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Biomedical Entrepreneurship in U.S. Regions
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Abstract
Entrepreneurial ecosystem researchers generally focus on the few dominant factors affecting
entrepreneurship. Insufficient attention has been paid to the interdependencies among regional
conditions within an entrepreneurial ecosystem. We focus on the collective effects of factors for
regional biomedical entrepreneurship. We use the fuzzy-set qualitative comparative analysis
(fsQCA) method to identify sets of regional conditions promoting biomedical entrepreneurship
in all 381 U.S. metropolitan areas. The results indicate three configurations contributing to high
levels of regional biomedical entrepreneurship: the first one combines public sector biomedical
R&D, biomedical patents, and human capital, thus stressing science conditions and related
human capital; the second combines public sector biomedical R&D, biomedical patents, clinical
trials, and venture capital, thus placing more emphasis on the regional infrastructure sustaining
entrepreneurial activity; the third combines private sector biomedical R&D, biomedical patents,
human capital, per capita income, population density, and venture capital, thus emphasizing the
private sector’s role on boosting regional biomedical entrepreneurship. There is no single recipe

for a region to increase its level of biomedical entrepreneurship.
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1. Introduction

What are the key factors of a vibrant entrepreneurial ecosystem? In this quest scholars
and practitioners have proposed several factors for successful ecosystems (e.g., Feld, 2012;
Isenberg, 2011; Kim, 2015; Mack & Mayer, 2016; Spigel, 2017; World Economic Forum, 2013).
Long lists of factors have been identified by scholars and practitioners (Stam, 2015) including
government support, human capital, financing system, accessible markets, cultural traits, existing
firms, and so on.

Policymakers may encounter several challenges in the effort to apply best practices in
their contexts. First, would factors singled out in a different location work well in my region?
The question becomes relevant in light of the fact that each region has a different condition,
development history, and characteristics (Edler & Fagerberg, 2017). A replicated policy may not
work in a different environment even though it is considered an essential condition somewhere
else. Second, are the factors identified somewhere else sufficient for my region? Policymakers
need to consider the set of conditions that identify their regions. Third, what are the effective
configurations of regional conditions leading to high levels of entrepreneurship? In this paper,
we specifically focus on the biomedical entrepreneurial ecosystem.

We construct an analytical model designed to incorporate sets of regional conditions that
promote biomedical entrepreneurship. The model is cognizant of the process of biomedical
knowledge flows from scientific discoveries to several stages of clinical trials to sales and
marketing. We posit that a successful biomedical business critically depends on 1) scientific
knowledge, 2) commercialization capacity, 3) extant entrepreneurial base, and 4) supporting
infrastructure. We extract ten key factors: public biomedical R&D, private biomedical R&D, the

local presence of established large biomedical firms , translational research, biomedical patents,



clinical trials, per capita income, population density, , venture capital investment and human

capital. We argue that these factors collectively contribute to the regional biomedical
entrepreneurship as approximated by the number of the National Institutes of Health (NIH)

Small Business Innovation Research (SBIR) program grants and venture capital deals. The data
cover a period of ten years, from 2006 and 2015, and they have been collected from diverse
sources including the NIH, National Science Foundation (NSF), U.S. Patent and Trademark
Office, U.S. Census, U.S. Bureau of Economic Analysis, Pitchbook, and Compustat.

We use the fuzzy-set qualitative comparative analysis (fSQCA) in order to identify the
configurations that are linked to high levels of biomedical entrepreneurship in all 381 U.S.
metropolitan areas. Our conjecture is that different sets of conditions could lead to the same
outcome, and that individual factors cannot decide the outcome since each condition could have
a different effect on the others, depending on the often-complex development history and
policies of a region.

Three pathways are identified to lead to high levels of biomedical entrepreneurship in a
region. The first combines public biomedical R&D, biomedical patents, and human capital, thus
stressing the conditions that promote scientific activities in the biomedical sector. The second
combines public biomedical R&D, biomedical patents, clinical trials, and venture capital
investment, thus placing more emphasis on the regional infrastructure that promote
entrepreneurial activity. The third combines private sector biomedical R&D, biomedical
patents, , per capita income, population density, venture capital investment, and human capital.
There is no simple recipe for high levels of biomedical entrepreneurship, and a region does not

need to have all conditions to have a vibrant biomedical sector. Public and private R&D in the



biomedical field, related patents, and venture capital investment rise as particularly important in
promoting regional biomedical entrepreneurship.

The rest of the paper is organized as follows. Section 2 reviews the literature and presents
the research questions. Section 3 introduces the analytical model while the methodology and data
are presented in Section 4. Section 5 shows the analytical results. Finally, Section 6 discusses the

results, touches upon policy implications, and concludes.

2. Literature Review and Research Questions

An entrepreneurial ecosystem is a dynamic system with diverse stakeholders, which can
include entrepreneurs, universities, government, and consumers (Audretsch & Belitski, 2017).
Each innovation system has different conditions, environments, and path dependencies (Edler &
Fagerberg, 2017). For instance, both Silicon Valley and Boston have successful ecosystems, but
their environments—especially their entrepreneurial cultures—and their development histories
have been quite different (Saxenian, 1994). Scholars have paid significant attention to the
underlying factors explaining the differences in regional economic activities (Brown & Mason,
2017; Feldman, 2014).

The entrepreneurial ecosystem approach is one of the conceptual tools to understand
differences in regional economic activities by positioning entrepreneurs at the center (Brown &
Mason, 2017). Definitions have proliferated. For instance, Audretsch and Belitski (2017) have
stated that an entrepreneurial ecosystem is “a dynamic community of interdependent actors
(entrepreneurs, suppliers, buyers, government, etc.) and system-level institutional, informational
and socioeconomic contexts” (p. 1033). Stam (2015), more broadly, defined the entrepreneurial

ecosystem as “a set of interdependent actors and factors coordinated in such a way that they



enable productive entrepreneurship” (p. 1765). The core elements include the interactions and
collaborations among the players within a given system.

Based on the entrepreneurial ecosystem framework, researchers have proposed lists of
conditions or attributes for a successful ecosystem (e.g., Acs et al., 2014; Feld, 2012; Isenberg,
2011; World Economic Forum, 2013). For instance, Isenberg (2011) suggested six central areas
for a successful ecosystem: policy, finance, culture, support, human capital, and markets. These
areas help explain how ecosystems work, and they also suggest the important ingredients for
regional entrepreneurship. Other investigators have reported contributing factors for healthy
ecosystem development. For example, Spigel (2017) found venture capital and the role of large
tech firms as key factors for the success of Waterloo, Canada’s entrepreneurial ecosystem.
Transplanting this to an emerging economy environment, Fischer et al. (2018) indicate the
importance of both centrifugal and centripetal conditions in determining the success of
entrepreneurial ecosystems.

The interdependency among regional conditions within an ecosystem has not, however,
been analyzed thoroughly (Stam, 2015; Stam & Van de Ven; 2021). First, some factors might
only be effective or dominant under certain conditions and only in some specific regions (Spigel,
2017). The differential impact of factors might be due to the complex environment related to
entrepreneurial activity or to different development stages of the system. For instance, venture
capital might not be an essential element at the early stage of entrepreneurship, but it could
become more important as firms grow (Mason & Brown, 2014). Second, there might be cases
that produce similar outcomes in terms of entrepreneurship, even though they have different sets
of regional conditions. Third, some of the variability is simply due to the difficulty in

generalizing the results of extant research as a case study method is frequently employed



focusing on a single region to identify relevant factors for regional entrepreneurship (Feldman &
Francis, 2003; Kim, 2015; Mack & Mayer, 2016; Spigel, 2017).

Another important aspect is the sectoral perspective of the entrepreneurial ecosystem.
This view is especially important to discuss here because the present research focuses on the
biomedical sector. The biotech sector has a distinguished anatomy, one that is quite different
from other sectors including information technology (Pisano, 2006). Each sector has a unique set
of actors, networks, institutions, and knowledge and technological foundations (Malerba, 2004).
Thus, entrepreneurial ecosystems are based on industry-specific characters and characteristics
(Mason & Brown, 2014). In a recent paper, Spigel (2022) summarizes the discussions on the
ecosystem structure—*“nested” and “cohesive” ecosystem, and empirically shows that FinTech
industry in the UK has nested ecosystems. That is to say that the attributes needed for a
successful entrepreneurial ecosystem like Silicon Valley may not be fully relevant to other
sectoral innovation systems. It is necessary to consider the specific attributes associated with the
sector under investigation.

Herein we address the following research question: What are the effective configurations
of conditions associated with high levels of biomedical entrepreneurship in a region? Based on
prior literature, we expect that a combination of factors can increase entrepreneurship, but that

factor combinations will differ, at least partly, across regions.

3. Analytical Model
We propose an analytical model that allows us to investigate the sets of factors
contributing to biomedical entrepreneurship in a region. Regions have different sets of

conditions, reflecting their endowments, development paths, policies, organizations, customs,



and institutions. Do specific combinations of factors consistently generate better outcomes in
terms of high levels of biomedical entrepreneurship?

The development process in the biomedical sector generally flows from scientific
discoveries to several stages of clinical trials to sales and marketing (Fishburn, 2013; Pisano,
2006; Scherer, 2010). Universities and research institutions with public funding usually
participate in the creation of knowledge for new drugs. On the other side of the spectrum,
pharmaceutical companies focus their attention on near-market products, generally after the
Phase I clinical trials stage (Fishburn, 2013). The area between basic research and near-market
activities has been increasingly undertaken by biomedical firms and startups (Kettler, 2000;
Pisano, 2006). The well-established business model of such biomedical firms is to license novel
discoveries from universities, develop those discoveries further, and then sell the intellectual
property rights or intermediate products to pharmaceutical companies (Pisano, 2006).

We construct our model by taking into account key factors for biomedical
entrepreneurship at the regional level. We define biomedical entrepreneurship as knowledge-
intensive entrepreneurial activities utilizing knowledge to exploit opportunities within
biomedical field (Malerba & McKelvey, 2020; Pisano, 2006). As entrepreneurship is a localized
phenomenon (Feldman, 2014; Stam, 2007), the regional contexts for biomedical
entrepreneurship are also considered. We extract four key dimensions of regional factors that
relate to the creation, development, and growth of the biomedical business: 1) scientific
knowledge, 2) commercialization capacity, 3) extant entrepreneurial base, and 4) supporting
infrastructure (See Figure 1). The first two dimensions reflect biomedical-specific characteristics
while the remaining two dimensions are connected to the strength of the entrepreneurial

ecosystem.
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Figure 1. Schematic Description of the Model for Biomedical Entrepreneurship

Under this model, first, the biomedical entrepreneurial activity requires a source of
scientific knowledge that can be developed further. Being a science-based business, its ability to
create value depends on access to quality science. The roles of established firms are key, as they
can provide positive externalities to nearby firms through complementary relationships
(Audretsch, 2001; Kettler, 2000; Pisano, 2006; Scherer, 2010). Agrawal and Cockburn (2003)
and Feldman (2003) proposed the anchor tenant hypothesis, which suggests that established
R&D-intensive firms help the spread of research from local universities to regional firms. Based
on this discussion, we suggest three factors for the scientific knowledge dimension in Figure 1:
public biomedical R&D, private biomedical R&D, and the presence of established large
biomedical firms.

Second, commercialization capacity is also important to transform scientific discoveries
into commercially valuable properties. Not all novel scientific discoveries turn into useful,

commercializable forms of knowledge (Braunerhjelm et al., 2010; Carlsson et al., 2009). A
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higher capacity to commercialize knowledge in a region translates into both time reductions for
the conversion of scientific knowledge and higher levels of economically exploitable knowledge.
Strong capability in translational research could help produce more commercializable knowledge
(like patents and clinical trials) available to biomedical entrepreneurs. Following this reasoning,
we employ three factors for the commercialization capacity dimension of the model: translational
research, biomedical patents, and clinical trials.

Third, it is also important to have favorable entrepreneurial conditions for an individual
to start a business. Here, we consider two factors: per capita income and population density. Per
capita income in a region might affect the conditions for starting a new business, as higher
average income levels in a region could help support the starting of new businesses (Wallsten,
2001). Population density, which indicates the clustering of people in a region, can facilitate
knowledge sharing and knowledge flow through close and frequent interactions (Qian et al.,
2013).

Fourth, supporting infrastructure is also an important ingredient. Adequate funding is
another critical area for biomedical firms to grow. The local venture financing system is
important due to the large investment costs and the high degree of uncertainty involved in
biomedical work (DiMasi et al., 2016; Pisano, 2006; Sacks et al., 2014). The availability of a
trained labor force to generate and develop scientific knowledge is a prerequisite (Braunerhjelm
et al.; 2010). Educated workers, such as newly graduating students and skilled researchers, bring
their knowledge to the labor market, and this can result in knowledge spillovers without any
formal distribution of knowledge. For the supporting infrastructure dimension of the model, we

examine two factors: regional venture capital investment and human capital.
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In sum, the model posits that biomedical entrepreneurship is a function of ten factors:
public biomedical R&D, private biomedical R&D, the local presence of established large
biomedical firms, translational research, biomedical patents, clinical trials, per capita income,

population density, regional venture capital investment, and human capital.

4. Empirical Approach

4.1. Methodology: Fuzzy-set QCA

We employ fuzzy-set qualitative comparative analysis (fSQCA). The fSQCA method
explores multiple paths that lead to the same outcome based on set-theoretical logic and the
concept of equifinality (Kraus et al., 2018; Ragin, 2008). In other words, the main purpose of
fsQCA analysis is to investigate how diverse conditions are combined for generating a particular
outcome (Lee, 2014). The fsQCA approach has increasingly been used in entrepreneurship and
management fields, including with research that has a large number of cases (Alves et al., 2021;

Cooper & Glaesser, 2010; Kraus et al., 2018).

4.2. Data

The analysis runs at the level of the 381 U.S. metropolitan statistical areas (MSAs) as
defined by the U.S. Office of Management and Budget (OMB). An MSA is defined as a region
with “at least one urbanized area of 50,000 or more population, plus adjacent territory that has a

high degree of social and economic integration with the core as measured by commuting ties”

(U.S. Office of Management and Budget, 2018, p. 6).
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Table 1 shows the utilized variables', corresponding measures, and data sources. The
outcome is biomedical entrepreneurship, proxied by the National Institutes of Health (NIH)
Small Business Innovation Research (SBIR) program grants. We obtained the NIH SBIR data
from the NIH RePORTER (NIH, n.d.-a). The SBIR data include only new projects in Phase I and
Fast Track because we focus on biomedical entrepreneurship, which is generally recognized by
new firm formation (Lee et al., 2004; Qian et al., 2013).

We obtained regional public biomedical R&D spending from the National Science
Foundation (NSF)’s Higher Education Research and Development (HERD) Survey (NSF, 2011,
2015, 2018). We aggregated the life science and medical R&D spending data in the universities
at the MSA level. We collected the private sector’s R&D spending on the biomedical field from
Compustat, which is a collection of financial information of publicly-traded firms. We used the
North American Industry Classification System (NAICS) codes? to select relevant biomedical
firms as defined by DeVol et al. (2004). The number of large biomedical firms were also

obtained from Compustat (2019).

Table 1. Variables, Measures, and Data Sources

Variable (abbreviation) Measure Data source
Outcome
NIH SBIR grants (Y) NIH SBIR (New projects in Phase NIH

I and Fast-Track) grants (counts) RePORTER
Dimensions Conditions
Scientific Public biomedical =~ R&D expenditure in the life NSF HERD
Knowledge R&D (R) science and medical field at the =~ Survey

!'In this paper, we use the terms—variable, factor, and condition—interchangeably.
2 NAICS (2017 version) codes used in this research: 325411, 325412, 325413, 325414, 339111, 339112, 339113,

339114, 339115, 339116, 335410, 335417, and 541714.
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universities (after subtracting the

CTSA funding)
Private biomedical =~ R&D expenditure by publicly Compustat
R&D (P) traded biomedical firms
Large biomedical Number of large biomedical firms Compustat
firms (L) belonging to the top 25% in
annual revenue
Commercialization  Translational Average annual NIH CTSA NIH
Capacity research (T) program funding RePORTER
Biomedical patents Number of patents in biomedical- U.S. PTO
(B) related technology
Clinical trials (N) Number of clinical trials U.S. NLM
conducted
Entrepreneurial Per capita income Per capita income U.S. BEA
Base ©
Population Density ~ Population per area (i.e., square U.S. Census
(A) miles)
Supporting Venture capital Regional venture capital Pitchbook
Infrastructure investment (V) investment
Human capital (H)  Percentage of adults (25+) U.S. Census
holding a bachelor’s degree or
above

Note. For all variables, we collected 10-year data between 2006 and 2015 and we use the average (mean) values to
avoid fluctuations, following Alves et al. (2021).

We include the NIH’s CTSA program funding by obtaining the data from the NIH
RePORTER (NIH, n.d.-b) to measure the strength of translational research in a region. The data
collection was based on the funding opportunity announcements (FOAs)? of the CTSA program
to locate appropriate projects (Liu et al., 2016). We obtained biomedical patent data from the
U.S. Patent and Trademark Office (PTO) (n.d.). Three technology fields—Class 424-Drug, Bio-
Affecting, and Body Treating Compositions (includes Class 514); Class 435-Chemistry:

Molecular Biology and Microbiology; and Class 800-Multicellular Living Organisms and

3 The FOA numbers used in this research: REA-RM-06-002, RFA-RM-07-007, RFA-RM-07-002, RFA-RM-07-006,
RFA-RM-08-002, RFA-RM-09-004, RFA-RM-09-019, RFA-RM-10-001, RFA-RM-10-020, RFA-RR-10-007,

RFA-RR-11-004, RFA-TR-12-006, RFA-TR-14-009.
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Unmodified Parts Thereof and Related Processes—were selected based on Cortright and Mayer
(2002). The patent data contains the granted utility patents between 2006 and 2015, the most
recent year cataloged at the MSA level by the patent office. We collected the clinical trial data
from the ClinicalTrials.gov website of the U.S. National Library of Medicine (NLM) (n.d.).
Every clinical study has been registered in the depository by U.S. laws enacted in 1997 and
2007, and the International Committee of Medical Journal Editors’ decision in 2005 (Califf et al.,
2012). We first collected 180,926 clinical studies, based on the first study submission date from
2004 and 2015. We have 523,341 clinical trials conducted in the U.S. after cleaning study
locations outside the U.S.

Per capita income data came from the U.S. Bureau of Economic Analysis (BEA) (n.d.).
The data are to capture an individual’s capacity in starting and supporting a new business,
following Wallsten (2001) that utilizes per capita income in investigating the likelihood of
winning the SBIR grants. We use population density following Qian et al. (2013) who use
population density in estimating entrepreneurship in metropolitan areas as knowledge sharing
and flow can be facilitated through close connections. The data were obtained from the U.S.
Census Bureau (n.d.-b, n.d.-c). Regional venture capital investment data obtained from
Pitchbook (2022), a data provider, were added to measure the strength of the regional venture
financing. We proxy the human capital variable by the percentage of adults above 25 who hold at
least a bachelor’s degree following Florida (2002) and Qian et al. (2013). The data were
collected from the U.S. Census Bureau (n.d.-a).

For all variables, we collected 10-year data between 2006 and 2015. We used the zip

code-MSA code conversion file from the U.S. Department of Housing and Urban Development
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(HUD) (n.d.) to aggregate the data at the MSA level. We use the average (mean) values to avoid

fluctuations, following Alves et al. (2021).

4.3. Calibration

Based on Ragin (2008), we employ the direct calibration method, which applies three

thresholds—full membership (1), full non-membership (0), and a crossover point (0.5). We use

the percentiles of each condition to allocate three threshold points for membership status. This

approach has been used by researchers, such as by Alves et al. (2021) and Greckhamer (2016).

We choose the 1st percentile for full non-membership, the 99th percentile for full membership,

and the 75th percentile as the crossover point*. Table 2 shows the thresholds for calibration used

in this research.

Table 2. Thresholds for Calibration

Outcome / conditions Full non- Crossover Full
membership (0) (0.5) Membership (1)

SBIR grants (Y) 0.1 1.9 22
Public biomedical R&D (R) 0.006 111.178 1290.404
Private biomedical R&D (P) 0.005 72.011 7008.236
Large biomedical firms (L) 0.1 1.9 35.8
Translational research (T) 0.364 16.94 59.66
Biomedical patents (B) 0.1 12.8 447.1
Clinical trials (N) 0.5 99.58 1333.92
Per capita income (C) 26543.1 41102.3 67372.6
Population density (A) 14.5 343.09 2664.01

4 For some conditions—SBIR grants, public biomedical R&D, private biomedical R&D, translational research,

biomedical patents, large biomedical firms—that contain substantial portion of MSAs with zero values, the

percentiles were calculated after removing the MSAs with zero values because these MSAs with zero values always

fall below the full non-membership thresholds.
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Venture capital investment (V) 0.003 24.77 4385.76
Human capital (H) 12.7 30.57 50.67

5. Analytical Results

Following the notation of Ragin and Fiss (2008) and Greckhamer (2016), we present the
configurations constructed with a combination of intermediate and parsimonious solutions in
Table 3. The analysis is conducted with fSQCA software by Ragin and Davey (2016). Following
the recommendations from Ragin (2008) and Schneider and Wagemann (2012) to use a more
substantial frequency threshold for large N (cases), we set the frequency threshold at 3, which
means that we use configurations with more than three cases in the minimization process. It
allows us to capture 85% of the cases, more than the recommend level of 75-80% by Ragin
(2008).

The full circles and the crossed-out circles in Table 3 denote a condition’s presence or
absence, respectively. The large circles indicate core conditions observed in both the
parsimonious and intermediate solutions, while the small circles denote complementary
conditions observed in the parsimonious solutions but not in the intermediate solutions (Ragin &
Fiss, 2008).

Table 3 shows that three configurations are linked to high levels of biomedical
entrepreneurship. It represents three distinct configurations leading to high biomedical
entrepreneurship in a region: Configuration 1, which focuses on accelerating scientific activities;
Configuration 2, which has an emphasis on promoting entrepreneurial infrastructure conditions;

and Configuration 3, which stress the role of private sector.
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Table 3. Configurations for High Biomedical Entrepreneurship

Dimension / Condition Corzlfi%lg:g))n ! C(ziig;:ﬁ;iln)z (P(’: :];lfg:ililslei)
Scientific Knowledge
Public biomedical R&D (R) ° °
Private biomedical R&D (P) °
Large biomedical firms (L)
Commercialization Capacity
Translational research (T)
Biomedical patents (B) ° ° °
Clinical trials (N) .
Entrepreneurial Base
Per capita income (C) .
Population density (A) .
Supporting Infrastructure
Venture capital investment (V) ° °
Human capital (H) . .
MSA (Cases) Atlanta-Sandy Springs-Marietta (GA), Boston-Cambridge-Quincy (MA-

NH), Chicago-Naperville-Joliet (IL-IN-WI), Minneapolis-St. Paul-
Bloomington (MN-WI), New York-Northern New Jersey-Long Island
(NY-NJ-PA), Philadelphia-Camden-Wilmington (PA-NJ-DE-MD), San
Diego-Carlsbad-San Marcos (CA), San Francisco-Oakland-Fremont
(CA), San Jose-Sunnyvale-Santa Clara (CA), Seattle-Tacoma-Bellevue
(WA), Washington-Arlington-Alexandria (DC-VA-MD-WV)

Baltimore-Towson (MD), Denver-Aurora
(CO), Durham (NC)
Dallas-Fort Worth-Arlington (TX), Los
Angeles-Long Beach-Santa Ana (CA)
Ann Arbor (MI), Houston-Sugar Austin-Round Rock
Columbus (OH), Land-Baytown (TX), Boulder (CO),
Gainesville (FL), (TX), Miami-Fort Indianapolis-Carmel
Madison (WI), New Lauderdale- (IN), Oxnard-
Haven-Milford (CT), Pompano Beach Thousand Oaks-
Worcester (MA) (FL), Pittsburgh Ventura (CA),
(PA), Salt Lake City | Raleigh-Cary (NC),
um Trenton-Ewing (NJ)
Consistency 0.85 0.90 0.92
Raw Coverage 0.80 0.77 0.59
Unique Coverage 0.06 0.02 0.04
Solution Consistency 0.87
Solution Coverage 0.83

18



Note. ® = core causal condition present; & = core causal condition absent; « = complementary causal condition
present; and ® = complementary causal condition absent. MSAs in ifalics are common cases in three configurations.
Configuration 1 combines public biomedical R&D and biomedical patents as core

conditions, along with human capital in complement. It indicates that regions featuring this
combination of basic conditions can achieve high levels of biomedical entrepreneurship
regardless of other conditions, such as private biomedical R&D, translational research, and large
biomedical firms located in the region. Configuration 1 reflects the importance of scientific
activities in the biomedical sector and is consistent with the literature emphasizing the role of
science and human capital in the biotech business (Pisano, 2006; Zucker et al., 1998).
Additionally, it sheds light on the core role of biomedical IPR (patents) in promoting biomedical
entrepreneurship, in line with the knowledge spillover theory of entrepreneurship, which
indicates that more knowledge production would lead to higher levels of entrepreneurship (Acs
et al., 2009; Audretsch, 1995). Finally, this configuration stresses the importance of human
capital as supporting infrastructure, thus in line with the literature (Braunerhjelm et al. 2010).
Configuration 2 combines the presence of public biomedical R&D and biomedical
patents, and regional venture capital as core conditions, in combination with clinical trials as a
complementary condition. The size of the regional venture investment reflects whether a region
can provide the sufficient financial support such as through the market, the banking sector, or
other sources of risk capital. The inclusion of clinical trials may reflect the concentration of
infrastructural facilities (e.g., hospitals) that carry out clinical trials. While similar to
Configuration 1 in terms of the core conditions, Configuration 2 differs in terms of the
complementary condition, swapping human capital with clinical trials and regional venture

capital investment. Configuration 2 thus places more emphasis on a strong regional infrastructure
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that can support entrepreneurial activity.

Configuration 3 combines private sector biomedical R&D, biomedical patents, and
regional venture capital investment as core conditions along with per capita income, population
density, and human capital as complements. Interestingly, biomedical R&D by private firms
appears in the configuration. This configuration, without the public biomedical R&D component,
implies that regions with strong private firms conducting biomedical R&D may also have a
vibrant biomedical ecosystem with other complements presented above. This inclusion of private
firms’ role may support the anchor tenant hypothesis by Agrawal and Cockburn (2003), and
Feldman (2003), that suggest the extensive roles of the established firms. As Qian et al. (2013)
have noted, population density can facilitate knowledge flow through the close and frequent
interactions among potential entrepreneurs.

We have performed two robustness checks following the guidelines put forward by
Schneider and Wagemann (2012) presented them in Appendix. The results show that the
obtained three configurations are stable and that they are the supersets of the original solutions,
as expected.

While we broadly define biomedical entrepreneurship (Malerba & McKelvey, 2020;
Pisano, 2006) and use the number of SBIR grants for regional entrepreneurs as an
approximation, more direct measurement for biomedical entrepreneurship could be considered.
For this additional exercise, we use venture capital deal data (i.e., the number and dollar amount
of deals) in the biomedical sector from Pitchbook as an alternative for the SBIR grants. The new
measurement is more directly linked to the actual VC-backed biomedical startup activities in the

region.
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Following the same analytical procedure, we have one pathway leading to the vibrant
biomedical entrepreneurial ecosystem: P (Private biomedical R&D) * B (Biomedical patents) *
C (Per capita income) * A (Population density) * V (Venture capital investment) * H (Human
capital). Table 4 shows the result. Interestingly, this configuration is one of three configurations
that we’ve already had in the original analysis shown in Table 3. Thus, this exercise can also be
regarded as an additional robustness check. The result also supports our proposition that vibrant
regional biomedical entrepreneurship and business requires quite diverse sets of factors ranging

from scientific inputs to the regional infrastructural conditions.

Table 4. Configuration with alternative dependent variable of biomedical VC deal

Path Configurations Raw Coverage Unique Coverage Consistency Cases
1  P*B*C*A*V*H 0.75 0.75 0.85 19
Solution Coverage 0.75
Solution Consistency 0.85

6. Discussion and Concluding Remarks

The identification of three primary pathways for regional biomedical entrepreneurship
engenders several significant implications. First, there is no single recipe for a region to increase
its level of biomedical entrepreneurship. Second, a region does not necessarily need to possess
all (ten) examined factors in order to have a vibrant biomedical business sector. It is also
important that a region must assemble the proper set of conditions for success. Proper interaction
between such conditions will generate the desired outcome. Third, a few core conditions are key
for most of the pathways: public and private biomedical R&D, related IPR (patents), and venture
capital. The three configurations emerging in the previous section, with their respective

combined conditions, are sufficient to achieve high levels of biomedical entrepreneurship.
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The emergence of these key factors is not surprising. As Pisano (2006) notes, biomedical
enterprise is a science business, which requires new discoveries and ideas. New knowledge in the
biomedical sector is generally generated from basic research largely funded by the public purse
(NIH) or private firms. Patents in the biomedical sector are the channel for delivering the
intellectual property from inventors to innovators, typically firms in the biomedical sector
(Kettler, 2000; Pisano, 2006; Scherer, 2010). Strong venture capital infrastructure is also pointed
out as a key ingredient for this resource-intensive and uncertainty-fraught biomedical business
(DiMasi et al., 2016; Pisano, 2006; Sacks et al., 2014).

The presence of translational research turned out not to be an essential condition in our
dataset. While when viewed in isolation translational research has been found to be a dominant
factor affecting regional biomedical entrepreneurship (Park & Vonortas, 2022), the conjunctions
of regional conditions can generate effective paths to biomedical entrepreneurship even in its
absence. That said, this result should not be interpreted to mean that translational research is
unimportant. Rather, it implies that translational research is not an essential element for
biomedical entrepreneurship, since regions without the presence of translational research (or
regardless participation in the CTSA program) can achieve high levels of biomedical
entrepreneurship with the proper combination of other conditions.

The findings in this analysis can certainly inform regional policymakers. The first step for
regional officers is to identify regional conditions before planning and implementing a
biomedical entrepreneurship policy. Three different sets of conditions leading to vibrant
biomedical activity in the region have been singled out herein. Public and private biomedical
R&D, related IPR (patents), and venture capital infrastructure are key. Without their existence,

little can be done in the region. Assuming reasonable presence, the regional officers need to
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identify the supplementary conditions that will allow them to choose the pathway more relevant
to their region. They may, then, embark on a more well-planned journey to acquiring them in
order to achieve sustainable levels of biomedical entrepreneurship.

Regional policy to that effect should focus on increasing research capacities in the
biomedical field. For instance, state governments could help research institutions by initiating
research funding programs with emphasis on biomedical and life science fields. Furthermore,
given that research in this high technology field depends heavily on sophisticated and large
infrastructure, it might also be important to support regional research institutions obtain access to
state-of-the-art facilities. Supporting activities for intellectual property protection in the
biomedical field should also be in focus. Such support can come through various channels such
as public awareness, IP identification, and legal and financial support.

We contribute to the literature in several fronts. First, using a relatively new empirical
method—fuzzy-set QCA—in an ecosystem study with diverse sets of data, we explored the
interdependencies of regional conditions that favor biomedical entrepreneurship.” We
empirically identified three main pathways. Sharing main factors (i.e., public and private
biomedical R&D, biomedical patents, venture capital) and supplementing them with different
conditions reveals that a vibrant ecosystem would not be achieved by single policy recipe, but by
an intertwined set of relevant measures. Importantly, all U.S. regions have been included in our
analysis with micro data from different sources. Second, while informed by the extant literature,
the chosen analytical approach allows “the data to speak™ in some sense, that is it allows for

emergent properties. Third, this study delved into entrepreneurship in the biomedical sector. As

3 For a closely related exercise in an emerging economy setting see Alves et al. (2021). While somewhat different in

terms of the set of examined factors, the tone of the results is quite similar to ours herein.
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emphasized by prior literature, the biomedical business is science-based and quite different from
other sectors. Our results confirm that the sector is strongly dependent on scientific knowledge as
indicated by the emergent core conditions (i.e., public and private biomedical R&D spending,
biomedical patents, and venture capital) and beyond. The results could inform the discussion on
ecosystem structures such as nested and cohesive ecosystems.

In conclusion, we take note of the main limitation of this research and future extensions.
We have utilized the NIH SBIR grants and venture capital deals to approximate regional
biomedical entrepreneurship. This can be criticized as a narrow indicator, underestimating the
real magnitude of entrepreneurship which should include all newly formed firms in the sector. In
terms of coverage, the fSQCA method could be adopted in similar studies across different
countries. One would have then additional tests of the said pathways that may or may not hold in

different sets of regional conditions.
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Appendix: Robustness Checks

We present two robustness checks following the guidelines by Schneider and Wagemann
(2012).

First, following one of the suggested approaches, we lowered the consistency threshold to
0.78, which is the next highest consistency score. Schneider and Wagemann (2012) stated that
the new solution becomes a superset of the original one when lowering the consistency
threshold. Table 5 presents the new solution.

As expected, we have a new solution term with three configurations—public biomedical
R&D (R)*human capital (H) + public biomedical R&D (R)*biomedical patents (B)*clinical
trials (N)*venture capital investment (V) + private biomedical R&D (P)*human capital
(H)*biomedical patents (B)*per capita income (C)*population density (A)*venture capital
investment (V). Comparing them with the original solution terms found in Table 3, we see that
the new solution terms are the supersets of the original intermediate solution terms. Thus, the

first robustness check confirms the stability of the original solution terms.

Table 5. Solutions with a Lowered Consistency Threshold of 0.78

Path Configurations Raw Coverage Unique Coverage Consistency Cases
1 R*H 0.83 0.08 0.80 20
2 R*B*N*V 0.77 0.02 0.90 20
3 P*H*B*C*A*V 0.59 0.04 0.92 19

Solution Coverage 0.89
Solution Consistency 0.79

Second, we changed the calibration of one condition—translational research. We utilize

the presence of translational research funding, proxied by the NIH CTSA funding. To do so, we
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put 46 MSAs with the CTSA funding over the cross-over point. Of the 46 CTSA-funded MSAs,
we excluded two MSAs that received the funding in 2015, which is the last year of research
period under review. Table 6 shows the new solution terms.

The new solution terms are virtually the same as the original one: public biomedical
R&D (R)*human capital (H)*biomedical patents (B) + public biomedical R&D (R)* biomedical
patents (B)*clinical trials (N)*population density (A)*venture capital investment (V) + private
biomedical R&D (P)*human capital (H)*biomedical patents (B)*per capita income
(C)*population density (A)*venture capital investment (V). One little change compared to the
original solution terms is the addition of population density (A) in the second solution.

In sum, the two robustness checks demonstrate that the obtained configurations are stable

and that they are the supersets of the original solutions as expected.

Table 6. Solutions with a Change in the Calibration of Translational Research

Path Configurations Raw Coverage Unique Coverage Consistency Cases
1 R*H*B 0.80 0.11 0.85 20
2 R*B*N*A*V 0.71 0.02 0.90 20
3 P*H*B*C*A*V 0.58 0.04 0.92 19

Solution Coverage 0.86
Solution Consistency 0.83
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