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Abstract—Graph Neural Networks (GNNs) have demon-
strated a great potential in a variety of graph-based
applications, such as recommender systems, drug discovery,
and object recognition. Nevertheless, resource-efficient
GNN learning is a rarely explored topic despite its many
benefits for edge computing and Internet of Things (IoT)
applications. To improve this state of affairs, this work
proposes efficient subgraph-level training via resource-
aware graph partitioning (SUGAR). SUGAR first partitions
the initial graph into a set of disjoint subgraphs and
then performs local training at the subgraph-level We
provide a theoretical analysis and conduct extensive
experiments on five graph benchmarks to verify its efficacy
in practice. Our results across five different hardware
platforms demonstrate great runtime speedup and memory
reduction of SUGAR on large-scale graphs. We believe
SUGAR opens a new research direction towards developing
GNN methods that are resource-efficient, hence suitable
for IoT deployment. Our code is publicly available at:
https://github.com/zihuixue/SUGAR.

Index Terms—Graph Neural Networks, Resource-
efficient Learning, Edge Computing

I. INTRODUCTION

GRAPHS are non-Euclidean data structures
that can model complex relationships among

a set of interacting objects, for instance, social
networks, knowledge graphs, or biological networks.
Given the huge success of deep neural networks for
Euclidean data (e.g., images, text and audio), there
is an increasing interest in developing deep learning
approaches for graphs too. Graph Neural Networks
(GNNs) generalize the convolution operation to the
non-Euclidean domain [1]; they demonstrate a great
potential for various graph-based applications, such
as node classification [2], link prediction [3] and
recommender systems [4].

The rapid development of smart devices and
IoT applications has spawned a great interest in
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many edge AI applications. Training models locally
becomes a growing trend as this can help avoid data
transmission to the cloud, reduce communication
latency, and better preserve privacy [5]. For instance,
in a graph-based recommender system, user data can
be quite sensitive and hence it’s better to store it
locally [6]. This brings about the need for resource-
efficient graph learning.

While there is much discussion about locally
training Convolutional Neural Networks (CNNs)
[7], efficient on-device training for GNNs is rarely
explored. Different from CNNs, where popular
models such as ResNet [8] are deep and have a
large parameter space, mainstream GNN models
are shallow and more lightweight. However, the
major bottleneck of GNN training comes from the
nodes dependencies in the input graph. Consequently,
graph convolution suffers from a high computational
cost, as the representation of a node in the current
layer needs to be computed recursively by the
representations of all neighbors in its previous layer.
Moreover, storing the intermediate features for all
nodes requires much memory space, especially when
the graph size grows. For instance, for the ogbn-
products graph in our experiments (Table I), full-
batch training requires a GPU with 33GB of memory
[9]. Thus scaling GNN training to large-scale graphs
remains a big challenge. The problem is more
severe for a resource-constrained scenario like IoT,
where GNN training is heavily constrained by the
computation, memory, and communication costs.

Various approaches have been proposed to allevi-
ate the computation and memory burden of GNNs.
For instance, sampling-based approaches aim at
reducing the neighborhood size via layer sampling
[10]–[12], clustering based sampling [13] and graph
sampling [14] techniques; these prior works approach
this problem purely from an algorithmic angle. A
few recent works [15], [16] investigate the topic of
distributed multi-GPU training of GNNs and achieve
good parallel efficiency and memory scalability while
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using large GPU clusters.
A common limitation of all these approaches is

that they do not take the real hardware constraints
into consideration. For mobile devices with limited
memory budgets, the input graph can be too large
to fit entirely in the main memory. In addition, the
communication overhead among real IoT devices is
significantly larger than when using GPU clusters,
rendering distributed training approaches not readily
applicable to such scenarios. This calls for a new
approach for resource-efficient GNN learning, which
is precisely the focus of our paper.

In this work, we propose a novel approach that
trains GNNs efficiently with multiple devices in a
resource-limited scenario. To be specific, we assume
that only several resource-constrained devices are
available for GNN training, and no inter-device
communication is allowed. To this end, we (1)
design a graph partitioning method that accounts
for resource constraints and graph topology; (2)
train a set of local GNNs at the subgraph-level for
computation, memory and communication savings.
Our contributions are as follows:

• We formulate the problem of training GNNs
with multiple resource-constrained devices. Al-
though our formulation targets various mobile
and edge devices (e.g., mobile phones, Rasp-
berry Pi), it is also applicable to powerful
machines equipped with GPUs.

• We propose SUGAR, a GNN training frame-
work that aims at improving training scalability.
We provide complexity analysis, error bound
and convergence analysis of the proposed esti-
mator.

• We show that SUGAR achieves the best run-
time and memory usage (with similar accuracy)
when compared against state-of-the-art GNN
approaches on five large-scale datasets and
across multiple hardware platforms, ranging
from edge devices (i.e., Raspberry Pi, Jetson
Nano) to a desktop equipped with powerful
GPUs.

• We illustrate the flexibility of SUGAR by
integrating it with both full-batch and mini-
batch algorithms such as GraphSAGE [10]
and GraphSAINT [14]. Experimental results
demonstrate that SUGAR can achieve up to

33× runtime speedup on ogbn-arxiv and 3.8×
memory reduction on Reddit. On the ogbn-
products graph with over 2 million nodes and 61
million edges, SUGAR achieves 1.62× speedup
over GraphSAGE and 1.83× memory reduction
over GraphSAINT with a better test accuracy
(∼0.7%).

The remainder of the paper is organized as follows.
In Section 2, we discuss prior work. In Section
3, we formulate the problem and describe our
proposed training framework SUGAR. Experimental
results are presented in Section 4. Finally, Section 5
concludes the paper.

II. RELATED WORK

The relevant prior work comes from four direc-
tions as discussed next.

A. Graph Neural Networks
Modern GNNs adopt a neighborhood aggregation

scheme to learn representations for individual nodes
or the entire graph. Graph Convolution Network
(GCN) [2] is a pioneering work that generalizes the
use of regular convolutions to graphs. GraphSAGE
[10] provides an inductive graph representation
learning framework. To improve the representation
ability of GNNs, Graph Attention Networks (GAT)
[17] introduce self-attention to the graph convolution
operation. Apart from pursuing higher accuracy, a
few GNN architecture improvements [18], [19] have
been made towards higher training efficiency.

B. GNN Training Algorithms
Full-batch training was first proposed for GCNs

[2]; the gradient is calculated based on the global
graph and updated once per epoch. Despite being fast,
full-batch gradient descent is generally infeasible for
large-scale graphs due to excessively large memory
requirements and slow convergence.

Mini-batch training was first proposed in Graph-
SAGE [10]; the gradient update is based on a
proportion of nodes in the graph and updated a few
times during each training epoch. Mini-batch training
leads to memory efficiency at the cost of increased
computation. Since the neighborhood aggregation
scheme involves recursive calculation of a node’s
neighbors layer by layer, time complexity becomes
exponential with respect to the number of GNN
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layers; this is known as the neighborhood expansion
problem. Following the idea of neighbor sampling,
FastGCN [11] further proposes the importance node
sampling to reduce variance. The work of [12]
proposes a control variate based algorithm that
allows a smaller neighbor sample size. A few recent
works propose alternative ways to construct mini-
batches instead of layer-wise sampling. For instance,
ClusterGCN [13] first partitions the training graph
into clusters and then randomly groups clusters
together as a batch. GraphSAINT [14] builds mini-
batches by sampling the training graph and ensures
a fixed number of nodes in all layers.

Distributed training aims at leveraging multiple
devices to speed up the training process. Many
distributed GNN training approaches [15], [16],
[20] have been developed to enable the exploration
towards larger models and datasets. DistDGL [16]
distributes the input graph across machines via
METIS-based graph partitioning and performs syn-
chronous training. GIST [15] proposes to partition
the parameters of a GCN model into smaller sub-
GCNs and train several sub-GCNs in parallel. The
recent work BNS-GCN [20] proposes random
boundary node sampling to enable efficient and
scalable distributed training. While previous works
generally assume powerful GPU clusters and allow
inter-device communication, in this work, we target
on IoT scenarios with only resource-constrained edge
devices available and no communication.

C. Graph Partitioning

Graph partitioning is a widely studied topic in
the field of graph processing. A variety of methods
have been proposed to divide a large graphs into
a predefined number of subgraphs. One popular
approach is METIS [21], which recursively partitions
the graph via k-way partitioning and recursive
bisection. METIS serves as a powerful tool for
distributed graph processing and parallel computing
due to its ability to achieve a good load balance
and minimal communication cost. The effectiveness
of METIS in partitioning large graphs makes it a
widely used method in modern GNN training.

The growing need for low-latency, continuous
graph analysis has led to the development of online
partitioning methods [22], which ingest the graph
data as a stream and making partitioning decisions
on the fly based on partial knowledge of the graph.

Among them, HDRF [23] and DBH [24] exploit
skewed degree distributions in power-law graphs and
explicitly account for vertex degree in the placement
decision. In this work, we also utilize vertex degree
information to facilitate the partitioning process, yet
the input graph is not restricted to power-law graphs.

D. Graph Sparsification

Recent works have also investigated graph spar-
sification (i.e., pruning edges of the training graph)
for GNN learning. In many real-world applications,
graphs exhibit complex topology patterns. Some
edges may be erroneous or task-irrelevant, and thus
aggregating this information weakens the generaliz-
ability of GNNs [25]. As shown by [26] and [27],
edges of the input graph may be pruned without loss
of accuracy.

Two recent works introduce computation effi-
ciency into the problem. More precisely, SGCN [28]
proposes a neural network that prunes edges of the
input graph; they show that using sparsified graphs
as the new input for GNNs brings computational
benefits. UGS [29] presents a graph lottery ticket
type of approach; they sparsify the input graph,
as well as model weights during training to save
inference computation.

III. OUR PROPOSED METHOD

A. Problem Formulation

Given a graph G = (V , E), where V is the node
set and E represents the set of edges. Let N = |V|
denote the number of nodes and A ∈ RN×N be the
adjacency matrix of G. Every node i is characterized
by a F -dimensional feature vector xi ∈ RF . We use
X ∈ RN×F to represent the feature matrix of all
nodes in G.

Consider a node-level prediction problem with the
following objective:

min
W
L =

1

N

N∑
i=1

f(yi, zi)

zi = g(xi;W )

(1)

where f is the objective function (e.g., cross entropy
for node classification), yi and zi denotes the true
label and prediction of node i, respectively. g(·)
denotes a graph neural network parameterized by W
that generates node-level predictions.
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Suppose there are K devices available for training,
and let Bk

MEM denote the memory budget of device
k. Motivated by the notorious inefficiency that
centralized graph learning suffers from, we aim at
distributing the training process to improve the train-
ing scalability with no inter-device communication
overhead. The key is to assign N nodes of graph
G to K devices, and then do local training on each
device. We formulate it as two subproblems below.

First, we define a graph partitioning strategy P :
V → (V1,V2, · · · ,VK) that divides the node set V
into K subsets such that:

∪kVk = V , H(SGk) < Bk
MEM , ∀k ∈ [K] (2)

where [K] = {1, ..., K}, SGk denotes the subgraph
induced by node set Vi, H is a static function that
maps a given subgraph SGi to the device memory
requirements for training. For maximum generality,
here we do not require Vi ∩Vj = ∅. In other words,
a node i can be assigned to more than one hardware
device, and let Pi denote the set of hardware devices
where node i is assigned to.

Next, we adopt subgraph-level training, i.e., for
device k, we maintain a local GNN model, denoted
by W ⟨k⟩ that takes the subgraph SGk as its input
graph. Let W = 1

K

∑K
k=1 W

⟨k⟩, thus the objective
can be reformulated as:

min
W
L =

1

N

N∑
i=1

f(yi, zi)

zi =
1

|Pi|
∑
k∈Pi

g(xi;W
⟨k⟩)

(3)

Based on the formulation above, we propose
SUGAR, a distributed training framework that:
(1) partitions the input graph subject to resource
constraints; (2) adopts local subgraph-level training.
Figure 1 provides a simple illustration of SUGAR
for a two-device system. We describe our design
choices in detail in the following sections.

B. Theoretical Basis

Recall that we define a graph partitioning strat-
egy P that divides N nodes into K node sets
(V1,V2, · · · ,VK). Taking K subgraphs induced by
the node sets into consideration, a graph partitioning
strategy P can be viewed as a way to produce a
sparser adjacency matrix ASG, from the original

matrix A. ASG is a block-diagonal matrix of A, i.e.,

ASG =


AV1 · · · 0 · · · 0

... . . . ...
0 AVk

0
... . . . ...
0 · · · 0 · · · AVK

 (4)

where AVk
denotes the adjacency matrix of subgraph

k.
We show below that adopting ASG for training

offers the benefits of high computational efficiency
and low memory requirements. Moreover, we pro-
vide the error bound and convergence analysis of
this approximation for a graph convolutional network
(GCN) [2].

Complexity Analysis. The propagation rule for
the l-th layer GCN is:

Z(l+1) = AnormH(l)W (l), H(l+1) = σ(Z(l+1)) (5)

where σ represents an activation function, Anorm

denotes the normalized version of A, i.e., Anorm =
D̂−1/2ÂD̂1/2, Â = A+ IN , D̂ii =

∑
j Âij and IN is

an N -dimensional identity matrix. H(l) and H(l+1)

denotes the input and output feature matrices in
layer l, respectively. Z(l) is the node feature matrix
before the activation function in layer l and Z(L)

denotes final node predictions (i.e., output of the
GCN). W (l) ∈ RFl×Fl+1 represents the weight matrix
of layer l, where Fl and Fl+1 is the input and
output feature dimension, respectively. Therefore,
for the l-th layer GCN, the training time complexity
is O(|E|Fl + NFlFl+1) and memory complexity is
O(NFl+1+FlFl+1). We make two observations here:
(a) Real-world graphs are usually sparse and |E|

N
is

generally smaller than feature number Fl+1. Thus,
the second term dominates the time complexity;
(b) For large-scale graphs, the number of nodes
N is much greater than the number of features, so
O(NFl+1) dominates the memory complexity. To
conclude, the value of N affects the complexity
greatly; indeed, calculating these terms are likely
to result in poor data locality and dominate the
runtime latency due to the high randomness of
neighbor indices [30]. Partitioning the input graph
into K subgraphs reduces the number of nodes N
to Nk = |Vk| for every local model. Since Nk is
about 1/K of N , the proposed approach is expected
to achieve up to K times speedup, and as little as
1/K of the original memory requirements.
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Error Bound Analysis. Let our proposed estima-
tor be SG. The l-th layer propagation rule of a GCN
with the SG estimator is:

Z
(l+1)
SG = Anorm

SG H
(l)
SGW

(l), H
(l+1)
SG = σ(Z

(l+1)
SG ) (6)

where Z
(l+1)
SG and H

(l+1)
SG denote the node represen-

tations produced by the SG estimator in layer l + 1
before and after activation, respectively.

Assume that we run graph partitioning for M
times to obtain a sample average of Anorm

SG before
training. Let ϵ = ∥Anorm

SG − Anorm∥∞ denote the
error in approximating Anorm with Anorm

SG . For
simplicity, we will omit the superscript norm from
now on.

The following lemma states that the error of node
predictions given by the SG estimator is bounded.

Lemma 1. For a multi-layer GCN with fixed
weights, assume that: (1) σ(·) is ρ-Lipschitz and
σ(0) = 0, (2) input matrices A, X and model
weights {W (l)}Ll=1 are all bounded, then there exists
C such that

∥∥∥Z(l)
SG − Z(l)

∥∥∥
∞
≤ Cϵ, ∀l ∈ [L] and∥∥∥H(l)

SG −H(l)
∥∥∥
∞
≤ Cϵ, ∀l ∈ [L− 1].

The proof of Lemma 1 is provided in Appendix.
Lemma 1 motivates us to design a graph partitioning
method that generates small ϵ so that the output of
the SG estimator is close to the exact value. This
will be discussed in detail in the next subsection.

Convergence Analysis. Let Wt denote the model
parameters at training epoch t and W∗ denote the op-
timal model weights. ∇L(W ) = 1

N

∑N
i=1

∂f(yi,z
(L)
i )

∂W

and ∇LSG(W ) = 1
N

∑N
i=1

∂f(yi,z
(L)
SG,i)

∂W
represent the

gradients of the exact GCN and SG estimator with
respect to model weights W , respectively.

Theorem 1 states that with high probability gradi-
ent descent training with the approximated gradients
of the SG estimator (i.e., ∇LSG(W )) converges to
a local minimum.

Theorem 1. Assume that: (1) the loss function L(W )
is ρ-smooth, (2) the gradients of the loss ∇L(W )
and ∇LSG(W ) are bounded for any choice of W ,
(3) the gradient of the objective function ∂f(y,z)

∂z
is

ρ-Lipschitz and bounded, (4) the activation function
σ(·) is ρ-Lipschitz, σ(0) = 0 and its gradient is
bounded,

then there exists C > 0, s.t., ∀M,T , for a
sufficiently small δ, if we run graph partitioning

for M times and run gradient descent for R ≤ T
epochs (where R is chosen uniformly from [T ], the
model update rule is Wt+1 = Wt − γ∇LSG(Wt),
and step size γ = 1

ρ
√
T

), we have:

P (ER∥∇L(WR)∥2F ≤ δ) ≥

1− 2 exp{−2M(
δ

2C
− 2ρ[L(W1)− L(W∗)] + C − δ

2C(
√
T − 1)

)2}

With M and T increasing, the right-hand-side of
the inequality becomes larger. This implies that there
is a higher probability for the loss to converge to
a local minimum. The full proof is provided in the
Appendix.

C. Graph Partitioning
From Lemma 1, we conclude that a graph parti-

tioning method that yields a smaller |ASG−A| leads
to a smaller error in node predictions. Therefore, we
aim at minimizing the difference between ASG and
A. In other words, the objective of graph partitioning
should be to minimize the number of edges of the
incident nodes that belong to different subsets. As
such, this is identical to the goal of various existing
graph partitioning methods, making such approaches
good candidates to use with our framework. We
choose METIS [21] due to its efficiency in handling
large-scale graphs. However, the traditional graph
partitioning algorithms are not intended for modern
GNNs and the learning component of the problem
is missing. Consequently, we present a modified
version of METIS that is suited to our problem and
relies on two new ideas discussed next.

a) Weighted Graph Construction. We build a
weighted graph Gw from the input graph G. The
weight of an edge euv is defined based on the degree
of its two incident nodes:
weight(euv) = dmax + 1− deg(u)− deg(v)

dmax = max{deg(u) + deg(v), ∀euv ∈ E}
(7)

Let Aw denote the adjacency matrix of the
weighted graph Gw, where element awij is the edge
weight weight(eij); awij is 0 if there is no edge
connecting nodes i and j.

The key intuition behind our first idea lies in
the neighborhood aggregation scheme of GNNs.
Consider two nodes u and v, where u is a hub node
connected to many other nodes, while v has only
one neighbor. As GNNs propagate by aggregating
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(a) G
raph  Partitioning (Sec 3.3)

Weighted Graph  
Construction

Weighted Graph 
Partitioning

cut copy

No Inter-Device 
Communication √

(b) Subgraph-level GNN Training (Sec 3.4)

     Out Of  
Memory

Fits in Memory √

Heavy  
Communication

vanilla training

device 1

distributed SGD

device 0

device 1

(Optional) Subgraph  
Expansion

device 0
GNN model 

device 0

device 1
GNN model 

Mem. budget 

Input Graph
2 devices 

××

Fig. 1. While vanilla training is likely to run out of memory when the graph size is large and distributed stochastic gradient descent (SGD)
requires heavy intermediate communication among devices, SUGAR provides a solution that is memory efficient and requires no inter-device
communication. The proposed SUGAR consists of two stages: (a) graph partitioning and (b) subgraph-level GNN training. Graph partitioning
involves three steps: (1) transform the input graph G to a weighted graph Gw; (2) apply METIS to the weighted graph Gw , where edges with
large weights are more likely to be preserved; (3) (optional) expand the node set of the obtained subgraph according to memory budgets.

the neighborhood information of nodes, removing
the only edge of node v may possibly lead to wrong
predictions. On the other hand, pruning an edge of
u is more acceptable since there are many neighbors
contributing to its prediction. Consider the graph in
Figure 1 as an example. Cutting the edges e1 ∪ e2
and e3 ∪ e4 are both feasible solutions for METIS.
However, considering the fact that nodes connected
to e1 and e2 have less topology information, our
proposed method will preserve them and cut edges
e3 ∪ e4 instead; this can lead to a better learning
performance.

As can be concluded from this small example,
edges connected to small-degree nodes are critical
to our problem and should be preserved. Conversely,
edges connected to high-degree nodes may be
intentionally ignored. This explains our weights
definition strategy. Consequently, we incorporate the
above observation into our partitioning objective and
apply METIS to the pre-processed graph Gw.

b) Subgraph Expansion. After obtaining the
partitions with our modified METIS, we propose
the second idea, i.e., expand the subgraph based on
available hardware resources. Although METIS only
provides partitioning results where the node sets
do not overlap, our general formulation in Section
III-A allows nodes to belong to multiple partitions.
This brings great flexibility to our approach to adjust
the node number for each device according to its

memory budget.
Suppose the available memory of device k is larger

than the actual requirement of training a GNN on
subgraph k (i.e., H(SGk) < Bk

MEM ), then we may
choose to expand the node set Vk by adding the
one-hop neighbors of nodes that do not belong to
Vk. As illustrated in Figure 1 (a), we can expand
the node set of the subgraph on device 0 (marked
in light brown) to include node n0 as well. While
expanding the subgraph is likely to yield higher
accuracy, training time and memory requirement
will also increase. Therefore, this is an optional step,
only if the hardware resources allow it.

D. Subgraph-level Local Training
From the original formulation in Equation 3, if

|Pi| > 1, i.e., a node i is assigned to multiple devices,
calculating its loss and backpropagation can involve
heavy communication among devices. To address
this problem, we provide the following result to
decouple the training of K local GNN models from
each other.

Proposition 1. If f(y, z) is convex with respect to
z, then the upper bound of L in Equation 3 is given
by:

L ≤ 1

K

K∑
k=1

∑
i∈Vk

1

|Pi|
f(yi, zi)

zi = g(xi,W
⟨k⟩)

(8)
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Proof. By convexity of f , using Jensen’s inequality
[31] gives us:

f(yi,
1

|Pi|
∑
k∈Pi

g(xi;W
⟨k⟩) ≤ 1

|Pi|
∑
k∈Pi

f(yi, g(xi;W
⟨k⟩))

(9)
By changing the operation order and regrouping

the indices, we further derive:

1

N

N∑
i=1

1

|Pi|
∑
k∈Pi

f(yi, zi) =
1

K

K∑
k=1

∑
i∈Vk

1

|Pi|
f(yi, zi)

(10)
Therefore,

L ≤ 1

K

K∑
k=1

∑
i∈Vk

1

|Pi|
f(yi, zi)

zi = g(xi,W
⟨k⟩)

(11)

Proposition 1 is proved.
Proposition 1 allows us to shift the perspective

from ‘node-level’ to ‘device-level’. We adopt the
upper bound of L in Equation 8 as the new training
objective. Now, the local model updates involv-
ing node i do not depend on other models (i.e.,
{W ⟨k⟩}k∈Pi

) any more. Optimizing the new objective
naturally reduces the upper bound of the original
one and avoids significant communication costs, thus
leading to high training efficiency.

Furthermore, motivated by deployment challenges
in real IoT applications, where communication
among devices is generally not guaranteed, we
propose to reduce inter-device communication down
to zero in our framework. In particular, we maintain
K distinct (local) models instead of a single (global)
model by keeping the local model updates within
each device. The objective of our proposed subgraph-
level local GNN training can be summarized as
follows:

min
W ⟨k⟩
Lk =

∑
i∈Vk

1

|Pi|
f(yi, zi), ∀k ∈ [K]

zi = g(xi,W
⟨k⟩)

(12)

In training round t, every device performs local
updates as:

W
⟨k⟩
t+1 ← W

⟨k⟩
t − γ∇W ⟨k⟩Lk, ∀k ∈ [K] (13)

where Lk denotes the training objective of device
k and γ is the learning rate (i.e., step size). By

decoupling training dependency among devices, we
propose a feasible solution to train GNNs in resource-
limited scenarios, where typical distributed GNN
approaches are not applicable.

E. Putting it all together

Algorithm 1 SUGAR
Input: graph G = (V , E); node feature ma-

trix X; available device number K; device mem-
ory budget {Bk

MEM}Kk=1; total training epochs
T .

1: Construct Gw from G according to Equation 7
2: Partition Gw into K subgraphs {SGi}K1
3: (Optional) Expand SGi if H(SGi) < Bi

MEM

4: for each device k = {1, 2, · · · , K} in parallel
do

5: Initialize GNN model weight W ⟨k⟩
1

6: for epoch t = 1, 2, · · · , T do
7: W

⟨k⟩
t+1 ← W

⟨k⟩
t − γ∇W ⟨k⟩Lk

8: end for
9: end for

To sum up, the SUGAR algorithm consists
of two stages: (a) graph partitioning (lines 1-3)
and (b) subgraph-level GNN training (lines 4-9).
Specifically, the graph partitioning involves three
steps: (1) construct a weighted graph Gw from
G to account for the influence of node degrees
in learning (line 1). (2) Apply METIS to the
weighted graph Gw to obtain partitioning results (line
2). (3) According to the memory budget, expand
the subgraph to cover the one-hop neighbors for
better performance (line 3). Then, we train K local
models in parallel without requiring training-time
communication among devices (lines 4-9). During
inference, we adopt the local GNN model W ⟨k⟩ to
generate predictions for test nodes that belong to
SGk. Similar to training, the inference process is
distributed to K devices and requires no inter-device
communication. In conclusion, SUGAR provides a
highly efficient and cost-effective solution in scaling
GNN training, with high training speed, low memory
requirements and no communication overhead.

IV. EXPERIMENTS

A. Experimental Setup
We evaluate SUGAR on five node classification

datasets [9], [32], selected from very diverse ap-
plications: (1) categorizing types of images based
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TABLE I
DATASET STATISTICS. K AND M DENOTE 1,000 AND 1,000,000,

RESPECTIVELY. ‘AVGDEG.’ REPRESENTS THE AVERAGE NODE
DEGREE. ‘ACC’ DENOTES ACCURACY. ‘ROC-AUC‘ DENOTES THE
AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE.

Dataset Flickr Reddit
ogbn-
arxiv

ogbn-
proteins

ogbn-
products

#Nodes 89.3K 233K 169K 133K 2,449K

#Edges 0.90M 11.6M 1.17M 39.6M 61.9M

AvgDeg. 10 50 13.77 597 50.5

#Tasks 1 1 1 112 1

#Classes 7 41 40 2 47

Metric ACC ACC ACC ROC-
AUC ACC

on the descriptions and common properties of
online images (Flickr); (2) predicting communities
of online posts based on user comments (Reddit);
(3) predicting the subject areas of arxiv papers
based on its title and abstract (ogbn-arxiv); (4)
predicting the presence of protein functions based
on biological associations between proteins (ogbn-
proteins); (5) predicting the category of a product in
an Amazon product co-purchasing network (ogbn-
products). Note that the task of ogbn-proteins is
multi-label classification, while other tasks are multi-
class classification. Dataset statistics are summarized
in Table I.

We include the following GNN architectures and
SOTA GNN training algorithms for comparison:

• GCN [2]: Full-batch Graph Convolutional Net-
works.

• GraphSAGE [10]: An inductive representa-
tion learning framework that efficiently gen-
erates node embeddings for previously unseen
data. Mini-batch GraphSAGE are denoted by
GraphSAGE-mb.

• GAT [17]: Graph Attention Networks, a GNN
architecture that leverages masked self-attention
layers.

• SIGN [18]: Scalable Inception Graph Neural
Networks, an architecture using graph con-
volution filters of different size for efficient
computation.

• ClusterGCN [13]: A mini-batch training tech-
nique that partitions the graphs into a fixed

TABLE II
RUNTIME, MEMORY & ACCURACY RESULTS ON ogbn-arxiv. ‘AVG.
TIME’ IS THE TRAINING TIME PER EPOCH AVERAGED OVER 100
EPOCHS AND ‘MAX MEM’ DENOTES PEAK ALLOCATED MEMORY

ON GPU.

Avg.
Time
[ms]

SUGAR
Speedup

Max
Mem
[GB]

Test
Acc.
[%]

GCN 26.9 1.68× 1.60 72.37 ± 0.10
GAT 207.8 12.99× 5.41 72.95 ± 0.14
GraphSAGE 534.7 33.42× 0.95 71.98 ± 0.17
SIGN 291.6 18.23× 0.94 71.79 ± 0.08
SUGAR 16.0 0.92 72.22 ± 0.14

number of subgraphs and draws mini-batches
from them.

• GraphSAINT [14]: A mini-batch training tech-
nique that constructs mini-batches by graph
sampling. The random node, random edge, and
random walk based samplers are denoted by
GraphSAINT-N, GraphSAINT-E, GraphSAINT-
RW, respectively.

SUGAR is implemented with PyTorch [33] and
DGL [34]. For all the baseline methods, we use
the parameters reported in their github pages or
the original paper. The evaluation of SUGAR is
conducted on a two-device system (i.e., K = 2)
unless otherwise stated. In Section IV-C1, we provide
a scalability analysis with varying K. The baseline
GNN approaches are evaluated on a single device
as we assume no inter-device communication in
our setting. For the dense ogbn-proteins graph, after
graph partitioning, we expand the node set to include
an additional 20% of the nodes in the subgraph.
For all other graphs, we do not adopt the subgraph
expansion step. We report accuracy results averaged
over 5 runs for ogbn-proteins and 10 runs for the
other datasets.

For completeness, we run our experiments across
multiple hardware platforms. We select five different
devices with various computing and memory capa-
bilities, namely, (1) Raspberry Pi 3B, (2) NVIDIA
Jetson Nano, (3) Android phone with Snapdragon
845 processor, (4) laptop with Intel i5-8279U CPU,
and (5) desktop with AMD Threadripper 3970X
CPU and two NVIDIA RTX 3090 GPUs.
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TABLE III
RUNTIME, MEMORY & ACCURACY RESULTS ON Reddit.

Avg.
Time
[ms]

SUGAR
Speedup

Max
Mem
[GB]

Test
Acc.
[%]

GraphSAGE 110.6 1.87× 5.70 96.39 ± 0.03
GraphSAGE-mb 316.5 5.36× 2.33 95.08 ± 0.05
ClusterGCN 414.4 7.01× 1.83 96.34 ± 0.01
GraphSAINT-N 341.8 5.78× 1.29 96.17 ± 0.06
GraphSAINT-E 299.8 5.07× 1.22 96.15 ± 0.06
GraphSAINT-RW 467.5 7.91× 1.23 96.23 ± 0.06
SIGN 352.8 5.97× 2.17 96.12 ± 0.05
SUGAR 59.1 1.51 96.01 ± 0.03

TABLE IV
RUNTIME, MEMORY & ACCURACY RESULTS ON Flickr.

Avg. Time
[ms]

Max Mem
[GB]

Test Acc.
[%]

GraphSAINT-N 97.0 0.41 50.64 ± 0.28
SUGAR 49.9 0.31 50.11 ± 0.12
Improvement 1.94× 1.32×

GraphSAINT-E 71.1 0.53 50.91 ± 0.12
SUGAR 32.6 0.41 49.96 ± 0.12
Improvement 2.18× 1.29×

GraphSAINT-RW 108.9 0.65 51.03 ± 0.20
SUGAR 37.3 0.49 50.15 ± 0.24
Improvement 2.92× 1.33×

B. Results

1) Evaluations on GPUs: First, we provide eval-
uation of SUGAR on a two-GPU system. Table II
and Table III report the average training time per
epoch, maximum GPU memory usage and accuracy
on ogbn-arxiv and Reddit. We base SUGAR on full-
batch GCN and GraphSAGE for these two datasets,
respectively. As shown in these tables, when com-
pared with full-batch methods (i.e., GCN and GAT
for ogbn-arxiv; GraphSAGE for Reddit), SUGAR
is much more memory efficient, as it reduces the
peak memory by 1.7× for ogbn-arxiv and 3.8×
for Reddit data. When compared against mini-batch
methods (i.e., mini-batch GraphSAGE, ClusterGCN,
GraphSAINT and SIGN), the runtime of SUGAR is
significantly smaller. This demonstrates the great
benefits of our proposed subgraph-level training.
Indeed, by restricting the neighborhood search size,
SUGAR effectively alleviates the neighborhood
expansion problem. In addition, it achieves very
competitive test accuracies.

We combine SUGAR with popular mini-batch

TABLE V
RUNTIME, MEMORY & ACCURACY RESULTS ON ogbn-products.

Avg. Time
[ms]

Max Mem
[GB]

Test Acc.
[%]

GraphSAGE-mb 2.42 7.29 79.25 ± 0.22
SUGAR 1.49 4.43 79.97 ± 0.23
Improvement 1.62× 1.65×

ClusterGCN 2.90 6.59 78.51 ± 0.33
SUGAR 1.97 3.36 79.34 ± 0.41
Improvement 1.47× 1.96×

GraphSAINT-E 0.30 7.16 79.54 ± 0.27
SUGAR 0.28 3.92 80.20 ± 0.23
Improvement 1.07× 1.83×

TABLE VI
RUNTIME, MEMORY & ACCURACY RESULTS ON ogbn-proteins.

Avg.
Time
[sec]

Max
Mem
[GB]

Valid
Acc.
[%]

Test
Acc.
[%]

GAT 6.20 10.77 92.08 ± 0.08 87.20 ± 0.17
SUGAR 4.09 6.22 92.51 ± 0.08 86.41 ± 0.18
Improvement 1.52× 1.73×

training methods and evaluate them on Flickr and
ogbn-products dataset. Table IV presents results
of SUGAR incorporated with GraphSAINT for
three sampler modes (i.e., node, edge, and random
walk based samplers) on Flickr data. Note that the
accuracy we obtain (about 50%) is consistent with
results in [14]. SUGAR achieves more than 2×
runtime speedup and requires less memory than
GraphSAINT. Test accuracy loss is within 1% in all
cases.

For the largest ogbn-products dataset, we imple-
ment SUGAR together with three competitive GNN
baselines, namely GraphSAGE, ClusterGCN and
GraphSAINT. The results are summarized in Table
V. SUGAR provides a better solution that leads
to runtime speedup, memory reduction and even a
slightly increased test accuracy for all three methods.
We hypothesize that the graph partitioning eliminates
some task-irrelevant edges in the original graph, and
thus leads to better generalization of GNNs.

Table VI provides results on the dense ogbn-
proteins graph. When it comes to training GNNs on
dense graphs, memory poses a significant challenge
due to the neighborhood expansion problem. The
results show that GAT suffers from considerable
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TABLE VII
AVERAGE TRAINING TIME PER EPOCH [SEC] OF SUGAR COMPARED WITH GRAPHSAINT AND GCN ON Flickr AND ogbn-arxiv DATA. WE

RECORD THE TRAINING TIME ON FIVE PLATFORMS WITH CPU MODELS LISTED. OOM DENOTES OUT OF MEMORY. WE NOTE THAT
TRAINING A GCN ON RASPBERRY PI 3B IS INFEASIBLE SINCE IT EXCEEDS MEMORY, WHILE SUGAR STILL WORKS.

Dataset RPi 3B Jetson Phone Laptop Desktop-CPU Desktop-GPU
Cortex-A53 Cortex-A57 SDM-845 i5-8279U Zen2 3970X RTX3090

Flickr
GraphSAINT-N 104.1 16.86 7.67 2.86 1.48 0.097
SUGAR 48.2 7.61 3.54 1.21 0.67 0.050
Speedup 2.16× 2.22× 2.17× 2.36× 2.24× 1.94×

ogbn-arxiv
GCN OOM 28.10 21.96 13.80 5.16 0.027
SUGAR 501.59 18.39 13.33 6.51 2.71 0.016
Speedup - 1.53× 1.65× 2.12× 1.91× 1.69×

TABLE VIII
RUNTIME COMPARISON AGAINST BASELINE METHODS ON THREE
LARGE DATASETS. AVERAGE TRAINING TIME PER EPOCH [SEC] IS
REPORTED. BASELINE REFERS TO GRAPHSAGE FOR Reddit AND

ogbn-products. GAT IS THE BASELINE FOR ogbn-proteins.

Reddit
ogbn-

products
ogbn-

proteins

Baseline 2.02 170.75 269.70
SUGAR 0.88 77.05 142.7
Speedup 2.30× 2.22× 1.89×

TABLE IX
EVALUATIONS OF SUGAR ON NVIDIA JETSON NANO FOR Flickr
AND ogbn-arxiv. ‘AVG. TIME’ AND ‘MAX MEM’ DENOTE TRAINING
TIME PER EPOCH AND PEAK RESIDENT SET SIZE (RSS) MEMORY.

WE MEASURE THE TIME, MEMORY AND ENERGY FOR TRAINING 10
EPOCHS. SUGAR IMPROVES AVERAGE TRAINING TIME, MEMORY
USAGE AND ENERGY CONSUMPTION PER DEVICE OVER BASELINE

GNNS (i.e., GRAPHSAINT AND GCN).

Dataset Avg. Time
[sec]

Max Mem
[GB]

Energy
[kJ]

Flickr GraphSAINT-N 22.62 1.05 1.13
SUGAR 10.50 0.89 0.52
Improvement 2.15× 1.18× 2.17×

ogbn- GCN 28.10 2.24 1.27
arxiv SUGAR 18.39 1.46 0.81

Improvement 1.53× 1.53× 1.57×

memory usage. In contrast, SUGAR effectively
alleviates the issue with 1.52× runtime speedup and
1.73× memory reduction.

2) Evaluations on mobile and edge devices:
Following the GPU setting, we proceed to evaluate
SUGAR on mobile and edge devices with CPUs.

Training Time. Table VII presents the average
training time per epoch of SUGAR compared with

baselines on the Flickr and ogbn-arxiv datasets. Due
to the relative small size of these two datasets, we
are able to train GNNs on all five hardware devices,
ranging from a Raspberry Pi 3B, to a desktop
equipped with high-performance CPUs. We also list
the runtime on GPUs in the last column for easy
comparison.

From Table VII, we can see that SUGAR
demonstrates consistent speedup across all platforms,
achieving over 2× and 1.5× speedup on the Flickr
and ogbn-arxiv datasets, respectively. In addition,
training a GCN on the Raspberry Pi 3B fails due to
running out of memory, while SUGAR demonstrates
good memory scalability and hence it can be used
with such a device with a limited memory budget
(i.e., 1GB in this case). This also holds true for the
Reddit dataset: SUGAR provides a feasible solution
for local training on the Jetson Nano (time per epoch
is 50.27s), while other baselines can not work due
to large memory requirements.

Thus, for the other three datasets, we compare
the runtime on Desktop-CPU and report our results
in Table VIII. We also observe consistent speedup
across all datasets: SUGAR nearly halves the
training time in all three cases.

Memory Usage. We compare the memory usage
of SUGAR against GNN baselines on a CPU
setting. Figure 2 illustrates the resident set size (RSS)
memory usage during training on the four datasets:
ogbn-arxiv, Reddit, ogbn-proteins and ogbn-products.
Note that we train a full-batch version of GCN
and the batch size of GAT is larger compared with
GraphSAGE and GraphSAINT. This accounts for
higher fluctuation in the corresponding figure. It is ev-
ident that our proposed SUGAR achieves substantial
memory reductions compared with baseline GNNs.
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Fig. 2. Memory variation during training GNNs on Desktop-CPU for ogbn-arxiv, Reddit, ogbn-proteins and ogbn-products. For SUGAR, we
plot the memory variation of the device that consumes most memory.

We emphasize that memory plays a critical role in
GNN training. In the context of devices with limited
resources, the situation is more severe since the graph
dataset is already big and loading the full dataset
may not be possible. By adopting subgraph-level
training, SUGAR effectively alleviates the problem.

Finally, we present a case study of SUGAR on
NVIDIA Jetson Nano in Table IX to demonstrate
the applicability of SUGAR to edge devices. Jetson
Nano is a popular, cheap and readily available
platform (we adopt the model with quad Cortex-
A57 CPU and 4GB LPDDR memory) and thus
considered as a good fit for our problem scenario.
Apart from training time, we measure the peak
RSS memory usage for the training process and
calculate energy consumption. As shown in Table
IX, SUGAR achieves low latency, consumes less
memory and is more energy efficient when compared
with baseline GNN algorithms. Therefore, it provides
an ideal choice to train GNNs on devices with limited
memory and battery capacity.

C. Scalability Analysis
1) Number of partitions: So far we have demon-

strated the great performance of SUGAR with
two available devices. A natural follow-up question
is, how does SUGAR perform on more devices,
i.e., device number K > 2. Below we provide a
scalability analysis of SUGAR based on the number
of partitions (i.e., device number K).

We vary the number of available devices K from
2 to 8 and evaluate SUGAR on the ogbn-arxiv,
Reddit and ogbn-products datasets. The evaluation is
conducted on Desktop-GPU. Runtime speedup, peak
GPU memory reduction, validation and test accuracy
are presented in Figure 3. With increasing K, we
observe a decreased training time and peak memory
usage for each local device.

As we can see, while distributing the GNN model
to more devices yields computation efficiency, test

accuracy drops a bit. For instance, in the case of 8
devices, the biggest decrease happens in the ogbn-
products dataset: test accuracy is 76.69% while
the baseline accuracy is 79.54%. In the meantime,
SUGAR leads to 5.13× speedup, as well as 4.24×
memory reduction compared with the baseline.
Generally speaking, there exists a tradeoff between
training scalability and performance. The underlying
reason is that the increase of partition number K
leads to more inter-device edges, which corresponds
to a larger error in estimating with ASG with A.

We further evaluated SUGAR in a 128-device
setting. The results show that the test accuracy
drop compared with baseline GNNs is small, i.e.,
within 5% when scaling up to 128 devices (e.g.,
accuracy decreases from 72.37% to 67.80% for ogbn-
arxiv, from 96.39% to 92.32% for Reddit, from
50.64% to 46.31% for Flickr). At the same time,
we note that the memory savings are great (e.g.,
peak memory usage per device is reduced from
1.60GB to 0.02GB for ogbn-arxiv). This shows that
SUGAR can work with very small computation
and memory requirements at the cost of slightly
downgraded performance. Thus, SUGAR provides
a feasible solution in extremely resource-limited
scenarios while general GNN training methods are
not applicable.

2) Graph Partitioning: Below we analyze the two
graph partitioning strategies introduced in Section
III-C: (a) weighted graph partitioning and (b) sub-
graph expansion.

Table X compares results achieved with different
graph partitioning strategies. As can be seen from
the table, compared with random and METIS parti-
tioning, degree-based METIS partitioning (SUGAR)
results in a smaller performance degradation. It is
worth noting that SUGAR is a flexible algorithm
that can incorporate any graph partitioning algorithm.
In practice, we adopt degree-based METIS as it is
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Fig. 3. Scalability analysis on the number of partitions (i.e., the number of available devices K) for SUGAR. K = 1 refers to the baseline
GNN (i.e., GCN for ogbn-arxiv; GraphSAGE for Reddit; GraphSAINT for ogbn-products). We report the smallest training time speedup and
peak GPU memory reduction among K devices (i.e., the worst-case scenario) of SUGAR over the baseline.
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Fig. 4. The training time and peak GPU memory with varying batch sizes of GraphSAGE and SUGAR for the ogbn-products data. We
investigate two settings: (a) graph data loaded on CPU for memory savings; (b) graph data loaded on GPU for faster execution.

TABLE X
EVALUATIONS OF DIFFERENT GRAPH PARTITIONING STRATEGIES.

WE ADOPT GCN ON THE ogbn-arxiv GRAPH, AND BASELINE
DENOTES THE RESULTS ACHIEVED WITH THE ORIGINAL GRAPH

(i.e., NO GRAPH PARTITIONING).

Baseline Random METIS SUGAR

Test Acc. [%] 72.37 68.38 70.90 72.22

efficient and easy to implement.

Next, we provide an analysis of the subgraph
expansion step. As discussed in Section III, we
can expand the node set of each subgraph for
better performance, yet the computation and memory
costs increase at the same time. We experiment
with 4 devices (i.e., K = 4) on the ogbn-arxiv
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Fig. 5. Results on the ogbn-arxiv graph with different graph expansion
ratios (K = 4). The figure shows the runtime speedup (left), memory
reduction (middle) and test accuracy (right) of SUGAR compared
with baseline GCN. As shown, subgraph expansion leads to higher
accuracy at the cost of increased runtime and memory usage.

graph. To be specific, we expand each subgraph
by incorporating r% 1-hop neighbors that are not
originally in the subgraph. Figure 5 provides runtime,
memory and accuracy results with r ranging from
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0 to 100. A value of 0 represents no subgraph
expansion and a value of 100 indicates that all 1-hop
neighbors are added to the subgraph. We observe
the tradeoff between performance and computational
complexity. With increasing r, test performance
improves at the cost of increased computation, as
well as memory requirements. Thus we consider
the subgraph expansion as an optional step that is
subject to available resources and users’ specific
requirements.

3) Batch Size: Finally, we study the influence of
batch sizes on computational efficiency and memory
scalability on SUGAR when compared with mini-
batch training algorithms.

For mini-batch training algorithms, when the
limited memory of device renders GNN training
infeasible, a natural idea is reduce the batch size for
memory savings. Here, we analyze the influence of
SUGAR and the act of reducing batch sizes on com-
putational efficiency, as well as memory scalability.
We conduct experiments on the largest ogbn-products
graph with GraphSAGE as the baseline. Two settings
are considered: (a) graph data loaded on CPU, longer
training time and smaller memory consumption is
expected; (b) graph data loaded on GPU, the model
runs faster, yet requires more GPU memory. Figure
4 provides runtime and memory results with varying
batch sizes.

We list two observations below: First, SUGAR
mainly improves runtime in setting (a) and achieves
greater memory reduction in setting (b). This is
related to the mechanism of SUGAR: each local
model adopts one subgraph for training instead of the
original graph. Thus, data loading time is reduced in
setting (a) and putting a subgraph on GPU is more
memory efficient in setting (b).

Secondly, SUGAR demonstrates to be a better
technique in reducing memory usage than tuning the
batch size. While it is generally known that there
exists a tradeoff between computation and mem-
ory requirements as reducing batch size increases
training time, SUGAR is able to improve on both
accounts.

V. CONCLUSION

We have proposed SUGAR, an efficient GNN
training method that improves training scalability
with multiple devices. SUGAR can reduce com-
putation, memory and communication costs during

training through two key contributions: (1) a novel
graph partitioning strategy with memory budgets
and graph topology taken into consideration; (2)
subgraph-level local GNN training. We provided a
thorough theoretical analysis of SUGAR and con-
ducted extensive experiments to evaluate SUGAR.
Experiments results across multiple hardware plat-
forms demonstrate high training efficiency and
memory scalability of SUGAR.

More importantly, SUGAR demonstrates the
potential of deploying modern GNN algorithms on
resource-limited devices, which opens up discussion
in developing resource-efficient GNN approaches
that are suitable for IoT deployment. In the future, we
plan to extend SUGAR to work with more graph par-
titioning algorithms and GNN models. One direction
is to employ streaming graph partitioning approaches
and spatio-temporal GNNs to adapt SUGAR to
work with spatio-temporal graphs. Another direction
is to address edge-level and graph-level prediction
problems with SUGAR.1
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