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Abstract

The geological record of marine animal biodiversity reflects the interplay between changing rates
of speciation vs. extinction. Compared to mass extinctions, background extinctions have received
little attention. To disentangle the different contributions of global climate state, continental
configuration, and atmospheric oxygen concentration (pOz2) to variations in background extinction
rates, we drive an animal physiological model with the environmental outputs from an Earth
system model across intervals spanning the last 541 million years. We find that climate and
continental configuration combined to make extinction susceptibility an order of magnitude
higher during the early Paleozoic than during the rest of the Phanerozoic, consistent with
extinction rates derived from paleontological databases. The high extinction susceptibility arises
in the model from the limited geographical range of marine organisms. It stands even when
assuming present-day pO2, suggesting that increasing oxygenation through the Paleozoic is not
necessary to explain why extinction rates apparently declined with time.

Teaser
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Climate and continental configuration combined to make early Paleozoic animals
susceptible to extinction.

MAIN TEXT
Introduction

The seminal work of Sepkoski et al. (/, 2) constituted a milestone in the quantitative
reconstruction of marine (invertebrate) biodiversity over the Phanerozoic (last 541 Ma).
Subsequently, the development of community paleobiological databases (3, 4), combined with
more robust statistical methods to reduce the impact of sampling and preservation biases (3, 5),
have led to further refinements in the Phanerozoic biodiversity curve. However, key features of
the long-term global biodiversity patterns are robust, particularly the early Paleozoic (Cambrian
and Ordovician) increase in standing biodiversity, the Permian-Triassic drop and early Mesozoic
recovery, with a rise to peak Phanerozoic biodiversity during the late Mesozoic through Cenozoic
(5). Many studies have investigated the drivers of these temporal trends but have done so mainly
in isolation and focusing on short intervals of time spanning mass extinctions or intense radiation
(6-8). Therefore, attempts to unravel the long-term drivers of biodiversity change throughout the
Phanerozoic have been scarce (5, 9—17). Those that have done so, such as in a recent numerical
biodiversification model study (/7), have often focused on the net diversification rate. In contrast,
the distinct contributions of diversification vs. extinction have remained underexplored.

Analyses of the Paleobiology Database reveal that major variations in apparent marine
extinction rates have occurred outside of mass extinctions during the Phanerozoic (2, 12, 13).
“Background” extinction rates are particularly elevated during the early Paleozoic (Cambrian and
Ordovician) (12, 13). For this reason, these periods are sometimes considered separately in
paleontological analyses (12, 14). For example, Stockey et al. (1/5) proposed that the high early
Paleozoic extinction rates reflected an interval of lower-than-modern atmospheric oxygen
concentrations (pO2) throughout the Cambrian and Ordovician (ca. 0.4 times modern), the latter
pOz2estimates aligning with the results of long-term carbon cycle (box) models (/6—18). However,
some geochemical proxies suggest that the early Paleozoic pO2 may have been closer to modern
(19). Moreover, Earth system model simulations resolving ocean circulation show that Cambrian
and Ordovician continental configurations lead to a poorly ventilated and largely anoxic seafloor
— potentially reconciling early Paleozoic redox proxies for deep-sea anoxia (/6) with a pO2
possibly as high as modern. These elements highlight that early Paleozoic pO2 remains poorly
constrained and might have been closer to modern, inviting us to revisit the cause of elevated
early Paleozoic extinction rates (735).

Here we investigate the evolution of the susceptibility of marine animal background
extinction during the Phanerozoic, assuming that global environmental perturbation — represented
here using global warming — constitutes an essential driver. We use an ecophysiological model
forced by environmental conditions simulated with an Earth system model. Successive series of
simulations allow us to quantify the contributions of the global climate state, continental
configuration, and atmospheric oxygen concentration (pQO2).

We start by simulating the potential evolution of global climate and ocean biogeochemistry
during the Phanerozoic using the Earth system model cGENIE (27) (Materials and Methods). We
conduct simulations at regular time intervals (every 20 Myrs) during the Phanerozoic and, for
each time slice, generate a ‘cold’ and a ‘warm’ climatic state. The warmer state assumes a
quadrupling of pCO2 compared to the cold state (Fig. 1A), leading to a +5 °C increase in
equatorial sea-surface temperature (SST). This amplitude of global warming was chosen to
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represent the upper limit of rapid climatic changes known from the geological record, known as
‘hyperthermals’ (15, 22, 23).

Simulated marine environmental conditions are used as input to an ecophysiological model
accounting for the combined impacts of temperature and ocean dissolved oxygen ([O2]) on
ectotherm habitat viability. The model is based on the Metabolic Index (24). A marine region is
defined as viable for a population under a given climate as long as dissolved oxygen supplied by
the physical environment exceeds the organism’s oxygen demand (Materials and Methods). This
model has been developed and validated for the modern ocean (24, 25). It assumes an infinite
dispersal capacity of marine organisms (15, 24).

For each of our 28 Phanerozoic time slices, we evaluate the degree of marine extinction
occurring in the model in response to a hyperthermal event. To that end, we simulate standing
ecophysiotype biodiversity in the cold and warm climatic states simulated in cGENIE and
calculate the magnitude of extinction resulting from warming — referred to hereafter as the
simulated ‘susceptibility of extinction’. This quantity, calculated on a single model time slice, is
intrinsically very different from an ‘extinction rate’ derived from paleontological data, which is
calculated between two subsequent time slices. Therefore, our simulated trends in susceptibility
of extinction cannot be compared with data-derived extinction rates at face value, but will permit
quantifying the contributions of various environmental factors to changes in extinction risk during
the Phanerozoic.

In order to simulate standing ecophysiotype biodiversity (under the cold and warm climatic
states, for each time slice), and in the absence of quantitative constraints on the ecophysiological
affinities of ancient marine animals, 1000 physiological ecotypes (herein, ecophysiotypes) are
generated, whose physiological characteristics are randomly sampled from probability density
functions established on available experimental respirometry data (15, 24). These physiological
characteristics consist of 3 parameters. Each ecophysiotype is first defined by an oxygen demand
under resting metabolism conditions (parameter #1) and a dependence of this oxygen demand on
changes in seawater temperature (parameter #2). In order to constitute viable populations,
organisms have to accomplish additional tasks such as reproduction and locomotion, which
increases their oxygen demand above resting value. Therefore, each ecophysiotype is also
characterized by an increase in oxygen demand necessary for viable populations (parameter #3).
Extirpation rate is calculated for each model grid point as the percentage of ecophysiotypes that
are present in the cold state but which are not present in the warm state (see Fig. 2). In line with
previous work (75, 26), we only consider non-polar shelf environments in our simulations
(defined as all non-polar, upper-ocean model grid cells adjacent to landmasses), since they
represent the main part of the Phanerozoic paleontological databases. The same pool of 1000
ecophysiotypes is used for every time slice.

Then we need to derive a global ‘susceptibility of extinction’ based on these spatial data. To
permit a more robust comparison of our numerical results with temporal trends in marine
extinction derived from paleontological data, we explore the impact of incomplete geological
sampling in our model using a subsampling approach. Instead of reading model results at face
value, we consider that the information in the paleontological databases is incomplete. Hence we
only record a fraction of all model shelf grid points. In other words, for each time slice, we
subsample a fraction of all shelf grid points to determine the ecophysiotypes present in the cool
and warm states and calculate a global susceptibility of extinction occurring in response to global
warming (defined as the percentage of ecophysiotypes that are present in the cold state, which are
not present in the warm state). We repeat this procedure 1000 times to calculate uncertainty
estimates. Because the fraction of shelf environments documented through geological time is
poorly constrained, we arbitrarily set the subsampling rate to 33 % in our main simulations. We
test alternative subsampling rates (and numbers of repetitions) in our sensitivity analyses and
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show that varying these parameters does not impact our conclusions. Then, we estimate the
resulting probability density function of simulated susceptibility of extinction using a kernel
density estimator to quantify uncertainty in our simulations (shading in Fig. 3A—C). Finally, our
central estimate for the temporal trend in simulated Phanerozoic extinction susceptibility is
obtained by connecting the median values for all time slices (thick lines in Fig. 3A—C). This
subsampling approach avoids giving too much weight to species found in only a few model grid
points, which would probably not be sampled and thus not be documented in paleontological
databases. Our simple experimental setup featuring a uniform magnitude of global warming
through time was not designed to investigate the magnitude of specific ancient extinction events
but only the general temporal trends in susceptibility to an idealized warming-driven extinction.
This approach is designed to provide a directional comparison in extinction susceptibility and
absolute numbers should not be compared with paleontological databases at face value.

Results

Simulated extinction susceptibility

In our first series of ‘baseline’ (best-guess) simulations, in addition to varying the continental
configuration, we also vary the atmospheric CO2 concentration during the Phanerozoic based on a
combination of carbon cycle models and proxy data compilations (23, 27). The resulting global
temperature curve simulated in cGENIE (black lines in Fig. 1A) exhibits temporal trends that
align well with other climate models (28) and temperature proxy data (29, 30), including a warm
early Paleozoic (Cambrian—Devonian), a cooler late Paleozoic (Carboniferous—Permian)
coincident with the Late Paleozoic Ice Age (37), a warm (but cooler than the early Paleozoic)
Mesozoic (Triassic-Cretaceous), and a long-term Cenozoic cooling. In these simulations (Fig.
3A), we account for combined changes in continental configuration and global climate, but
consider a modern atmospheric pOz (black line in Fig. 1B). Simulated extinction susceptibility
exhibits a sudden drop from an early Paleozoic mean of 6.2 % (standard deviation: 1.2 %) from
the Cambrian to Ordovician (540 to 440 Ma) — meaning that ~6 out of 100 model species are
driven extinct following global climate warming, to much lower values during the rest of the
Phanerozoic, with a mean of 0.8 % (standard deviation: 0.5 %). These changes represent an 8-fold
decrease in mean extinction susceptibility following the Ordovician. Sensitivity analyses reveal
that simulated temporal trends are robust when model parameters are varied. That includes
varying the initial random sampling of the physiological characteristics of the model
ecophysiotypes (Fig. S1), the model ecophysiotype pool size (between 100 and 10,000
ecophysiotypes, compared to 1000 in our standard simulations; Fig. S2), the random sampling
protocol (Fig. S3), and random sampling rate used to represent incomplete geological sampling
(between 0.1 and 0.75, compared to 0.33 in our standard simulations; Fig. S4; or increasing
through time, Fig. 3A), the model spatial domain (Figs. S5-6) and assumptions regarding ocean
phosphate inventories (Fig. S7). Sensitivity tests for the spatial domain, in particular, demonstrate
that our results are not overly dependent on the (simplified) representation of shelf environments
(defined in our model as all cells adjacent to landmasses) (Figs. S5-6).

To disentangle the contributions of changes in the global climate state and continental
configuration to the simulated extinction trend through the Phanerozoic, we conduct an additional
series of simulations under a constant global climatic state (blue curves in Fig. 1A). Similar to ref.
(20), climatic detrending is achieved by varying pCO2 in the model so that the equatorial SST of
every time slice approximates the median equatorial SST in the ‘baseline’ simulations (ca. 24.5
°C before warming). This second series of simulations is referred to as ‘constant SST’ hereafter.
Similar to the ‘baseline’ simulations, atmospheric pO2 is set to modern. In these ‘constant SST’
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simulations, only the continental configuration is thus varied through time. The consequence of a
constant-through-time climate state is that particularly high extinction susceptibility now occurs
in the early Paleozoic (late Cambrian and Ordovician) and during the Permian-Triassic transition
(Fig. 3B). Comparing the ‘baseline’ and ‘constant SST’ (Fig. 3A, B) series of experiments reveals
the role of continental configuration vs. climate in driving trends in extinction susceptibility in our
model. From this, we deduce that the continental configuration of the Permian-Triassic transition
favors high metazoan susceptibility of extinction, but also that the cooler climatic conditions act
to reduce extinction susceptibility in our ‘baseline’ simulations (Fig. 1A). Note that the short-term
global warming at the Permian-Triassic boundary is not resolved at the prescribed 20-Myr
temporal model resolution (32). The opposite is observed for the early Cambrian, when the
continental configuration is not particularly favorable to extinction, but the warm climate elevates
extinction risk. Sensitivity tests show that these temporal trends in extinction susceptibility are
largely independent of the magnitude of warming perturbation assumed (~2.5°C vs. ~5°C) (Fig.
4). However, three time periods do stand out as being particularly sensitive to the magnitude of
the environmental perturbation: the early Cambrian, the Ordovician-Silurian transition and the
Permian-Triassic transition. Unfortunately, the current formulation of the metabolic index cannot
be used to specifically evaluate the contribution of global climate change to the Late Ordovician
Mass Extinction, which happened in response to global cooling rather than warming (6, 33).

In a third and final series of experiments (named ‘pO2’), we quantify the combined impacts of
changes in the continental configuration and global climate (as per ‘baseline’) with the additional
assumption of changing atmospheric pOz through time. For this, pO: estimates are taken from the
recent update of the GEOCARBSULF model of Krause et al. (27) (red line in Fig. 1B). The result
of this analysis is consistent with the findings of Stockey et al. (1/5). Low early Paleozoic pO2, by
reducing the thermal safety margins of marine ectotherms facing global climate warming,
increases extinction risk by an order of magnitude during the Cambrian and Ordovician (compare
Fig. 3A, C; note the different Y axes).

Drivers of Phanerozoic extinction rates

The unexpected result from our coupled global marine environmental and ecophysiological
modelling is that the extinction susceptibility simulated in response to global warming is
significantly higher in the Cambrian and Ordovician than in more recent time slices, even if we
assume that atmospheric pO2 throughout the Phanerozoic was the same as modern (Fig. 3A).
Additionally, the high early Paleozoic global extinction susceptibilities are not associated with
high local extirpation rates (Fig. 2). Extirpation rates for more recent periods (e.g., 0 Ma or 300—
340 Ma) are higher than those for 460-540 Ma, suggesting that more complex mechanisms
modulate extinction susceptibility in the model, which we explore below.

Under certain conditions, ecophysiotypes whose ecophysiological requirements are not
fulfilled in the low latitudes after global warming can migrate poleward and occupy habitats at
higher latitudes (and thus do not become extinct). These high-latitude habitats constitute refugia
for organisms facing global environmental disturbances (34). Figure 5 shows that high low-
latitude extirpation rates at 0 Ma or 300-340 Ma in the ‘baseline’ simulations are (at least in part)
counterbalanced by the development of refugia at higher latitudes. The development of these
high-latitude refugia is associated with local increases in the capacity of the environment to
sustain a high metabolism (i.e., Metabolic Index, Fig. S8), resulting from the combination of a
substantial increase in ocean [Oz] (Fig. S9) and muted SST rise (Fig. S10). These unexpected
local climatic signals arising in response to global warming are due to the partial melt (and
persistence of a fraction) of the local sea-ice cover (Figs. S11-13), which favors ocean-
atmosphere Oz transfers (due to sea-ice partial melt) while reducing SST rise (due to sea-ice
persistence). This muted SST change is important in both maintaining metabolic oxygen demand
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at the same level and preventing any warming-induced limitation of Oz dissolution in seawater
(35). The refugia developing in more recent periods (e.g., 0 or 300-340 Ma) lower the
susceptibility of extinction for these time slices. In contrast, the early Paleozoic is comparatively
more prone to metazoan extinction in our model.

The differential refugia capacity, however, does not explain the order-of-magnitude difference
in extinction susceptibility during the early Paleozoic vs. that of some more recent periods (e.g.,
140-180 Ma). Nor does it explain the step change in extinction risk simulated between 440 Ma
and 420 Ma in the ‘baseline’ simulations (or between 460 Ma and 440 Ma in the ‘constant SST’
experiments) (Figs. 3, 5). At the Phanerozoic time scale, extinction susceptibility positively
correlates in the model with the number of ecophysiotypes having a limited geographical spatial
range (Fig. 6A), the latter ecophysiotypes effectively displaying an extinction susceptibility
significantly higher than ecophysiotypes occupying a large geographical space (Fig. 6B) (see also
Figs. S14-16). Therefore, the simulated high early Paleozoic extinction susceptibility results from
the existence of many ecophysiotypes with a limited geographical range in the pre-warming state,
which are preferentially driven extinct in response to global warming.

Why, then, are there so many ecophysiotypes with limited extent in these oldest model time
slices? One possibility is that the early Paleozoic permits stabilizing model ecophysiotypes with
unusual ecophysiological characteristics, whose requirements are fulfilled in a small ocean region
only, and that these ecophysiotypes are not found in other time slices. However, ecophysiotypes
with a limited extent in the early Paleozoic are equally present in other time slices — only showing
a larger (and monotonically increasing) spatial cover towards the modern (Fig. S17). An
alternative hypothesis, and the one we prefer, is that the early Paleozoic high-latitude marine
environment is spatially highly heterogeneous, leading to environmental fragmentation. Spatial
variations in physical ocean parameters ([O2] and temperature) create a very variable
ecophysiological landscape in the southern high latitudes (Fig. S18). As a consequence of this and
the lack of northern high-latitude continental shelves in the early Paleozoic, many ecophysiotypes
are present in just a few model grid points in the pre-warming state (Fig. S19); their ecological
niche disappears in response to global warming, and they are consequently driven extinct (Fig. 6).

Sampling structure and biases in the Paleobiology Database

In order to quantify the likely impact of heterogeneous preservation and sampling of the fossil
record (e.g., ref. (36)) on our simulated extinction trend, we calculated new extinction
susceptibilities by sampling the maps of simulated ecophysiotypes based on the number of
Paleobiology Database (PBDB) collections documented for each cGENIE grid point (Materials
and Methods). While the subsampling approach previously used in the standard model assumes
an incomplete but spatially uniform (random) sampling bias, this alternative approach accounts
for the spatially heterogeneous nature of the paleontological sampling biases, with most data
coming from North America and Europe (36) (Fig. S20). Figure 3D shows that PBDB-derived,
collection-based subsampling leads to higher extinction susceptibility during virtually the whole
Phanerozoic — an expected result from the relative undersampling of the high paleolatitudes in the
PBDB (Fig. S20), which are refugia for ecophysiotypes facing global warming in our simulations.
While main temporal trends still stand, extinction susceptibility displays drastic increases during
the earliest Cambrian and the Devonian-Carboniferous transition suggesting a potential sampling
factor in the high reconstructed extinction rates during these time intervals. An alternative
subsampling method based on the number of PBDB entries (instead of collections) per cGENIE
grid point gives similar results (Fig. S21).

Discussion
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Simplifications in our numerical modeling (which represents a susceptibility of extinction in
response to climatic perturbations) and biases of the Paleobiology Database (/2) prohibit direct
numerical comparison of our models and data. However, qualitative comparison of the temporal
trends is instructive and reveals that it is not necessary to assume that atmospheric pO2 was low
during the early Paleozoic in order to obtain a simulated extinction susceptibility that is
substantially higher during the Cambrian and Ordovician than during the rest of the Phanerozoic
(Fig. 3). This does not necessarily imply that early Paleozoic atmospheric pO2 was as high as
modern, but does indicate that oxygen was not the only important factor. While pO2 has a first-
order impact on simulated extinction susceptibility (Fig. 3C) in line with previous studies (/5), we
find that climate and continental configuration acted synergistically to make early Paleozoic
marine ecosystems particularly susceptible to elevated metazoan extinction and lower
atmospheric oxygen need not be invoked.

In our model, ecophysiotypes with a small geographical range size display a higher extinction
risk in response to global warming (Fig. 6), in line with previous analyses of the predictors of
extinction risk based on the Paleobiology Database (74, 37). This mechanism, combined with the
highly heterogeneous ecophysiological landscape resulting from the early Paleozoic continental
configuration (and climate), explains the high extinction susceptibility reconstructed for the
Cambrian and Ordovician. Our coupled climate-ecophysiology model also suggests that global
climate state and continental configuration exert control on marine extinction susceptibility at the
Phanerozoic time scale. As illustrated in our ‘baseline’ simulations, extinction proceeds
differently in greenhouse and icehouse climates. In our coldest time slices (0—20 Ma and 260-360
Ma; to a lesser extent in the 60 Ma time slice; see Fig. 1A), high low-latitude extirpation is in part
counterbalanced by the development of refugia at higher latitudes, where species migrating
poleward can survive following global warming (Figs. 2, 5). The development of high-latitude
refugia requires the (only) partial melt of sea ice. In our simulations, this mechanism occurs in the
modern glacial state and during the Permian-Carboniferous glaciation. It does not occur in
warmer climates. We note, however, that the relative resilience to warming-induced extinctions in
(modern-like) cool environments may partly arise from the fact that modern organisms that are
used as the basis for the ecophysiotypes have adapted to these conditions. This possible
contribution cannot be discarded, and it will be important to quantify it in future work.

The second period identified as the most prone to leading to metazoan extinction in our series
of ‘constant SST’ simulations (featuring a roughly constant global climatic state) is the Permian-
Triassic transition, considered as the largest mass extinction over Earth’s history (/, 7) (Fig. 3B).
Simulations accounting for PBDB-derived sampling biases (Fig. 3D) demonstrate that incomplete
geological sampling leads to an overestimation of the simulated susceptibility of extinction.
Extinction rates documented during the earliest Cambrian and latest Devonian may thus be
substantially overestimated in the Paleobiology Database, with implications for the role sampling
may play in our reconstruction of major extinction intervals through time (38).

Numerical approaches such as those presented here provide an important new tool for
exploring the co-evolution of global climate and the marine biosphere at the Phanerozoic time
scale and additionally provide a novel approach to bridging the gap between model outputs and
the geological record (here, the Paleobiology Database). Nevertheless, further refinements are
needed. A first limitation is that global warming was used in our model to destabilize ecological
niches and derive a susceptibility of extinction through time, while background extinctions are not
necessarily driven by global warming during the Phanerozoic. Another limitation is that our
model implicitly considers that the dispersal capacity of the model ecophysiotypes is infinite, as is
the carrying capacity of marine habitats (/7). No factor other than temperature and dissolved
oxygen concentrations limits the extent of model ecophysiotypes, which systematically occupy
their whole ecological niches. Implementing migration in our model would permit investigating
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the impact of physical barriers and the kinetics of global climate change. It would also permit
accounting for the contribution of (seasonal to centennial) climatic variability, such as simulated
by recent global climate models of, e.g., the Coupled Model Intercomparison Project (39), on
ecological niche stability and marine extinction rates. Noteworthily, accounting for dispersal
limitation would lead to higher simulated extinction susceptibility, but would probably not alter
our conclusions. Our model results are, therefore, likely a conservative estimate of extinction
susceptibility. Indeed, previous work demonstrated that the early Paleozoic continental
configuration, due to the limited latitudinal continuity of landmasses, makes organisms facing
global climate change particularly vulnerable (26). In addition, earliest planktotrophic larvae
likely appeared at (or very close to) the base of the Ordovician (40, 41), suggesting that early
Paleozoic (and especially Cambrian) marine animals were limited in their dispersal abilities
compared to later animals. Therefore, a finite dispersal capacity of model ecophysiotypes might
make the post-Ordovician drop in extinction susceptibility even more pronounced. Finer model
resolution would also be an obvious advantage in being able to better account for the diversity of
environmental niches, but equally creates its own computational challenges if dissolved oxygen
concentrations are to be simulated globally and to steady state, and for multiple time intervals
through the Phanerozoic.

Another future direction relates to the representation of the marine biosphere. In the current
ecophysiological model version, previously validated for the modern (25) and successfully
applied to the geological past (24), metabolic rates of most ecophysiotypes monotonically
increase with temperature, leading to a monotonic decrease in ecophysiotype fitness. However,
empirical results (42, 43) and models (44) demonstrate that natural species thermal performance
curves are unimodal and metabolic rates decline rapidly once the optimal temperature is
exceeded. Assembling a database to represent this decrease in ecophysiotypes fitness with
decreasing temperatures will permit capturing more finely the latitudinal diversity gradient (43,
46) and will thus offer a better representation of marine biodiversity. It should also be noted that
our approach is rooted in the modern and that organisms that populated deep-time oceans may
have had different environmental affinities. Although the analysis of experimentally-derived
estimates of thermal tolerance limits of > 2000 terrestrial and aquatic species suggests that the
upper thermal limits of metazoans have not changed much throughout the Phanerozoic (47), it has
also been suggested that the Paleozoic fauna may have been characterized by lower rates of
metabolism (48). It would also be informative to test the impact of implementing a representation
of the legacy of past extinctions in defining the ecophysiotypes present in the next time slice
(whereas the same pool of ecophysiotypes is considered in every time slice in the current model).
Finally, it might also be worth representing ecophysiotype adaptation and evolution in response to
climate change (through time-evolving ecological niches) (49). However, such model
development would probably not drastically impact our conclusions due to the rapidity of the
climatic perturbations considered here (hyperthermals).

Overall, our coupled climate-ecophysiology model illustrates how continental configuration
and climate state specific to the early Paleozoic render metazoans particularly prone to extinction.
Although our results reaffirm the possible contribution of a reduced pOz to increasing early
Paleozoic extinction rates (15, 16), they also reconcile the vision that extinction susceptibility was
much higher during the Cambrian and Ordovician than during the rest of the Phanerozoic with a
relatively constant atmospheric pO2 through time (possibly as high as modern (20)). Our
simulations further suggest that the continental configuration may have played a key role in
setting the conditions for the largest Phanerozoic mass extinction at the Permian-Triassic
boundary. Finally, PBDB-based subsampling of our model output reveals that extinction rates
documented during the latest Devonian may be substantially overestimated in the Paleobiology
Database.
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Materials and Methods

Earth system model simulations

Description of the model

c¢GENIE (217) is an Earth System Model of intermediate complexity. It is based around a 3-
dimensional ocean circulation model coupled to a 2D energy-moisture-balance atmospheric
model. The model was configured on a 36x36 equal-area grid with 17 unevenly spaced vertical
levels to a maximum 5890 m depth in the ocean. The cycling of carbon and associated tracers in
the ocean is based on a single (phosphate) nutrient limitation of biological productivity (6), but
adopts the Arrhenius-type temperature-dependent scheme for the remineralization of organic
matter exported to the ocean interior of Crichton et al. (50). Despite its low spatial resolution,
cGENIE has been shown to satisfactorily simulate first-order ocean [Oz2] spatial patterns and
values in the modern (27) and geological past (6, 7).

Description of the numerical experiments

We adopted the (flat-bottomed) Phanerozoic continental reconstructions of Scotese and Wright
(51), but substituted the deep-ocean bathymetry of Miiller et al. (52) when available (140 Ma — 0
Ma) in order to account for mid-ocean ridges, following previous work (20). Solar luminosity was
adapted for each time slice after Gough (53). We employed a null eccentricity-minimum obliquity
orbital configuration, which provides an equal mean annual insolation to both hemispheres with
minimum seasonal contrasts. Atmospheric CO2 concentration was varied in our ‘baseline’
experiments after Foster et al. (23), when available (< 400 Ma), and Krause et al. (27) for deeper
time slices. In detail, we ran two series of cGENIE simulations for our ‘baseline’ experiments, in
order to generate the pre-warming and post-warming global climatic states, by multiplying the
pCO2 values of Foster et al. (23) and Krause et al. (27) (see above) by 0.5 and 2.0, respectively.
These multiplication factors were chosen to provide a quadrupling of pCO2 (permitting to
simulate the +5°C low-latitude warming required for our ecophysiological simulations, see main
text), while staying as close as possible to the ‘target’ values of Foster et al. (23) and Krause et al.
(27). Specifically, the simulated low-latitude (10 °S—10 °N) SST warming amounts to + 4.80 °C
(standard deviation: 0.21 °C), or equivalently a mean global SST increase of + 4.77 °C (standard
deviation: 0.23 °C). We note that atmospheric pCO2 during the Devonian may have been lower
than considered in our simulations, which would lead to a colder Devonian climate at 420 Ma and
400 Ma (/8). We also conducted additional simulations (‘constant SST’ experiments), in which
we varied pCOz so as to approximatively correct for the global climatic trend and therefore leave
equatorial SST mainly invariant. Atmospheric oxygen concentrations were set to modern (20.95
%) in our ‘baseline’ and ‘constant SST’ simulations, but varied according to Krause et al. (27) in
our ‘pO2’ experiments (Fig. 1B). Ocean nutrient inventory was kept invariant to modern (2.1
umol kg™! POa) in our experiments (only varied for the purpose of sensitivity testing).

To generate the physical atmospheric boundary conditions required by cGENIE for each
different cGENIE continental configuration, we ran FOAM-slab (54) experiments for 100 years
(until equilibrium). This setup of the FOAM model couples an atmospheric general circulation
model to a 50-meter “slab” mixed-layer ocean of resolution 1.4° x 2.8° (latitude % longitude) (535,
56). We then derived the 2D wind speed and wind stress, and 1D zonally-averaged albedo forcing
fields required by the cGENIE model, using the ‘muffingen’ open-source software (DOI:
10.5281/zenodo.7545809), following the methods employed in refs. (6, 20, 57).

cGENIE simulations were initialized with a sea-ice free ocean and homogeneous temperature
and salinity in the ocean (5 °C and 33.9 %o, respectively) and integrated for a total of 8,000 years
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(a duration largely sufficient to reach ocean thermal equilibrium and upper-ocean dissolved
oxygen equilibrium).

Ecophysiological modeling

We adapted the probabilistic ecophysiological model of extinction vulnerability of Stockey et al.
(15), which is based in turn on the Metabolic Index developed and validated by Deutsch et al. (25)
and Penn et al. (24). Metabolic habitat viability is calculated following Eqn. 1:

max (Ao, Eo, dcrit)

Metabolic habitat viability = Z b > Derit
min (Ao, Eo, crit)

(Eqn. 1)

ith b=A, —202
" " el i)

(Eqn. 2)

¢ is the Metabolic Index defined following Penn et al. (24) and Stockey et al. (/5). Metabolic
habitat viability defines the fraction of model ecophysiotypes that can live in the oceanic region
investigated. Ocean temperature T and seawater pO2 are taken from our Earth system model
simulations. kg is the Boltzmann constant. Trer 1s a reference temperature of 15°C. At the
individual organism scale, 4o is the inverse of the hypoxic threshold of the organism (the
minimum required seawater pO2 to sustain resting aerobic metabolism), E, is the temperature-
dependency of the hypoxic threshold and ¢, 1s the multiplicative increase in oxygen supply that
is required to support ecologically sustainable populations. Following Stockey et al. (/5), values
for Ao, Eo and ¢4 are randomly sampled for each ecophysiotype from probability density
functions established on laboratory experiments and the observation of species distribution (24).

In our standard model simulations, following Stockey et al. (/5), we generate 1000
ecophysiotypes and consider non-polar shelf environments only, defined as all non-polar model
grid cells adjacent to landmasses in the upper three cGENIE ocean levels, down to a depth of ca.
285 m (but see sensitivity tests for additional experiments using alternative numbers of
ecophysiotypes and considering other oceanic regions, Figs. S2, S5-6).

We calculate extinction rate as the loss of ecophysiotypes in response to a +5 °C equatorial
warming (/5). Global climate change is simulated in cGENIE using a quadrupling of atmospheric
pCOz2 (see previous section), and is intended to represent a hyperthermal event of the same order
of magnitude as the Paleocene-Eocene Thermal Maximum (22). We also conduct a sensitivity test
with a +2.5 °C equatorial warming.

We extend the original model of Stockey et al. (/5) through an explicit representation of
incomplete geological sampling bias. This process modifies how a global extinction rate is
derived from spatially-resolved maps of metabolic habitat viability. Instead of calculating
extinction rate at face value based on all ecophysiotypes present in the pre-warming and post-
warming states, we subsample shelf grid points to account for incomplete geological data
sampling. In detail, we extract 33 % of all equal-area model grid points and calculate the
extinction rate based on the ecophysiotypes found in these grid cells only, and repeat this
approach 1000 times for each of our 28 time slices. The result is, for each time slice, a probability
density function of simulated extinction susceptibility, estimated using a kernel density estimator.
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Subsampling ensures that ecophysiotypes present in few model grid cells only would not impact
too strongly the calculation of global extinction rates. This approach is motivated by the fact that
such ecophysiotypes would probably not be documented in the paleontological databases. It also
ensures that our results are not overly dependent on the environmental conditions simulated in a
few cGENIE model grid points, but rather represent large-scale environmental patterns. Finally,
we determine the most probable temporal evolution of Phanerozoic global model extinction
susceptibility by joining the median extinction susceptibilities derived for each time slice from the
probability density function. In our standard simulations, we subsample the pre-warming and
post-warming habitat viability maps at the same locations. A sensitivity analysis to random
sampling approach (subsampling the pre-warming and post-warming habitat viability maps at
different locations; Fig. S3) and rate (Fig. S4) are provided as Supplementary Materials.

Paleontological data

Downloading fossil data

Fossil occurrence data of all marine metazoans were downloaded from the Paleobiology Database
(PBDB) on February 22, 2022. We restricted downloads to regular taxa (“Preservation = regular
taxa only”). Occurrences with uncertain genus or species attribution were excluded (“Modifiers =
exclude uncertain gen. and sp.”). Downloaded data were restricted to marine environment
(“Environment = any marine, carbonate, siliciclastic™). A total of 886,252 marine metazoan fossil
occurrences were downloaded.

In keeping with previous studies (15, 58), fossil data of the following classes were omitted:
Ostracoda, Arachnida, Insecta, Reptilia and Mammalia. In detail, Ostracoda were excluded
because the poor database quality, combined with the high diversity of this group, may induce
important biases (58). Arachnida and Insecta are terrestrial and documented in marine sediments
only under very specific conditions (58). Reptilia were excluded because they are either terrestrial
or air breathing (/5). Mammalia were excluded because they are endotherms, while the Metabolic
Index applies to ectotherms. Lagerstétten were also excluded. We also excluded occurrences with
unknown paleo-coordinates and with age older than 550 Ma. After applying these filtering
criteria, 741,860 fossil occurrences of 30,387 marine metazoan genera were used in this work.

Calculating paleocoordinates

Paleocoordinates of individual fossil occurrences were calculated based on present-day longitude-
latitude coordinates and geological age (both available in downloaded PBDB data), using
pyGPlates and the rotational model of Scotese and Wright (57). For each occurrence belonging to
a given time bin, the closest oceanic grid point was found in the cGENIE simulation of
corresponding age, provided that the identified closest oceanic grid point was no further than
2000 km (the PBDB occurrence being otherwise discarded; Fig. S20).

PBDB-derived sampling and extinction rates

In an effort to represent the impact of heterogeneous geological sampling, we derived sampling
rates from the number of collections found in our cured PBDB data (and also conducted a
sensitivity test using the number of PBDB entries). For each time slice, we built a PBDB-derived
sampling rate map by (1) calculating the paleocoordinates of each PBDB entry included in the
time bin and identifying the corresponding cGENIE grid cell, (2) extracting the number of unique
collections found in each cGENIE grid cell, (3) converting the number of collections into a
sampling rate, assuming that sampling rate linearly increases from O (in grid points with 0
collections) to 1 (in grid points with a number of collections greater or equal to the 95" percentile
of the distribution of the number of collections per cGENIE grid points in cGENIE grid points
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having at least 1 collection, calculated over all time slices). Resulting maps are shown for each
time slice in Fig. S20.

We calculated extinction susceptibility by sampling the ecophysiotypes living in the cold and
warm climatic states using the sampling rate maps. In each cGENIE grid cell, we randomly
extracted a given number of possible ecophysiotypes, varying from 0 (if sampling rate == 0) to
the total number of ecophysiotypes considered in the model (1000 in the standard simulations; if
sampling rate == 1). It should be noted that while we subsample these model ecophysiotypes, all
subsampled ecophysiotypes will not be viable in each cGENIE grid cell, and that the same
randomly-generated subset of possible ecophysiotypes is used to subsample the cold and warm
climatic states. We calculated an extinction susceptibility in response to global climate warming
based on the ecophysiotypes extracted in the cold and warm simulations. We repeated the random
extraction 1000 times to obtain a probability density function of the simulated susceptibility of
extinction.
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718  Fig. 1. Sea-surface temperatures and atmospheric pO: forcing. (A) Equatorial (10 °S—10 °N)
719  sea-surface temperatures in the pre- and post- warming states (lower and upper curves

720  respectively) of the ‘baseline’ and ‘pO2’ (identical, black lines) and ‘constant SST’ (blue lines)
721 series of simulations. (B) Atmospheric pO2 in ‘baseline’ and ‘constant SST’ (identical, black line)
722 and ‘pO2’ (red line) series of simulations. €: Cambrian, O: Ordovician, S: Silurian, D: Devonian,
723 C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.

724
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Fig. 2. Maps of surface-ocean extirpation rate simulated in response to global warming in
the ‘baseline’ simulations. Extirpation rate is calculated for each grid point as the percentage of
ecophysiotypes that are present before global climate warming (i.e., in the cold state) but which
are not present in the warm state. Emerged continental masses are shaded grey. Eckert [V
projections.
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Fig. 3. Simulated extinction susceptibility. (A) Extinction susceptibility in our ‘baseline’
simulations with sampling rate fixed at 0.33 (density distribution and thick solid line) and with
sampling rate linearly increasing from 0.2 at 540 Ma to 0.8 at 0 Ma (thin dashed line, representing
a possibly more complete paleontological sampling towards present-day), using 1000 sampling
repetitions and sampling pre-warming and post-warming states at same shelf grid points. (B)
Extinction susceptibility in our ‘constant SST’ simulations with sampling rate fixed at 0.33
(density distribution and solid line, 1000 repetitions using same sampling points). Results of the
‘baseline’ simulations with sampling rate fixed at 0.33 (1000 repetitions using same sampling
points, see panel (A)) overlaid for comparison (dashed line). (C) Same as (B) for ‘pO2’
simulations. (D) Same as (A) but using PBDB-derived, collection-based sampling rates. Results
of the ‘baseline’ simulations with sampling rate fixed at 0.33 (1000 repetitions using same
sampling points, see panel (A)) overlaid for comparison (dashed line). Y-scale differs in the
different panels. €: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P:
Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.
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Fig. 4. Sensitivity of simulated extinction risk to the magnitude of global warming. (A) Sea-
surface temperature in the pre-warming state of the ‘constant SST” series of simulations (black
line), for a pCO2 doubling (blue line) relative to the pre-warming state and for a quadrupling (red
line). Black and red curves identical to Fig. 1A (blue curves). (B) Extinction susceptibility in the
‘constant SST’ simulations with sampling rate fixed at 0.33 (1000 repetitions using same
sampling points), when considering a doubling (blue line) or quadrupling (red line) of pCO2 (i.e.,
shifting from respectively black to blue or black to red in panel (A)). Red line similar to Fig. 3B.
(C) Sensitivity of simulated extinction susceptibility to the magnitude of global warming, i.e.,
increase in extinction susceptibility simulated when increasing the magnitude of global warming
from a doubling to a quadrupling of pCO:x (i.e., when increasing equatorial SST rise from ~2.5 °C
to ~5 °C).
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765  Fig. 5. Maps of surface-ocean simulated refugia capacity (expressed as a number of

766 ecophysiotypes) in the ‘baseline’ simulations. Refugia capacity is calculated in each grid point
767  as the number of ecophysiotypes (present in the cold state) that were not present in this specific
768  grid point in the pre-warming state, but are present in the post-warming state. Emerged

769  continental masses are shaded grey. Eckert IV projections.

770

Science Advances Manuscript Template Page 21 of 22



771
772

773
774
775
776
777
778
779
780
781
782
783

(é) r2=0.73 (BA) 100
X X

c > 10 e 90

o= o — " 8E 49

Co 5 - S

2 2 40

58 O'ﬁ: L|>58 20
: 2
v 0 20 40 60 v

All Limited
ecotypes extent

Fig. 6. Extinction susceptibility and ecophysiotype geographical range size in the ‘baseline’
simulations. (A) Linear correlation between simulated extinction rate (median value calculated
by sampling 1000 times at same locations; thick line in Fig. 3A) and number of ecophysiotypes
with limited spatial extent (< 10 equal-area model shelfal grid cells at any depth level in the pre-
warming state). Blue points represent each of the 28 time slices and the blue line is the linear
correlation line (with 95 % confidence interval shaded blue), the coefficient of which is provided
on top of the panel. (B) Extinction rate for ecophysiotypes with limited spatial extent present in
the pre-warming state (< 10 equal-area shelfal model grid cells at any depth level) vs. for all
ecophysiotypes. Boxplots were calculated based on the individual extinction rates calculated for
each of the 28 time slices studied without accounting for uncertainties in spatial sampling. Results
for other series of experiments are provided in Figs. S15-16.
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Fig. S1.

Sensitivity test to initial ecophysiotype sampling pool. Simulated extinction susceptibility during
the Phanerozoic in the ‘baseline’ simulations (solid black line) and using 10 alternative randomly-
sampled initial ecophysiotype pools (grey lines), discarding either (a) no ecophysiotypes or (b)
ecophysiotypes occupying less than 10 (equal-area) model grid cells. €: Cambrian, O:
Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K:
Cretaceous, P: Paleogene, N: Neogene.
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Sensitivity test to initial number of ecophysiotypes. Simulated extinction susceptibility during the
Phanerozoic. (a) ‘Baseline’ simulations using 100 (density distribution and thick solid line) and
1000 ecophysiotypes (thin dashed line, like Fig. 3A). (b) ‘Baseline’ simulations using 10,000
(density distribution and thick solid line) and 1000 ecophysiotypes (thin dashed line, like Fig.
3A). All simulations use a sampling rate of 0.33, 1000 sampling repetitions and sample pre-
warming and post-warming states at same shelf grid points. Same as Fig. 3A but using alternative

number of ecophysiotypes. €: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C:

Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.
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Fig. S3.

Sensitivity test to random sampling protocol. Simulated extinction susceptibility during the
Phanerozoic. (a) ‘Baseline’ simulations with sampling rate fixed at 0.33 (density distribution and
thick solid line) and with sampling rate linearly increasing from 0.2 at 540 Ma to 0.8 at 0 Ma (thin
dashed line), using 1000 sampling repetitions and sampling pre-warming and post-warming states
at different shelf grid points. (b) ‘constant SST’ simulations with sampling rate fixed at 0.33
(density distribution and solid line, 1000 repetitions using different sampling points). Results of
the baseline simulations with sampling rate fixed at 0.33 (1000 repetitions using different
sampling points) overlaid for comparison (dashed line). (c) Same as (b) for ‘pO2’ simulations. Y-
scale differs in the 3 panels. Same as Fig. 3A-C but sampling different (as opposed to identical)
shelf grid points in the pre-warming and post-warming states. €: Cambrian, O: Ordovician, S:
Silurian, D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P:
Paleogene, N: Neogene.
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Phanerozoic. (a) ‘Baseline’ simulations with sampling rate fixed at 0.1 (density distribution and
thick solid line) and 0.33 (thin dashed line, like Fig. 3A). (b) ‘Baseline’ simulations with sampling
rate fixed at 0.75 (density distribution and thick solid line) and 0.33 (thin dashed line, like Fig.
3A). All simulations use 1000 sampling repetitions and sample pre-warming and post-warming
states at same shelf grid points. €: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C:
Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.
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Fig. SS.

Sensitivity test to model depth integration. Simulated extinction susceptibility during the
Phanerozoic. (a) ‘Baseline’ simulations using the surface ocean level only (density distribution
and thick solid line) and the 3 upper-ocean levels (thin dashed line, like Fig. 3A). (b) ‘Baseline’
simulations using the subsurface ocean level only (density distribution and thick solid line) and
the 3 upper-ocean levels (thin dashed line, like Fig. 3A). All simulations use a sampling rate of
0.33, 1000 sampling repetitions and sample pre-warming and post-warming states at same shelf
grid points. €: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian,
T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.
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Sensitivity test to model spatial domain. Simulated extinction susceptibility during the
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Phanerozoic. (a) ‘Baseline’ simulations using the whole upper-ocean domain (density distribution
and thick solid line) and shelf points only (thin dashed line, like Fig. 3A). (b) ‘Baseline’
simulations using shelf points only, using (density distribution and thick solid line) or discarding
(thin dashed line, like Fig. 3A) polar grid points. All simulations use a sampling rate of 0.33, 1000
sampling repetitions and sample pre-warming and post-warming states at same grid points. Same
as Fig. 3A but using alternative spatial domains. €: Cambrian, O: Ordovician, S: Silurian, D:
Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N:

Neogene.
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Fig. S7.

Sensitivity test to ocean phosphate inventory. Simulated extinction susceptibility during the
Phanerozoic. (a) ‘Baseline’ simulations considering a 1.5-fold increase in ocean phosphate
inventory in response to global warming (density distribution and thick solid line) and a fixed
phosphate inventory (thin dashed line, like Fig. 3A). (b) ‘Baseline’ simulations considering a 1.5-
fold increase in ocean phosphate inventory in response to global warming (density distribution
and thick solid line) and a fixed phosphate inventory (thin dashed line, like Fig. S5B), but using
the subsurface ocean level only (while the upper 3 ocean levels are used in first panel, like in the
standard simulations). All simulations use a sampling rate of 0.33, 1000 sampling repetitions and
sample pre-warming and post-warming states at same shelf grid points. €: Cambrian, O:
Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K:
Cretaceous, P: Paleogene, N: Neogene.
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Fig. S8.

Surface-ocean metabolic index (®; see Materials and Methods) change in response to warming in
the ‘baseline’ simulations for an ecophysiotype with median ecophysiological parameters Ao and
Eo. Emerged continental masses are shaded white. Eckert IV projections.
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106  Surface-ocean [O2] change simulated in response to warming in the ‘baseline’ simulations.
107  Emerged continental masses are shaded white. Eckert IV projections.
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110 Fig. S10.

111 Sea-surface temperature change simulated in response to warming in the ‘baseline’ simulations.
112 Emerged continental masses are shaded white. Eckert IV projections.
113
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masses are shaded white. Eckert IV projections.
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121 Sea-ice fraction in the post-warming state of the ‘baseline’ simulations. Emerged continental
122 masses are shaded white. Eckert IV projections.
123
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126 Sea-ice fraction change simulated in response to warming in the ‘baseline’ simulations. Emerged
127  continental masses are shaded white. Eckert IV projections.
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Fig. S14.

Number of ecophysiotypes with limited spatial extent (< 10 equal-area model grid cells at any
depth level) in the pre-warming state for the 3 series of simulations: ‘baseline’ (black), ‘constant
SST’ (blue) and ‘pO2’ (red). Panel (a) shows results for the 3 simulation series while panel (b)
shows results for ‘baseline’ and ’constant SST’ simulations only, for readability (using different
Y-scale). €: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian,
T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.
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Linear correlation between simulated extinction rate (median value calculated by sampling 1000
times at same locations; thick lines in Fig. 3A-C) and number of ecophysiotypes with limited
initial spatial extent (< 10 equal-area model grid cells at any depth level in pre-warming state) for
(a) ‘baseline’ simulations, (b) ‘constant SST’ simulations and (c¢) ‘pO2’ simulations. In each
panel, blue points represent each of the 28 time slices and the blue line is the linear correlation
line (with 95 % confidence interval shaded blue), the coefficient of which is provided on top of

the panel.
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150  Extinction rate for ecophysiotypes with limited spatial extent present in the pre-warming state (<
151 10 equal-area model grid cells at any depth level) vs. for all ecophysiotypes. Results are shown
152 for the 3 series of simulations: ‘baseline’ (a), ‘constant SST’ (b) and ‘pO2’ (c). For each series, the
153 boxplots were calculated based on the individual extinction rates calculated for each of the 28

154 time slices studied. Calculated extinction rates do not account for uncertainties in spatial

155  sampling.
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Fig. S17.

Model behavior of ecophysiotypes with limited spatial extent. This figure investigates the
behavior of the ecophysiotypes with limited spatial extent (< 10 equal-area model grid cells at any
depth level) found in the pre-warming state at 440 Ma (see red point) in the ‘baseline’
simulations. To that purpose, the ecophysiotypes with limited spatial extent are identified in the
pre-warming state for 440 Ma and then, these same ecophysiotypes are studied in all investigated
time slices. (a) Number of these ecophysiotypes found in the pre-warming state in the various
time slices. (b) Spatial extent of these ecophysiotypes in the pre-warming state in the various time
slices, defined as the median number of model equal-area grid cells occupied over the first 3
upper-ocean levels. (c) Extinction susceptibility calculated for these ecophysiotypes in response
to warming. (d) Extinction susceptibility for all ecophysiotypes in response to warming. Panels
(c) and (d) do not account for uncertainties in sampling. €: Cambrian, O: Ordovician, S: Silurian,
D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene,
N: Neogene.
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Fig. S18.

Surface-ocean metabolic index (®; see Materials and Methods) in the pre-warming state in the
‘baseline’ simulations for an ecophysiotype with median ecophysiological parameters Ao and Eo.
Emerged continental masses are shaded white. The early Paleozoic (540 — 440 Ma) marine
environment is spatially heterogeneous at the high latitudes, with strong variations in metabolic
index values over small geographical distances (high values being found in only a few grid points,
surrounded by much smaller values). Regions with high metabolic index values become spatially
more extensive in the Southern Hemisphere from 420 Ma onwards and can be found also in the
Northern Hemisphere from 340 Ma onwards. Eckert IV projections.
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Maps of surface-ocean number of ecophysiotypes with limited spatial extent in the ‘baseline’
simulations. Ecophysiotypes with limited spatial extent are identified as all ecophysiotypes that
occupy strictly less than 10 equal-area grid cells in any of the 3 upper ocean levels, in the pre-
warming state. Diversity is here calculated at the number of these ecophysiotypes that live in each
of the model grid cells. Emerged continental masses are shaded grey. Eckert IV projections.
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Fig. S20.

Maps of sampling rate derived from the number of collections in our cured PBDB data (Materials
and Methods). Points with a sampling rate of 0 (i.e., containing no PBDB collection) are masked.
A sampling rate of 1 means that we calculate extinction risk at that location based on the total
information contained in the model grid point (i.e., absence or presence of all 1000
ecophysiotypes). Emerged continental masses are shaded grey. Eckert IV projections.
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Fig. S21. Extinction susceptibility calculated based on PBDB entries. Same as Fig. 3D but using
PBDB entries (instead of collections) for subsampling. €: Cambrian, O: Ordovician, S: Silurian,
D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene,

N: Neogene.
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