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Abstract 26 
27 

The geological record of marine animal biodiversity reflects the interplay between changing rates 28 
of speciation vs. extinction. Compared to mass extinctions, background extinctions have received 29 
little attention. To disentangle the different contributions of global climate state, continental 30 
configuration, and atmospheric oxygen concentration (pO2) to variations in background extinction 31 
rates, we drive an animal physiological model with the environmental outputs from an Earth 32 
system model across intervals spanning the last 541 million years. We find that climate and 33 
continental configuration combined to make extinction susceptibility an order of magnitude 34 
higher during the early Paleozoic than during the rest of the Phanerozoic, consistent with 35 
extinction rates derived from paleontological databases. The high extinction susceptibility arises 36 
in the model from the limited geographical range of marine organisms. It stands even when 37 
assuming present-day pO2, suggesting that increasing oxygenation through the Paleozoic is not 38 
necessary to explain why extinction rates apparently declined with time. 39 

40 
Teaser 41 
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Climate and continental configuration combined to make early Paleozoic animals 42 
susceptible to extinction. 43 
 44 

MAIN TEXT 45 
 46 
Introduction 47 
 48 
The seminal work of Sepkoski et al. (1, 2) constituted a milestone in the quantitative 49 
reconstruction of marine (invertebrate) biodiversity over the Phanerozoic (last 541 Ma). 50 
Subsequently, the development of community paleobiological databases (3, 4), combined with 51 
more robust statistical methods to reduce the impact of sampling and preservation biases (3, 5), 52 
have led to further refinements in the Phanerozoic biodiversity curve. However, key features of 53 
the long-term global biodiversity patterns are robust, particularly the early Paleozoic (Cambrian 54 
and Ordovician) increase in standing biodiversity, the Permian-Triassic drop and early Mesozoic 55 
recovery, with a rise to peak Phanerozoic biodiversity during the late Mesozoic through Cenozoic 56 
(5). Many studies have investigated the drivers of these temporal trends but have done so mainly 57 
in isolation and focusing on short intervals of time spanning mass extinctions or intense radiation 58 
(6–8). Therefore, attempts to unravel the long-term drivers of biodiversity change throughout the 59 
Phanerozoic have been scarce (5, 9–11). Those that have done so, such as in a recent numerical 60 
biodiversification model study (11), have often focused on the net diversification rate. In contrast, 61 
the distinct contributions of diversification vs. extinction have remained underexplored. 62 

Analyses of the Paleobiology Database reveal that major variations in apparent marine 63 
extinction rates have occurred outside of mass extinctions during the Phanerozoic (2, 12, 13). 64 
“Background” extinction rates are particularly elevated during the early Paleozoic (Cambrian and 65 
Ordovician) (12, 13). For this reason, these periods are sometimes considered separately in 66 
paleontological analyses (12, 14). For example, Stockey et al. (15) proposed that the high early 67 
Paleozoic extinction rates reflected an interval of lower-than-modern atmospheric oxygen 68 
concentrations (pO2) throughout the Cambrian and Ordovician (ca. 0.4 times modern), the latter 69 
pO2 estimates aligning with the results of long-term carbon cycle (box) models (16–18). However, 70 
some geochemical proxies suggest that the early Paleozoic pO2 may have been closer to modern 71 
(19). Moreover, Earth system model simulations resolving ocean circulation show that Cambrian 72 
and Ordovician continental configurations lead to a poorly ventilated and largely anoxic seafloor 73 
– potentially reconciling early Paleozoic redox proxies for deep-sea anoxia (16) with a pO2 74 
possibly as high as modern. These elements highlight that early Paleozoic pO2 remains poorly 75 
constrained and might have been closer to modern, inviting us to revisit the cause of elevated 76 
early Paleozoic extinction rates (15). 77 

Here we investigate the evolution of the susceptibility of marine animal background 78 
extinction during the Phanerozoic, assuming that global environmental perturbation – represented 79 
here using global warming – constitutes an essential driver. We use an ecophysiological model 80 
forced by environmental conditions simulated with an Earth system model. Successive series of 81 
simulations allow us to quantify the contributions of the global climate state, continental 82 
configuration, and atmospheric oxygen concentration (pO2). 83 

We start by simulating the potential evolution of global climate and ocean biogeochemistry 84 
during the Phanerozoic using the Earth system model cGENIE (21) (Materials and Methods). We 85 
conduct simulations at regular time intervals (every 20 Myrs) during the Phanerozoic and, for 86 
each time slice, generate a ‘cold’ and a ‘warm’ climatic state. The warmer state assumes a 87 
quadrupling of pCO2 compared to the cold state (Fig. 1A), leading to a +5 °C increase in 88 
equatorial sea-surface temperature (SST). This amplitude of global warming was chosen to 89 
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represent the upper limit of rapid climatic changes known from the geological record, known as 90 
‘hyperthermals’ (15, 22, 23).  91 

Simulated marine environmental conditions are used as input to an ecophysiological model 92 
accounting for the combined impacts of temperature and ocean dissolved oxygen ([O2]) on 93 
ectotherm habitat viability. The model is based on the Metabolic Index (24). A marine region is 94 
defined as viable for a population under a given climate as long as dissolved oxygen supplied by 95 
the physical environment exceeds the organism’s oxygen demand (Materials and Methods). This 96 
model has been developed and validated for the modern ocean (24, 25). It assumes an infinite 97 
dispersal capacity of marine organisms (15, 24).  98 

For each of our 28 Phanerozoic time slices, we evaluate the degree of marine extinction 99 
occurring in the model in response to a hyperthermal event. To that end, we simulate standing 100 
ecophysiotype biodiversity in the cold and warm climatic states simulated in cGENIE and 101 
calculate the magnitude of extinction resulting from warming – referred to hereafter as the 102 
simulated ‘susceptibility of extinction’. This quantity, calculated on a single model time slice, is 103 
intrinsically very different from an ‘extinction rate’ derived from paleontological data, which is 104 
calculated between two subsequent time slices. Therefore, our simulated trends in susceptibility 105 
of extinction cannot be compared with data-derived extinction rates at face value, but will permit 106 
quantifying the contributions of various environmental factors to changes in extinction risk during 107 
the Phanerozoic. 108 

In order to simulate standing ecophysiotype biodiversity (under the cold and warm climatic 109 
states, for each time slice), and in the absence of quantitative constraints on the ecophysiological 110 
affinities of ancient marine animals, 1000 physiological ecotypes (herein, ecophysiotypes) are 111 
generated, whose physiological characteristics are randomly sampled from probability density 112 
functions established on available experimental respirometry data (15, 24). These physiological 113 
characteristics consist of 3 parameters. Each ecophysiotype is first defined by an oxygen demand 114 
under resting metabolism conditions (parameter #1) and a dependence of this oxygen demand on 115 
changes in seawater temperature (parameter #2). In order to constitute viable populations, 116 
organisms have to accomplish additional tasks such as reproduction and locomotion, which 117 
increases their oxygen demand above resting value. Therefore, each ecophysiotype is also 118 
characterized by an increase in oxygen demand necessary for viable populations (parameter #3). 119 
Extirpation rate is calculated for each model grid point as the percentage of ecophysiotypes that 120 
are present in the cold state but which are not present in the warm state (see Fig. 2). In line with 121 
previous work (15, 26), we only consider non-polar shelf environments in our simulations 122 
(defined as all non-polar, upper-ocean model grid cells adjacent to landmasses), since they 123 
represent the main part of the Phanerozoic paleontological databases. The same pool of 1000 124 
ecophysiotypes is used for every time slice. 125 

Then we need to derive a global ‘susceptibility of extinction’ based on these spatial data. To 126 
permit a more robust comparison of our numerical results with temporal trends in marine 127 
extinction derived from paleontological data, we explore the impact of incomplete geological 128 
sampling in our model using a subsampling approach. Instead of reading model results at face 129 
value, we consider that the information in the paleontological databases is incomplete. Hence we 130 
only record a fraction of all model shelf grid points. In other words, for each time slice, we 131 
subsample a fraction of all shelf grid points to determine the ecophysiotypes present in the cool 132 
and warm states and calculate a global susceptibility of extinction occurring in response to global 133 
warming (defined as the percentage of ecophysiotypes that are present in the cold state, which are 134 
not present in the warm state). We repeat this procedure 1000 times to calculate uncertainty 135 
estimates. Because the fraction of shelf environments documented through geological time is 136 
poorly constrained, we arbitrarily set the subsampling rate to 33 % in our main simulations. We 137 
test alternative subsampling rates (and numbers of repetitions) in our sensitivity analyses and 138 
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show that varying these parameters does not impact our conclusions. Then, we estimate the 139 
resulting probability density function of simulated susceptibility of extinction using a kernel 140 
density estimator to quantify uncertainty in our simulations (shading in Fig. 3A–C). Finally, our 141 
central estimate for the temporal trend in simulated Phanerozoic extinction susceptibility is 142 
obtained by connecting the median values for all time slices (thick lines in Fig. 3A–C). This 143 
subsampling approach avoids giving too much weight to species found in only a few model grid 144 
points, which would probably not be sampled and thus not be documented in paleontological 145 
databases. Our simple experimental setup featuring a uniform magnitude of global warming 146 
through time was not designed to investigate the magnitude of specific ancient extinction events 147 
but only the general temporal trends in susceptibility to an idealized warming-driven extinction. 148 
This approach is designed to provide a directional comparison in extinction susceptibility and 149 
absolute numbers should not be compared with paleontological databases at face value. 150 

 151 

Results  152 
 153 
Simulated extinction susceptibility 154 
 155 
In our first series of ‘baseline’ (best-guess) simulations, in addition to varying the continental 156 
configuration, we also vary the atmospheric CO2 concentration during the Phanerozoic based on a 157 
combination of carbon cycle models and proxy data compilations (23, 27). The resulting global 158 
temperature curve simulated in cGENIE (black lines in Fig. 1A) exhibits temporal trends that 159 
align well with other climate models (28) and temperature proxy data (29, 30), including a warm 160 
early Paleozoic (Cambrian–Devonian), a cooler late Paleozoic (Carboniferous–Permian) 161 
coincident with the Late Paleozoic Ice Age (31), a warm (but cooler than the early Paleozoic) 162 
Mesozoic (Triassic-Cretaceous), and a long-term Cenozoic cooling. In these simulations (Fig. 163 
3A), we account for combined changes in continental configuration and global climate, but 164 
consider a modern atmospheric pO2 (black line in Fig. 1B). Simulated extinction susceptibility 165 
exhibits a sudden drop from an early Paleozoic mean of 6.2 % (standard deviation: 1.2 %) from 166 
the Cambrian to Ordovician (540 to 440 Ma) – meaning that ~6 out of 100 model species are 167 
driven extinct following global climate warming, to much lower values during the rest of the 168 
Phanerozoic, with a mean of 0.8 % (standard deviation: 0.5 %). These changes represent an 8-fold 169 
decrease in mean extinction susceptibility following the Ordovician. Sensitivity analyses reveal 170 
that simulated temporal trends are robust when model parameters are varied. That includes 171 
varying the initial random sampling of the physiological characteristics of the model 172 
ecophysiotypes (Fig. S1), the model ecophysiotype pool size (between 100 and 10,000 173 
ecophysiotypes, compared to 1000 in our standard simulations; Fig. S2), the random sampling 174 
protocol (Fig. S3), and random sampling rate used to represent incomplete geological sampling 175 
(between 0.1 and 0.75, compared to 0.33 in our standard simulations; Fig. S4; or increasing 176 
through time, Fig. 3A), the model spatial domain (Figs. S5–6) and assumptions regarding ocean 177 
phosphate inventories (Fig. S7). Sensitivity tests for the spatial domain, in particular, demonstrate 178 
that our results are not overly dependent on the (simplified) representation of shelf environments 179 
(defined in our model as all cells adjacent to landmasses) (Figs. S5–6). 180 

To disentangle the contributions of changes in the global climate state and continental 181 
configuration to the simulated extinction trend through the Phanerozoic, we conduct an additional 182 
series of simulations under a constant global climatic state (blue curves in Fig. 1A). Similar to ref. 183 
(20), climatic detrending is achieved by varying pCO2 in the model so that the equatorial SST of 184 
every time slice approximates the median equatorial SST in the ‘baseline’ simulations (ca. 24.5 185 
°C before warming). This second series of simulations is referred to as ‘constant SST’ hereafter. 186 
Similar to the ‘baseline’ simulations, atmospheric pO2 is set to modern. In these ‘constant SST’ 187 
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simulations, only the continental configuration is thus varied through time. The consequence of a 188 
constant-through-time climate state is that particularly high extinction susceptibility now occurs 189 
in the early Paleozoic (late Cambrian and Ordovician) and during the Permian-Triassic transition 190 
(Fig. 3B). Comparing the ‘baseline’ and ‘constant SST’ (Fig. 3A, B) series of experiments reveals 191 
the role of continental configuration vs. climate in driving trends in extinction susceptibility in our 192 
model. From this, we deduce that the continental configuration of the Permian-Triassic transition 193 
favors high metazoan susceptibility of extinction, but also that the cooler climatic conditions act 194 
to reduce extinction susceptibility in our ‘baseline’ simulations (Fig. 1A). Note that the short-term 195 
global warming at the Permian-Triassic boundary is not resolved at the prescribed 20-Myr 196 
temporal model resolution (32). The opposite is observed for the early Cambrian, when the 197 
continental configuration is not particularly favorable to extinction, but the warm climate elevates 198 
extinction risk. Sensitivity tests show that these temporal trends in extinction susceptibility are 199 
largely independent of the magnitude of warming perturbation assumed (~2.5°C vs. ~5°C) (Fig. 200 
4). However, three time periods do stand out as being particularly sensitive to the magnitude of 201 
the environmental perturbation: the early Cambrian, the Ordovician-Silurian transition and the 202 
Permian-Triassic transition. Unfortunately, the current formulation of the metabolic index cannot 203 
be used to specifically evaluate the contribution of global climate change to the Late Ordovician 204 
Mass Extinction, which happened in response to global cooling rather than warming (6, 33). 205 

In a third and final series of experiments (named ‘pO2’), we quantify the combined impacts of 206 
changes in the continental configuration and global climate (as per ‘baseline’) with the additional 207 
assumption of changing atmospheric pO2 through time. For this, pO2 estimates are taken from the 208 
recent update of the GEOCARBSULF model of Krause et al. (27) (red line in Fig. 1B). The result 209 
of this analysis is consistent with the findings of Stockey et al. (15). Low early Paleozoic pO2, by 210 
reducing the thermal safety margins of marine ectotherms facing global climate warming, 211 
increases extinction risk by an order of magnitude during the Cambrian and Ordovician (compare 212 
Fig. 3A, C; note the different Y axes). 213 
 214 
Drivers of Phanerozoic extinction rates 215 
 216 
The unexpected result from our coupled global marine environmental and ecophysiological 217 
modelling is that the extinction susceptibility simulated in response to global warming is 218 
significantly higher in the Cambrian and Ordovician than in more recent time slices, even if we 219 
assume that atmospheric pO2 throughout the Phanerozoic was the same as modern (Fig. 3A). 220 
Additionally, the high early Paleozoic global extinction susceptibilities are not associated with 221 
high local extirpation rates (Fig. 2). Extirpation rates for more recent periods (e.g., 0 Ma or 300–222 
340 Ma) are higher than those for 460–540 Ma, suggesting that more complex mechanisms 223 
modulate extinction susceptibility in the model, which we explore below. 224 

Under certain conditions, ecophysiotypes whose ecophysiological requirements are not 225 
fulfilled in the low latitudes after global warming can migrate poleward and occupy habitats at 226 
higher latitudes (and thus do not become extinct). These high-latitude habitats constitute refugia 227 
for organisms facing global environmental disturbances (34). Figure 5 shows that high low-228 
latitude extirpation rates at 0 Ma or 300–340 Ma in the ‘baseline’ simulations are (at least in part) 229 
counterbalanced by the development of refugia at higher latitudes. The development of these 230 
high-latitude refugia is associated with local increases in the capacity of the environment to 231 
sustain a high metabolism (i.e., Metabolic Index, Fig. S8), resulting from the combination of a 232 
substantial increase in ocean [O2] (Fig. S9) and muted SST rise (Fig. S10). These unexpected 233 
local climatic signals arising in response to global warming are due to the partial melt (and 234 
persistence of a fraction) of the local sea-ice cover (Figs. S11–13), which favors ocean-235 
atmosphere O2 transfers (due to sea-ice partial melt) while reducing SST rise (due to sea-ice 236 
persistence). This muted SST change is important in both maintaining metabolic oxygen demand 237 
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at the same level and preventing any warming-induced limitation of O2 dissolution in seawater 238 
(35). The refugia developing in more recent periods (e.g., 0 or 300–340 Ma) lower the 239 
susceptibility of extinction for these time slices. In contrast, the early Paleozoic is comparatively 240 
more prone to metazoan extinction in our model. 241 

The differential refugia capacity, however, does not explain the order-of-magnitude difference 242 
in extinction susceptibility during the early Paleozoic vs. that of some more recent periods (e.g., 243 
140–180 Ma). Nor does it explain the step change in extinction risk simulated between 440 Ma 244 
and 420 Ma in the ‘baseline’ simulations (or between 460 Ma and 440 Ma in the ‘constant SST’ 245 
experiments) (Figs. 3, 5). At the Phanerozoic time scale, extinction susceptibility positively 246 
correlates in the model with the number of ecophysiotypes having a limited geographical spatial 247 
range (Fig. 6A), the latter ecophysiotypes effectively displaying an extinction susceptibility 248 
significantly higher than ecophysiotypes occupying a large geographical space (Fig. 6B) (see also 249 
Figs. S14–16). Therefore, the simulated high early Paleozoic extinction susceptibility results from 250 
the existence of many ecophysiotypes with a limited geographical range in the pre-warming state, 251 
which are preferentially driven extinct in response to global warming.  252 

Why, then, are there so many ecophysiotypes with limited extent in these oldest model time 253 
slices? One possibility is that the early Paleozoic permits stabilizing model ecophysiotypes with 254 
unusual ecophysiological characteristics, whose requirements are fulfilled in a small ocean region 255 
only, and that these ecophysiotypes are not found in other time slices. However, ecophysiotypes 256 
with a limited extent in the early Paleozoic are equally present in other time slices – only showing 257 
a larger (and monotonically increasing) spatial cover towards the modern (Fig. S17). An 258 
alternative hypothesis, and the one we prefer, is that the early Paleozoic high-latitude marine 259 
environment is spatially highly heterogeneous, leading to environmental fragmentation. Spatial 260 
variations in physical ocean parameters ([O2] and temperature) create a very variable 261 
ecophysiological landscape in the southern high latitudes (Fig. S18). As a consequence of this and 262 
the lack of northern high-latitude continental shelves in the early Paleozoic, many ecophysiotypes 263 
are present in just a few model grid points in the pre-warming state (Fig. S19); their ecological 264 
niche disappears in response to global warming, and they are consequently driven extinct (Fig. 6). 265 

 266 
Sampling structure and biases in the Paleobiology Database 267 
 268 
In order to quantify the likely impact of heterogeneous preservation and sampling of the fossil 269 
record (e.g., ref. (36)) on our simulated extinction trend, we calculated new extinction 270 
susceptibilities by sampling the maps of simulated ecophysiotypes based on the number of 271 
Paleobiology Database (PBDB) collections documented for each cGENIE grid point (Materials 272 
and Methods). While the subsampling approach previously used in the standard model assumes 273 
an incomplete but spatially uniform (random) sampling bias, this alternative approach accounts 274 
for the spatially heterogeneous nature of the paleontological sampling biases, with most data 275 
coming from North America and Europe (36) (Fig. S20). Figure 3D shows that PBDB-derived, 276 
collection-based subsampling leads to higher extinction susceptibility during virtually the whole 277 
Phanerozoic – an expected result from the relative undersampling of the high paleolatitudes in the 278 
PBDB (Fig. S20), which are refugia for ecophysiotypes facing global warming in our simulations. 279 
While main temporal trends still stand, extinction susceptibility displays drastic increases during 280 
the earliest Cambrian and the Devonian-Carboniferous transition suggesting a potential sampling 281 
factor in the high reconstructed extinction rates during these time intervals. An alternative 282 
subsampling method based on the number of PBDB entries (instead of collections) per cGENIE 283 
grid point gives similar results (Fig. S21). 284 
 285 
Discussion  286 
 287 
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Simplifications in our numerical modeling (which represents a susceptibility of extinction in 288 
response to climatic perturbations) and biases of the Paleobiology Database (12) prohibit direct 289 
numerical comparison of our models and data. However, qualitative comparison of the temporal 290 
trends is instructive and reveals that it is not necessary to assume that atmospheric pO2 was low 291 
during the early Paleozoic in order to obtain a simulated extinction susceptibility that is 292 
substantially higher during the Cambrian and Ordovician than during the rest of the Phanerozoic 293 
(Fig. 3). This does not necessarily imply that early Paleozoic atmospheric pO2 was as high as 294 
modern, but does indicate that oxygen was not the only important factor. While pO2 has a first-295 
order impact on simulated extinction susceptibility (Fig. 3C) in line with previous studies (15), we 296 
find that climate and continental configuration acted synergistically to make early Paleozoic 297 
marine ecosystems particularly susceptible to elevated metazoan extinction and lower 298 
atmospheric oxygen need not be invoked.  299 

In our model, ecophysiotypes with a small geographical range size display a higher extinction 300 
risk in response to global warming (Fig. 6), in line with previous analyses of the predictors of 301 
extinction risk based on the Paleobiology Database (14, 37). This mechanism, combined with the 302 
highly heterogeneous ecophysiological landscape resulting from the early Paleozoic continental 303 
configuration (and climate), explains the high extinction susceptibility reconstructed for the 304 
Cambrian and Ordovician. Our coupled climate-ecophysiology model also suggests that global 305 
climate state and continental configuration exert control on marine extinction susceptibility at the 306 
Phanerozoic time scale. As illustrated in our ‘baseline’ simulations, extinction proceeds 307 
differently in greenhouse and icehouse climates. In our coldest time slices (0–20 Ma and 260–360 308 
Ma; to a lesser extent in the 60 Ma time slice; see Fig. 1A), high low-latitude extirpation is in part 309 
counterbalanced by the development of refugia at higher latitudes, where species migrating 310 
poleward can survive following global warming (Figs. 2, 5). The development of high-latitude 311 
refugia requires the (only) partial melt of sea ice. In our simulations, this mechanism occurs in the 312 
modern glacial state and during the Permian-Carboniferous glaciation. It does not occur in 313 
warmer climates. We note, however, that the relative resilience to warming-induced extinctions in 314 
(modern-like) cool environments may partly arise from the fact that modern organisms that are 315 
used as the basis for the ecophysiotypes have adapted to these conditions. This possible 316 
contribution cannot be discarded, and it will be important to quantify it in future work. 317 

The second period identified as the most prone to leading to metazoan extinction in our series 318 
of ‘constant SST’ simulations (featuring a roughly constant global climatic state) is the Permian-319 
Triassic transition, considered as the largest mass extinction over Earth’s history (1, 7) (Fig. 3B). 320 
Simulations accounting for PBDB-derived sampling biases (Fig. 3D) demonstrate that incomplete 321 
geological sampling leads to an overestimation of the simulated susceptibility of extinction. 322 
Extinction rates documented during the earliest Cambrian and latest Devonian may thus be 323 
substantially overestimated in the Paleobiology Database, with implications for the role sampling 324 
may play in our reconstruction of major extinction intervals through time (38). 325 

Numerical approaches such as those presented here provide an important new tool for 326 
exploring the co-evolution of global climate and the marine biosphere at the Phanerozoic time 327 
scale and additionally provide a novel approach to bridging the gap between model outputs and 328 
the geological record (here, the Paleobiology Database). Nevertheless, further refinements are 329 
needed. A first limitation is that global warming was used in our model to destabilize ecological 330 
niches and derive a susceptibility of extinction through time, while background extinctions are not 331 
necessarily driven by global warming during the Phanerozoic. Another limitation is that our 332 
model implicitly considers that the dispersal capacity of the model ecophysiotypes is infinite, as is 333 
the carrying capacity of marine habitats (11). No factor other than temperature and dissolved 334 
oxygen concentrations limits the extent of model ecophysiotypes, which systematically occupy 335 
their whole ecological niches. Implementing migration in our model would permit investigating 336 
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the impact of physical barriers and the kinetics of global climate change. It would also permit 337 
accounting for the contribution of (seasonal to centennial) climatic variability, such as simulated 338 
by recent global climate models of, e.g., the Coupled Model Intercomparison Project (39), on 339 
ecological niche stability and marine extinction rates. Noteworthily, accounting for dispersal 340 
limitation would lead to higher simulated extinction susceptibility, but would probably not alter 341 
our conclusions. Our model results are, therefore, likely a conservative estimate of extinction 342 
susceptibility. Indeed, previous work demonstrated that the early Paleozoic continental 343 
configuration, due to the limited latitudinal continuity of landmasses, makes organisms facing 344 
global climate change particularly vulnerable (26). In addition, earliest planktotrophic larvae 345 
likely appeared at (or very close to) the base of the Ordovician (40, 41), suggesting that early 346 
Paleozoic (and especially Cambrian) marine animals were limited in their dispersal abilities 347 
compared to later animals. Therefore, a finite dispersal capacity of model ecophysiotypes might 348 
make the post-Ordovician drop in extinction susceptibility even more pronounced. Finer model 349 
resolution would also be an obvious advantage in being able to better account for the diversity of 350 
environmental niches, but equally creates its own computational challenges if dissolved oxygen 351 
concentrations are to be simulated globally and to steady state, and for multiple time intervals 352 
through the Phanerozoic. 353 

Another future direction relates to the representation of the marine biosphere. In the current 354 
ecophysiological model version, previously validated for the modern (25) and successfully 355 
applied to the geological past (24), metabolic rates of most ecophysiotypes monotonically 356 
increase with temperature, leading to a monotonic decrease in ecophysiotype fitness. However, 357 
empirical results (42, 43) and models (44) demonstrate that natural species thermal performance 358 
curves are unimodal and metabolic rates decline rapidly once the optimal temperature is 359 
exceeded. Assembling a database to represent this decrease in ecophysiotypes fitness with 360 
decreasing temperatures will permit capturing more finely the latitudinal diversity gradient (45, 361 
46) and will thus offer a better representation of marine biodiversity. It should also be noted that 362 
our approach is rooted in the modern and that organisms that populated deep-time oceans may 363 
have had different environmental affinities. Although the analysis of experimentally-derived 364 
estimates of thermal tolerance limits of > 2000 terrestrial and aquatic species suggests that the 365 
upper thermal limits of metazoans have not changed much throughout the Phanerozoic (47), it has 366 
also been suggested that the Paleozoic fauna may have been characterized by lower rates of 367 
metabolism (48). It would also be informative to test the impact of implementing a representation 368 
of the legacy of past extinctions in defining the ecophysiotypes present in the next time slice 369 
(whereas the same pool of ecophysiotypes is considered in every time slice in the current model). 370 
Finally, it might also be worth representing ecophysiotype adaptation and evolution in response to 371 
climate change (through time-evolving ecological niches) (49). However, such model 372 
development would probably not drastically impact our conclusions due to the rapidity of the 373 
climatic perturbations considered here (hyperthermals). 374 

Overall, our coupled climate-ecophysiology model illustrates how continental configuration 375 
and climate state specific to the early Paleozoic render metazoans particularly prone to extinction. 376 
Although our results reaffirm the possible contribution of a reduced pO2 to increasing early 377 
Paleozoic extinction rates (15, 16), they also reconcile the vision that extinction susceptibility was 378 
much higher during the Cambrian and Ordovician than during the rest of the Phanerozoic with a 379 
relatively constant atmospheric pO2 through time (possibly as high as modern (20)). Our 380 
simulations further suggest that the continental configuration may have played a key role in 381 
setting the conditions for the largest Phanerozoic mass extinction at the Permian-Triassic 382 
boundary. Finally, PBDB-based subsampling of our model output reveals that extinction rates 383 
documented during the latest Devonian may be substantially overestimated in the Paleobiology 384 
Database. 385 
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Materials and Methods 386 
 387 
Earth system model simulations  388 
 389 

Description of the model 390 

cGENIE (21) is an Earth System Model of intermediate complexity. It is based around a 3-391 
dimensional ocean circulation model coupled to a 2D energy-moisture-balance atmospheric 392 
model. The model was configured on a 36×36 equal-area grid with 17 unevenly spaced vertical 393 
levels to a maximum 5890 m depth in the ocean. The cycling of carbon and associated tracers in 394 
the ocean is based on a single (phosphate) nutrient limitation of biological productivity (6), but 395 
adopts the Arrhenius-type temperature-dependent scheme for the remineralization of organic 396 
matter exported to the ocean interior of Crichton et al. (50). Despite its low spatial resolution, 397 
cGENIE has been shown to satisfactorily simulate first-order ocean [O2] spatial patterns and 398 
values in the modern (21) and geological past (6, 7). 399 

Description of the numerical experiments  400 

We adopted the (flat-bottomed) Phanerozoic continental reconstructions of Scotese and Wright 401 
(51), but substituted the deep-ocean bathymetry of Müller et al. (52) when available (140 Ma – 0 402 
Ma) in order to account for mid-ocean ridges, following previous work (20). Solar luminosity was 403 
adapted for each time slice after Gough (53). We employed a null eccentricity-minimum obliquity 404 
orbital configuration, which provides an equal mean annual insolation to both hemispheres with 405 
minimum seasonal contrasts. Atmospheric CO2 concentration was varied in our ‘baseline’ 406 
experiments after Foster et al. (23), when available (≤ 400 Ma), and Krause et al. (27) for deeper 407 
time slices. In detail, we ran two series of cGENIE simulations for our ‘baseline’ experiments, in 408 
order to generate the pre-warming and post-warming global climatic states, by multiplying the 409 
pCO2 values of Foster et al. (23) and Krause et al. (27) (see above) by 0.5 and 2.0, respectively. 410 
These multiplication factors were chosen to provide a quadrupling of pCO2 (permitting to 411 
simulate the +5°C low-latitude warming required for our ecophysiological simulations, see main 412 
text), while staying as close as possible to the ‘target’ values of Foster et al. (23) and Krause et al. 413 
(27). Specifically, the simulated low-latitude (10 °S–10 °N) SST warming amounts to + 4.80 °C 414 
(standard deviation: 0.21 °C), or equivalently a mean global SST increase of + 4.77 °C (standard 415 
deviation: 0.23 °C). We note that atmospheric pCO2 during the Devonian may have been lower 416 
than considered in our simulations, which would lead to a colder Devonian climate at 420 Ma and 417 
400 Ma (18). We also conducted additional simulations (‘constant SST’ experiments), in which 418 
we varied pCO2 so as to approximatively correct for the global climatic trend and therefore leave 419 
equatorial SST mainly invariant. Atmospheric oxygen concentrations were set to modern (20.95 420 
%) in our ‘baseline’ and ‘constant SST’ simulations, but varied according to Krause et al. (27) in 421 
our ‘pO2’ experiments (Fig. 1B). Ocean nutrient inventory was kept invariant to modern (2.1 422 
mol kg-1 PO4) in our experiments (only varied for the purpose of sensitivity testing).  423 

To generate the physical atmospheric boundary conditions required by cGENIE for each 424 
different cGENIE continental configuration, we ran FOAM-slab (54) experiments for 100 years 425 
(until equilibrium). This setup of the FOAM model couples an atmospheric general circulation 426 
model to a 50-meter “slab” mixed-layer ocean of resolution 1.4° × 2.8° (latitude × longitude) (55, 427 
56). We then derived the 2D wind speed and wind stress, and 1D zonally-averaged albedo forcing 428 
fields required by the cGENIE model, using the ‘muffingen’ open-source software (DOI: 429 
10.5281/zenodo.7545809), following the methods employed in refs. (6, 20, 57).   430 

cGENIE simulations were initialized with a sea-ice free ocean and homogeneous temperature 431 
and salinity in the ocean (5 °C and 33.9 ‰, respectively) and integrated for a total of 8,000 years 432 
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(a duration largely sufficient to reach ocean thermal equilibrium and upper-ocean dissolved 433 
oxygen equilibrium).  434 
 435 
Ecophysiological modeling 436 
 437 
We adapted the probabilistic ecophysiological model of extinction vulnerability of Stockey et al. 438 
(15), which is based in turn on the Metabolic Index developed and validated by Deutsch et al. (25) 439 
and Penn et al. (24). Metabolic habitat viability is calculated following Eqn. 1: 440 
 441 

Metabolic habitat viability =  ∑ ϕ >  ϕcrit

max (Ao, Eo, ϕcrit)

min (Ao, Eo, ϕcrit)

 442 

(Eqn. 1) 443 

 444 

with      ϕ = Ao 
𝑝O2

exp[−Eo
kB

(1
T− 1

Tref
)]

 445 

(Eqn. 2) 446 

ϕ is the Metabolic Index defined following Penn et al. (24) and Stockey et al. (15). Metabolic 447 
habitat viability defines the fraction of model ecophysiotypes that can live in the oceanic region 448 
investigated. Ocean temperature T and seawater pO2 are taken from our Earth system model 449 
simulations. kB is the Boltzmann constant. Tref is a reference temperature of 15°C. At the 450 
individual organism scale, Ao is the inverse of the hypoxic threshold of the organism (the 451 
minimum required seawater pO2 to sustain resting aerobic metabolism), Eo is the temperature-452 
dependency of the hypoxic threshold and ϕcrit is the multiplicative increase in oxygen supply that 453 
is required to support ecologically sustainable populations. Following Stockey et al. (15), values 454 
for Ao, Eo and ϕcrit are randomly sampled for each ecophysiotype from probability density 455 
functions established on laboratory experiments and the observation of species distribution (24). 456 

In our standard model simulations, following Stockey et al. (15), we generate 1000 457 
ecophysiotypes and consider non-polar shelf environments only, defined as all non-polar model 458 
grid cells adjacent to landmasses in the upper three cGENIE ocean levels, down to a depth of ca. 459 
285 m (but see sensitivity tests for additional experiments using alternative numbers of 460 
ecophysiotypes and considering other oceanic regions, Figs. S2, S5–6). 461 

We calculate extinction rate as the loss of ecophysiotypes in response to a +5 °C equatorial 462 
warming (15). Global climate change is simulated in cGENIE using a quadrupling of atmospheric 463 
pCO2 (see previous section), and is intended to represent a hyperthermal event of the same order 464 
of magnitude as the Paleocene-Eocene Thermal Maximum (22). We also conduct a sensitivity test 465 
with a +2.5 °C equatorial warming. 466 

We extend the original model of Stockey et al. (15) through an explicit representation of 467 
incomplete geological sampling bias. This process modifies how a global extinction rate is 468 
derived from spatially-resolved maps of metabolic habitat viability. Instead of calculating 469 
extinction rate at face value based on all ecophysiotypes present in the pre-warming and post-470 
warming states, we subsample shelf grid points to account for incomplete geological data 471 
sampling. In detail, we extract 33 % of all equal-area model grid points and calculate the 472 
extinction rate based on the ecophysiotypes found in these grid cells only, and repeat this 473 
approach 1000 times for each of our 28 time slices. The result is, for each time slice, a probability 474 
density function of simulated extinction susceptibility, estimated using a kernel density estimator. 475 
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Subsampling ensures that ecophysiotypes present in few model grid cells only would not impact 476 
too strongly the calculation of global extinction rates. This approach is motivated by the fact that 477 
such ecophysiotypes would probably not be documented in the paleontological databases. It also 478 
ensures that our results are not overly dependent on the environmental conditions simulated in a 479 
few cGENIE model grid points, but rather represent large-scale environmental patterns. Finally, 480 
we determine the most probable temporal evolution of Phanerozoic global model extinction 481 
susceptibility by joining the median extinction susceptibilities derived for each time slice from the 482 
probability density function. In our standard simulations, we subsample the pre-warming and 483 
post-warming habitat viability maps at the same locations. A sensitivity analysis to random 484 
sampling approach (subsampling the pre-warming and post-warming habitat viability maps at 485 
different locations; Fig. S3) and rate (Fig. S4) are provided as Supplementary Materials. 486 

Paleontological data 487 
 488 

Downloading fossil data  489 

Fossil occurrence data of all marine metazoans were downloaded from the Paleobiology Database 490 
(PBDB) on February 22, 2022. We restricted downloads to regular taxa (“Preservation = regular 491 
taxa only”). Occurrences with uncertain genus or species attribution were excluded (“Modifiers = 492 
exclude uncertain gen. and sp.”). Downloaded data were restricted to marine environment 493 
(“Environment = any marine, carbonate, siliciclastic”). A total of 886,252 marine metazoan fossil 494 
occurrences were downloaded. 495 

In keeping with previous studies (15, 58), fossil data of the following classes were omitted: 496 
Ostracoda, Arachnida, Insecta, Reptilia and Mammalia. In detail, Ostracoda were excluded 497 
because the poor database quality, combined with the high diversity of this group, may induce 498 
important biases (58). Arachnida and Insecta are terrestrial and documented in marine sediments 499 
only under very specific conditions (58). Reptilia were excluded because they are either terrestrial 500 
or air breathing (15). Mammalia were excluded because they are endotherms, while the Metabolic 501 
Index applies to ectotherms. Lagerstätten were also excluded. We also excluded occurrences with 502 
unknown paleo-coordinates and with age older than 550 Ma. After applying these filtering 503 
criteria, 741,860 fossil occurrences of 30,387 marine metazoan genera were used in this work. 504 

Calculating paleocoordinates 505 

Paleocoordinates of individual fossil occurrences were calculated based on present-day longitude-506 
latitude coordinates and geological age (both available in downloaded PBDB data), using 507 
pyGPlates and the rotational model of Scotese and Wright (51). For each occurrence belonging to 508 
a given time bin, the closest oceanic grid point was found in the cGENIE simulation of 509 
corresponding age, provided that the identified closest oceanic grid point was no further than 510 
2000 km (the PBDB occurrence being otherwise discarded; Fig. S20). 511 

PBDB-derived sampling and extinction rates 512 

In an effort to represent the impact of heterogeneous geological sampling, we derived sampling 513 
rates from the number of collections found in our cured PBDB data (and also conducted a 514 
sensitivity test using the number of PBDB entries). For each time slice, we built a PBDB-derived 515 
sampling rate map by (1) calculating the paleocoordinates of each PBDB entry included in the 516 
time bin and identifying the corresponding cGENIE grid cell, (2) extracting the number of unique 517 
collections found in each cGENIE grid cell, (3) converting the number of collections into a 518 
sampling rate, assuming that sampling rate linearly increases from 0 (in grid points with 0 519 
collections) to 1 (in grid points with a number of collections greater or equal to the 95th percentile 520 
of the distribution of the number of collections per cGENIE grid points in cGENIE grid points 521 
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having at least 1 collection, calculated over all time slices). Resulting maps are shown for each 522 
time slice in Fig. S20.  523 

We calculated extinction susceptibility by sampling the ecophysiotypes living in the cold and 524 
warm climatic states using the sampling rate maps. In each cGENIE grid cell, we randomly 525 
extracted a given number of possible ecophysiotypes, varying from 0 (if sampling rate == 0) to 526 
the total number of ecophysiotypes considered in the model (1000 in the standard simulations; if 527 
sampling rate == 1). It should be noted that while we subsample these model ecophysiotypes, all 528 
subsampled ecophysiotypes will not be viable in each cGENIE grid cell, and that the same 529 
randomly-generated subset of possible ecophysiotypes is used to subsample the cold and warm 530 
climatic states. We calculated an extinction susceptibility in response to global climate warming 531 
based on the ecophysiotypes extracted in the cold and warm simulations. We repeated the random 532 
extraction 1000 times to obtain a probability density function of the simulated susceptibility of 533 
extinction. 534 

  535 
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 700 
Data and materials availability:  701 
The code for the version of the ‘muffin’ release of the cGENIE Earth system model used in this 702 
paper, is tagged as v0.9.35, and is archived on Zenodo (https://doi.org/10.5281/zenodo.7545805). 703 
A manual describing code installation, basic model configuration, and an extensive series of 704 
tutorials is provided (v0.9.35, https://doi.org/10.5281/zenodo.7545814). Configuration files for 705 
the specific experiments presented in the paper can be found in the directory: genie-706 
userconfigs/PUBS/submitted/Pohl_et_al.SciAdv.2023. Details of the experiments, plus the 707 
command line needed to run each one, are given in the readme.txt file in that directory. The code 708 
for the muffingen boundary file generator version v0.9.24, is hosted on Zenodo 709 
(https://doi.org/10.5281/zenodo.7545809). The FOAM model output is archived on Zenodo 710 
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(https://doi.org/10.5281/zenodo.7220854). The ecophysiological model code is deposited in 711 
GitHub and archived on Zenodo (https://doi.org/10.5281/zenodo.7224943). 712 
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Figures and Tables 714 
 715 
 716 

 717 
Fig. 1. Sea-surface temperatures and atmospheric pO2 forcing. (A) Equatorial (10 °S–10 °N) 718 
sea-surface temperatures in the pre- and post- warming states (lower and upper curves 719 
respectively) of the ‘baseline’ and ‘pO2’ (identical, black lines) and ‘constant SST’ (blue lines) 720 
series of simulations. (B) Atmospheric pO2 in ‘baseline’ and ‘constant SST’ (identical, black line) 721 
and ‘pO2’ (red line) series of simulations. Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: Devonian, 722 
C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene. 723 
  724 
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 725 
Fig. 2. Maps of surface-ocean extirpation rate simulated in response to global warming in 726 
the ‘baseline’ simulations. Extirpation rate is calculated for each grid point as the percentage of 727 
ecophysiotypes that are present before global climate warming (i.e., in the cold state) but which 728 
are not present in the warm state. Emerged continental masses are shaded grey. Eckert IV 729 
projections. 730 
  731 
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 732 
 733 

Fig. 3. Simulated extinction susceptibility. (A) Extinction susceptibility in our ‘baseline’ 734 
simulations with sampling rate fixed at 0.33 (density distribution and thick solid line) and with 735 
sampling rate linearly increasing from 0.2 at 540 Ma to 0.8 at 0 Ma (thin dashed line, representing 736 
a possibly more complete paleontological sampling towards present-day), using 1000 sampling 737 
repetitions and sampling pre-warming and post-warming states at same shelf grid points. (B) 738 
Extinction susceptibility in our ‘constant SST’ simulations with sampling rate fixed at 0.33 739 
(density distribution and solid line, 1000 repetitions using same sampling points). Results of the 740 
‘baseline’ simulations with sampling rate fixed at 0.33 (1000 repetitions using same sampling 741 
points, see panel (A)) overlaid for comparison (dashed line). (C) Same as (B) for ‘pO2’ 742 
simulations. (D) Same as (A) but using PBDB-derived, collection-based sampling rates. Results 743 
of the ‘baseline’ simulations with sampling rate fixed at 0.33 (1000 repetitions using same 744 
sampling points, see panel (A)) overlaid for comparison (dashed line). Y-scale differs in the 745 
different panels. Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: 746 
Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene. 747 
 748 
  749 
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 750 

Fig. 4. Sensitivity of simulated extinction risk to the magnitude of global warming. (A) Sea-751 
surface temperature in the pre-warming state of the ‘constant SST’ series of simulations (black 752 
line), for a pCO2 doubling (blue line) relative to the pre-warming state and for a quadrupling (red 753 
line). Black and red curves identical to Fig. 1A (blue curves). (B) Extinction susceptibility in the 754 
‘constant SST’ simulations with sampling rate fixed at 0.33 (1000 repetitions using same 755 
sampling points), when considering a doubling (blue line) or quadrupling (red line) of pCO2 (i.e., 756 
shifting from respectively black to blue or black to red in panel (A)). Red line similar to Fig. 3B. 757 
(C) Sensitivity of simulated extinction susceptibility to the magnitude of global warming, i.e., 758 
increase in extinction susceptibility simulated when increasing the magnitude of global warming 759 
from a doubling to a quadrupling of pCO2 (i.e., when increasing equatorial SST rise from ~2.5 °C 760 
to ~5 °C). 761 

 762 
  763 
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764 
Fig. 5. Maps of surface-ocean simulated refugia capacity (expressed as a number of 765 
ecophysiotypes) in the ‘baseline’ simulations. Refugia capacity is calculated in each grid point 766 
as the number of ecophysiotypes (present in the cold state) that were not present in this specific 767 
grid point in the pre-warming state, but are present in the post-warming state. Emerged 768 
continental masses are shaded grey. Eckert IV projections. 769 
  770 
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 771 
Fig. 6. Extinction susceptibility and ecophysiotype geographical range size in the ‘baseline’ 772 
simulations. (A) Linear correlation between simulated extinction rate (median value calculated 773 
by sampling 1000 times at same locations; thick line in Fig. 3A) and number of ecophysiotypes 774 
with limited spatial extent (< 10 equal-area model shelfal grid cells at any depth level in the pre-775 
warming state). Blue points represent each of the 28 time slices and the blue line is the linear 776 
correlation line (with 95 % confidence interval shaded blue), the coefficient of which is provided 777 
on top of the panel. (B) Extinction rate for ecophysiotypes with limited spatial extent present in 778 
the pre-warming state (< 10 equal-area shelfal model grid cells at any depth level) vs. for all 779 
ecophysiotypes. Boxplots were calculated based on the individual extinction rates calculated for 780 
each of the 28 time slices studied without accounting for uncertainties in spatial sampling. Results 781 
for other series of experiments are provided in Figs. S15–16. 782 
 783 
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 20 

Fig. S1.  21 

Sensitivity test to initial ecophysiotype sampling pool. Simulated extinction susceptibility during 22 
the Phanerozoic in the ‘baseline’ simulations (solid black line) and using 10 alternative randomly-23 
sampled initial ecophysiotype pools (grey lines), discarding either (a) no ecophysiotypes or (b) 24 
ecophysiotypes occupying less than 10 (equal-area) model grid cells. Ꞓ: Cambrian, O: 25 
Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: 26 
Cretaceous, P: Paleogene, N: Neogene.  27 
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 28 

Fig. S2. 29 

Sensitivity test to initial number of ecophysiotypes. Simulated extinction susceptibility during the 30 
Phanerozoic. (a) ‘Baseline’ simulations using 100 (density distribution and thick solid line) and 31 
1000 ecophysiotypes (thin dashed line, like Fig. 3A). (b) ‘Baseline’ simulations using 10,000 32 
(density distribution and thick solid line) and 1000 ecophysiotypes (thin dashed line, like Fig. 33 
3A). All simulations use a sampling rate of 0.33, 1000 sampling repetitions and sample pre-34 
warming and post-warming states at same shelf grid points. Same as Fig. 3A but using alternative 35 
number of ecophysiotypes. Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: 36 
Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.  37 
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 38 

 39 

Fig. S3. 40 

Sensitivity test to random sampling protocol. Simulated extinction susceptibility during the 41 
Phanerozoic. (a) ‘Baseline’ simulations with sampling rate fixed at 0.33 (density distribution and 42 
thick solid line) and with sampling rate linearly increasing from 0.2 at 540 Ma to 0.8 at 0 Ma (thin 43 
dashed line), using 1000 sampling repetitions and sampling pre-warming and post-warming states 44 
at different shelf grid points. (b) ‘constant SST’ simulations with sampling rate fixed at 0.33 45 
(density distribution and solid line, 1000 repetitions using different sampling points). Results of 46 
the baseline simulations with sampling rate fixed at 0.33 (1000 repetitions using different 47 
sampling points) overlaid for comparison (dashed line). (c) Same as (b) for ‘pO2’ simulations. Y-48 
scale differs in the 3 panels. Same as Fig. 3A-C but sampling different (as opposed to identical) 49 
shelf grid points in the pre-warming and post-warming states. Ꞓ: Cambrian, O: Ordovician, S: 50 
Silurian, D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: 51 
Paleogene, N: Neogene.  52 
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 53 

 54 

Fig. S4. 55 

Sensitivity test to random sampling rate. Simulated extinction susceptibility during the 56 
Phanerozoic. (a) ‘Baseline’ simulations with sampling rate fixed at 0.1 (density distribution and 57 
thick solid line) and 0.33 (thin dashed line, like Fig. 3A). (b) ‘Baseline’ simulations with sampling 58 
rate fixed at 0.75 (density distribution and thick solid line) and 0.33 (thin dashed line, like Fig. 59 
3A). All simulations use 1000 sampling repetitions and sample pre-warming and post-warming 60 
states at same shelf grid points. Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: 61 
Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.  62 
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 63 

Fig. S5. 64 

Sensitivity test to model depth integration. Simulated extinction susceptibility during the 65 
Phanerozoic. (a) ‘Baseline’ simulations using the surface ocean level only (density distribution 66 
and thick solid line) and the 3 upper-ocean levels (thin dashed line, like Fig. 3A). (b) ‘Baseline’ 67 
simulations using the subsurface ocean level only (density distribution and thick solid line) and 68 
the 3 upper-ocean levels (thin dashed line, like Fig. 3A). All simulations use a sampling rate of 69 
0.33, 1000 sampling repetitions and sample pre-warming and post-warming states at same shelf 70 
grid points. Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian, 71 
T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene.  72 
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 73 

Fig. S6. 74 

Sensitivity test to model spatial domain. Simulated extinction susceptibility during the 75 
Phanerozoic. (a) ‘Baseline’ simulations using the whole upper-ocean domain (density distribution 76 
and thick solid line) and shelf points only (thin dashed line, like Fig. 3A). (b) ‘Baseline’ 77 
simulations using shelf points only, using (density distribution and thick solid line) or discarding 78 
(thin dashed line, like Fig. 3A) polar grid points. All simulations use a sampling rate of 0.33, 1000 79 
sampling repetitions and sample pre-warming and post-warming states at same grid points. Same 80 
as Fig. 3A but using alternative spatial domains. Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: 81 
Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: 82 
Neogene.  83 



Science Advances                                               Manuscript Template                                                                           Page 8 of 22 
 

 84 

Fig. S7. 85 

Sensitivity test to ocean phosphate inventory. Simulated extinction susceptibility during the 86 
Phanerozoic. (a) ‘Baseline’ simulations considering a 1.5-fold increase in ocean phosphate 87 
inventory in response to global warming (density distribution and thick solid line) and a fixed 88 
phosphate inventory (thin dashed line, like Fig. 3A). (b) ‘Baseline’ simulations considering a 1.5-89 
fold increase in ocean phosphate inventory in response to global warming (density distribution 90 
and thick solid line) and a fixed phosphate inventory (thin dashed line, like Fig. S5B), but using 91 
the subsurface ocean level only (while the upper 3 ocean levels are used in first panel, like in the 92 
standard simulations). All simulations use a sampling rate of 0.33, 1000 sampling repetitions and 93 
sample pre-warming and post-warming states at same shelf grid points. Ꞓ: Cambrian, O: 94 
Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: 95 
Cretaceous, P: Paleogene, N: Neogene. 96 
  97 
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 98 

Fig. S8. 99 

Surface-ocean metabolic index (Φ; see Materials and Methods) change in response to warming in 100 
the ‘baseline’ simulations for an ecophysiotype with median ecophysiological parameters A0 and 101 
E0. Emerged continental masses are shaded white. Eckert IV projections. 102 
  103 
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104 
Fig. S9. 105 

Surface-ocean [O2] change simulated in response to warming in the ‘baseline’ simulations. 106 
Emerged continental masses are shaded white. Eckert IV projections. 107 
  108 
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109 
Fig. S10. 110 

Sea-surface temperature change simulated in response to warming in the ‘baseline’ simulations. 111 
Emerged continental masses are shaded white. Eckert IV projections. 112 
  113 
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114 
Fig. S11. 115 

Sea-ice fraction in the pre-warming state of the ‘baseline’ simulations. Emerged continental 116 
masses are shaded white. Eckert IV projections. 117 
  118 
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119 
Fig. S12. 120 

Sea-ice fraction in the post-warming state of the ‘baseline’ simulations. Emerged continental 121 
masses are shaded white. Eckert IV projections. 122 
  123 
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 124 

Fig. S13. 125 

Sea-ice fraction change simulated in response to warming in the ‘baseline’ simulations. Emerged 126 
continental masses are shaded white. Eckert IV projections. 127 
  128 
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129 
Fig. S14. 130 

Number of ecophysiotypes with limited spatial extent (< 10 equal-area model grid cells at any 131 
depth level) in the pre-warming state for the 3 series of simulations: ‘baseline’ (black), ‘constant 132 
SST’ (blue) and ‘pO2’ (red). Panel (a) shows results for the 3 simulation series while panel (b) 133 
shows results for ‘baseline’ and ’constant SST’ simulations only, for readability (using different 134 
Y-scale). Ꞓ: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C: Carboniferous, P: Permian, 135 
T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, N: Neogene. 136 
  137 
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 138 

Fig. S15. 139 

Linear correlation between simulated extinction rate (median value calculated by sampling 1000 140 
times at same locations; thick lines in Fig. 3A-C) and number of ecophysiotypes with limited 141 
initial spatial extent (< 10 equal-area model grid cells at any depth level in pre-warming state) for 142 
(a) ‘baseline’ simulations, (b) ‘constant SST’ simulations and (c) ‘pO2’ simulations. In each 143 
panel, blue points represent each of the 28 time slices and the blue line is the linear correlation 144 
line (with 95 % confidence interval shaded blue), the coefficient of which is provided on top of 145 
the panel.  146 
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 147 

 148 

Fig. S16. 149 

Extinction rate for ecophysiotypes with limited spatial extent present in the pre-warming state (< 150 
10 equal-area model grid cells at any depth level) vs. for all ecophysiotypes. Results are shown 151 
for the 3 series of simulations: ‘baseline’ (a), ‘constant SST’ (b) and ‘pO2’ (c). For each series, the 152 
boxplots were calculated based on the individual extinction rates calculated for each of the 28 153 
time slices studied. Calculated extinction rates do not account for uncertainties in spatial 154 
sampling. 155 
 156 
  157 
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 158 

Fig. S17. 159 

Model behavior of ecophysiotypes with limited spatial extent. This figure investigates the 160 
behavior of the ecophysiotypes with limited spatial extent (< 10 equal-area model grid cells at any 161 
depth level) found in the pre-warming state at 440 Ma (see red point) in the ‘baseline’ 162 
simulations. To that purpose, the ecophysiotypes with limited spatial extent are identified in the 163 
pre-warming state for 440 Ma and then, these same ecophysiotypes are studied in all investigated 164 
time slices. (a) Number of these ecophysiotypes found in the pre-warming state in the various 165 
time slices. (b) Spatial extent of these ecophysiotypes in the pre-warming state in the various time 166 
slices, defined as the median number of model equal-area grid cells occupied over the first 3 167 
upper-ocean levels. (c) Extinction susceptibility calculated for these ecophysiotypes in response 168 
to warming. (d) Extinction susceptibility for all ecophysiotypes in response to warming. Panels 169 
(c) and (d) do not account for uncertainties in sampling. Ꞓ: Cambrian, O: Ordovician, S: Silurian, 170 
D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, 171 
N: Neogene. 172 
  173 
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 174 

Fig. S18. 175 

Surface-ocean metabolic index (Φ; see Materials and Methods) in the pre-warming state in the 176 
‘baseline’ simulations for an ecophysiotype with median ecophysiological parameters A0 and E0. 177 
Emerged continental masses are shaded white. The early Paleozoic (540 – 440 Ma) marine 178 
environment is spatially heterogeneous at the high latitudes, with strong variations in metabolic 179 
index values over small geographical distances (high values being found in only a few grid points, 180 
surrounded by much smaller values). Regions with high metabolic index values become spatially 181 
more extensive in the Southern Hemisphere from 420 Ma onwards and can be found also in the 182 
Northern Hemisphere from 340 Ma onwards. Eckert IV projections. 183 
  184 
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185 
Fig. S19. 186 

Maps of surface-ocean number of ecophysiotypes with limited spatial extent in the ‘baseline’ 187 
simulations. Ecophysiotypes with limited spatial extent are identified as all ecophysiotypes that 188 
occupy strictly less than 10 equal-area grid cells in any of the 3 upper ocean levels, in the pre-189 
warming state. Diversity is here calculated at the number of these ecophysiotypes that live in each 190 
of the model grid cells. Emerged continental masses are shaded grey. Eckert IV projections. 191 
  192 
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 193 

Fig. S20. 194 

Maps of sampling rate derived from the number of collections in our cured PBDB data (Materials 195 
and Methods). Points with a sampling rate of 0 (i.e., containing no PBDB collection) are masked. 196 
A sampling rate of 1 means that we calculate extinction risk at that location based on the total 197 
information contained in the model grid point (i.e., absence or presence of all 1000 198 
ecophysiotypes). Emerged continental masses are shaded grey. Eckert IV projections. 199 
  200 
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 201 
Fig. S21. Extinction susceptibility calculated based on PBDB entries. Same as Fig. 3D but using 202 
PBDB entries (instead of collections) for subsampling. Ꞓ: Cambrian, O: Ordovician, S: Silurian, 203 
D: Devonian, C: Carboniferous, P: Permian, T: Triassic, J: Jurassic, K: Cretaceous, P: Paleogene, 204 
N: Neogene. 205 
 206 
 207 




