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Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, narrow
interests, and deficits in social interaction and communication ability. An increasing emphasis is being placed on
the development of innovative digital and mobile systems for their potential in therapeutic applications outside
of clinical environments. Due to recent advances in the field of computer vision, various emotion classifiers have
been developed, which have potential to play a significant role in mobile screening and therapy for develop-
mental delays that impair emotion recognition and expression. However, these classifiers are trained on datasets
of predominantly neurotypical adults and can sometimes fail to generalize to children with autism. The need to
improve existing classifiers and develop new systems that overcome these limitations necessitates novel methods
to crowdsource labeled emotion data from children. In this paper, we present a mobile charades-style game,
Guess What?, from which we derive egocentric video with a high density of varied emotion from a 90-second
game session. We then present a framework for semi-automatic labeled frame extraction from these videos using
meta information from the game session coupled with classification confidence scores. Results show that 94%,
81%, 92%, and 56% of frames were automatically labeled correctly for categories disgust, neutral, surprise, and
scared respectively, though performance for angry and happy did not improve significantly from the baseline.

Emotion
Emotion classification

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder
affecting an individual's ability to communicate and interact with their
peers [1]. While symptoms vary, this condition is generally character-
ized by stereotyped and repetitive behaviors as well as deficits in social
interaction and communication ability such as difficulty recognizing
facial expressions, making eye contact, and engaging in social activities
with peers [2]. In recent years, the incidence of autism has increased; it
is now estimated that one in 40 children in the United States are af-
fected by this condition [3]. While there is no cure, an abundance of
evidence has demonstrated the positive impact of early intervention on
communication skills and language ability [4].

Common approaches to autism therapy include the Early Start
Denver Model (ESDM) and Applied Behavior Analysis (ABA). ESDM
therapy supports the development of core social skills through

interactions with a licensed behavioral therapist with an emphasis on
interpersonal exchange and joint activities [5]. Similarly, ABA therapy
is an intervention customized by a trained behavioral analyst to spe-
cifically suit the learner's skills and deficits [6]. This program is based
on a series of structured activities that emphasize the development of
transferable skills to the real world. While both treatments have been
shown to be safe and effective, early intervention is essential to max-
imize the benefits of these programs [4,7].

Despite significant progress in recent years, imbalances in coverage
and barriers to diagnosis and treatment remain. Within the United
States, it has been observed that children in rural cities receive diag-
nosis approximately five months later than those in cities [8]. More-
over, children from families near the poverty line receive diagnosis
almost a full year later than those from higher-income families. These
delays can defer intervention during times of development considered
crucial for maximizing the effectiveness of subsequent behavioral
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interventions [8]. Alternative solutions that can ameliorate some of
these challenges can come from digital and mobile tools, many of which
are reliant on computer vision technology that has found increasing
application in real-time social support and therapy [9-12].

Emotion classification is an area of computer vision that emphasizes
the development of algorithms that produce an emotion label such as
happy or sad given a photo or video frame containing a face using
machine-learning techniques. Our prior work, the Superpower Glass
Project, has demonstrated the efficacy of real-time emotion classifica-
tion to autism therapy via the augmented reality wearable, Google
Glass. The Glass unit relays emotion cues in real-time to the child, en-
abling facial engagement and social reciprocity [13-15]. Others have
also explored the use of wearable systems and affective computing as
companion tools for social-emotional learning and the use of the re-
corded videos for defining a process to collect, segment, label, and use
video clips from everyday conversations [9,16].

A number of emotion classifiers have been developed in recent years
by major providers of cloud services including Microsoft Azure
Cognitive Services API [17], Amazon Rekognition [18], Google Cloud
Vision [19], and others. These algorithms, which typically label an
image based on some variation of the seven Ekman emotions [20], are
trained on large databases of labeled images such as CIFAR-100 and
ImageNet [21]. Datasets specific to facial emotion are also available,
such as the Cohn-Kanade Database [22] and Belfast-Induced Natural
Emotion Databases [23]. These datasets suffer from a variety of lim-
itations, among which is a lack of generalizability to children: a po-
pulation significantly underrepresented in these sources. This problem
is exacerbated within the domain of autism research, as children with
this condition struggle with facial affect and may express themselves in
ways that do not closely resemble that of their peers [2,7]. These var-
iances are unaccounted for in most datasets, rendering some state-of-
the-art emotion classifiers unsuitable for vision-based autism research
and the development of therapies and assistive solutions derived from
these tools. This motivates the development of new approaches for
scalable aggregation of emotive frames from children that can be used
to design future classifiers and augment existing ones. The primary
contributions of this paper are as follows:

e We present a mobile charades-style game, Guess What?, designed for
a young audience, including those with ASD, from which we can
scalably acquire egocentric video with a high density of varied
emotion.

® We present a framework for semi-automatic labeled frame extrac-
tion from videos derived from Guess What? using meta information
from the game session coupled with classification confidence scores,
shown in Fig. 1.

e We present a search algorithm which aims to simultaneously opti-
mize the aggregate number of frames retained as well as the per-
centage of relevant frames.
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Fig. 1. The proposed system is a method to aggregate labeled emotion data
from videos derived from a mobile game using classification confidence values
and contextual meta-information.

78

Artificial Intelligence In Medicine 98 (2019) 77-86

2. Related work

Our primary aim is to develop methods to crowdsource facial-
emotion labeled data from children with ASD, with the greater goal of
training classifiers suitable for the pediatric population for use as out-
come measures, therapies, and screening tools. These systems fall
within the scope of affective computing: a field that broadly covers the
development and application of methods to give computers the ability
to recognize and express emotions [24]. An overview of this area was
provided in [25], in which Picard described emerging trends in emotion
recognition research using electrodermal activity, speech, motion, fa-
cial expression, and other sensing paradigms. Picard outlined a vision
for future affective computing research that partners psychologists with
engineers to interweave emotion detection into everyday life.

Various research efforts have explored whether children with ASD
differ in their ability to emote compared to their neurotypical peers. For
example, Brewer et al. [26] investigated if individuals with and without
ASD can correctly identify emotional facial expressions. The results
indicated that regardless of the status of the recognizer, emotions
produced by individuals with ASD were more poorly recognized com-
pared to their typically developing peers. By contrast, Faso et al. [27]
conducted a study in which 38 observers evaluate the expressions of
individuals with and without ASD and showed that ASD expressions
were identified with greater accuracy, though they were rated as less
natural and more intense compared to those from typically developing
individuals. In another study, Capps et al. [28] explored parents’ per-
ceptions of the emotional expressiveness of their children. The findings
of this study contradict older studies which suggest an absence of
emotional reactions from children with ASD. In fact, the results de-
monstrated that older children with ASD displayed more facial affect
than typically developing children. Other research efforts [29] examine
facial muscle movements associated with emotion expression in chil-
dren with ASD based on videotapes from semi-structured play sessions.
This study found that children with autism exhibited reduced muscle
movements in certain facial regions compared to typically developing
peers.

While several systems have been developed to help children re-
cognize and express facial emotion [14,30], other studies focused on
improving the ability of neurotypical children and adults to interact
with individuals with ASD. For example, Tang et al. [31] described an
IoT-based play environment designed to allow neurotypical children to
better understand the emotions of their peers with autism using a
variety of sensors including pressure, temperature, humidity, and a
Kinect camera. The authors later conducted a computational study in
which they evaluated children's facial expressions during naturalistic
tasks in which the children view cartoons while being recorded by a
Kinect camera [32]. As before, the aim of this preliminary study was to
develop tools to assist typically developing individuals in under-
standing the emotions of children with autism.

More broadly, Aztiria et al. provided an overview of the field of
affect aware ambient intelligence [33]. The authors describe the var-
ious forms of affect that can be characterized using wearable and am-
bient sensors, including voice, body language, posture, and physiolo-
gical signals such as EEG and EMG. This work provided a broad
overview of these techniques as well as several relevant applications
such as intelligent tutoring services (ITS)-systems capable of re-
cognizing student affect to assist in the student's learning process.
Further work by Karyotis et al. [34] proposed a computational meth-
odology for incorporating emotion into intelligence system design,
validated through multiple simulations. The authors proposed a fuzzy
emotion representation framework, and demonstrated its utility in big
data applications such as social networks, data queries, and sentiment
analysis. The work by Maniak et al. [35] proposed a deep neural net-
work model for hierarchical feature extraction to model human rea-
soning within the context of sound classification.

In recent years, computer vision-based systems have received
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increasing interest in ASD research. In [36], Marcu et al. proposed a
system in which wearable cameras are affixed to children for under-
standing their needs and preferences while improving their engage-
ment. In [37], Picard et al. provided an overview of methods to auto-
matically detect autonomic nervous-system activation (ASM) in
children with ASD to identify and avoid incidents of cognitive overload.
Another mobile assistance technology, MOSOC, was presented by Es-
cobedo et al. in [10]. Here, the authors developed a tool that provides
visual support of a validated curriculum to help children with ASD
practice social skills in real-life situations. These systems are indicative
of a general transition from traditional healthcare practices to modern
mobile and digital solutions that leverage recent advances in computer
vision, augmented reality, robotics, and artificial intelligence. This
trend motivates an investigation of methods to augment existing data-
sets to train new classifiers that generalize to children with ASD.

Several methods of crowdsourced labeled data acquisition have
been proposed in recent years. In [38], Barsoum et al. proposed a deep
convolutional neural network architecture to evaluate four different
labeling techniques. Specifically, the authors explored techniques to
combine scores from ten raters into a final label for each image while
minimizing errors. Other research efforts [39] have also explored the
efficacy of multi-class labels for each image to mitigate the impact of
ambiguities on data labeling. In [40], Yu et al. demonstrated that an
ensemble of deep learning classifiers can significantly outperform a
single classifier for facial emotion recognition. This approach is similar
to our own ensemble method, though our technique fuses minimum
likelihood with game meta information rather than assigning the label
with the maximum probability. This technique, which used variations
in probability scores to search for relevant frames and regions within
time-series data are inspired partially by prior work on time-series
segmentation [41,42].

3. System architecture

Guess What? [12] is a mobile Android application modeled after the
popular charades game, Heads Up. This social gaming activity is shared
between the child, who attempts to act out the prompt shown on the
screen, and the parent, who holds the phone up to record the child and
attempts to guess the word associated with the prompt. This interplay is
shown in Fig. 2: the parent positions the phone with the screen facing
outward for the entirety of the 90 s game session, as the front camera
records the child tasked with representing the prompt using a combi-
nation of gestures and facial expressions. The prompt consists of an
image with an associated word displayed at the bottom. While several
categories of prompt are supported, the two most germane to emotion
recognition and expression are emoji, which shows exaggerated cartoon
representations of emotive faces, and faces, which shows real photos of
children.

Video Logged

Fig. 2. The mechanism for crowdsourcing emotion-labeled frames is a mobile
charades game available for Android devices.
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Guess What?

Surprised

Fig. 3. A game session of Guess What? in which the child is recorded while
acting out the prompt shown on the screen.

The parent can change the prompt by tilting the phone forward,
which awards a point. This occurs when the child acknowledges the
correct guess, or in some cases, when the parent makes the determi-
nation that the prompt has been represented correctly based on a priori
knowledge about the image shown. By tilting the phone backward, the
prompt is skipped without awarding a point. Immediately thereafter, a
new prompt is randomly selected until the 90 s have elapsed. After the
game session, parents can review the footage and elect to share the data
by uploading the video to an IRB-approved secure Amazon S3 bucket
that is fully compliant with Stanford University's High-Risk Application
security standards. Meta information is included with the video, which
describes the prompts shown, timing data, and the number of points
awarded. Using this method of crowdsourced at-home video acquisi-
tion, we are developing a database of children with ASD as well as
neurotypical children as they express themselves in response to various
stimuli.

An example of the main game screen is shown in Fig. 3: the prompt
is shown in the center, with the amount of time remaining displayed on
the left and the number of points awarded on the right. This particular
prompt is associated with the faces category, which is among the most
efficacious at deriving emotive facial expressions from children. By
contrast, the animals category emphasizes vocalizations and sports is
associated with gestures.

4. Algorithms

Videos derived from Guess What? can be analyzed frame-by-frame
by manual raters to assign emotion labels to each image. However, this
approach is tedious and presents an impediment to the scalability of a
crowdsource-based system for aggregation of emotive video. In this
section, we present several strategies for scalable aggregation of labeled
frames from Guess What? game sessions using automatic or semi-auto-
matic techniques that leverage both the video and the accompanying
meta information from the game session.

4.1. Boundary-based segmentation

The structure of a Guess What? video is shown in Fig. 4. Meta in-
formation uploaded after each game session delineates the video into
regions at which various prompts were shown. For example, frames
associated with times at which Prompt 2 was displayed to the child can
be found between timestamps B, and Bs. If Prompt 2 is an emotion-
related image, this approach is a reasonable starting point to auto-
matically obtain labeled frames associated with this emotion. More

T=0s T =90s

| !

Prompt 1 Prompt 2 Prompt 3
1 2 3 k
Fig. 4. The structure of a single video is characterized by its boundary points, B;

through By, which identify the times at which various prompts were shown to
the child.
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formally, for each emotion we are interested in every frame f between a
boundary point bs and the subsequent boundary, bs.;, at which the
emotion of the boundary, e(bs), matches the emotion we wish to extract,
label. These conditions are expressed in Eq. (1), where t is a function
that returns the time associated with a frame or boundary point.

V f evideo|(t (by) < t(f) < t(br+1))A
(label = e(by)) 6h)

While regions contain a preponderance of emotive frames asso-
ciated with the prompt shown during this interval, it is unlikely that
young children will consistently emote the appropriate emotion during
the entirety of the game session. This is particularly true for children
with developmental delays who may struggle to recognize, interpret,
and convey emotion. Moreover, children may misunderstand their
parent's instructions or lose interest in continuing the game session.
This motivates additional optimizations to further increase the per-
centage of retrieved frames that match the emotion of interest.
Notwithstanding the possibility of further refinements, this approach in
its current form will generally suffice for semi-automatic labeling ap-
proaches: scenarios in which the algorithm retrieves a set of likely
frames and manual raters filter out incorrect matches.

4.2. Sub-bound analysis

While the representation of a video's structure shown in Fig. 4
provides a rudimentary method of identifying high-density regions of
various emotions, this model is too simplistic. In practice, there is an
interval a between the time when the prompt changes and the child's
face adjusts accordingly. During this interpretation period, a child will
analyze the provided prompt as their face transitions from a typically
neutral or happy expression to one associated with the prompt. In
theory, complex prompts will require more time for interpretation than
the simpler ones: this parameter varies both between subjects and
prompts.

If the child has correctly represented the prompt, there is a time
period f3 before the beginning of the next prompt when the frames are of
little use. There are two possible reasons why these frames are best
excluded from our analysis. First, the child's face may naturally return
to a resting pose in anticipation of the next prompt. Second, the game
mechanics of Guess What? require the parents to tilt the phone in ac-
knowledgement of a correct guess. In practice, the act of tilting may
cause the child's face to briefly leave the frame. The video structure that
considers these a and 8 parameters is shown in Fig. 5.

Unlike the previous scenario, we are now interested in every frame f
between a boundary point b+ a and the subsequent boundary,
bs,1 — B, at which the emotion of the prompt shown in the region, e(by),
matches the emotion of the frame we wish to extract, label. These
conditions are expressed in Eq. (2), where as before, t is a function that
returns the time associated with a frame or boundary point.

V f evideo|(t(by) + a < t(f) < t(b+1) — B)

A(label = e(by)) 2

Algorithm 1. Boundary search algorithm.

T=0s T =90s
| « P i
High Density
Prompt 1 Prompt 2 Prompt 3
1 BZ 3 Bk

Fig. 5. The density of emotion within the video is highest if the leading and
trailing frames of the boundary region, a and f, are cropped.
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Algorithm 1: Boundary Search Algorithm

1 Function SearchParameters ():

2 /* Initialize to default values. */

3 a, =0

4 while rrue do

5 /% Accuracy gain of next step. */

6 BaselineAcc = Accuracy(c, 3)

7 AlphaAccRatio = w -
BaselineAcc

Accuracy(a,f+1)

8 BetaAccRatio= ———————~ - |
cralt BaselineAcc

9 /% Frame loss of next step. */

10 BaselineCount = FrCount(c, /3)

FrCount(a+1,[)

1 AlphaRatio = 1 -F gasclizzc%ourllg
] rCount(o, 8+
? BetaRatio = 1 - BaselineCount
13 /* Ratio of accuracy gain to frame loss. */
14 ke = AlphaAccRatio o BetaAccRatio
AlphaRatio BetaRatio
15 if max(ka, kg) < I then

/* No advantage to iterate further. */
return (o, 3)

16
17

18 else

19 /* Continue iterating as necessary in the direction of
maximum change.*/

20 if ko > kg then

21 | a=a+l

22 else

2 | B=8+1

However, increasing the a and f parameters excessively has the
potential to discard potentially relevant frames while offering only
marginal improvements to emotion density. We have devised an algo-
rithm to account for these two tradeoffs, which is shown in simplified
form in Algorithm 1. The algorithm is initialized with default values,
a =0 and = 0. During each step, we evaluate the effects of in-
crementing a and f on the increase in percentage of relevant frames and
decrease in total number of available frames, the ratio of these two
parameters being denoted by k. A value of k = 1 indicates that the
accuracy improved from the baseline by the same margin that the
number of frames decreased, which for our application is an acceptable
tradeoff. A value of less than 1 suggests marginal improvements to
accuracy or perhaps a regression, which is the terminating condition for
this algorithm. It should be noted that this algorithm is run on a class-
by-class basis to determine optimal a and 8 values for each prompt. This
decision is motivated by the observation that more complex prompts
will require more time to interpret and correctly emote.

4.3. Minimum confidence

While the sub-bounds search technique outlined previously can
further increase the percentage of frames that match the prompt by
filtering out those in the periphery of the region, it remains unlikely
that the remaining frames will be associated with the same category as
some children may fail to correctly interpret or represent the prompt
even within the center of region. This is particularly true for non-trivial
prompts that are challenging for children with developmental delays.
To further filter out incorrect prompts within the highest-density region
with limited manual burden would require an automatic system that
can determine if a frame matches the prompt shown to the child.
Clearly, no such system exists, due to the lack of labeled data that
motivates this work.

To overcome the limitations of existing emotion classifiers while
still leveraging their capabilities, we propose a system in which the
classification confidence of the emotion associated with the currently
shown prompt acts as a filtering mechanism to eliminate irrelevant
frames within the region of interest. While the performance of the
classifier is insufficient for us to exclude a frame in which the emotion
with the highest classification confidence is discordant with our a priori
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Fig. 6. To further improve the percentage of correctly labeled frames, we retain
all frames within the region of interest that have a minimum classification
confidence of A.

knowledge of the displayed prompt, an extremely low confidence score
may still be sufficient grounds for exclusion. This approach is shown in
Fig. 6; frames are retained only when located within the highest density
region, and when the emotion classifier indicates that the probability of
agreement between the emotion in the frame and that of the region
exceeds A. Using the same notation as before, Eq. (3) formalizes our
approach for retaining frames associated with a specific category, label.

v f evideo|(t(by) + a < t(f) < t(br41) — B)
A(label = e(by))
APr(f=e(y) > 1) 3)

To obtain Pr(f = e(by)), the probability that the frame matches the
emotion of the prompt shown within this region, we use the Azure
Faces API [17] provided by Microsoft Azure Cognitive Services. Given
an image transmitted via HTTP request, this API returns an HTTP re-
sponse containing JSON formatted information about the classification
confidences associated with each supported emotion, between 0 and 1.
It is important to individually determine A for each class, as classifier
sensitivities may be carefully tuned to account for class priors in nat-
uralistic settings that do not generalize to mobile gameplay. This ap-
proach, shown in Algorithm 2, is similar to the optimization problem
for a and f3; as before, we attempt to optimize the density of relevant
frames within the region while avoiding significant decreases in the
total number of relevant frames by using the ratio of these two para-
meters as the terminating condition for the iterative algorithm that
returns the final A for each emotion class.

Algorithm 2. Min. confidence algorithm.

Algorithm 2: Min. Confidence Algorithm

1 Function SearchParameters ():

2 /% Initialize to default values. */
3 A=0
4 while true do
5 /% Accuracy gain of next step. */
6 BaselineAcc = Accuracy(\)

oo Accuracy(M+.01)
7 AlphaAccRatio = " BaselineAce 1
8 /% Frame loss of next step. */
9 BaselineCount = FrCount(\)

R FrCount(\)
b AlphaRatio =1 - BaselineCount
11 /* Ratio of accuracy gain to frame loss. */
s = AlphaAccRatio

AlphaRatio

13 if k) < I then
14 /% No advantage to iterate further. */
15 L return (\)
16 else
17 /* Continue iterating as necessary.*/
18 L A=A+.01
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Fig. 7. Architecture of the ensemble classification approach.

4.4. Ensemble classification

A limitation of the previous method is that this technique is too
tightly coupled to the nuances of a particular classifier. While indica-
tion of a non-zero likelihood of a certain emotion within a frame can be
efficacious for making a determination to filter or retain a frame, it is
also possible that a classifier reports a 0% likelihood for an emotion that
is clearly within the frame. By using classification confidence scores
from multiple classifiers, the impact of these anomalies can be miti-
gated; each classifier's unique nuances can be effectively averaged out
to improve the robustness of our filtering algorithm.

This ensemble-based approach, which also leverages the sub-bounds
search algorithm described previously, is shown in Fig. 7. In addition to
AWS, confidence scores are derived from two additional classifiers:
Sighthound [43] and Amazon Rekognition [18]. Given three sets of
classification confidence scores that are normalized between 0
(minimum confidence) and 1 (maximum confidence), several simple
methods can be employed to combine this information into a single
value that will be compared to A to make a final filtering decision.

e Max: Selecting the maximum -classification confidence from all
three classifiers for the emotion of interest is a viable choice for
classifiers tuned for high precision and low recall.

e Min: Selecting the minimum classification confidence from all three
classifiers for the emotion of interest is suitable for classifiers tuned
for high recall and low precision.

e Average: A non-weighted average would be suitable to smooth out
the precision/recall biases without requiring careful characteriza-
tion of their performance.

Regardless of the approach used, the combined confidence score for
each of these three techniques would be compared to a class-specific A
value.

5. Experimental methods

While our long-term objective is to deploy Guess What? as a system
for crowdsourcing video, an in-lab study provided the data necessary to
validate our framework for automatic labeled data extraction. In this
section, we describe our methods to obtain the video that formed the
basis of our experiments.

5.1. Data collection

The dataset used in our experiments was derived from a prior study
which included eight children with a prior diagnosis of ASD. The children
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Table 3

List of subjects.
Subject ID Age Gender Diagnosis
1 9 Male ASD
2 7 Male ASD
3 6 Male ASD
4 8 Male ASD
5 8 Male ASD
6 12 Male ASD
7 10 Male ASD
8 8 Male ASD

each played several Guess What? games in a single session administered
by the same member of our research staff. The average age of partici-
pating children with ASD was 8.5 years + 1.85, as shown in Table 3. Due
to the non-uniform incidence of autism between genders [1,44] and small
sample size, all participants in this study were boys. During each session,
the participant played up to five games with the following decks in no
particular order: emoji, faces, animals, sports, and jobs. However, we
focus this study on the category most strongly correlated with facial af-
fect, faces, which produced a total of 1080 frames.

5.2. Data processing

Two raters annotated frames to establish a ground truth to evaluate
our automatic labeling algorithms: one student (age 23) and one
Postdoctoral Researcher (age 29). Both raters were male, and neither
had received any relevant clinical training at the time. An important
design decision made during this study was to use non-expert raters:
those without clinical experience. The motivation for this decision was
twofold. First, prior literature has demonstrated that there may be
fundamental differences in how children with autism express emotions,
which could affect the ability of individuals to recognize and perceive
facial emotion from children with developmental delay [26,29].
Building a dataset of emotion-labeled frames understandable to clin-
icians but not by the general population could be detrimental to our
long-term objective of building Al-enabled systems to help children
develop their ability to communicate with their peers-rather than those
with clinical training. Additional factors that motivated this decision
were the conclusion drawn from our prior work [45], which demon-
strated that raters without clinical expertise are capable of annotating
videos from children with developmental delay with high sensitivity
and specificity. These findings are corroborated by the high inter-rater
reliability scores between the two raters used in this study, as shown in
Fig. 10.

The raters manually assigned emotion labels to each frame in the
selected videos based on the seven Ekman universal emotions [20] with
the addition of a neutral class. In cases when no face could be located
within the frame, or the frame was too blurry to discern, reviewers did
not assign a label. To simplify annotation and establish a format con-
sistent with commercial emotion classification APIs, the anger and
contempt emotions were merged into a single category. Furthermore,
the confusion emotion was ignored as not every emotion classifier
supported it and no related prompts were shown during these game
sessions. A total of 1350 frames were manually labeled by the two
raters. Frames were discarded in cases when the raters disagreed or did
not assign a label. This produced a total of 1080 frames from the ori-
ginal 1350, distributed between emotions as shown in Table 2.

6. Results

In this section, we describe the accuracy of our proposed automatic
labeling techniques as well as the inter-rater reliability for the manual
annotation that served as the ground truth of our experiments.

Artificial Intelligence In Medicine 98 (2019) 77-86

Table 2

Total frames per category.
Category Frames
Total 1080
Neutral 506
Non-neutral 574
Happy 167
Sad 104
Surprised 127
Scared 28
Disgusted 118
Angry 30

The number of frames both manual raters as-
signed to the same category, for the dataset
used in our experiments.

6.1. Inter-rater reliability

From a total of 1350 frames, 1185 were flagged as valid: frames
which both raters agreed were of sufficiently high quality to assign an
emotion label. From these 1185 valid frames, the raters assigned the
same emotion to 1080 (91%). The Cohen's Kappa statistic for inter-rater
reliability, a metric which accounts for agreements due to chance, was
0.10. This indicates a high level of reliability between the two manual
raters.

Fig. 10 shows the distribution of frames between the manual raters,
for all valid frames. Most misclassified frames were between the happy-
neutral and sad-neutral categories. The abbreviations used in this figure
are defined in Table 1.

6.2. Distribution of frames

Table 2 shows the total number of frames in each category from all
three videos, omitting those frames in which the manual raters dis-
agreed on the label. Frames that are designated as non-neutral refer to
those valid frames which have a label other than the neutral class. From
the 1080 total frames, 46.8% were neutral compared to 53.1% non-
neutral frames. The most represented emotion was happy, with 167
frames, followed by surprised and disgusted with 127 and 118 frames
respectively. The two least represented emotions were scared, with 28
frames, and angry, with 30.

6.3. Baseline: boundary analysis

Fig. 8 provides a visualization of the percentage of frames within the
boundary region that matched the emotive prompt shown during these
times, based on three 90-second video sessions from three children
subsampled to five frames per second. While the majority of frames
within the disgust and neutral region matched the prompt, performance
was poor for happy and scared. As shown in Fig. 9, regions contained a
much higher percentage of relevant emotions compared to the pre-
valence of these emotions throughout the entire video. Moreover, the

Table 1
Abbreviations
Emotion

HP Happy
SD Sad
AG Angry
DG Disgusted
NT Neutral
SC Scared
SP Surprised

Abbreviations  for emotions used

throughout this paper.
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Percentage of Frames of Each Emotion
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Fig. 8. A much higher percentage of frames for a given emotion can be found
during the times in which the associated prompt was shown on the screen,
compared to their prevalence throughout the entire video. This is particularly
true for prompts that are otherwise sparse, such as angry and scared.

videos derived from Guess What? contained a reasonable diversity of
emotive frames from various categories as shown in Table 2. Naturally,
some emotions were more sparsely represented than others; scared and
angry were associated with 28 and 30 frames, respectively. However,
these disparities can be rectified by modifying the composition of
prompts to emphasize these less common emotions.

6.4. Sub-bound analysis

Results suggest that the central region of the boundary generally has
a higher density of relevant frames. Fig. 9A shows the percentage of
frames which match the emotion associated with the region as a
function of a and f, when optimizing globally rather than on a per-
emotion basis. Baseline accuracy was approximately 35%, but in-
creased to 40% with a and 8 values of 0.8 s and 1.2, respectively.

Fig. 9B shows the raw number of relevant frames retained within a
region that matched the boundary as a function of these two para-
meters. It is important to carefully consider the possibility of loss of
frames when tuning these parameters. For example, choosing a f§ value
of 2.0 s and an a value of 1.6 s reduces the number of relevant frames by
over 50%, with only marginal improvements to accuracy.

After optimizing on a per-class basis using Algorithm 1, the value of
these parameters is shown in Table 4, and varies widely between
prompts. For instance, the happy prompt did not require any trimming.
This is likely because many children were smiling throughout the game

Window Boundary Offset vs. Accuracy
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Distribution of Frames Between Two Manual Raters

53167 B0 0 0 15 0 0
sp| 5 [l o 0 12 0 5 40

AG| 0 0 |30 4 1 0 0
30

ngG 0 7 4 PR 0 0 0

~

20

NT| 18 9 4 B 506 [ 4
scl 0 1 1 0 0 28 0 o

SP| 4 3 0 0 6 1 127
HP SD AG DG NT SC SP -0

Rater 2

Fig. 10. The confusion matrix of the two raters assignments of frames into
emotion categories.

Table 4

Optimal parameters per emotion.
Category a B A
Neutral 2.2s 0 0.02
Happy 0 0 0.00
Sad 0.4s 0.4s 0.00
Surprised 0.4s 1.6s 0.10
Scared 1.0s 1.0s 0.00
Disgusted 0.6s 1.8s 0.01
Angry 0.4s 0.6s 0.00

The number of frames skipped at the beginning and end of the window, a and 3,
varied per prompt, as did the minimum classification confidence used to filter
frames, A.

session, irrespective of the prompt shown. The large a time associated
with the neutral class could be caused by the uncertainty a non-emotive
class introduced as most other prompts had a clear and perhaps ex-
aggerated emotion associated with them. The large trailing times for
disgusted and surprised might be explained by the relative discomfort of

Number of Relevant Frames vs. Offsets

400

350

300

250

Number of Relevant Frames

200
(' 0.4s 0.8s 1.2s 1.6s 2.0s
B (Offset from End)
(b)

Fig. 9. (a) Parameter a refers to the number of frames (at 5 frames per second) skipped at the beginning of the window, while f refers to the number of frames
omitted before the end of the window. (b) As parameters a and f are tuned to increase the percentage of correct frames within the boundary, the total number of

frames may decrease.
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Percentage of Frames of Each Emotion using Ensemble Methods
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Fig. 11. Adjusting the a and 8 parameters did not improve the percentage of
correctly classified frames for every prompt, but improved accuracy for scared,
neutral and surprised.

maintaining these exaggerated facial expressions for extended periods,
though a much larger dataset is necessary to draw definitive conclu-
sions.

Fig. 11 shows the percentage of matching frames using the sub-
bound approach on a per-class basis, with results from this technique
denoted by black bars. For several categories, disgust, neutral, and sur-
prise, the percentage of matching frames increased significantly. The
improvement was most pronounced for disgust, which increased from
58% to 75%. However, the percentage of relevant frames remained
constant for happy and improved only marginally for angry and sad
(Fig. 12).

6.5. Sub-bound + minimum confidence

The optimal minimum confidence score, A is shown in Table 4 based
on results obtained using the Microsoft Azure Cognitive Services API
[17] using the search approach shown in Algorithm 2. Recall that A
represents the minimum required classification confidence of the the
emotion associated with the region in which a frame is found for it to be
retained by the filtering algorithm.

The requisite A was very small for every class, ranging from 0.00 (no

Frames in Region by Minimum Confidence
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Fig. 13. A comparison of three different methods of combining multiple clas-
sification confidence scores to make a filtering decision demonstrates that
averaging the scores was generally the best technique.

filtering) for happy to 0.10 (10%) for surprise. The improvement de-
rived from this method is likely because the classification confidence
reported by the classifier may be too conservative when contextual
knowledge indicates that the frame was derived in a region that mat-
ches the class associated with the prompt shown. Results for this ap-
proach are denoted by the white bars in Fig. 11. The classes that im-
proved from the baseline method to the sub-bound approach increased
further using the minimum confidence method: disgust increased from
75% to 94%, neutral increased from 70% to 81%, and surprise increased
from 59% to 92%. However, no substantial improvements were found
for the other categories.

6.6. Sub-bound and ensemble

Fig. 13 shows the percentage of frames correctly identified within a
region when filtering using an ensemble-based technique that combines
classification confidence scores from multiple classifiers using three
different methods: minimum, maximum, and average, and comparing
the result to a predefined threshold, A. It should be noted that in some
cases, the best ensemble-based technique was still outperformed by the
minimum-confidence technique using a single-classifier.

Percent of Filtered Frames that Match Boundary
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g
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=
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Fig. 12. (a) Retaining only frames which the classifier reports to match the emotion associated with the boundary can dramatically reduce the number of remaining
frames for various classes. (b) Retaining only frames which the classifier reports to match the class associated with the boundary region can increase the percentage of

relevant frames for some emotions.
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Percentage of Frames of Each Emotion: All Methods
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Fig. 14. A comparison of the methods described in this work shows that a hybrid minimum-confidence ensemble technique that uses the optimal sub-bound for a
region is able to make a correct filtering decision for the majority of frames for four out of the seven evaluated emotions.

e Max: Selecting the maximum -classification confidence from all
three classifiers did not improve performance from the baseline for
any emotion. This is likely because the evaluated emotion classifiers
provided generally very high confidence scores, even for frames that
did not match the desired emotion. The results shown in this figure
are associated with a A = 0: no filtering.

e Min: When filtering based on the minimum classification confidence
score between all three classifiers, the percentage of matching
frames within a region increased considerably for disgust, scared, and
surprised.

e Average: Averaging the confidence score from all three classifiers
provided the best overall accuracy, though improvement in the
happy category was marginal and nonexistent in the case of angry.

6.7. Discussion

Fig. 14 provides a direct comparison of the five techniques used to
obtain labeled emotion data in this work, which we briefly summarize
here.

e Entire video: A baseline method that evaluates the percentage of
frames in a video that match a particular class of emotion.

e Within boundary: Aggregating frames from regions within the

video where the prompt related to the emotion of interest are

shown.

Within sub-bound: Searching within the boundary but filtering out

leading and trailing frames and limiting the search to the center of

the region.

e Sub-bound + minimum confidence Searching within the center of
the region, and further filtering frames in which the classification
confidence of the emotion of interest did not exceed a predefined
threshold.

e Sub-bound + ensemble Like before, but using multiple classifiers,
combining their classification confidences, and comparing the result
to a predefined threshold to make a filtering decision.

Results indicate that a high percentage of frames associated with
disgust, scared, neutral, and surprised can be derived using these tech-
niques (94%, 56%, 81%, and 92% respectively), with the ensemble
method producing the strongest results overall. This suggests that the
provided framework is sufficient for automatic aggregation of labeled
frames from some emotions, and semi-automatic labeling of others.
However, results for the angry and happy categories remained poor
across all techniques. This shortcoming could be caused in part by few
subjects or limited manual raters. Given the ambiguity of exactly when
a face transitions from neutral to happy, the manual raters could have
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made labeling decisions that were incongruous with the classifier's
definition of a happy face. Regardless, additional experimentation and
novel techniques are necessary to bridge this gap and provide methods
to derive emotive frames from all categories in structured video.

7. Limitations and future work

In this work, we propose a method of crowdsourcing emotion-la-
beled frames from children with Autism Spectrum Disorder using a
mobile application and various automatic labeling algorithms. Future
work will validate this approach on a larger, more varied dataset.
Moreover, we will include a ground truth of manually annotated frames
derived from a greater number of raters with clinical experience to
determine if there are appreciable accuracy improvements compared to
labels from the two raters used in this study. Subsequently, a deep
neural network model will be trained using a transfer-learning ap-
proach to validate our hypothesis that the limitations of existing sys-
tems arise from a lack of relevant training data.

The ecological validity of novel interventions for ASD is an im-
portant concern. A conference organized by a multidisciplinary panel of
researchers of developmental disabilities developed a list of best prac-
tices for screening and early identification of autism in October of 2010
[46]. A significant conclusion drawn from this conference was that
intervention research should integrate culturally and socially diverse
populations to evaluate factors that influence both the participation and
outcomes of therapeutic approaches. Therefore, it is crucial for data
collection efforts of follow-up studies to consider cultural contexts
outside the United States and to represent a more diverse cohort of
children.

8. Conclusion

We present a system for deriving emotive video from children with
ASD through a charades-style game, and several algorithms that can be
used to extract semi-labeled frames from these videos using classifica-
tion confidence scores and game meta information. We demonstrate
three techniques: Sub-Bound Analysis, Minimum Confidence, and
Ensemble Classification, that we compare to a baseline method on the
basis of their efficacy in correctly labeling frames from videos derived
from Guess What? game sessions. Results show that 94%, 81%, 92%,
and 56% of frames were automatically labeled correctly for categories
disgust, neutral, surprise, and scared respectively, though performance for
angry and happy did not improve significantly from the baseline. Once
additional video data are available, these methods will be employed to
generate a large labeled dataset that will be used to train convolutional
neural network classifiers for emotion recognition that are robust across
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differences in age and developmental delay.
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