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Abstract—Exposure notification applications are developed to
increase the scale and speed of disease contact tracing. Indeed, by
taking advantage of Bluetooth technology, they track the infected
population’s mobility and then inform close contacts to get tested.
In this paper, we ask whether these applications can extend from
reactive to preemptive risk management tools? To this end, we
propose a new framework that utilizes graph neural networks
(GNN) and real-world Foursquare mobility data to predict high
risk locations on an hourly basis. As a proof of concept, we then
simulate a risk-informed Foursquare population of over 36,000
people in Austin TX after the peak of an outbreak. We find that
even after 50% of the population has been infected with COVID-
19, they can still maintain their mobility, while reducing the new
infections by 13%. Consequently, these results are a first step
towards achieving what we call Quarantine in Motion.

Index Terms—human mobility, contact networks, disease trans-
mission, graph neural networks, epidemics

I. INTRODUCTION

During the pandemic of 2020, SARS-CoV-2 quickly outran
manual contact tracing leading to region-wide lockdowns [1].
As a result, tech companies digitized the process by incor-
porating Bluetooth technology with smart devices to inform
people of recent exposure. Though these exposure notification
applications aim to assist with disease tracking, targeted testing
and guided isolation, their potential to cause privacy breaches
and over-testing through inaccurate exposures lead to ongoing
ethical debates [2].

Due to the nature of pathogens and human immune system,
exposure to a virus does not guarantee contracting the disease.
In fact, the epidemic community often describes infectious
diseases as having an ‘iceberg’ effect where most exposed
people will not test positive because their immune system
acts swiftly or because the disease manifests asymptomatically
[3]. For this reason, we emphasize the difference between
exposure and transmission to mean that an exposure happens
when any person comes into close contact with the virus,
while the resulting transmission happens only when the virus
successfully propagates to another person.

Beyond Bluetooth miscalculations, failure to account for
this nuance has led to overestimation of infection risk which,
on a wide scale, could lead to testing shortages or increased
pandemic fatigue [4]. Motivated by this state of affairs, we
propose that exposure notification applications can learn how
to detect likely transmission rather than proximal exposure to
reduce false alarms that can exacerbate resource exhaustion.

In order to better identify the high-risk contacts, exposure
notification applications need to estimate disease virality.
However, estimating virality of an emerging infectious disease
remains an open challenge. At the micro-level (tissue cells),
epidemiologists use infectious dose 50 (ID50) to estimate the
relationship between exposure and disease transmission. To
investigate this metric, they test how many viral particles need
to enter the tissue to mount the disease in at least 50% of the
sample population [5], [6]. However, at the meso-level (person-
to-person), we wonder whether we can combine disease track-
ing with deep learning to understand the relationship between
exposure and transmission.

From a machine learning perspective, we can think of
virality as an activation function which can be inherently
learned during training. For this reason, we formulate this
problem as a graph learning node regression problem to first
estimate virality and then predict risk of transmission, given
how many contagious individuals are dwelling at a location.

The COVID-19 pandemic presents an ongoing challenge to
navigate personal mobility decisions, while considering both
the collective and individual risk of exposure. The intersection
of epidemics, model forecasting, and disease mitigation has
been successful at testing non-pharmaceutical interventions at
the macro-level (regions, countries, cities) [7]. However, with
access to mobility data and machine learning techniques, we
can now relay the knowledge of disease forecasting back to
the individual—in other words, we can provide highly granular
risk analysis that is actionable to an individual’s mobility.

In this work, we investigate whether a population fighting
an infectious outbreak can smartly interleave their individual
mobility in order to decrease the overall disease transmission.
To this end, our contributions are as follows:IEEE/ACM ASONAM 2022, November 10-13, 2022
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• We formulate the disease virality estimation as a node
regression problem so we can infer the relationship
between the viral exposure and the infection transmission.

• We propose a framework that performs highly granular
(hourly) risk of transmission predictions at various Points
of Interests (POIs).

• We provide a proof-of-concept of our ideas based on
Foursquare data of Austin TX, by showing that a risk-
informed population can reduce new infections by as
much as 13%, even after the peak of an outbreak.

Taken together, our contributions can help move expo-
sure notification applications from reactive to preemptive risk
management tools. The remainder of this paper is organized
as follows: Section II provides some relevant background,
Section III describes the approach, followed by results in
Section IV. Finally, we conclude the paper in Section V.

II. BACKGROUND AND PRIOR WORK

In this section we present current challenges in exposure
notification applications, and prior work in both COVID-19
risk analysis and graph learning in epidemics.

A. Challenges in Exposure Notification Applications

Current limitations of Bluetooth technology pose a ma-
jor challenge in estimating meaningful close contacts [8].
For example, a signal might propagate between two devices
through a wall, however the users are not considered capable of
transmitting a disease. Using the Google Apple Exposure Noti-
fication (GAEN) protocol, Wilson et. al investigate meaningful
contacts by modeling uncertainty within Bluetooth attenuation
and disease uptake after breathing in viral air [9]. Though
useful to analyze the risk of micro interactions, we postulate
whether we can use real mobility data to analyze risk of
transmission at a POI rather than a single interaction.

In addition to proximity detection challenges, the nature
of infectious diseases and mobility tracking elicits privacy
concerns and reluctance in public uptake [10], [11]. Due to
incubation periods, asymptomatic cases, and test delays, some
form of identifier must be stored either centrally or transmitted
between devices to retroactively identify close contacts.

Our contribution addresses both precision and privacy is-
sues, as we only need an individual’s log of POIs visited.
Looking beyond current challenges, we emphasize the need
to reduce overestimation of risk that can ultimately contribute
to pandemic fatigue [12].

B. Disease Risk Assessment

Researchers have thus far employed statistical modeling
approaches to analyze the risk of contracting COVID-19.
Chaande et al. follow county-level case count and utilize a bi-
nomial probability model to assess the percent likelihood that
transmissions will occur within the region [13]. Rhambhatla et
al. propose a Hawkes-based technique that incorporates human
mobility with compartmentalized disease modeling in effort
to assign risk scores to regions smaller than the county level
(but still bigger than zip code level) [14]. Though both works

approach risk assessment from a policy maker’s perspective
(at the regional level per day), we push the granularity level
down to help advise an individual’s hour-to-hour mobility by
predicting the hourly risk of transmission at various POIs.

Before diving into our approach, we review some spatiotem-
poral methods in graph learning and discuss their current use
in COVID-19 applications.

C. Graph Learning in Epidemics

Applications of graph learning focus on three major prob-
lems, namely, link prediction, node classification, and node
regression [15]. Graph learning is powerful because it can
incorporate dependencies between data to perform machine
learning tasks [16]. More precisely, graph neural network
(GNN) algorithms have variations of message passing convo-
lutions where hidden layers share weights among graph neigh-
borhoods [17], [18]. Researchers then combine graph learning
with classical neural network layers like RNN [19] to exploit
the temporal dependencies for spatial-temporal applications
such as epidemic transmission [20], traffic [21], and human
mobility forecasting [22]. In the context of Covid- 19, Fritz et
al. utilize Facebook mobility data and a graph neural network
to forecast COVID-19 cases within German regions [23].

We build on prior work in exposure notification applications,
risk assessment, and graph learning to 1) implement node
regression to predict risk of transmission at various POIs
and 2) allow a population to avoid high-risk locations while
navigating an infectious outbreak.

III. APPROACH

In this section, we propose a proof-of-concept experiment
to investigate whether 1) graph learning node regression can
predict risk of transmission at various POIs on an hourly
basis and whether 2) a risk-informed population of Foursquare
devices can maintain their mobility while also reducing new
infections. We overview our approach in Figure 1.

The preprocessing consists of using Foursquare mobil-
ity data to build a network of POIs and run an SEIR

Fig. 1. Our approach starts with i) simulating an infectious outbreak and
constructing a mobility network from Foursquare data, then ii) performing
node regression to learn risk of transmission at Points of Interest (POIs) to then
iii) compare efficacy of a risk-informed population to reduce new infections
while maintaining their mobility.



(Susceptible-Exposed-Infectious-Recovered) COVID-19 simu-
lation. As people get infected, we log the health statistics (i.e.,
number of infectious people, susceptible people, etc.) at each
POI that serve as the dynamic node features. These features
and network topology feed into the GNN module which then
outputs the predicted risk of transmission. During training,
the Mean Squared Error (MSE) between the predicted risk
and the COVID-19 simulation is used as the loss function
to update the GNN. After training completes, the GNN can
predict transmission risk for the simulation days after the peak
of infection occurs. We then rerun the COVID-19 simulation
and let the Susceptible people avoid high risk POIs. To
evaluate how many new infections are avoided by a risk
informed population, we compare the mitigated infections
against the baseline infections of the COVID-19 simulation.
Next, we describe the network construction, disease model,
risk estimation metric, and graph learning set up.

A. Network Construction

We construct the network as a composition of spatial and
mobility graphs, G = (Gs, Gf ) where Gs is the spatial
network and Gf is the mobility (foot traffic) network. We
define the spatial network Gs = (V,Es) where V is a set
of nodes that represent each POI, Es is the set of edges
that connect two POIs according to their physical proximity.
To calculate the spatial edges Es, we use the latitude and
longitude value of each POI to connect k nearest neighbors.
We define the mobility (foot traffic) network Gf = (V,Ef )
where V is the same set of POIs, and Es connects two POIs
when an individual visits both locations. We weight Ef by the
number of people that flow between two nodes. We note that
by utilizing these two types of edges, we can capture both the
spatial and mobility relationships between POIs (Figure 2).

In order to collect the node features that are used to infer
the risk of transmission, we first simulate COVID-19 using the

Fig. 2. Mobility network where a node (circle) represents a POI, the spatial
edge (orange) connects k nearest proximal neighbors, and the foot traffic
edge (purple) connects two POIs that share visitors weighted by the number
of people that flow between them. In this example, 200 people travel from
the source node (red) to the POI north of Austin’s river.

Foursquare mobility dataset and SEIR compartmental model
described in the next section.

B. SEIR model

To capture the difference between disease exposure and
transmission, we apply the SEIR model at the individual level.
Each person within the Foursquare population is initialized to
either ‘Susceptible’ or ‘Infectious’ [24]. We seed the outbreak
by choosing 10% of the Foursquare population that are present
for 7 consecutive days and set them to ’Infectious’. For each
simulated day, people infect each other with a transmission
probability αt defined in (equation 1). For every POI, let It
represent the number of infectious people and let Nt represent
the total number of people at time t. We insert a tunable
parameter β to help he model fit real COVID-19 case counts.
This way the transmissibility probability αt is scaled by the
ratio of infectious people within the POI:

αt =
It
Nt

× β (1)

The transition from Incubating-to-Infectious and Infectious-
to-Recovered states is a time delay where we set δincubating =
5days and δinfectious = 7days to match the average
incubation and infection periods for COVID-19 alpha variant
[25]. We then apply a random chance for each Susceptible
person to evade transmission if they are dwelling within a POI
that contains infectious people. We transition the Susceptible
people to Incubating when their random chance is less than
the transmissibility probability αt at the POI.

C. Risk Estimation

Given this set up, we define a POI’s risk metric at time t
as the ratio between the number of Susceptible people that
caught the virus (change to Incubating) after exposure to
Infectious people within the POI (equation 2). For example, if
two Susceptible people get exposed to one Infectious person
within a POI at time t, however only one person subsequently
contracts the virus at time (t + 1) then we say the risk of
transmission is 50% (Figure 3).

Riskt =
Incubating(t+ 1)

Susceptible(t+ 1)
(2)

Fig. 3. Example to illustrate the risk of Susceptible people (green nodes)
transitioning to Incubating (orange node) after an exposure to an Infectious
person (red node) at a POI. The exposed (yellow node) person is there to
emphasize that we are not estimating the risk of exposure, but rather the risk
of transmission (Susceptible – to – Incubating).



Intuitively, from the perspective of a Susceptible person,
the hourly risk metric is the probability that they will catch
the virus at a particular POI. In the real world, we would
not know the exact interaction responsible for an individual’s
transmission; however, in the SEIR compartmental model, we
can keep track of how many people become infected after
visiting a POI thus leading to an accurate risk evaluation.This
risk metric will be learned and then predicted by the GNN.

After building a mobility network, simulating COVID-19,
and collect transmission risk at POIs, we can now set up our
node regression as described in the next section.

D. Graph Learning Setup

We formulate the graph learning problem as a node re-
gression problem where we use a neural network for each
node in the graph that inputs the collected features, performs
convolution across the neighborhoods, and then outputs the
predicted risk value (Figure 4). We utilize the deep graph
learning library (DGL) [26] to implement the SAGE and
Gated graph convolutional layers. The SAGE algorithm is
a scalable convolutional layer that utilizes message passing
along edges to aggregate (in our case, average) feature weights
[27], whereas the Gated graph convolution handles sequential
inputs by allowing past n-steps to update the current feature
weights [17]. We compare both set-ups to test whether one or
both can handle the highly sparse, dynamic, large scale feature
learning for predicting hourly risk of transmission at various
POIs.

We add a sigmoid layer to predict the risk of disease per
each node (POI) between 0 and 1, where 1 means 100% of
Susceptible people will turn to Incubating in the next hour
following a visit to node i. We define the input features per
node per hour Xt = [It, St, δt, αt, ηt] as the number of Infec-
tious people It , number of Susceptible people St , number of
people that transition from Susceptible to Incubating δt, the

Fig. 4. GNN architectures to perform node regression. Architecture (A) Inputs
the dynamic POI features into a gated graph convolutional layer and then
feeds them forward into two SAGE layers with a ReLU activation function
in between. Architecture (B) skips the gated graph convolution and instead
feeds the features directly into the two SAGE layers. Both architectures have
a sigmoid activation function to output the risk of transmission at the POI.

transmission probability αt (equation 1), and the percent of
total population ηt that the POI is responsible for infecting. Of
note, these features are collected in the COVID-19 simulation
using the SEIR model described in the previous section.

Our approach can be summarized as building a Foursquare
mobility network, simulating COVID-19 using SEIR to cal-
culate the hourly risk of transmission and collect features
to be used as graph learning inputs. We then utilize Gated
graph convolution and SAGE convolution to perform node
regression. We then train over the beginning and peak of
the outbreak and predict the risk of transmission in the end
stages of the outbreak (after more than 50% of the population
has been infected). Finally, to evaluate the proof-of-concept
experiment, we compare the new infections from the baseline
SEIR simulation against the risk-informed population. We
hypothesize that this risk informed mobility intervention will
reduce new infections while maintaining population mobility
(i.e. quarantine in motion).

IV. RESULTS

We test the efficacy of our framework by first training the
two different graph learning architectures on the same SEIR
simulation run in the buildup of the outbreak and then infer the
risk of transmission after the outbreak’s peak. In this section
we present the A) Foursquare mobility data, B) COVID-19
simulation, C) Mean Squared Error (MSE) metric to evaluate
how well the graph learning architectures can predict risk of
transmission; then D) we visualize the quality of predictions,
and finally, E) put the risk-informed population to the test to
mitigate new infections.

A. Foursquare Mobility Data

We use Foursquare mobility data [28] that contains an
anonymized identification number for each device within the
dataset over Austin. Our sample of the dataset captures 36,347
devices visiting 73,125 locations within Austin Texas in July
2020. Each data point has the device location and duration of
visit at the hour level. Though we do not have the physical
navigation information between locations, we assume that
infectious diseases transmit more at the individual locations
rather than in transit. We argue that this assumption is well
justified in the context of Austin where there is more travel
by vehicle (70%) than public transportation, bicycles, and
pedestrians combined [29]. With this Foursquare dataset, we
have access to individual trajectories and dwell times at POIs
where, for example, we know how many devices go from
location A to location B. With this path-like trajectory, we
know the foot traffic between any two POIs which serve as the
basis for the mobility network. Using the Foursquare dataset,
the resulting network contains 73,125 nodes ( i.e., all the POIs
captured) and 292500 spatial edges and 157,451 foot traffic
edges for a total of 449,951 edges. After the mobility data
is preprocessed into the network, we implement and tune the
SEIR COVID-19 simulation.



Fig. 5. Comparison between Austin’s county-level COVID-19 infections
in July 2020 versus the fitted SEIR simulated infections given Foursquare
mobility data. Both infections are scaled to both Austin population (965,872)
and Foursquare population (36,347).

B. COVID-19 Simulation

Using the SEIR model and equation 1 defined in the
approach, we find that β = 0.78 as the best fit for Austin’s
real COVID-19 infection curve in July 2020 (Figure 5).

To get a feel for the difference in magnitude between
exposures and transmission, we simulate an infection and then
plot the number of infectious POIs vs time in Figure 6. The
fluctuations within both signals have to do with varying hourly
population density inside the various POIs. We can see that
there is roughly a 5-to-1 relationship between venues with
exposure and venues with transmissions at the peak of the
outbreak (i.e., hour 300 where there are 500 venues containing
infectious people, yet only 100 people where transmission
occurred). Intuitively, if the population had access to a cur-
rent exposure notification framework, there would be a 5×
overestimation of risk according to the plot which could put
a strain on testing resources.

Fig. 6. Comparing the number of venues that have infectious people (orange)
versus time against the number of venues that have actual transmissions (blue).
Of note, there are over 73,000 total venues making this feature set very sparse
to train the graph neural networks.

After simulating COVID-19 and collecting the node fea-
tures, we train graph learning architectures and test the node
regression predictions.

C. Graph Learning

We utilize MSE as the evaluation metric for our graph
learning architectures defined in equation 3 where n is the
number of nodes in the mobility-spatial network, Yi is the
predicted risk of transmission, and Ŷi is the corresponding
baseline risk pulled from the same SEIR simulation run:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (3)

Because the dynamic nature of a mobile infectious popu-
lation, the number of infectious venues (Figure 6) fluctuates
over time, thus resulting in very sparse features. This means
that the training must take into account the sparsity of the
dataset where, on average, each SEIR simulation has 0.002%
of POIs containing infectious individuals and even less than
that spread the disease. To account for sparsity, we train and
test by using the MSE for non-zero POI nodes.

As seen in Figure 7, both architectures are similar in their
MSEs, which for non-zero risk of transmission is consistently
under 5%. Of note, we expect both MSEs fluctuate per hour
due to the dynamics of the underlying mobility features.

D. Prediction

To get a more granular feel for the difference between each
learning architecture, we visualize the predictions at the POIs
with the highest risk per hour shown in Figure 8. Of note,
two different POIs are named HEB which is a popular grocery
store franchise in Texas. In theory, a person who needs to shop
for groceries and prefers HEB can compare the hourly risk
of transmission and then choose which location to visit. We
notice that both graph architectures A and B predict roughly

Fig. 7. Mean Square Error for graph learning architecture A (blue line) that
includes Gated Graph convolution and architecture B that only uses SAGE
convolution. The models are trained on 21 days of mobility and COVID-19
simulation data to predict the next 6 days of risk of transmission.



Fig. 8. After training the GNNs on health features from 21 days of the COVID-19 SEIR simulation, they then predict the risk of transmission at POIs for
the next 7 days. Each plot represents a different POI where the GNN architectures A (Gated graph convolution) and B (SAGE convolution) output the risk
of transmission per hour. The calculated risk of transmission from the baseline SEIR COVID-19 simulation is shown in red. Of note, the GNN architecture
A overestimates the magnitude of risk, while B underestimates risk.

Fig. 9. (a) Risk of transmission at various POIs in Austin per day, per hour given by graph learning architecture A. (b) Baseline risk of transmission. Each
POI is represented by a point in the map. A blue point represents a POI with 0 risk of transmission, and the opacity of a red dot corresponds to the value of
risk (i.e., more red means a higher risk of transmission).



the same signal however the magnitude of risk prediction is
consistent overestimation in A and underestimation in B.

Given that more people stay safe when adhering to an
overestimation of risk per hour, we conclude that graph
architecture A (that contains a Gated Recurrent Unit graph
convolution layer) is the best suited for this node regression
problem. Though this risk prediction results in overestimation,
the social cost to a user is less severe than being told they were
recently exposed and must isolate until test results are reliable.
For example, a user can decide to delay their visit to an hour
with less risk or choose to go to a similar location with lower
risk all together.

We then perform a spatial-temporal visualization to in-
vestigate the difference between hourly risk of transmission
prediction compared to the baseline in Figure 9. The blue
nodes signify POIs with no risk of transmission, while the
non-blue points in varying shades of red and purple represent
the magnitude of transmission risk within the POI and hour.

E. Mitigation

After analyzing the graph learning architectures, we evaluate
the efficacy of an informed population by simulating an
intervention after the peak of an infection using mobility data
from Austin TX in the month of July 2020. We emphasize
the intervention after the peak in order to give a real-world
example where there is a lag between mobility data collection,
positive tests, and training the graph learning frameworks.
Given these constraints, we train between July 1st – July 21st

and then infer on the days of July 22nd – July 31st where,
by July 21st over 50% of the Foursquare population has been
either Infected, Incubating, or Recovered.

Once the Susceptible people get informed of the risk of
transmission predictions on July 22nd, they can choose to go

Fig. 10. Total infections (i.e., Incubating (I) + Infectious (I) + Recovered
(R)) vs time comparison between the baseline (Sim), and the altered behavior
from an informed population given risk of transmission estimations from graph
learning architecture A (orange) and B (green).

to a destination (POI) during an hour where there is no risk
of transmission or choose a similar destination. In Figure 10,
we compare the baseline SEIR COVID-19 simulation to the
inference produced by the graph learning architectures A and
B. When given the chance to avoid POIs with non-zero risk
of transmission, the simulated Foursquare population that has
more than 50% is able to reduce the outbreak by roughly 13%.

Though architecture A tends to overestimate the magnitude
of the risk transmission at locations (as seen earlier in Figure
8), it does not have a major advantage in reducing cases
over architecture B. The advantage of using architecture B
is that it is highly scalable and uses less runtime (from days
to hours) to process large graphs. However, we hypothesize
that when a real population has varying tolerance for risk of
transmission that the overestimation in A will lead to more
people avoiding POIs with high disease transmission and that
B will underestimate leading them to ignore the risk.

V. CONCLUSION

In this paper, we have formulated the highly granular
disease transmission risk assessment as a graph learning node
regression problem. We have utilized Foursquare mobility data
to create a foot traffic network between POIs and run an SEIR
infection model to gather features and calculate the risk of
transmission. We have trained two different graph convolution
strategies, namely Gated graph and SAGE and then compare
their MSE. Finally, we have provided a proof-of-concept by
allowing Susceptible people to avoid high risk POIs which
results in a 13% reduction of new cases even after the peak
of infection.

Though a 13% reduction seems small at the outset, we
note that there is already a large number of people who are
incubating and waiting to become infectious by the time an
intervention is implemented. Rather than encouraging sus-
ceptible people to stay at home when there is an infectious
outbreak surge (which is the current paradigm for exposure
notification applications), we are instead informing them of
POIs that can lead to real transmission.

In the real world, there would be a delay between those who
test positive and their time of visit; however, by using an SEIR
simulation, we can reduce uncertainty by knowing who got
infected after each visit. While this work targets COVID-19
like diseases, this framework can serve as a starting point for
other types of infectious diseases. We leave the back-tracing
for future work; however, we reinforce the need to accurately
capture the distinction between exposure and transmission at
a highly granular level so that the information is actionable.

As the COVID-19 pandemic enters the endemic stages, we
envision the exposure notification applications to extend to risk
analysis and prediction. Given this information, we hope that
human mobility can reorganize itself to be resilient against
infectious diseases without resorting to costly lock downs.
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