optimal coupling, still
it yields a sublinear update cost, and thus preserves the sublinearity of the regret. This is formally
expressed in the following Theorem:

THEOREM 6.4. Consider a randomized caching policy constructed by an OMD policy A with
sublinear regret (i.e., configured with a learning rate n = @(1/\/?)) combined with online coupled

% Algorithm 3 provides a linear-time variant of the algorithms proposed in [8, 28]. The algorithm samples an integral caching
state without constructing a distribution and its support. This sampling scheme is also known as Madow’s sampling [39].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:15

rounding E in Algorithm 3 (fixed & = & fort € [T]). The expected movement cost of the random
integral cache states is E [UC,[(24, zt+1)] =0 (\/T) Moreover, the extended regret is sublinear

E-Regret, (A, Z) = O (\/T)

We provide the proof in Appendix B.5. In summary, any OMD policy combined with online
coupled rounding yields O (\/T) extended regret in the integral caching setting. The computational
complexity of online coupled rounding is O (N) (see also Fig. 10).

6.1.3 Online Optimally-Coupled Rounding. 1t is possible in general to reduce the update cost
of online coupled rounding. In particular, minimizing the expected update cost over all joint
distributions of the random variables z; and z;.; leads to an optimal transport problem [50]. For
completeness, we describe this rounding scheme here, though (1) it does not reduce the extended
regret guarantee attained by online coupled rounding (up to multiplicative constants), and (2) it
has an increased computational cost.

Formally, at each time ¢ the random variables z, with marginal x, can be constructed by sampling

P!}, where py; = P(z, =) for i € [Ipi]]
The decomposition can be performed in O (kN log(N)) steps [28]. We denote the joint probability

from a distribution p, with O (N) support {{ L

P (Zt+1 = {fﬂ,zt = {;) by the flow f; j for all (i, j) € [|p¢|] X [|p+1]]. The optimal transport problem
can be described by the following linear program:

f= agmin E[UC(z.ze0)] =S8 500G, (¢4.6,) £

fiilGnetpenxiiprsll

st S f=pe P f = peag fir € 1011V) € [Ipel] X [Ipeal].

We solve the above linear program to obtain a minimum-cost flow f. If the random state
at time t is ¢!, then we select the new random state to be {/,, with (conditional) probability
P (zm Z t alz=q t) = ” . Such coupling ensures that the expected update cost is minimized.

When we combine this roundlng scheme with a no-regret fractional policy we obtain sublinear
extended regret (26):

\/LT) combined

with online optimally-coupled rounding =. The obtained randomized integral caching policy has
sublinear extended regret, i.e., E-Regret(A, =) = O (\/T)

COROLLARY 6.5. Consider an OMD policy A configured with learning raten = @(

The corollary follows from Theorem 6.4, because online coupled rounding constructs a feasible
transportation flow (see Fig. 11 for an illustration) that gives sublinear update costs, and the optimal
flow can only have lower update costs. The naive implementation of the optimal transport problem
has O (N?) time complexity, but several efficient approximations exist in the literature [50] at the
expense of losing the established guarantee.

7 NUMERICAL EXPERIMENTS
7.1 Experimental setup

7.1.1 Datasets. Throughout all experiments, we assume equal costs per file, i.e, w; = w; = 1,Vi €
N.The learning rate n* denotes the learning rate value specified in Corollary 4.5 and in Theorem 4.10
for OGD and OMDNy, respectively. Note that all the parameters assumed known to the algorithm
can be learned through the following meta-algorithm: one can execute in parallel multiple OMDyg

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

and OGD algorithms configured for different R/h values in {A, 2A,..., N} and frame an expert
problem to learn the best expert (policy). The meta problem is a standard prediction with expert
advice problem, and can be tackled with well understood and computationally efficient learning
algorithms [26, 41, 53]. In what follows, we distinguish the number of batches in the trace (B) and
the time horizon (T).

We generate the following synthetic datasets, summarized in Table 2.

Fixed Popularity. Requests are i.i.d. and sampled from a catalog of N = 10 files according to a
Zipf distribution with exponent & = 0.8. Each batch counts a single request (R = 1). We set set the
time horizon as T = 10°. The cache capacity is k = 100. The total number of requests is the product
of the requests in each batch (R) and the number of batches (B), both values are reported in Table 2.
Batched Fixed Popularity. Request are generated as above from a Zipf distribution with ex-
ponent a, but are now grouped in batches of R = 5 X 10% requests. We take different exponents
a € {0.1,0.2,0.7} for traces Batched Fixed Popularity (1), (2), and (3), respectively, in Table 2. The
parameter « controls the diversity of the files in the request batches. If @ = 0, then each file is
requested with equal probability, corresponding to % — N (high diversity). As we increase a, the
requests become more concentrated; this corresponds to % — 1 (low diversity). Table 2 shows
the value of h observed in each trace. In all cases, we select catalog size N = 10*, cache size
k € {25,125,250}, and time horizon T = 10%.

Transient Popularity. We also generate two non-stationary request traces. In these traces, we
reset the popularity distribution periodically.

In the first scenario (Partial Popularity Change traces), we still have batches of R = 5 x 10°
requests sampled from a catalog of N = 10* files according to a Zipf distribution with parameter
a € {0.1,0.3,0.4} for traces (1), (2), and (3), respectively. But now the popularities of a subset of
files is modified every 10% time slots. In particular the 5% most popular files become the 5% least
popular ones and vice versa. We want to model a situation where the cache knows the timescale
over which the request process changes and which files are affected (but not how their popularity
changes). Correspondingly, the time horizon is also set to T = 10° and, at the end of each time
horizon, the cache redistributes uniformly the cache space currently allocated by those files. The
cache size is k = 50.

In the second scenario (Global Popularity Change trace) each batch counts only a single request

(R = 1) sampled from a catalog of N = 10* files according to a Zipf distribution with exponent
a = 0.8. Every 5 x 10* time slots (or requests in this case) the popularity of each files change: file
i € {1,..., N} assumes the popularity of file j = (1 + (i + N/4) mod N). The cache size is k = 200.
We also generate the Downscaled Global Popularity Change trace as a downscaled version of Global
Popularity Change trace, where the catalog size is reduced to N = 25, the cache size to k = 4, and
the number of requests to 9 x 10°. The learning rate is set to n = 0.01.
Akamai Trace. We consider also a real file request trace collected from Akamai Content Delivery
Network (CDN) [43]. The trace spans 1 week, and we extract from it about 8.5 x 107 requests for
the N = 10* most popular files. We group requests in batches of size R = 5 X 10%, and we consider a
time horizon T = 100 time slots corresponding roughly to 1 hour. The cache size is k = 25.

7.1.2 Online Algorithms. Starting with the gradient based algorithms, we implemented OMDyg
with the projection defined in Algorithm 2. We implemented two different projection algorithms
for OGD: the one by Paschos et al. [49] for the setting % = 1, and the one by Wang and Lu [59] for
the general setting % > 1.

In addition, we implemented four caching eviction policies: LRU, LFU, W-LFU, and FTPL. LRU and
LFU evict the least recently used and least frequently used file, respectively. While LFU estimates
file popularities considering all requests seen in the past, W-LFU [31] is an LFU variant that only

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:17

Trace B T N R h
Fixed Popularity 1.5%10° | 1.5%x10° | 10* | 1 1
Batched Fixed Popularity (1) 104 10* 10* | 5x10° | 2
Batched Fixed Popularity (2) 104 104 104 | 5x10% | 5
Batched Fixed Popularity (3) 10 10 10* | 5x10° | 87
Partial Popularity Change (1) 5% 103 10 10* | 5x10° | 2
Partial Popularity Change (2) 5x 10° 10° 10* | 5x10° | 6
Partial Popularity Change (3) 5% 103 10 10* | 5x10° | 10
Global Popularity Change 1.5x10° | 1.5x10° | 10* | 1 1
Downscaled Global Popularity Change | 9 x 10° 9% 103 25 |1 1
Akamai CDN 1.7x10* | 10? 10% | 5% 10* | 380

Table 2. Trace Summary

Performance metric Definition Range
Normalized Average Cost NAC(A) = % Zg:o Jrs (x5) [0,1]
Normalized Moving Average Cost | NMAC(A) = m Z£=t—min(r 0 Jrs(xs) | [0,1]
Time Average Regret TAR(A) = % (Zgzl Jrs (x5) — Zé:l frs () [0,R]
Cumulative Update Cost CUC(A) = Z§=1 UCr, (x5, X541) [0,)

Table 3. Performance Metrics. All are better if lower.

considers requests during a recent time window W, which we set equal to T X R in our experiments.
The policies LRU, LFU, and W-LFU are allowed to process individual requests. FTPL is a no-regret
policy proposed by Mukhopadhyay and Sinha [42], which, roughly speaking, behaves as a LFU
policy whose request counters are perturbed by some Gaussian noise. Finally, we define Best Static
to be the optimal static allocation x™, i.e., the configuration storing the k most popular files as we
consider w; = 1,Vi € N. We also define Best Dynamic to be the caching policy that stores the k
most popular files at any time for the synthetic traces (for which the instantaneous popularity is
well defined). The optimality of such policy is formally studied in [45].

7.1.3 Online Rounding. We also implemented the three rounding schemes described in Sec. 6: (a)
the online independent rounding in Algorithm 3, (b) the online coupled rounding in Algorithm 3,
and (c) the online optimally-coupled rounding. The rounding schemes are combined with OGD
configured with learning rate n = 0.01 under the Downscaled Global Popularity Change trace.

7.1.4 Performance Metrics. We measure performance w.r.t. four metrics defined in Table 3. The
Normalized Average Cost NAC(A) € [0, 1] corresponds to the time-average cost over the first ¢
time slots, normalized by the batch size R. The Normalized Moving Average Cost NMAC(A) € [0,1]
is computed similarly, using a moving average instead over a time window 7 > 0; we use 7 = 500 in
our experiments. We also consider the Time Average Regret TAR(A) € [0, R], which is precisely
the time average regret over the first t time slots. Finally, when studying rounding algorithms, we
also measure and report the Cumulative Update Cost CUC(A) € [0, o).

7.2 Results

7.2.1 Stationary Requests. Figures 2 (a) and 2 (b) show the performance w.r.t. NAC of OGD and
OMDNng, respectively, under different learning rates n on the Fixed Popularity trace. We observe
that both algorithms converge slower under small learning rates, but reach a final lower cost, while
larger learning rates lead to faster convergence, albeit to higher final cost. This may motivate the
adoption of a diminishing learning rate, that combines the best of the two options, starting large to
enable fast convergence, and enabling eventual fine-tuning (as it is also advocated by the theory
of stochastic approximation [52]). We show curves corresponding to a diminishing learning rate
both for OGD and OMDxg, and indeed they achieve the smallest costs. The learning rate * gives

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

Fig. 2. NAC of the different caching
policies over the Fixed Popularity

1.00 =0:0010 100t —petoro500 03 i e trace. Subfigures (a) and (b) show the
. ! i - (" = 0.4
00 N = 0" =0.0257 005 k- — 7’ =00784 0600 —qozsy Performance of OGD and OMDN re-
"N = 0.050 = p=0.1000 OGD(n” =G ivel der diff 1 R
0.90 > 0.90 . L 0.2 wRU spectively under different learning
O i — O o T ne05000 g = Best Static :
< oss =:n=0.500 X 085 10000 1 — rates. For small learning rates the al-
_ouE = _ .
0.50 I ——mn=104 080 \\; 204 01 & gorithms both converge slower but
075 \ 075 - — ’ __——— more precisely, while for larger learn-
0.70 070 by i 00 i ing rates they converge faster, but to
0.0 0.5 10 0.0 05 1.0 0.0 0.5 1.0 P
)) a higher cost. Subfigure (c) shows the
Iterations ~ x10° Iterations ~ x10° Iterations ~ x10° g gure (c)

time average regret of the two gra-
(a) NAC of OGD (b) NAC of OMDNg (c) Time-Average Regret dient algorithms. When the regret is

sub-linear, the time average regret

converges to 0 as T — oo.

0.988

- OMD. = OMDye = OMDne
00975 - 06D 0987 06D 0074 “\ 0GD.
0.9970 0986 \ 0972 \ \
Q N Q 0985 N g \
Z 09965 N Z o084 \\ Z 0970 \
\\\ 0083 0.968 N
L !
08900 T 0.982 \ 0.966 \§
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iterations ~ x10° Iterations ~ x10° Iterations x10° Fig. 3. NAC of OMDNE and OGD
evaluated under different cache sizes
=2 =0.1 =12 =0.1 =2 =0.1 . . .
(@) k=250 =0 (b) k »a=0 (©) k=250,a=0 and diversity regimes. We use traces
0.998 T »
= OMDy: 0975 ovow- Batched Fixed Popularity (1), (2), and
0997 + {0GD 0985 = 0GD . . .
-\ L : 0970 (3) corresponding to different diver-
< ooss ! Q oos0 g 0965 S}ty regimes. FlgureSA from left to
R N z Z 0960 \ right correspond to different cache
0993 N — 0975 0955 \\\\ sizes k € {25,125,250}, while fig-
0902 [| T 0950 ures from top to bottom correspond
ooz 4 6 8 0oz 4 6 8 0oz 4 6 8 to different exponent values o €
Iterations ~ x10° Iterations ~ x10° Iterations ~ x10°
{0.1,0.2,0.7}. OMDng outperforms
(d)k=25a=0.2 (e) k=125 =0.2 (f) k =250, = 0.2 OGD in the more diverse regimes and
Y SR T 100 = 0N 100 = own. for small cache sizes, while OGD out-
0.08 - = 0GD \ = 0GD 095 D performs for large cache sizes and con-
- 0.95
0.96 \ 0.90 \ centrated requests.
8] Q 090 N SR
< 094 << < Y
Z 00 \ = oss AN = om0 \ \\
! ! . ~
090 \é}_\ 080 \\\-— 075 i
088 s S T 070
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iterations x10° Iterations ~ x10° Iterations ~ x10°
(&) k=25a=07 (h) k = 125,a = 0.7 @) k =250, = 0.7

the tightest worst-case regrets for OGD and OMDyg, as stated in Theorems 4.5 and 4.10. While
this learning rate is selected to protect against any (adversarial) request sequence, it is not too
pessimistic: Figures 2 (a) and 2 (b) show it performs well when compared to other learning rates.

Figure 2 (c) shows the time-average regret TAR of OGD and OMD\yg, over the Fixed Popularity
trace. As both algorithms have sub-linear regret, their time average regret goes to 0 for T — oo.
Note how instead LRU exhibits a constant time average regret.

7.2.2 Effect of Diversity. Figure 3 shows the NAC performance of OMDyg and OGD on the traces
Batched Fixed Popularity (1), (2), and (3) under different cache capacities k and exponent values a.
We observe that OMDyg outperforms OGD in the more diverse regimes (« € {0.1,0.2}). This is

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:19

more apparent for smaller cache sizes k. In contrast, OGD outperforms OMDng when requests are
less diverse (a = 0.7); again, this is more apparent for larger cache size k. These observations agree
with Theorems 4.8 and 4.7 in Sec. 4.4.2: high diversity and small cache sizes indeed favor OMDNg.

7.2.3 Robustness to Transient Requests. Figure 4 shows the normalized average cost of OMDNg
and OGD over the Partial Popularity Change traces, evaluated under different diversity regimes.
Dashed lines indicate the projected performance in the stationary setting (if request popularities
stay fixed). Across the different diversity regimes, we find the OMDyg is more robust to popularity
changes. In (a), (b) and (c) OMDyg outperforms OGD in the non-stationary popularity setting: we
observe a wider performance gap as compared to the stationary setting.

Figure 4 (d) and (e) show the normalized average cost over the Global Popularity Change trace
for the policies OGD and OMDNyg, respectively. We observe in Figure 4 (b) the NAC of OMDyg
performance degrades after each popularity change. This is a limitation due to the multiplicative
nature of OMDyg. When the algorithm learns that a file, say it i, is not important, it can set x; ;
arbitrarily close to 0. If, suddenly, this content becomes popular, then OMDyg, adapts slowly, due to
its multiplicative nature—remember Eq. (20). This is shown in Figure 4 (e). We can overcome this
limitation by requiring all state variables to be larger than some small § > 0; OMDyg is then limited
to Xs, the § interior of the capped simplex X. More precisely, the § interior of the capped simplex
is defined as X5 = X N [8,1]". In Figure 4 (f), we use & = 10~ This parameter indeed prevents the
algorithm from driving the fractional allocations arbitrary close to 0, improving its adaptability.
In Figure 4, we show the performance of FTPL [7]; we observe that this policy fails to adapt to
popularity changes. Both our mirror descent algorithms outperform competitors (Fig. 4(h)).

7.2.4 Akamai Trace. Figure 5 shows that the two gradient algorithms, OMDyg and OGD, perform
similarly over the Akamai Trace w.r.t. NMAC; OGD is slightly better in parts of the trace. Overall,
these algorithms consistently outperform LFU, W-LFU, LRU, and FTPL. Note that these caching
policies process requests individually, while OMDyg and OGD adapt slower, freezing their state for
the entire batch size (R = 5000). Nevertheless, OMDxg and OGD still perform better. Despite the
observation that OMDyg falls behind OGD in some parts of the trace, note that in many scenarios
OMDyg remains an attractive choice because it provides similar performance to OGD at a much
lower computation cost (cf. Theorems 4.9 and 4.11).

7.2.5 Randomized Rounding. Figure 6 shows the cumulative update cost for the online independent
rounding, the online coupled rounding, and the online optimally-coupled rounding algorithms
over the Downscaled Global Popularity Change trace. All the rounding algorithms exhibit the same
service cost in expectation. The update cost of online coupled rounding and the online optimally-
coupled rounding is small, in the order of the learning rate 1; moreover, we observe that online
optimally-coupled rounding yields lower update costs than the online coupled rounding. In contrast,
online independent rounding incurs a significantly larger update cost.

Figure 7 shows the fractional and (rounded) integral cache states under Downsampled Global
Popularity Change trace. Online independent rounding indeed leads to more frequent updates than
online coupled rounding, while the latter maintains a more stable cache configuration by coupling
the consecutive states and avoiding unnecessary updates.

7.2.6 Computational Cost. Figure 8 shows the time taken by both policies OMD and OMDxg, to
perform 500 iterations over the Fixed Popularity trace (Fig. 8 (a)), and the time taken to perform 50
iterations over the Batched Fixed Popularity (2) trace (Fig. 8 (b)). We observe that OMDy is at least
15 times faster in computing cache states on average.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

¢ 10 = p=0.0100
0995 Due(Stationary) = OMDy(Stationary) 0.095 L b - 1= 0.0361
= OMDe 0,99 = OMDxe.... — OMDue - :Z:n.mm
= OGD(Stationary) = OGD(Stationary) i D ary) =
0994 [- 0OED 0.990 = n=1.0000
g O 0.98 \
2 \ s § 0985
\) S—
0993 i = 007 / ~
o 0.980 F- s —
~—i S S
0092 e 096
0 2 4 0 1 2 3 4 5 0.0 05 10
Iterations ~ x10° lterations x10° Iterations ~ x10° Iterations ~ x10°
(a) a=0.1 (b)a=0.3 (c)a=0.4 (d) NAC of OGD
10
=0OMDye(n =1.00) =Best Dynamic
1.0 s 10} e i 0.9 | ~0GD(n= 0:10) - -=Best.Static
65T 17=0.1600 10 #=1.0000 ~5-OMDe(n=0.20) ~RY
\ = n=1.0000 ~ n=0.2000 ~ 15,0000 PL(N= 1.0)
_ - 2 Q .
0 > 5000 00 =.1=1.0000 09 = n=14.6300 Z 08 ; . .
Q = 1=5.0000 Q = 1=5.0000 Q = 1+20.0000 = &—\:
Z 038 = 08 =2 ; - gy
T~ N— 07 | » F—
07 | g 07 |- o —
0.0 05 10 0.0 05 10 0.0 05 10 0.0 05 . 10 .
Iterations ~ x10° Iterations ~ x10° Iterations ~ x10° [terations x10
(e) NAC of OMDng (f) NAC of 5-OMDng (g) NAC of FTPL (h) NAC of the different policies.

Fig. 4. Subfigures (a)-(c) show NAC of OGD and OMDN\g, evaluated under different diversity regimes when 10% of the files
change popularity over time. We use traces Partial Popularity Change (1), (2), and (3) corresponding to the different diversity
regimes. The diversity regimes are selected, such that, in the stationary setting (dashed line): (a) OMDng outperforms OGD,
(b) OMDNE has similar performance to OGD and (c) OMD\g performs slightly worse than OGD. OMDNg is consistently
more robust to partial popularity changes than OGD. Subfigures (d)-(h) show the NAC of the different caching policies
evaluated on the Global Popularity Change trace, where file popularity changes every 5 x 10* iterations. While OGD adapts
seamlessly to popularity changes (d), multiplicative updates can make OMDNg, less reactive (e), unless OMDNg is forced to
operate over the §-interior of X (f) (§ = 107%). Finally, our mirror descent policies outperform competitors (h).

— OMDyg -+ W-LFU - LFU = LRU = FTPL
0GD

Fig. 5. NMAC of the different caching policies evaluated on the Akamai
Trace. OMDNE and OGD provide consistently the best performance compared
to W-LFU, LFU, LRU, and FTPL. OGD performs slightly better than OMD in
some parts of the trace.

NMAC

0.0
0.00 025 050 075 100 125 150
Iterations %10*

8 CONCLUSIONS

We study no-regret caching algorithms based on OMD with g-norm and neg-entropy mirror maps.
We find that batch diversity impacts regret performance; a key finding is that OGD is optimal
in low-diversity regimes, while OMD\g is optimal under high diversity. With an appropriately

designed rounding scheme, our O (\/T) bound on the regret for general OMD algorithms extends

to integral caches as well, despite the need to account for update costs in this setting.

Our numerical experiments indicate that the gap between the regimes in which OGD and OMDyg
are optimal, w.r.t. the diversity ratio, is narrow; this suggests that our characterization of the two
regimes can be further improved. Also OMD o algorithms for arbitrary values of g € (1,2)
deserves more investigation to 1) devise strongly polynomial, efficient algorithms for their Bregman
projection, 2) characterize their update costs, and 3) compare their performance with OMDNg.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:21

Fig. 6. Costs associated with the rounded inte-

x10* .

Z Onlin independént rounding L Online independent rounding | gral caching over the Downscaled Global Popular-
~ Online coupled rounding ol Online coupled rounding 1 ity Change trace. The normalized average costs
08f gr":::i:fl":'\‘fl]"‘if°"p13d rounding | T Sr":::i:ﬂ't:‘f:‘i:o"plm ring shown in (a) are the same for the online indepen-
O 0 dent rounding, the online coupled rounding and
B 2 05k 250k 1] the online optimally-coupled rounding. The cumu-
lative update cost of the online coupled rounding
25 5 and online optimally-coupled rounding in (b) is of
1 00} o = the same order as in the fractional setting, while the
700 25 50 75 00 25 50 75 online independent rounding in (b) gives a much
Iierations % 10° Iterations ~ x10° higher update cost. The reported values are aver-
. . aged over 20 experiments, and the blue shaded area

(a) Normalized average cost (b) Cumulative update cost 8 P

represents 10% scaling of the standard deviation.

1.00 ° 1.00 oy . 1.00 =Y
= - o] -
S Ro07s © /H i 0.75 © 3 0.75 ©
e ad "M‘W’V““ ol -
3 | o h e iy o
2050 Ea ’l.' oot e 2050 E g /’ 50 Ea
- - o cay o o
A | RS Iy W “a { “n
12025 =i 135025 ® 5 =
. =k — — .
] 4 : 31 34 oE
374757675 9 T 00 0y 8s e g e 000 012456 T g T 000 0125456 T gy T 000
Tterations x 10° Tterations x 10° Tterations x 10° Tterations x 10°

(a) Fractional cache states (b) Online independent round- (c) Online coupled rounding (d) Online optimally-coupled
ing rounding

Fig. 7. Online rounding of fractional caching states. Visually, we see that the online independent rounding has more
frequent updates than the online coupled rounding. This leads to large update costs. The online coupled rounding and the
online optimally-coupled rounding prevents the cache to perform unnecessary updates.

= OMDye = OGD = OMDyg = OGD

T o Mean: 223x107s ___ — 100 (AR L P10 2, Fig. 8. Runtime per iteration of OMDyg and
Py @ 10p T VTAWITT OGD. Subfigure (a) shows the runtime per
= Meah: 1.49x10" 5 £ Mean: 3 49x10 7 500 iterations over the Fixed Popularity t
E 101k L Lo XL = 10 pularity trace.
= et i . . Subfigure (b) shows the runtime per 50 iter-

0 100 200 0 50 100 130 ations over the Batched Fixed Popularity (2)

[terations x 500 Iterations x 50 trace.
(a)R/h=1 (b)R/h > 1

Acknowledgements. This research was supported in part by the French Government through
the “Plan de Relance” and “Programme d’investissements d’avenir” and by Inria under the ex-
ploratory action MAMMALS. The authors gratefully acknowledge support from the National
Science Foundation (grants 2107062 and 2112471).

REFERENCES

[1] Sara Alouf, Nicaise Choungmo Fofack, and Nedko Nedkov. 2016. Performance Models for Hierarchy of Caches:
Application to Modern DNS Caches. Performance Evaluation 97 (2016), 57-82.

[2] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan Roytman, and Adam
Wierman. 2013. A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret. SSGMETRICS Performance
Evaluation Review 41, 1 (June 2013), 329-330.

[3] AWS. 2021. Amazon Web Service ElastiCache. https://aws.amazon.com/elasticache/

[4] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. 2012. A Primal-Dual Randomized Algorithm for Weighted
Paging. Journal of the ACM (JACM) 59, 4, Article 19 (Aug. 2012).

[5] Amir Beck and Marc Teboulle. 2003. Mirror Descent and Nonlinear Projected Subgradient Methods for Convex
Optimization. Operations Research Letters 31, 3 (2003), 167-175.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://aws.amazon.com/elasticache/

1:22 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

[6] Daniel S. Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014. Exact Analysis of TTL Cache Networks.
Performance Evaluation 79 (2014), 2-23.

[7] Rajarshi Bhattacharjee, Subhankar Banerjee, and Abhishek Sinha. 2020. Fundamental Limits on the Regret of Online
Network-Caching. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 2, Article 25 (June
2020).

[8] B.Blaszczyszyn and A. Giovanidis. 2015. Optimal Geographic Caching In Cellular Networks. In ICC. 3358-3363.

[9] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An Optimal On-Line Algorithm for Metrical Task System.

Journal of the ACM (JACM) 39, 4 (Oct. 1992), 745-763.

Sem Borst, Varun Gupta, and Anwar Walid. 2010. Distributed Caching Algorithms for Content Distribution Networks.

In 2010 Proceedings IEEE INFOCOM. IEEE, 1-9.

Sébastien Bubeck. 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends in Machine

Learning 8, 3-4 (Nov. 2015), 231-357.

Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry. 2018. K-Server via Multiscale

Entropic Regularization. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (Los

Angeles, CA, USA) (STOC 2018). Association for Computing Machinery, New York, NY, USA, 3-16.

Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press, USA.

Hao Che, Ye Tung, and Z. Wang. 2002. Hierarchical Web Caching Systems: Modeling, Design and Experimental Results.

IEEE Journal on Selected Areas in Communications (Sep 2002).

Christophe Chesneau and Yogesh J. Bagul. 2020. New Sharp Bounds for the Logarithmic Function. Electronic Journal

of Mathematical Analysis and Applications 8, 1 (2020), 140-145.

Weibo Chu, Mostafa Dehghan, John C.S. Lui, Don Towsley, and Zhi-Li Zhang. 2018. Joint Cache Resource Allocation

and Request Routing for In-network Caching Services. Computer Networks 131 (2018), 1-14.

Edward Grady Coffman and Peter J. Denning. 1973. Operating Systems Theory. Vol. 973. Prentice-Hall, Inc.

Mostafa Dehghan, Laurent Massoulie, Don Towsley, Daniel Sadoc Menasche, and Y. C. Tay. 2019. A Utility Optimization

Approach to Network Cache Design. IEEE/ACM Transactions on Networking 27, 3 (June 2019), 1013-1027.

Ronald Fagin. 1977. Asymptotic Miss Ratios over Independent References. J. Comput. System Sci. 14, 2 (1977), 222-250.

Philippe Flajolet, Dani¢ele Gardy, and Loys Thimonier. 1992. Birthday Paradox, Coupon Collectors, Caching Algorithms

and Self-Organizing Search. Discrete Applied Mathematics 39, 3 (1992), 207-229.

Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2014. Performance Evaluation of

Hierarchical TTL-based Cache Networks. Computer Networks 65 (2014), 212-231.

Christine Fricker, Philippe Robert, and James Roberts. 2012. A Versatile and Accurate Approximation for LRU Cache

Performance. In Proceedings of the 24th International Teletraffic Congress. 8.

Michele Garetto, Emilio Leonardi, and Valentina Martina. 2016. A Unified Approach to the Performance Analysis of

Caching Systems. ACM Transactions on Modeling and Performance Evaluation of Computing Systems 1, 3, Article 12

(May 2016), 12:1-12:28 pages.

Nicolas Gast and Benny Van Houdt. 2017. TTL Approximations of the Cache Replacement Algorithms LRU (m) and

h-LRU. Performance Evaluation 117 (2017), 33-57.

Claudio Gentile and Nick Littlestone. 1999. The Robustness of the p-Norm Algorithms. In Proceedings of the Twelfth

Annual Conference on Computational Learning Theory (Santa Cruz, California, USA) (COLT ’99). Association for

Computing Machinery, New York, NY, USA, 1-11.

[26] Elad Hazan. 2016. Introduction to Online Convex Optimization. Foundations and Trends® in Optimization 2, 3-4 (Aug.

2016), 157-325.

Stratis Ioannidis, Laurent Massoulié, and Augustin Chaintreau. 2010. Distributed Caching over Heterogeneous Mobile

Networks. In Proceedings of the ACM SIGMETRICS. 311-322.

Stratis Ioannidis and Edmund Yeh. 2016. Adaptive Caching Networks with Optimality Guarantees. SIGMETRICS

Performance Evaluation Review 44, 1 (2016), 113-124.

Predrag R. Jelenkovic. 1999. Asymptotic Approximation of the Move-to-Front Search Cost Distribution and Least-

Recently Used Caching Fault Probabilities. The Annals of Applied Probability 9, 2 (1999), 430-464.

Bo Jiang, Philippe Nain, and Don Towsley. 2018. On the Convergence of the TTL Approximation for an LRU Cache

under Independent Stationary Request Processes. ACM Transactions on Modeling and Performance Evaluation of

Computing Systems 3, 4 (2018).

George Karakostas and Dimitrios N. Serpanos. 2002. Exploitation of Different Types of Locality for Web Caches. In

Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications. IEEE, 207-212.

[32] W.F.King. 1972. Analysis of Paging Algorithms. In Proceedings of the IFIP congress on Information Processing, Vol. 71.

485-490.

Krzysztof C. Kiwiel. 1997. Proximal Minimization Methods with Generalized Bregman Functions. SIAM Journal on

Control and Optimization 35, 4 (1997), 1142-1168.

—
—
(=}

—

(11

—

(12

—

[13
[14

[l i

(15

—

(16

—

[17
[18

—

[19
[20

[t i

[21

—

[22

—

[23

[t

[24

—

[25

—

[27

—

[28

[t

[29

—

[30

[t

[31

—

[33

—

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:23

[34] Elias Koutsoupias. 2009. The k-server Problem. Computer Science Review 3, 2 (May 2009), 105-118.

[35] Emilio Leonardi and Giovanni Neglia. 2018. Implicit Coordination of Caches in Small Cell Networks Under Unknown

Popularity Profiles. IEEE Journal on Selected Areas in Communications 36, 6 (June 2018), 1276-1285.

Yuanyuan Li, Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. 2021. Online Caching Networks with Adversarial

Guarantees. 5, 3, Article 35 (dec 2021), 39 pages.

[37] Jun-Lin Lin. 2013. On the Diversity Constraints for Portfolio Optimization. Entropy 15, 11 (2013), 4607-4621.

[38] N. Littlestone and M. K. Warmuth. 1994. The Weighted Majority Algorithm. Information and computation 108, 2 (1994),
212-261.

[39] William G. Madow and Lillian H. Madow. 1944. On the Theory of Systematic Sampling. Annals of Mathematical
Statistics 15, 1 (March 1944), 1-24.

[40] Mark Manasse, Lyle McGeoch, and Daniel Sleator. 1988. Competitive Algorithms for On-Line Problems. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing (Chicago, Illinois, USA) (STOC ’88). Association for
Computing Machinery, New York, NY, USA, 322-333.

[41] H Brendan McMahan. 2017. A survey of algorithms and analysis for adaptive online learning. The Journal of Machine
Learning Research 18, 1 (2017), 3117-3166.

[42] Samrat Mukhopadhyay and Abhishek Sinha. 2021. Online Caching with Optimal Switching Regret. In 2021 IEEE
International Symposium on Information Theory (ISIT). IEEE, 1546-1551.

[43] Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan, Pietro Michiardi, and Dimitra Tsigkari. 2017.

Access-Time-Aware Cache Algorithms. ACM Transactions on Modeling and Performance Evaluation of Computing

Systems 2, 4, Article 21 (Nov. 2017).

Giovanni Neglia, Damiano Carra, and Pietro Michiardi. 2018. Cache Policies for Linear Utility Maximization. IEEE/ACM

Transactions on Networking 26, 1 (Feb. 2018), 302-313.

[45] Nitish K. Panigrahy, Philippe Nain, Giovanni Neglia, and Don Towsley. 2021. A New Upper Bound on Cache Hit
Probability for Non-Anticipative Caching Policies. SSGMETRICS Performance Evaluation Review 48, 3 (March 2021),
138-143.

[46] Rodrigo Paredes and Gonzalo Navarro. 2006. Optimal Incremental Sorting. In 2006 Proceedings of the Eighth Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM, 171-182.

[47] Debjit Paria and Abhishek Sinha. 2021. LeadCache: Regret-Optimal Caching in Networks. In Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.),
Vol. 34. Curran Associates, Inc., 4435-4447.

[48] Georgios Paschos, George losifidis, Giuseppe Caire, et al. 2020. Cache Optimization Models and Algorithms. Foundations
and Trends® in Communications and Information Theory 16, 3—4 (2020), 156-345.

[49] G.S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis. 2019. Learning to Cache With No Regrets. In IEEE INFOCOM

2019 - IEEE Conference on Computer Communications. 235-243.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computational Optimal Transport: With Applications to Data Science.

Foundations and Trends® in Machine Learning 11, 5-6 (2019), 355-607.

[51] Konstantinos Poularakis, George Iosifidis, Vasilis Sourlas, and Leandros Tassiulas. 2016. Exploiting Caching and

Multicast for 5G Wireless Networks. IEEE Transactions on Wireless Communications 15, 4 (2016), 2995-3007.

Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method. The Annals of Mathematical Statistics

22,3 (1951), 400-407.

Shai Shalev-Shwartz. 2012. Online Learning and Online Convex Optimization. Foundations and Trends in Machine

Learning 4, 2 (Feb. 2012), 107-194.

[54] Shai Shalev-Shwartz and Yoram Singer. 2007. Online Learning: Theory, Algorithms, and Applications. Ph.D. Dissertation.
Hebrew University.

[55] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire. 2013. FemtoCaching: Wireless Content

Delivery Through Distributed Caching Helpers. IEEE Transactions on Information Theory 59, 12 (2013), 8402-8413.

Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. 2021. No-Regret Caching via Online Mirror Descent. In ICC

2021 - IEEE International Conference on Communications. 1-6.

[57] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized Efficiency of List Update and Paging Rules. Commun. ACM 28,
2 (Feb. 1985), 202-208.

[58] Stefano Traverso et al. 2013. Temporal Locality in Today’s Content Caching: Why It Matters and How to Model It.

ACM SIGCOMM Computer Communication Review 43, 5 (Nov. 2013), 5-12.

Weiran Wang and Canyi Lu. 2015. Projection onto the Capped Simplex. preprint arXiv:1503.01002 (2015).

Martin Zinkevich. 2003. Online Convex Programming and Generalized Infinitesimal Gradient Ascent. In Proceedings

of the Twentieth International Conference on International Conference on Machine Learning (Washington, DC, USA)

(ICML’03). AAAI Press, 928-935.

[36

—

—

[44

=

[50

[t

[52

—

[53

[t

[56

—

[59
[60

[t

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

A FRACTIONAL CACHING AND GRADIENT-BASED ALGORITHMS
A.1 Online Mirror Descent

THEOREM A.1.([11, Theorem 4.2]) Let (1) the map ® : D — R be a mirror map (see Sec. 4.2)
p-strongly convex w.r.t a norm || - || over S N D (8 is a convex set), (2) the cost functions f; : S — R
be convex with bounded gradients (i.e., |Vf;(x)||, < L,Vx € S) for every t € [T], where || - ||, is the
dual norm of || - ||, (3) and the Bregman divergence Dy (x,x) be bounded by D? forx € S where
X1 = argmin,. . g, P(x). Then Algorithm 1 satisfies

Yooy filxr) = X fi(x) < D*/n+nL?/(2pT), forx €S. (28)

We remark that Theorem A.1 is expressed differently in [11], where f; = f,Vt € [T] (fixed cost
function). Nonetheless, as observed in [11, Sec. 4.6] the bound obtained in Eq. (28) holds as long as
the dual norms of the gradients are bounded by L.

A.2 Proof of Theorem 4.4

The map ®(x) = %||x||2,q € (1,2] is p = q — 1 strongly convex w.rt |- ||, over D = RN a
direct result from [54, Lemma 17], and the dual norm of || - || is || - [|, (H6lder’s inequality).Take
S = X. The minimum value of ®(x) over X is achieved when we spread the capacity mass k
over the decision variable, i.e., x; = ﬁ,i € N.If we select x; to be the minimizer of ®(x), then
we have VCDT(xl)(x x1) = 0,Yx € X [26, Theorem 2.2], so we obtain Dg(x,x1) = ®(x) —
D(x;) — VO(x1) T (x — x1) < ®(x) — ®(x;). Moreover, it is easy to check that ® is maximized
at a sparse point x, € X N {0,1}"; thus, we have Dg(x,x;) < ®(x.) — ®(x;). By replacing x;

2

. q _2
and x, with their values in the previous equation we get ®(x;) = % ((%) N) 7= %kzN 7, and
d(x,) = %k% = %kzkfé. Thus, we have Dg(x,x;) < 1k? (k’fv - N*f:) = D?. Note that the
maximum of ||r||, is achieved when % components are set to A, then the following bound holds on

1
the gradients ma% ||Vf,(x)|| < max [wlleo [I7ll, = llWlle A (—)1’ = Lp. The gradients are bounded
re

in the dual norm ||V £ (x;)|| » S Lp, Vr € R. The final bound follows by Theorem A.1, plugging
the constants D and L in (28), and selecting the learning rate that achieves the tightest bound

_2 _2
n=\/(q—1)k2 (k75 = N75) (1wl 12 (8)7 7). o
A3 ProofofCoroIlary46

Taking o = % and B = =, we canrewrite (12) to have Regret;:(OMDy norm) < Wl RIB %T.

We take the 11m1t q— 1 to obtain the upper bound

a?d—a 4
Regret; (OMD1.norm) < lin Wil RET T = [wlloo RB\[9]), T

= [wllo R[[24720/ 10g(c)] ., T = Wl Rapy2Iog(a DT = [wl., hkyf2log (¥) T O

A.4 Proof of Theorem 4.7

We take the simpliﬁed Version of the regret of the general class of g-norm mirror maps in Eq. (12),
select a =< and p = , so we get Regret;(OMDg.norm) < Wl Rp(q)VT, where ¢(q) 2

ﬁ “z/q “ The tightest regret bound is achieved with ¢* that minimizes ¢(q). We have

/q-2_ / /q-2_
¢ (q) _ —azﬁq ¢*(a¥172-1)+2(q-1) (a?/ 92 log(a)+(a?/972-1) log(ﬁ)) (29)
2¢%(q- 1)2\/M

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:25

We study the sign (—J(q)) of the derivative of the minimizer in Eq (29)

J(@) =¢* (¥ = 1) +2(q - 1) (a?/9 2 log(ax) + (a*/972 - 1) log(p)) (30)
> 2(1 -) log(@) +2(g — 1) (252 log(a) log(ap) + log(«) (31)
> 29(q = 1) ((1 - @) log(a) + 2L log(a) log(ep)). (32

Note that (1 — g) log(«) > 0 and I_Tq log(a) = 0. We take % < k, this gives aff > 1 and J(q) 2 0
implying sign(¢’(q)) = —sign(J(q)) = —1. We conclude that ¢(q) is a decreasing function of
q € (1,2] when % < k; therefore, the minimum is obtained at g = 2 for % <k. O

A.5 Proof of Theorem 4.8

We have the following regret upper bound for the g-norm mirror map, as ¢ — 1 from Corollary 4.6:

RegretT(OMDl norm) < |[Wlle hk+/210g () T. In [15], it is proved that the log function satisfies

log(u+1) < W u >0 Wetakeu = 3 X — 1, and note that N > k > 0, so we get u > 0. We have
the following log () < P X (1 - N)' Thus, the upper bound in Corollary 4.6 Eq. (14) can

be loosened to obtain Regret; (OMDi.norm) < ||Wllo, khy/2log (£) T < |lwlo \/ZVNkhzk (1 - %)

If we take % > 2VNk, then this upper bound is tighter than the upper bound on the regret of OGD
in Corollary 4.5. O

A.6 OMDyg and OMD with g-norm Mirror Map Correspondence

THEOREM A.2. The algorithm OMDy o defined as the limitting algorithm obtain by taking q
converges to 1 of OMDg norm with learning rate ng = n(q — 1)k, intermediate states y;q), and fractional

states x(q) fort > 1 is equivalent to OMDNg configured with learning rate n € Ry over the simplex
(capped szmplexX with k = 1), when both policies are initialized with same state in RY, N X. Moreover,
OMD1 norm has a multiplicative update rule over the capped simplex.

Proor. Let g; = Vf;, (x;) be the gradient of the cost function at time slot ¢. From lines 2-3in
A(q)

‘ l’zl

= (VO(x;));+149:: = sign(x tz) T —Nq9t.i

Algorithm 1 and Eq. (15) we obtain the following 7,

for a given g € (1, 2]. The algorithm guarantees that x; € XNRY thenx; >0,Vie N . So, we get

>0°

At(ff.) = (le;lliq_z —1q91,i> Vi € N. Note that —7g; ; is non-negative. The numbers p and g are conjugate
numbers (see Sec. 4.4) and satisfy ¢ — 1 = —=. We use Eq. (16) to get the expression of yt(zi ;
p-1 p-1 2 \P-
xp1)971 xp.1)971 _ llxe 1
((H ’[”L, - nqgt.,») (#—n(q—l)kgt,i) xealleelly? (1—n<q—1>kgt,,~ e)
— q _ i

—2 —2 -2
()9 "' ()9 "' el \° E
(ZIEN(“q Z Uqgt:)) (ZieN(th 7 -1(q- 1)k9t:)) (ZIEN(xtl)(q I)P(l n(q- l)kgtzﬁ))

el Il

We rewrite the above expression solely in terms of p, and taking the limit for q converges to 1 is
equivalent to let p diverges to +oo, so we have for all i € N

\p-1
1- l) e
s (1-2% _ o en(-ngu)
= xt,lk hmp—>+c>o noe\P PTTZ - Xt’lk SN Xei eXp(—ryg;,,-) . (33)
[z 2))

(%)

.
Yreri = ,,ETOO Yorri

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:26 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

The intermediate state of OMD1_orm in Eq. (33) is a multiplicative update rule identical to the
update rule of OMDNg (y;4+1; = Xt e 794 in Eq. (20)) with an additional multiplicative factor

k _ _
S w—— For k = 1, the intermediate state of OMD1_porm in Eq. (33) is feasible (i.e., x;41 =

y:+1 and the projection has no effect). On the other hand, the neg-entropy projection in the case of
. e "9t
k = 11is just a normalization of the intermediate states (i.e., x;11; = —Xie T forie N).
’ Sien xeiexp(-nge.i)
Thus, the states obtained by the two algorithms coincide. O

A.7 Proof of Theorem 4.10

The neg-entropy mirror map is p = g-strongly convex w.rt the norm | -[|; over X N D [53,
Example 2.5]. The dual norm of || - ||, is || - || . By taking p — oo of L,, in the Proof of Theorem 4.4
we can consider as bound for the gradient in Eq. (28)

L=lwllh. (34)

The initial state x; with x;; = k/N, Vi € N is the minimizer of ®, and we have ®(x) < 0,Vx € X.
Thus

Dy(x,x1) < (x) - 0(x;) < ~0(x) = - IV, klog (&) =klog (¥) =D%. (39)

The bound follows by Theorem A.1, plugging (34) and (35) in (28), and selecting the learning rate
N

that gives the tightest upper bound, that is = lfii(”;; O

A.8 Proof of Theorem 4.11

We adapt the Euclidean projection algorithm in [59]. Finding the projection x = H?{,ﬁ 5 (y) corre-
sponds to solving a convex problem as Dg (X, y) is convex in x and X N D is a convex set. Without
loss of generality, we assume the components of x = H?}n 5 (¥) to be in non-decreasing order. Let
b € N be the index of the largest component of x smaller than 1. The KKT conditions lead to
conclude that if the components of y are ordered in ascending order, so are the components of x.
In particular, the smallest b components of x can be obtained as x; = y;e¥ and ype¥ < 1 < yp1€?,
where y is the Lagrangian multiplier associated with the capacity constraint. If b is known, then

it follows from the capacity constraint that m, = e¥ = kz*;b_N = Hyllk+§j_\]N W We observe that
i=1 Yi 17 &ij=p1 Yi
necessarily b € {N —k + 1,...,N}. In fact, we cannot have b < N — k. If b < N — k, we get

Zﬁ\i N_k+1 Xi = k and the capacity constraint implies that x; = 0,Vi < b, but we must have x; > 0
sincexe XNPDand D = R1>VO. We can then find the value of b, but checking which number in
{N —k+1,...,N} satisfies ype¥ < 1 < yp,1€". Note that this operation only requires the largest
k components of y. The projection corresponds to setting the components yp41,...,yn to 1 and
multiply the other N — b components by my,. In order to avoid updating all components at each
step, we can simply set the components x; for i > b (those that should be set equal to 1) to me
Then, at any time ¢, we can recover the value of x; ;, multiplying the i-th component of the vector
x by P = [[._, mps, where my,; is the returned m;, from the Bregman projection at time step s.
For general values of R and h, the projection step takes O (k) steps per iteration and a partial sort
is required to maintain top-k components of y; sorted; this can be done using partial sorting in
O (N + klog(k)) [46]. When R = h = 1, Alg. 1 leads to only a single state coordinate update, and
requires O (log(k)) steps to maintain top-k components of x; sorted online. O

A.9 Proof of Proposition 5.1

Every time slot t € [T], we obtain an intermediate cache state y;,; through lines 2-4 in Algorithm 1
asyr1 = (VO 1) (VO(x;) — nVf, (x1)). Let {xt}tT:1 and {x;}tT=1 be fractional cache states obtained
by OGD and OMDxg, respectively, and {y,}’_, and {y,}_, be their intermediate fractional cache

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:27

states. In the case of OGD, or equivalently OMD configured with mirror map ®(x) = % llx||5, the
intermediate fractional states have the same components as the previous cache state for files are
not requested y,; = x;; for every i ¢ supp(r;). Similarly, we also have y; , = x; ; for OMDyg, for
every i ¢ supp(r;). The Euclidean projection algorithm onto the capped sifnplex [59] can only set
a component of the intermediate fractional cache state to one if it exceeds it, and the remaining

. N=b-k+3} qur Yre1 .
components are either set to zero or reduced by a constant amount A = ———2=""—— where a s

the number of components set to zero and b is the number of components strictly less than one, and
A > Y114 (a KKT condition in [59]) and in turn A > 0 because y;41; > 0 for any i € N. Therefore,
all the components i ¢ supp(r;) of the resulting state are decreased or at most kept unchanged.
Similarly, the neg-entropy Bregman projection onto the capped simplex sets some components to
one if they exceed it, and the remaining components are scaled by a constant my,. In our caching
setting we have y;.1; > x;; for i € N in turn ||ys4||; > k, thus the equality constraint ||x||; = k
in the projection can be replaced by ||x||; < k. From the KKT dual feasibility condition we obtain
—y = 0 and mp = e’ < 1. Thus, we have x;.1; < x;; for every i ¢ supp(r;). We conclude that the
update cost is zero for both policies, i.e., UC, (x,X141) =), y Wi max (0, xz41; — %z,;) = 0. O
B INTEGRAL CACHING

B.1 Proof of Proposition 6.1

i¢supp(r;

Consider equal service costs w; = 1 for any i in . A deterministic policy denoted by A selects an
integral cache state x; from Z for every time slot ¢, and the adversary can select a request batch r,
based on the selected state. Let r, = [1 (4,21}]icn be the request batch selected by the adversary at
time t, so the cost incurred at any time slot t is f, (x;) = N — k, and the total cost incurred by A
for the time horizon T is ZtT:I fr, (x¢) = (N — k)T. For a fixed integral cache state x € Z,

Sio fro () = 2is D (1= %) (1= x13) = T(N = 2k) + I, i 2/ %0 (36)

The best static cache state x. is given by x. = arg min,. ~ S f(x) = arg min, .~ SN S X
The maximum value of Zf\il Xsi Zthl x;; is achieved when Zthl Xti = ZzT=1 xj = Tk/N for every
i, j € N, and in this case x, can be arbitrary in Z. Thus, the cost incurred by the static optimum is
upper bounded by 37, f,(x.) = T(N = 2k) + YN x.; ST x,; < T(N - 2k) + TTkz The regret of
A over time horizon T is lower bounded by

Regrety (A) = T1, fr, () = T, f,(6) 2 TN = k) = T(N = 2K) - Ty =k (1- £) 7. (37)

We conclude that the regret of any deterministic policy A is Q(T) compared to a static optimum
selecting the best state in Z; therefore, it also has Q(T) regret compared to a static optimum
selecting the best fractional state in X, which includes Z. m]
B.2 Proof of Proposition 6.2

Proor. The expected service cost incurred when sampling the integral caching states z; from
x; at each time ¢, by the linearity of f;, is E [Zthl Ir, (zt)] = thl E [fr, (zt)] = thl fr, B lz]) =
Sl f.(x;). The best static configuration x, in the fractional setting can always be selected to
be integral; this is because the objective and constraints are linear, so integrality follows from
the fundamental theorem of linear programming. Hence, the expected regret for the service cost
coincides with the regret of the fractional caching policy. O

B.3 Proof of Theorem 6.3

Proor. We consider the catalog N = {1, 2}, cache capacity k = 1, and equal service and update
costs w; = w; = 1fori € N.A policy A selects the states {x,}_; € XT. The randomized

states obtained by E are {z,}tT:I; thus, we have z; = [1,0] w.p. x;1, and z; = [0,1] w.p. x;2. An

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:28 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

adversary selects the request batch as r; = [1—;,}]icp aiming to greedily maximize the cost
of the cache, where i; £ argmin; ,{x;;}. The expected service cost at time ¢ is E [f,, (z,)] =
1 — x¢4,, and the expected update cost is E [UC” (zt,zHl)] = x¢i,(1 — x¢4+1,4,)- An update cost is
incurred when i, is requested and the state changes from z;;, = 1 to z441;, = 0; We pay a unitary
cost due to fetching a single file that is not requested with probability P (z;, = 1,z¢414, = 0),

and this gives the first equality. We use independence of the random variables z; and z;,; to

obtain the second equality. A fixed state x = [%, %] incurs a cost of % for every timeslot t €

[T]. We define the instantaneous extended regret w.r.t. the fixed state x for every timeslot ¢ €
[T]asa; =E [fr, (x¢) +UC,, (z,,z“_l)] - fr,(x) =E [f,t(xt) +UC,, (z,,zH_l)] - % Observe here
that looking for a minimizer over X or over Z is equivalent. Because x is not necessarily the
minimizer of the aggregate service cost ,/_, f>, (x), we can lower bound the extended regret (26)
as E-Regret; (A, E) > Zthl a;. Without loss of generality, assume that T is even so Zthl a; =
Zgﬁ (agk + ask_1), and we have

T/2

>hia= Z (1 = Xok—Ligg_y ~ X2kiigg t X2k—1igp_; (1= Xakipp_y) + X2kigy (1= x2k+1,i2k))
k=1
z Zzﬁ (1 — Xok—1ige_y ~ X2kipe ¥ X2k-1ige_q (1 xzk,izk,l)) .
From the definition of iy, we have xy ;,, < (1 = x2x, ,) for any k € [T/2]. Thus,
Zthl ar 2 Z,i/? (1 = Xok—1igp_y ~ X2k,ipy +x2k—1,i2k,1xzk,i2k) = Zg? 1= Xok—t,ipp_y — X2k, ip (1 - xzk—l,izk,l)

T/2 1 _vyT/2(1_1 T
2 sy (1 T Xok-Lige-1 T 2 (1 _xzk*”zk—l)) =2o (i - EXZk*Uzk—l) =

The second and third inequalities are obtained using x;;, < % for every timeslot t € [T]; a direct
result from the definition of i;. We combine the above lower bound with E-Regret; (A, E) > Zthl a;
to obtain E-Regret (A, Z) > % O

B.4 Family of Coupling Schemes with Sublinear Update Cost

The following theorem provides a sufficient condition for the sublinearity of the expected total
update cost of the random cache states {z,}’_, obtained through a rounding scheme = from the
input fractional states {xt}thl.

THEOREM B.1. Consider an OMD Algorithm and a joint distribution of (z;,2.41) that satisfy
(a) E[z;] = x; and E[z441] = X441, and (b) E [Ucr,(ztsznl)] = O (llx¢+1 — x¢|ly)- This algorithm
incurs an expected service cost equal to the service cost of the fractional sequence. Moreover, if n =

(<] (%), the algorithm has also O (\/T) expected update cost and then O (\/T) extended regret.

Proor. Consider that the sequence {x,}’_, is generated by an OMD algorithm, configured with
a p-strongly convex mirror map ® w.r.t a norm || - ||. Assume that we can find a joint distribution
of (2;,2,11) satisfying E [UCy, (2, 2141)| = O (xr41 — x¢1l,), where E[2;] = x; and E[2441] = %41
Then there exists a constant y; > 0, such that E [UC,t (24, zt+1)] < 11 l1%e41 — x¢||;- Moreover,
there exists y; > 0, such that y [|x;+1 — X¢|l; < y1y2 ||x¢+1 — x¢||, and this gives E [UC” (zt,z,“)] <

Yy l1%ee1 — x¢|| . As @ is p-strongly convex w.r.t. the norm || - ||, it holds
Do (x4 Y1) = ©(xs) = D(Yra1) + VO(x:) T (Yra1 — x1) + (VO(xr) = VO(Yra1)) " (X1 — Y111
2L2
< —g [l — yoaall® + Ugl‘T(xt — Y1) < —g llx: =yl + 7 ller =yl L < ’72/) (38)

The above inequalities are obtained using the strong convexity of ® and the update rule, Cauchy-
Schwarz inequality, and the inequality ax — bx? < max, ax — bx? = a?/4b as in the last step in the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

No-Regret Caching via Online Mirror Descent 1:29

Case: mjy > m; ! Case: miy < m; <
: miq -
miq m[1 m‘ - 1,—H
771‘._ I m-
_____ ! i I—l—'m Fig. 9. The support and distribution of the ran-
i I - dom variable |Z;—;| for mj—y > m} (left) and
[Tial = m; X (Ll = m; = mi—1 < mj (right). The blue shaded area represents
‘ X & the probability that | Z;_; | takes the value indicated
i m; A . P Mg below the corresponding image. This figure can be
mi T] ™ mEI viewed as a subset of the rows in Fig. 10.
_____] i
X; | m;
1
[Tia] = m; +1 1 [T = my
1
1 Fig. 10. The random integral cache configuration
c H o PG #z) obtained by calling ONLINE ROUNDING given the
o ! — | ! fractional cache state x and & (left). When & is kept
T=my, =m, = X
T T - = = l 2 l fixed, the probability over the initial choice of & the
my =my =1 B — [N = x5 N - .
mg=my=my =2 % 1] % | % ¥, | Y, | % random integral cache configuration rounded from
[[a new fractional state x’ = x — Se3 + Se7 is different
z =%, (14,66 z is illustrated by the dashed areas (right).

(38)
proof of [11, Theorem 4.2], respectively. We have ||x;11 — x;|| < \/%D@(x,,xm) < \/%Dq>(xt,yt+1) <
. /2172% < %’7. The first inequality is obtained using the strong convexity of @, and the second
using the generalized Pythagorean inequality[13, Lemma 11.3]. We combine ||x;11 —x;|| < Ln/p

and E [UCr, (21,2141)| < y172 l|%141 — X, || to obtain E [UCy, (24, 241)| < yaye X1 — %] < Yl}’z%?-

The total update cost is ZtT:_f E [UC” (zt,zm)] < nye %T. When OMD has a fixed learning

rate n = © (-], we obtain ZT:E UCy. (24,2:41)| = O VT). The expected service cost is
n VT =1 f P

E [Zthl ft(zt)] = ZtT=1 fi(x;) = O(T); the first equality is obtained from the linearity of the
expectation operator and the function f;,, and the second equality is obtained using the bound in

Eq. (28) with = @(%) O

B.5 Proof of Theorem 6.4

Lemma B.2 and Lemma B.4 guarantee that Algorithm 3 used with an OMD algorithm satisfies the
hypothesis of Theorem B.1 and, hence, provides sublinear extended regret.

LEMMA B.2. The random integral cache state z obtained by calling Algorithm 3 with fractional
cache configuration input x € X satisfiesz € Z and B¢[z] = x.

Proor. We employ the shorthand notation m; = 23-:1 x; and m; = |m;]. The choice of ¢
(see Fig. 10) defines k different thresholds & &+ 1,...,& + k — 1. For each threshold, we select
the first item, whose accumulated mass exceeds the threshold. As my = k, we are guaranteed to
exceeds all k thresholds, and as x; < 1, we are guaranteed to select one item for each threshold.
Therefore z belongs to Z. From Algorithm 3 for any i € N we have P(z; = 1) = P(Z; \ ;-1 = {i}) =
P(m; > E+|Tia)).

If m;_y > my, see Fig. 9 (left), then |7;_4| € {m;,m; + 1} and P (m; > £+ |L;4]) = (m’?;‘l—’_"r;llil) .
(m; +1-m;_1) +0- (mj_y —m;) = x;. ¥ m;_; < mj, see Fig. 9 (right), then |I;_;| € {m; — 1, m]}

_ mi—m; _
and P (m; > &+ |T4]) =1 (m; —m;_1) + m c(misy—mp +1) =m; —m_; = x;. O
= i

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:30 Tareq Si Salem, Giovanni Neglia, and Stratis loannidis

&
: Pt1 . Pt7
1

X! | Xt2 |
I o - “ Fig. 11. Coupling induced by ONLINE RoUND-
Moy | wy | s ING Algorithm 3 when £ is fixed. The flow f; ; is the
|z, Iy f 2z joint probability P(z¢+1 = {¢+1,j, 2t = {z,i), so that
X =" fos|f75 the next state is {z+1,j and the previously selected
N EEED state is {7;.
R X5 Cha G - [
Xt+1,6 || Xt+1,7 Xt+1,8
T

211 pHN/H,S Zin

LEmMaA B.3. Consider a fractional cache configurationx’ obtained by an elementary mass movement
of § fromu € N tov € N for configurationx € X, i.e, x’ = x — Se, + de,. Algorithm 3 outputs
the random integral cache configurations z, and z’, given the input fractional cache states x and x’,
respectively. The random integral configurations satisfy E¢ [||z’ - z||1’w,] < 2kN |w'||o 6, where
x|l 10 = Zien |xil w!, and note that UC;, (24, 2141) < |12¢ — Ze41ll 100 -

ProoF. The probability that a random integral cache state z’ is changed w.r.t z can be upper
bounded as P(z # z') < };cnP(zi # z[). Consider w.l.g that u < v, then P(z; # z]) = 0 for
ie N\{w,u+1,...,0},andP(z; # z]) =dfori € {u,u+1,...,0}. Weobtain P(z # 2z’) < §(v—u+1)
(e.g., see Fig. 10). More generally, for u # v we have P(z # 2’) < (o — u| + 1). We conclude that

B[l = 2l < max 2 =2l Bz #2) < 2K Il (o = ul + D5 < 26N |/l 0. 0
’ z2)eZ ’

LEMMA B.4. The expected movement cost of the random integral cache states generate by Algorithm 3
isE¢ [UCrt (zt,ztﬂ)] = O (|lx; — x¢41]l1), when & is sampled once u.a.r. from the interval [0, 1] and
then fixed fort € [T].

Proor. The general fractional movement caused by a policy A changes the cache state from
fractional state x; € X to x;;1 € X, and we denote by J = {i EN :Xpy1i — Xzj > O} the set of
components that have a fractional increase. We have x:41 = x; + 2 jc 7 §j€; — 2ien g $i€i- where
¢i,i € N is the absolute fractional change in component i of the cache. Remark that we have
Ixt41 = Xt |1 = Ziey Wi¢i. From the capacity constraint we know that 3\;can g i = Xjeq @) If
we want to decompose this general fractional change to elementary operations, then we need to
find a flow [5,~,j] (i) €M TIXT that moves)’ ;c #; mass from the components in '\ J to to those
in . This requires at most N — 1 elementary operations. We define the map v : N2 — N that
provides an order on the sequence of elementary operations. Let z"(>/) be the random cache state
that could have been sampled after the v(i, j)-th elementary operation where E [z"(%))] = xV(:)),
and the total number of operations is denoted by |v| < N — 1. Note that by definition z"! = z,,
and we take z° = z,. For each of these operations we pay in expectation at most 2kN [|w’||., &; ;
update cost from Lemma B.3. Then the total expected movement cost is:

B¢ [UC, (21, 2101)] < Belllzins — 2illy0] = By [Hz}f’o‘l (@ -2 W] < 3 e [l -2,

< Zien g 2jeg 2k [[Wlle Nbij = 2kN [[W'lleo Ziepn 7 i < kN [[W'leo [l 241 = 2]l -

The update cost is thus O (||x;+1 — x¢]|;) in expectation. O

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Related work
	3 System description
	4 Fractional Caching and Gradient-based Algorithms
	4.1 Online Gradient Descent (OGD)
	4.2 Online Mirror Descent (OMD)
	4.3 Analysis of Online Mirror Descent Algorithms
	4.4 q-Norm Mirror Maps
	4.5 Neg-Entropy Mirror Map

	5 Update Cost
	6 Integral Caching
	6.1 Rounding Schemes and Extended Regret

	7 Numerical Experiments
	7.1 Experimental setup
	7.2 Results

	8 Conclusions
	References
	Appendix A Fractional Caching and Gradient-based algorithms
	A.1 Online Mirror Descent
	A.2 Proof of Theorem 4.4
	A.3 Proof of Corollary 4.6
	A.4 Proof of Theorem 4.7
	A.5 Proof of Theorem 4.8
	A.6 OMDNE and OMD with q-norm Mirror Map Correspondence
	A.7 Proof of Theorem 4.10
	A.8 Proof of Theorem 4.11
	A.9 Proof of Proposition 5.1

	Appendix B Integral Caching
	B.1 Proof of Proposition 6.1
	B.2 Proof of Proposition 6.2
	B.3 Proof of Theorem 6.3
	B.4 Family of Coupling Schemes with Sublinear Update Cost
	B.5 Proof of Theorem 6.4

