
MOHAWK: Mobility and Heterogeneity-Aware Dynamic Community Selection
for Hierarchical Federated Learning

ALLEN-JASMIN FARCAS, The University of Texas at Austin, USA

MYUNGJIN LEE, Cisco Systems, USA

RAMANA RAO KOMPELLA, Cisco Systems, USA

HUGO LATAPIE, Cisco Systems, USA

GUSTAVO DE VECIANA, The University of Texas at Austin, USA

RADU MARCULESCU, The University of Texas at Austin, USA

The recent developments in Federated Learning (FL) focus on optimizing the learning process for data, hardware, and model
heterogeneity. However, most approaches assume all devices are stationary, charging, and always connected to the Wi-Fi when
training on local data. We argue that when real devices move around, the FL process is negatively impacted and the device energy
spent for communication is increased. To mitigate such effects, we propose a dynamic community selection algorithm which improves
the communication energy efficiency and two new aggregation strategies that boost the learning performance in Hierarchical FL (HFL).
For real mobility traces, we show that compared to state-of-the-art HFL solutions, our approach is scalable, achieves better accuracy
on multiple datasets, converges up to 3.88× faster, and is significantly more energy efficient for both IID and non-IID scenarios.1

CCS Concepts: • Computing methodologies→Machine learning; Supervised learning; • Security and privacy;

Additional Key Words and Phrases: Federated Learning, Edge Devices, Data Heterogeneity, Data Privacy, Communication Cost, Energy
Efficiency, Mobile Devices, Internet-of-Things

ACM Reference Format:
Allen-Jasmin Farcas, Myungjin Lee, Ramana Rao Kompella, Hugo Latapie, Gustavo de Veciana, and Radu Marculescu. 2023. MOHAWK:
Mobility and Heterogeneity-Aware Dynamic Community Selection for Hierarchical Federated Learning. In International Conference on

Internet-of-Things Design and Implementation (IoTDI ’23), May 9–12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3576842.3582378

1 INTRODUCTION

Federated learning (FL) trains machine learning (ML) models using the local data available on edge devices and then
aggregates the updated local models in the cloud to obtain a global model. For instance, Federated Average (FedAvg) [23]
simply averages the updated local model parameters to obtain a new global model. Many improvements to the original
FedAvg algorithm [23] have been proposed to boost the learning in FL systems, e.g., FedProx [17], FedMax [5], FedNova
[28] to mention a few. Challenges like hardware, model, and data heterogeneity can negatively impact the learning
and communication in FL [16] since in real-world scenarios all types of heterogeneity appear naturally. In particular,
the impact on communication is the most important one [16, 20], especially since the edge devices may struggle to

1Code is available at: https://github.com/SLDGroup/MOHAWK

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
Manuscript submitted to ACM

https://doi.org/10.1145/3576842.3582378
https://github.com/SLDGroup/MOHAWK

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

1:00PM 2:00PM 3:00PM

100m

𝑨𝑷𝟐+
𝑨𝑷𝟑

Fig. 1. Our proposed MOHAWK framework selects at every time step dynamic communities of devices and their closest Access Point
(AP). Within 100m range of an AP the devices have Wi-Fi connection, otherwise LTE. Dynamic edge aggregation allows devices like
device C (at 2:00PM) that may disappear due to battery depletion to be reconsidered for learning the next time they appear, as long
as the global model from the cloud was not updated in the meantime. Selective global aggregation only aggregates in the cloud the
APs that aggregated at least one device since the last global aggregation (e.g., 𝐴𝑃2 and 𝐴𝑃3).

(a) (b) (c) (d)

Fig. 2. Uniform vs. real-world distribution of 37,994 Points of Interest (PoIs) where devices can be at in an urban area. (a) shows the
uniform distribution of the 37,994 PoIs, while (b) is the heatmap of the distribution in (a) showing how uniformly spread the PoIs are.
In contrast, (c) shows a real-world distribution of the PoIs and (d) is the heatmap of (c), showing how much non-uniformity there is,
with hundreds of PoIs in the Downtown area and barely any PoIs in the outskirts of the city.

communicate the trained model back and forth with the cloud. Additionally, hardware heterogeneity impacts the devices
communication with different connectivity technologies (e.g., Wi-Fi, 4G or 5G, etc.). Finally, real data distributions can
make the learning process harder to converge, hence requiring more communication rounds until a certain accuracy
threshold is reached. This induces an even bigger impact on communication as each participating device needs to
download and upload the local model multiple times.

Another line of work brings the computation even closer to the edge by using hierarchical FL to reduce the
communication overhead of FL. Hierarchical FL (HFL), first pioneered in [18], uses edge Access Points (APs) as
intermediary aggregation points before transmitting the edge models to the cloud for global aggregation. This enables
edge devices to use higher communication speeds with local APs (instead of communicating directly with the cloud).

Previous HFL solutions [1, 18] make every device communicate with the same pre-assigned AP during all communica-
tion rounds. This limiting assumption does not consider the physical distance between devices and its assigned AP, hence

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

it directly impacts the capacity and energy consumption spent in communication. Other HFL solutions consider the
distance between the device and the AP to select the AP [22], but ignore the real mobility patterns of the various devices
(i.e., devices are assumed to be stationary and uniformly distributed in a given area). Other HFL solutions consider
devices that can randomly change their current AP with one of their neighbors [7]. Such state-of-the-art approaches
consider that any AP has only two neighboring APs to which devices can randomly connect. This assumption is not
realistic since the APs can have any number of neighbors and the device mobility is not dictated by fixed probabilities,
but by human behavior.

Works such as [1] consider an area that is too small to be realistic (i.e., 750m×750m) for the deployment of edge
devices and APs. Even though the authors of [25] consider a larger area of 2km×2km, their focus is on simulated
mobility and fully cooperative learning. Even with such solutions, there are still important problems associated with
real device mobility that remain unaddressed. As mentioned in [20], the assumption that all data owners are willing to
participate in the FL process anytime and anywhere is not realistic. We illustrate in Fig. 1 how some device C starts
training at 1PM, has battery depleted at 2PM, and then becomes available again at 3PM. Due to the aforementioned
limitations, current methods would not consider device C for aggregation; however, in order for devices to be able to
learn anytime and anywhere, this is one of the first research questions that needs to be addressed.

Recent works consider a uniform distribution of locations the devices can be at, i.e., Points of Interest (PoIs), and
continuous availability of all participating devices in the FL process. However, this is not realistic since, as it can be
seen in Fig. 2, the real-world distribution of the PoIs looks nothing like a uniform distribution. The presence of hubs
can be seen especially in cities where Downtown and specific areas are more frequented by people. Having a realistic
experimental validation is thus crucial to get us closer to learning anytime and anywhere.

To address these limiting factors, we propose a Mobility and Heterogeneity-Aware Dynamic Community Selection
(MOHAWK) framework for Hierarchical Federated Learning that combines a dynamic community selection algorithm
with real device mobility under heterogeneous environments using two new aggregation techniques which are essential
for energy efficiency and scalability. As shown in Fig. 1, we provide a solution to adapt the learning process to missing
and reappearing devices (such as device C at 2PM) which we shall refer to as dynamic edge aggregation. We also propose
a selective global aggregation technique which only aggregates the model weights from the APs that aggregated any
devices since the last global aggregation. Our dynamic edge aggregation enables more devices to participate with their
local updates in the learning process, while the selective global aggregation results in a faster global convergence
and scales to any number of APs. Our solution enables devices to learn continuously during the day, whenever they
are available, spending less energy for communication, converging faster, and achieving better accuracy than other
state-of-the-art HFL solutions.

The contributions of the paper are as follows:

• Mobility and Heterogeneity-Aware Dynamic Community Selection (MOHAWK): A framework that
combines a dynamic community selection algorithm for energy-efficient communication in mobile FL systems
with two new aggregation strategies (i.e., dynamic edge aggregation and selective global aggregation) that boost
the learning performance under heterogeneous scenarios.
• Federated Learning using Real Devices Mobility: MOHAWK aims to include as many devices in the learning
process as possible, thus providing a more inclusive (i.e., fair) environment which guarantees that less energy
will be wasted on training models that are ultimately not aggregated. To the best of our knowledge, this paper is
the first to account for real devices mobility for FL.

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

• Empirical Validation: We show that MOHAWK converges up to 3.88× faster and is more scalable than
state-of-the-art HFL solutions on MNIST, EMNIST, CIFAR10 and CIFAR100, while being more energy efficient.
• A Hardware Prototype: We provide real energy measurements on a hardware prototype with 36 Raspberry
Pi devices that show up to 2.24× less average energy wasted per device for training local models compared to
state-of-the-art HFL solutions.

To summarize, we provide a new energy-efficient solution for HFL which considers real mobility and availability of
edge devices. The remainder of the paper is organized as follows: Section 2 discusses relevant prior work. In Section 3,
we present our proposed approach. Section 4 shows our experimental results (both simulation and hardware prototype),
while Section 5 summarizes our main contributions and outlines directions for future work.

2 RELATEDWORK

2.1 Hierarchical Federated Learning

HierFAVG [18] considers a scenario with 50 devices and 5 APs, optimistically assuming that at every communication
round every AP will handle exactly 5 devices. Looking at Fig. 2, this is a strong limitation. Abad et al. [1] consider
28 users uniformly distributed across a circular area with radius 750m; they fix 7 APs, each having 4 devices during
each communication round. No device mobility is considered, and the results are provided only for CIFAR10 under the
IID scenario with FedAvg used for aggregation. Hier-local-QSGD [19] is proposed for HFL with quantization using 20
clients and 4 edge servers, each server having 5 devices during each communication round. Hierarchical Federated Edge
Learning (HFEL) [22] addresses resource allocation optimization and edge association problem solving. The authors
consider up to 60 devices distributed randomly over a 500m x 500m area with up to 25 edge servers. However, HFEL
does not consider any device mobility and thus their solution is purely a resource allocation optimization. We call the
methods above stationary since all devices have a pre-assigned AP to communicate with. As mentioned in [2], the
methods proposed in [1, 22] are appealing for computation offloading, but have limited applicability in the context of
real mobile devices where there is almost no possibility to organize them.

Mobility-Aware Cluster FL (MACFL) [7] tries to relax the stationary scenario by allowing devices to move to a
neighboring AP based on a fixed probability, and assuming each AP has only two neighbors. MACFL also uses 50
devices and 5 APs for their experiments on MNIST, just like HierFAVG [18]. We call MACFL pseudo-mobile because it
allows some devices to change their APs, but has the same assumption as HierFAVG, i.e., all devices are available at
every communication round. In Federated Attentive Message Passing (FedAMP) [12], the authors propose a heuristic
version of FedAMP called HeurFedAMP which considers a self-attention hyperparameter to control the weight of each
message sent from a client to the cloud. This self-attention hyperparameter uses the cosine similarity between the local
model and the global model and adjusts the weight of the local model in the aggregation based on how different the
local model is from the global model. Inspired by HeurFedAMP, MACFL [7] uses the same attention scheme for every
device and edge aggregation to help the learning process with clients randomly changing their APs.

To address the limitations of stationary and pseudo-mobile state-of-the-art solutions, we are the first to consider real
mobility data for HFL together with realistic setups of devices and APs. Unlike [1, 7, 18, 19, 22], we do not assume that
all devices are available at every communication round, as they get disconnected due to issues like battery depletion or
temporary loss of signal.

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA
Ap

r 3
0

Ma
y

01

Ma
y

02

Ma
y

03

Ma
y

04

Ma
y

05

Ma
y

06

Ma
y

07

Ma
y

08

Ma
y

09

Ma
y

10

Ma
y

11

Ma
y

12

Ma
y

13

Ma
y

14

Ma
y

15

Ma
y

16

Ma
y

17

Ma
y

18

Ma
y

19

Ma
y

20

Ma
y

21

Ma
y

22

Ma
y

23

Ma
y

24

Ma
y

25

Ma
y

26

Ma
y

27

Ma
y

28

Ma
y

29

Ma
y

30

Ma
y

31

Ju
n

01

0

20

40

60

80

Nu
m

be
r o

f d
ev

ice
s a

va
ila

bl
e

Device availability
HierFAVG
MACFL
MOHAWK

Ap
r 3

0

Ma
y

01

Ma
y

02

Ma
y

03

Ma
y

04

Ma
y

05

Ma
y

06

Ma
y

07

Ma
y

08

Ma
y

09

Ma
y

10

Ma
y

11

Ma
y

12

Ma
y

13

Ma
y

14

Ma
y

15

Ma
y

16

Ma
y

17

Ma
y

18

Ma
y

19

Ma
y

20

Ma
y

21

Ma
y

22

Ma
y

23

Ma
y

24

Ma
y

25

Ma
y

26

Ma
y

27

Ma
y

28

Ma
y

29

Ma
y

30

Ma
y

31

Ju
n

01

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f d
ev

ice
s a

va
ila

bl
e Normalized device availability

HierFAVG
MACFL
MOHAWK

Fig. 3. Device availability and normalized device availability during the month of May 2020. We observe a clear increase in the
number of devices available for aggregation since our solution (i.e., the green line) is always on top, while other (state-of-the-art)
methods consider fewer devices for aggregation. Also, we note cases with no devices available (e.g., May 3, 4, 5, etc.).

2.2 Mobility Models and Scalability

Ochiai et al. [25] propose a fully distributed cooperative FL system organized by nodes that are physically nearby, i.e.,
nodes communicate with other nodes if they are within the radio range, thus producing opportunistic contacts for
learning. The authors of [25] simulate mobility using RandomWaypoint (RWP) mobility [3] and Community Structured
Environment (CSE) mobility [24]. In RWP the nodes are devices that walk around a given area, spending some time
at different locations, while in CSE the nodes are devices assumed to be part of a few communities and they move
from one community to another. For RWP, the authors in [25] use an area as large as 2km×2km and assume 100m
as the radio range for communication. Ochiai et al. also show in [25] that the large area for RWP requires a longer
time for more contacts among the nodes to obtain enough accuracy. Another realistic approach in [27] takes into
account the real-world vehicle trace dataset to create a FL system that considers the delay as a learning parameter, due
to high mobility of vehicles. The authors use the Mobile Century Dataset [9] which contains 77 vehicles and traces
approximately 20 miles of Interstate 880, but only 10 agents are selected during every communication round.

In contrast to [25], instead of using simulated mobility, we use the Foursquare real-mobility dataset [8]. We consider
the top 1,000 devices that appear most times during the month of May 2020 within the metropolitan area of interest
based on Foursquare data. The devices are smartphones associated with people moving around, e.g., walking or driving.
From these 1,000 devices for any given time step, there are about 76 devices present on the map, almost the same as the
total number of devices used by [27]; this shows the scalability of our work.

2.3 Hardware Validation

Real hardware experiments are rarely reported in the FL literature. For instance, Luo et al. [21] use 20 Raspberry Pi 4
and 10 NVIDIA Jetson Nano devices and measure the average computation and communication time, without power or
energy measurements. ClusterFL [26] uses a prototype built with 7 NVIDIA Jetson TX2 and 3 NVIDIA Jetson AGX to
evaluate the impact of dynamic network conditions concluding that the real-world 4G LTE has substantially lower

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

and more unstable bandwidth compared to Wi-Fi and Ethernet. Our proposed hardware prototype is equipped with 36
Raspberry Pi 3B+ devices, each of them having its own dedicated Smart Power 2 device to measure energy consumption.

3 METHODOLOGY

3.1 Device Availability and Distribution

Previous works [1, 7, 18, 19, 22] consider a uniform (random) distribution of devices that are always available for all their
experiments. However, as shown in Fig. 2, it is unrealistic to assume a uniform distribution of PoIs over the entire area of
interest. Besides considering unrealistically small areas of deployment (e.g., 500m×500m [22]), the uniform distribution
of devices also limits the usefulness of hierarchical approaches. We observe in all cities, a higher concentration of clients
and their devices in some areas (e.g., Downtown), and a sparser distribution of devices on the outskirts of a city. In
Fig. 2 we show 37,994 PoIs where users may go, e.g., McDonald’s, Starbucks, parks, shopping malls to name a few. We
consider all PoIs to be APs since all of them have at least one private Wi-Fi network available. So, it is natural when a
client goes to such a PoI to not rely on its own cellular data and connect to the Wi-Fi network available at that location.
Thus, for HFL we use dynamic connection between every device and its closest AP every time the device is available.

Device availability is also a big issue for FL systems, yet it is even less discussed in the literature. In Fig. 3, we show
the availability of the top 1,000 devices that appear most times during the month of May 2020 from a total of 12,866
devices. As it can be seen, we have the lowest number of devices active at night and peak numbers of active devices
during the afternoon. For both PoIs and device availability, we use data collected from Foursquare [8] over an area
of 17.5km×17.5km. Previous HFL solutions consider that, at any given time, all APs have a fixed number of devices
connected, i.e., all devices are available at any time. As seen in Fig. 3, from 1,000 devices, we may end up having at most
76 devices present at the same time: sometimes, we may not have any devices available at all. To enable HFL anytime
and anywhere, solutions should be robust to such dramatic variations in availability.

Since current FL solutions are oblivious to device availability issues, they typically aggregate at time 𝑡 + 1, all devices
that have been trained at 𝑡 , assuming they are all still available. However, not only that some particular devices may not
be present at 𝑡 + 1, but they may come back at a later time (e.g., 𝑡 + 2), case in which the device will not be considered
for aggregation. This implies such a device wastes energy training a model that is ultimately not used for aggregation.
We show in Section 4.4 how much energy is wasted on such devices that start training at time 𝑡 and do not aggregate
since they are not present at 𝑡 + 1, but reappear at some other future times. We alleviate this issue by considering for
edge aggregation all devices that started training since the last global aggregation.

In Fig. 3, we show how our solution considers up to 39.78% more devices than state-of-the-art solutions. For the
normalized device availability, we consider 1.0 as the maximum number of devices available for aggregation at every
time. We note that quite a few times all the plot lines go to zero, denoting times when no device out of a total of 1,000
devices considered is actually available.

3.2 Communication Model

Recent findings in [29] show that even in 2022, traditional technologies like 4G LTE and Wi-Fi 4/5 are still used by the
majority of mobile users due to their more mature deployment and stable performance. This is why we use for modeling
the power characteristics of LTE and Wi-Fi taken from [11]. The data transfer power model (best fit) parameters from
[11] are summarized in Table 1. Assuming the upload throughput is 𝑡𝑢 [Mbps] and the download throughput is 𝑡𝑑
[Mbps], we have the power level [mW] for upload as 𝑃𝑢 = 𝛼𝑢𝑡𝑢 + 𝛽 and for download 𝑃𝑑 = 𝛼𝑑𝑡𝑑 + 𝛽 (as shown in

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

Table 1. Data transfer power model parameters [11].

Connection type 𝛼𝑢 [mW/Mbps] 𝛼𝑑 [mW/Mbps] 𝛽 [mW]

LTE 438.39 51.97 1288.04
Wi-Fi 283.17 137.01 132.86

Table 2. 4G LTE per user throughput ranges for different carriers [4]. We consider a mixed range from all carriers.

Carrier Verizon T-Mobile AT&T Sprint 𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥

𝑡𝑢 [Mbps] 15 16-17 11-12 7-8 7 17
𝑡𝑑 [Mbps] 36 23-24 25-26 12-30 12 36

[11]), where 𝛼𝑢 and 𝛼𝑑 are the power model parameters and 𝛽 is the base power when throughput is 0 (see Table 1).
Considering 𝜇 the model size [Mb] and Δ𝑐𝑜𝑚𝑚 [Mb] the extra bits required for communication using the FL framework,
we compute the total communication energy [mJ] for a device as in Eq. 1 for a complete communication round, i.e.,
when the device receives the model and uploads the updated model back to the AP:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑢 ∗ (𝜇 + Δ𝑐𝑜𝑚𝑚)/𝑡𝑢 + 𝑃𝑑 ∗ (𝜇 + Δ𝑐𝑜𝑚𝑚)/𝑡𝑑 (1)

Due to availability variations, a device may only download the model at time 𝑡 and upload it at a later time 𝑡 + 𝜆 when
it becomes available again. The total energy spent for communication at time 𝑡 is 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑑 ∗ (𝜇 + Δ𝑐𝑜𝑚𝑚)/𝑡𝑑 when
the device only downloads the global model, while it becomes 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑢 ∗ (𝜇 + Δ𝑐𝑜𝑚𝑚)/𝑡𝑢 at time 𝑡 + 𝜆 when the
device is only uploading the local model.

For realistic LTE connection throughputs, we consider the popular mobile carriers for their upload and download
speeds, as summarized in Table 2. To set the minimum and maximum 𝑡𝑢 and 𝑡𝑑 , we consider the distance 𝛿𝑖, 𝑗 between
an AP 𝑖 and a device 𝑗 . Given a random selection of 100 APs, we compute for the entire month of May 2020, the mean
𝛿𝑚𝑒𝑎𝑛 and standard deviation 𝛿𝑠𝑡𝑑 distance between all devices and their selected APs. If a device is further than 100m
from its AP, we select 𝑡𝑑 and 𝑡𝑢 based on Eq.2, where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are taken from Table 2:

𝑡𝑑 , 𝑡𝑢 =


𝑡𝑚𝑎𝑥 if 𝛿𝑖, 𝑗 < 𝛿𝑚𝑒𝑎𝑛 − 𝛿𝑠𝑡𝑑
𝑡𝑚𝑖𝑛 if 𝛿𝑖, 𝑗 > 𝛿𝑚𝑒𝑎𝑛 + 𝛿𝑠𝑡𝑑
𝑚𝑎𝑝 (𝛿𝑖, 𝑗 ; 𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛) otherwise

(2)

where𝑚𝑎𝑝 : [𝛿𝑚𝑒𝑎𝑛 − 𝛿𝑠𝑡𝑑 , 𝛿𝑚𝑒𝑎𝑛 + 𝛿𝑠𝑡𝑑] → [𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛] is a function that maps linearly the distances within the range
of 𝛿𝑚𝑒𝑎𝑛 ±𝛿𝑠𝑡𝑑 to the throughput speeds [𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛]. If a device is within 100m of its selected AP, we use a Wi-Fi speed
of 𝑡𝑢 = 𝑡𝑑 = 1000 [Mbps]. We use the communication model during simulation to compute the energy consumption for
communication (see Section 4.2).

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

Fig. 4. Sequence diagram showing the device-AP-cloud communication, with 𝑘1 local epochs, 𝑘2 = 2 dynamic edge aggregations, and
one selective global aggregation at different time steps.

3.3 MOHAWK Framework

In FL, we want to solve an optimization problem of the form:

min
𝜔

𝑓 (𝜔) = 1
|D|

|D |∑︁
𝑖=1

𝑓𝑖 (𝜔, 𝐷𝑖) (3)

where 𝑓𝑖 is the loss function of device 𝑖 evaluated on the local dataset 𝐷𝑖 , D is the set that contains all devices and | · |
denotes the number of elements of a set.

We solve the optimization problem in Eq. 3 over time. We show in Fig. 4 how the main steps of MOHAWK are
performed at different time steps. We assume that device 𝑖 selects AP 𝛼 at time 𝑡 = 0. The first step is to download the
global model weights 𝜔 from the cloud on AP 𝛼 . Then, the AP model weights (at time 𝑡 = 0) denoted by 𝜔𝛼 (𝑡 = 0) are
downloaded by the device 𝑖 connected to AP 𝛼 . The device 𝑖 performs 𝑘1 local epochs of stochastic gradient descent
(SGD) on its local dataset. We assume the time it takes edge devices to train a model takes much longer than the
communication of the model between the devices, APs, and the cloud. At 𝑡 = 1 we assume device 𝑖 selects the same AP
𝛼 . Then, device 𝑖 sends to AP 𝛼 the updated local model weights 𝜔𝑖 at the next time step 𝑡 = 1. The AP then performs
one dynamic edge aggregation to update its own weights and then sends the updated weights 𝜔𝛼 (𝑡 = 1) to device 𝑖 .
The device 𝑖 performs again 𝑘1 local epochs of SGD. At the next time step 𝑡 = 2, the AP receives the updated local
weights 𝜔𝑖 and performs another dynamic edge aggregation, i.e., 𝑘2 = 2. Since 𝑘2 = 2, the AP 𝛼 sends the updated
model to the cloud for a selective global aggregation. The cloud sends the updated global model weights 𝜔 back to AP
𝛼 , which sends the updated AP model weights 𝜔𝛼 (𝑡 = 2) to device 𝑖 and then the process repeats itself.

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

Algorithm 1 Mobility and Hardware-Aware Dynamic Community Selection (MOHAWK)

1: Initialize global weights 𝜔 with random weights and download them on all APs 𝜔𝛼 ← 𝜔,∀𝛼 ∈ A
2: Initialize time 𝑡 = 0, set of APs for aggregation A = ∅ and set of devices that trained 𝑇𝑟 = ∅
3: for communication round 𝑐 = 1, 2,..., 𝐶 do
4: for each device 𝑖 ∈ D(𝑡) in parallel do ⊲ For every device 𝑖 available at time 𝑡
5: if 𝑐 == 1 then
6: Select 𝛼𝑖 using Eq. 4 ⊲ Dynamic community selection
7: end if
8: Download model 𝜔𝛼𝑖 (𝑡) from AP 𝛼𝑖
9: 𝜔𝑖 ← Train(𝜔𝛼𝑖 , 𝑘1) ⊲ Train for 𝑘1 local epochs
10: end for
11: 𝑇𝑟 = 𝑇𝑟 ∪ D(𝑡) ⊲ Save devices available at time 𝑡 as trained, but not aggregated
12: 𝑆𝛼 = ∅,∀𝛼 ∈ A
13: 𝑡 = 𝑡 + 1 ⊲ Proceed to the new time step 𝑡 + 1
14: for each device 𝑖 ∈ D(𝑡) in parallel do ⊲ For every device 𝑖 available at the new time 𝑡
15: Select 𝛼𝑖 using Eq. 4 ⊲ Dynamic community selection
16: 𝑆𝛼𝑖 = 𝑆𝛼𝑖 ∪ 𝑖 ⊲ Save device 𝑖 to aggregate at its selected AP 𝛼𝑖
17: A = A ∪ 𝛼𝑖 ⊲ Save all APs that have devices to aggregate
18: end for
19: for each 𝛼 ∈ A in parallel do
20: if 𝛼 ∈ A then
21: 𝜔𝛼 (𝑡) = ∑

𝑖∈𝑇𝑟
𝑖∈𝑆𝛼

𝑝𝛼
𝑖
𝜔𝑖 ⊲ Dynamic edge aggregation

22: 𝑇𝑟 = 𝑇𝑟 \ 𝑆𝛼 ⊲ Remove all aggregated devices 𝑖 from 𝑇𝑟

23: else
24: 𝜔𝛼 (𝑡) ← 𝜔𝛼 (𝑡 − 1) ⊲ Save the AP model weights
25: end if
26: end for
27: if 𝑐 mod 𝑘2 = 0 then
28: 𝜔 =

∑
𝛼∈A

𝑞𝛼𝜔𝛼 (𝑡) ⊲ Selective global aggregation

29: A = ∅, 𝑇𝑟 = ∅
30: 𝜔𝛼 (𝑡) ← 𝜔,∀𝛼 ∈ A ⊲ Download global model on all APs
31: end if
32: end for

Dynamic Community Selection At every time 𝑡 , we have only a subset of devicesD(𝑡) ⊂ D available; due to real device
mobility and availability, we have |D(𝑡) | ≪ |D|. Thus, we need to adapt the AP selection process to work dynamically
for all APs 𝛼 ∈ A, where A is the set containing all APs. As seen in Line 6 in Alg. 1, the first communication round
begins with the dynamic community selection for each available device 𝑖 ∈ D(𝑡) by solving the following optimization
problem:

𝛼𝑖 = argmin
𝛼∈A

d(𝛼, 𝑖) (4)

where 𝑑 (𝛼, 𝑖) =
√︃
(𝛼𝑥 − 𝑖𝑥)2 + (𝛼𝑦 − 𝑖𝑦)2 is the Euclidean distance between AP 𝛼 and device 𝑖 , and 𝛼𝑖 is the selected AP

for device 𝑖 . We denote with 𝑆𝛼 the set of all devices connected at AP 𝛼 . Except the first communication round, at each
new time step (Line 13 in Alg. 1), we perform for the available devices the dynamic community selection based on Eq. 4

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

(see Line 15 in Alg. 1). In other words, at every time step, each device selects its closest AP. This selection is performed
locally on the device with the location of nearby APs known beforehand, since APs are assumed to be at fixed locations.
Dynamic Edge Aggregation Another implication of having D(𝑡) devices available at time step 𝑡 is that we may have
D(𝑡 − 1) ∩D(𝑡) = ∅, thus the problem of how to perform edge aggregations in this context arises. We propose dynamic

edge aggregation, which allows devices that started training their model at time 𝑡 to aggregate their updates when they
become available again, at 𝑡 +𝜆, if only edge aggregations were performed during the time 𝜆 that has passed. Simply put,
when a device becomes available, it selects an AP and that AP receives the last communication round when the device
was available, i.e., the last communication round during which the device received a model for local training. If this
communication round occurred before a global aggregation, then the AP will consider the local model for dynamic edge
aggregation. We implement the dynamic edge aggregation using a set 𝑇𝑟 which contains all devices that have started
training since the last global aggregation (Line 11 in Alg. 1). Thus, we perform dynamic edge aggregation as follows:

𝜔𝛼 (𝑡) =
∑︁
𝑖∈𝑇𝑟
𝑖∈𝑆𝛼

𝑝𝛼𝑖 𝜔𝑖 , where 𝑝𝛼𝑖 =
𝑒−𝜎 cos(𝜔𝛼 (𝑡−1) , 𝜔𝑖)∑

𝑖∈𝑆𝛼
𝑒−𝜎 cos(𝜔𝛼 (𝑡−1) , 𝜔𝑖)

(5)

where 𝜎 is a hyperparameter and cos(𝑥,𝑦) = <𝑥,𝑦>

| |𝑥 | |2 | |𝑦 | |2 is the cosine similarity function. Inspired by FedAMP [12], we
use a weighting based on the cosine similarity function to better address the mobile nature of the devices which may
lead them to change the AP they connect to at every communication round they are available, see [7]. After a device 𝑖
gets aggregated, it is removed from 𝑇𝑟 (Line 22 in Alg. 1) and 𝑇𝑟 gets reset every global aggregation (Line 29 in Alg. 1).
Selective Global Aggregation Finally, the device availability issue propagates to the AP level, since some APs, at certain
time steps may not have any devices to aggregate; hence, we ask how we can perform the global aggregation in such a
scenario. Since some APs will not have any update for the cloud, it makes sense to not aggregate them, preventing any
communication with the cloud and thus saving energy and capacity for communication. We name this aggregation
strategy selective global aggregation and we implement it using the subset of APs A ⊆ A that performed at least one
edge aggregation since the last global aggregation. We perform a selective global aggregation after 𝑘2 dynamic edge
aggregations. In Line 17 from Alg. 1, we save the APs that will be aggregated in the cloud, while in Line 28 we perform
the selective global aggregation as follows:

𝜔 =
∑︁
𝛼∈A

𝑞𝛼𝜔𝛼 (𝑡), where 𝑞𝛼 =
𝑒−𝜎 cos(𝜔 , 𝜔𝛼 (𝑡))∑

𝛼∈A
𝑒−𝜎 cos(𝜔 , 𝜔𝛼 (𝑡)) (6)

where𝜔 are the global model weights, 𝜎 is the same hyperparameter from Eq. 5, and 𝑐𝑜𝑠 is the cosine similarity function.
Some APs (e.g., from a dense area such as Downtown) may have aggregated many devices, while others may have
aggregated very few devices. In order to not diverge too far from the global model, we weight the contributions of each
AP based on the cosine similarity with the current global model weights. The cloud requests from all APs their updates,
but, in the end, only the APs that performed at least one dynamic edge aggregation will actually send their updated
models to the cloud for aggregation.

To summarize, we start with dynamic community selection and local training for 𝑘1 local epochs. Then, we go to the
next time step 𝑡 + 1, and since all devices changed their position and/or availability, we perform dynamic community
selection for the available devices. On their newly selected APS, we run dynamic edge aggregation. We repeat this
process 𝑘2 times. Finally, we perform selective global aggregation with the APs that did at least one dynamic edge
aggregation since the last selective global aggregation and send the updated global model to all APs 𝛼 .

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

We perform experiments using the Foursquare dataset [8] for the entire month of May 2020. Time 𝑡 starts at May
1𝑠𝑡 2020, 12:00AM UTC and ends at May 31𝑠𝑡 2020 11:00PM UTC; we consider every hour from the month of May,
summing up to 744 total time steps, thus having 744 communication rounds in total (i.e., 31 days, each with 24 hours).
We consider the difference between two consecutive time steps 𝑡 and 𝑡 + 1 to be 1 hour. From 12,866 available devices,
we select the top 1,000 that appear most times and from 37,994 APs we randomly select only 100 APs. We run each
experiment three times with different seeds and report average values. All experiments are run using two GPU servers
with 4×A6000 GPUs, 64 core AMD Threadripper PRO 3995WX CPU and 512GB RAM each. On each device, we use a
simple convolutional model composed of one convolutional layer with 32 filters and MaxPooling, two convolutional
blocks, each with two convolutional layers with 64 filters followed by MaxPooling and, finally, a fully connected layer
with 512 neurons.

We use both independent and identically distributed (IID) and non-IID settings, similar to [10, 15], by controlling the
𝛼 parameter from the Dirichlet distribution. We set 𝛼 = 100 for the IID scenario and 𝛼 = 0.1 for the non-IID scenario.
We randomly sample from each class the number of images dictated by the Dirichlet distribution. Similar to [10, 15],
we use 500 images per device for MNIST [14], CIFAR10 [13] and EMNIST [6] and we use 2500 images per device for
CIFAR100 [13]. This enables in the IID case around 50 images per class for MNIST and CIFAR10, around 8 images per
class for EMNIST and approximately 25 images per class for CIFAR100.

For HierFAVG, we consider (for all time steps) the same device-AP configuration, i.e., we fix all devices with a
pre-assigned AP. This forces every device to connect only to its pre-assigned AP irrespective of the distance between
them (just as in [18]). For MACFL, at every time step, a device has a 50% probability of moving to one of the “neighboring”
APs. We create a neighborhood of APs to match the setup from [7]. We connect𝐴𝑃𝑖 to𝐴𝑃𝑖±1 such that every AP has two
neighbors. Since APs are randomly selected for three different runs from approximatively 37,994 possibilities, 𝐴𝑃𝑖 could
end up very far from𝐴𝑃𝑖±1. Since MACFL does not consider the real distance between the APs, the “virtual” assignment
of APs is indeed matching the experimental setup provided in [7]. We consider the following hyperparameter values:
𝜎 = 0.1 (from Eq. 5 and Eq. 6) and learning rate 0.01. Following some ablation studies discussed in Section 4.3, we
choose batch size 8 and 𝑘1 = 5 for all experiments.

4.2 Empirical Results

Learning performance. The design choices of MOHAWK make our method better than other state-of-the-art HFL
approaches. As shown in Table 3, for all four datasets running HFL (every hour for an entire month) we achieve very
similar accuracy values for MNIST and better accuracy for all other datasets. We observe in some cases that the drop
between IID and non-IID scenarios is smaller for MOHAWK than for HierFAVG or MACFL. For CIFAR10 and 𝑘2 = 2,
the drop in accuracy between IID and non-IID for HierFAVG is 7.89%, for MACFL is 7.73%, while for MOHAWK is only
4.77%. This shows that MOHAWK has a better robustness against data heterogeneity. In our experiments, we observe
that, for the same hyperparameters, when we increase 𝑘2, the performance degrades for both baselines and MOHAWK.
This confirms that even for real mobility and availability of devices, the findings from [7, 18] still hold: frequent edge
aggregations (e.g., 𝑘2 = 2) are beneficial to the learning performance in HFL.

In Table 4, we show how much faster MOHAWK converges to a certain accuracy threshold when compared to the
baselines. As highlighted in Table 4, for any given 𝑘2 values MOHAWK manages to speedup convergence at least

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

Table 3. Accuracies for IID and non-IID settings. MOHAWK obtains very similar or higher accuracy values in both settings.

Dataset IID (𝛼 = 100) Non-IID (𝛼 = 0.1)
𝑘2 2 5 10 2 5 10

MNIST
HierFAVG 99.12 ± 0.02 99.08 ± 0.09 99.06 ± 0.0 98.7 ± 0.04 98.69 ± 0.07 98.58 ± 0.03
MACFL 99.12 ± 0.06 99.14 ± 0.01 99.16 ± 0.02 98.73 ± 0.08 98.72 ± 0.05 98.72 ± 0.03

MOHAWK 99.13 ± 0.06 99.17 ± 0.06 99.13 ± 0.0 99.15 ± 0.01 99.02 ± 0.06 98.88 ± 0.06

EMNIST
HierFAVG 78.45 ± 0.16 78.26 ± 0.21 76.66 ± 0.48 77.07 ± 0.24 78.12 ± 0.23 76.6 ± 0.45
MACFL 78.45 ± 0.033 78.5 ± 0.19 76.99 ± 0.47 77.43 ± 0.39 78.44 ± 0.24 76.98 ± 0.46

MOHAWK 78.76 ± 0.22 78.81 ± 0.22 78.02 ± 0.64 78.17 ± 0.24 78.64 ± 0.17 77.75 ± 0.4

CIFAR10
HierFAVG 72.65 ± 0.61 69.69 ± 3.27 71.81 ± 0.44 67.09 ± 2.85 64.08 ± 0.12 63.28 ± 0.18
MACFL 72.93 ± 0.58 72.91 ± 0.5 5 72.65 ± 0.53 65.36 ± 0.23 65.02 ± 0.33 64.65 ± 0.52

MOHAWK 78.69 ± 0.71 77.36 ± 0.62 75.8 ± 0.7 74.09 ± 0.66 70.82 ± 0.4 68.55 ± 0.76

CIFAR100
HierFAVG 46.13 ± 0.25 45.74 ± 0.98 46.36 ± 0.73 45.67 ± 0.91 45.94 ± 0.37 45.88 ± 0.26
MACFL 46.5 ± 0.07 46.61 ± 0.62 47.14 ± 0.5 46.19 ± 0.62 45.9 ± 0.23 46.67 ± 0.69

MOHAWK 46.81 ± 0.66 47.27 ± 1.00 47.55 ± 0.52 46.52 ± 0.32 47.16 ± 0.42 47.79 ± 0.56

Table 4. Number of communication rounds required to achieve a threshold accuracy (Acc. thresh.) for both IID and non-IID settings.
Overall, MOHAWK uses up to 3.88× less communication rounds.

Dataset IID (𝛼 = 100) Non-IID (𝛼 = 0.1)
𝑘2 2 5 10 2 5 10

MNIST
Acc. thresh. 97%

HierFAVG 46 50 70 162 185 210
MACFL 42 45 50 142 165 180

MOHAWK 12 20 30 40 75 110
Avg. improvement 3.67× 2.38× 2× 3.8× 2.33× 1.77×

EMNIST
Acc. thresh. 75%

HierFAVG 162 190 455 338 200 470
MACFL 150 165 335 330 170 410

MOHAWK 44 85 160 118 145 210
Avg. improvement 3.55× 2.09× 2.47× 2.83× 1.28× 2.1×

CIFAR10
Acc. thresh. 60%

HierFAVG 212 288 220 358 500 530
MACFL 192 210 210 428 455 510

MOHAWK 52 100 150 138 240 330
Avg. improvement 3.88× 2.49× 1.43× 2.85× 1.99× 1.58×

CIFAR100
Acc. thresh. 45%

HierFAVG 502 605 500 614 590 620
MACFL 422 455 390 524 595 520

MOHAWK 142 215 280 214 330 360
Avg. improvement 3.25× 2.47× 1.59× 2.66× 1.8× 1.58×

by 1.43× and up to 3.88×. The reason for such good convergence rates against state-of-the-art HFL solutions is the
adaptation to real mobility and availability. By using dynamic edge aggregation and selective global aggregation,
MOHAWK has the upper hand in every scenario. This also shows how real-world mobility and availability of devices
impacts the current state-of-the-art HFL. Thus, we show the importance and need for mobility-aware HFL solutions
like MOHAWK.

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

0 200 400 600
Communication round

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

MNIST IID k2=5
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40

60
70
80
90

Ac
cu

ra
cy

 [%
]

EMNIST IID k2=5

HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

CIFAR10 IID k2=5

HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40
50
60

Ac
cu

ra
cy

 [%
]

CIFAR100 IID k2=5

HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

MNIST Non-IID k2=5
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40

60
70
80
90

Ac
cu

ra
cy

 [%
]

EMNIST Non-IID k2=5

HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

CIFAR10 Non-IID k2=5

HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

20

40
50
60

Ac
cu

ra
cy

 [%
]

CIFAR100 Non-IID k2=5

HierFAVG
MACFL
MOHAWK

Fig. 5. Accuracy results using IID and non-IID settings for 𝑘2 = 5. MOHAWK converges faster and obtains a higher accuracy value in
both IID and non-IID scenarios, for all datasets.

0 200 400 600
Communication round

10 1

100

Lo
ss

MNIST IID k2=2
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

10 1

100

Lo
ss

MNIST Non-IID k2=2
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

1

2

3

4

5

Lo
ss

CIFAR10 IID k2=2
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

1

2

3

4

5

Lo
ss

CIFAR10 Non-IID k2=2
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

10 1

100

Lo
ss

MNIST IID k2=5
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

10 1

100

Lo
ss

MNIST Non-IID k2=5
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

1

2

3

4

5

Lo
ss

CIFAR10 IID k2=5
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

1

2

3

4

5
Lo

ss
CIFAR10 Non-IID k2=5

HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

10 1

100

Lo
ss

MNIST IID k2=10
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

10 1

100

Lo
ss

MNIST Non-IID k2=10
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

1

2

3

4

5

Lo
ss

CIFAR10 IID k2=10
HierFAVG
MACFL
MOHAWK

0 200 400 600
Communication round

1

2

3

4

5

Lo
ss

CIFAR10 Non-IID k2=10
HierFAVG
MACFL
MOHAWK

Fig. 6. Global test loss for MOHAWK and various baselines. We observe that for very small 𝑘2 values, i.e., 𝑘2 = 2, the global test loss
may have a bigger variability since the number of aggregated APs is very low. The baselines aggregate all 100APs, even those that did
not train at all, at the expense of a slower, but more stable convergence.

In Fig. 5, we show the global test accuracy for both IID and non-IID scenarios (𝑘2 = 5 for all datasets). Overall, we can
see higher accuracy levels and faster convergence over all datasets and data heterogeneity scenarios. In Fig. 6, for all 𝑘2

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

Table 5. Number of devices available at every time step and the average distance between devices and their selected APs. MOHAWK
improves the device-AP distance by 7.74×, while including up to 39.78% more devices in the learning process.

Metric 𝑘2 HierFAVG MACFL MOHAWK Avg. Improv.

Avg. number of devices
available at every time step

2 15 15 18 +12.84%
5 15 15 22 +29.69%
10 15 15 26 +39.78%

Avg. distance [km] - 7.08 ± 3.92 7.01 ± 3.83 0.91 ± 0.75 7.74×

Table 6. Average energy spent for communication per client to achieve a certain accuracy threshold on MNIST and CIFAR10 (in
simulation) for both IID and non-IID settings. Overall, MOHAWK uses up to 3.87× less energy for communication to achieve a given
accuracy threshold, i.e., 97% for MNIST and 60% for CIFAR10.

Dataset Data type Model 𝑘2
2 5 10

MNIST
Acc. thresh. 97%

IID
(𝛼 = 100)

HierFAVG 602.97 ± 3.23 J 654.56 ± 3.72 J 892.31 ± 3.84 J
MACFL 575.13 ± 1.8 J 588.46 ± 1.9 J 653.37 ± 2.74 J

MOHAWK 152.41 ± 2.91 J 263.47 ± 2.83 J 389.22 ± 4.11 J
Avg. improvement 3.86× 2.36× 1.99×

CIFAR10
Acc. thresh. 60%

IID
(𝛼 = 100)

HierFAVG 2,659.61 ± 21.07 J 3,606.83 ± 25.54 J 2,764.25 ± 22.0 J
MACFL 2,416.3 ± 8.79 J 2,629.54 ± 8.29 J 2,629.54 ± 8.29 J

MOHAWK 655.16 ± 6.13 J 1,250.28 ± 13.19 J 1,881.72 ± 17.53 J
Avg. improvement 3.87× 2.49× 1.43×

MNIST
Acc. thresh. 97%

Non-IID
(𝛼 = 0.1)

HierFAVG 2,051.28 ± 18.4 J 2,330.4 ± 19.64 J 2,633.58 ± 21.17 J
MACFL 1,787.82 ± 4.53 J 2,087.03 ± 7.42 J 2,259.74 ± 8.49 J

MOHAWK 502.73 ± 5.44 J 943.85 ± 8.53 J 1,374.2 ± 12.45 J
Avg. improvement 3.82× 2.34× 1.78×

CIFAR10
Acc. thresh. 60%

Non-IID
(𝛼 = 0.1)

HierFAVG 4,461.25 ± 34.07 J 6,242.22 ± 43.11 J 6,629.33 ± 44.98 J
MACFL 5,325.98 ± 11.64 J 5,665.64 ± 12.3 J 6,356.33 ± 7.43 J

MOHAWK 1,704.53 ± 16.8 J 2,974.56 ± 29.87 J 4,143.05 ± 37.7 J
Avg. improvement 2.87× 2× 1.57×

values and data heterogeneity scenarios, we show the global test loss for MNIST and CIFAR10. We observe that for very
small 𝑘2 values there is more variability in the global test loss for MOHAWK due to the selective global aggregation.
Since at night there are very few to no devices available, we aggregate just a few devices and then update the global
model based on a small number of APs (since only a few of them do edge aggregations). This issue disappears with
higher 𝑘2 values since we allow more time for APs to perform edge aggregations (and hence, be considered for the
selective global aggregation). The faster convergence due to the selective aggregation is also clearly visible for all 𝑘2
values in Fig. 6.

Communication efficiency. For simulation, we estimate the energy consumption for communication using the
models described in Section 3.2. In Table 5, we observe the increase in device availability compared to existing methods.
When real-world mobility and device availability are present, our dynamic edge aggregation considers up to 39.78%
more devices for aggregation (𝑘2 = 10). We can also see the dynamic community selection reduces the average distance

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

0 200 400 600
Energy for communication [Joules]

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

MNIST IID k2=5

HierFAVG
MACFL
MOHAWK

0 1000 2000 3000
Energy for communication [Joules]

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

CIFAR10 IID k2=5

HierFAVG
MACFL
MOHAWK

0 500 1000 1500
Energy for communication [Joules]

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

MNIST Non-IID k2=2

HierFAVG
MACFL
MOHAWK

0 500 1000 1500 2000
Energy for communication [Joules]

20

40

60

80
90

100
Ac

cu
ra

cy
 [%

]
MNIST Non-IID k2=5

HierFAVG
MACFL
MOHAWK

0 2000 4000 6000
Energy for communication [Joules]

20

40

60

80
90

100

Ac
cu

ra
cy

 [%
]

CIFAR10 Non-IID k2=5

HierFAVG
MACFL
MOHAWK

Fig. 7. Average energy spent for communication [Joules] until reaching an accuracy threshold of 97% on MNIST and 60% on CIFAR10,
with different 𝑘2 values under data heterogeneity constraints. For MNIST, IID with 𝑘2 = 2, MOHAWK achieves the required accuracy
threshold A using up to 3.87× less energy for communication compared to the baselines B and C. Similar considerations for CIFAR10
IID (D) and non-IID (E).

Table 7. Ablation study for MOHAWK accuracy [%] using different batch sizes for 𝑘1 = 1 and 𝑘2 = 5. We observe that the best results
over all datasets are for batch size 8.

IID (𝛼 = 100) Non-IID (𝛼 = 0.1)
Batch size 64 32 16 8 64 32 16 8

MNIST 98.49 98.85 98.86 99.08 97.88 98.41 98.7 98.89
EMNIST 75.70 76.56 78.83 79.46 72.71 74.78 76.83 77.84
CIFAR10 50.67 64.93 68.88 60.7 44.55 47.95 52.13 55.88
CIFAR100 15.68 17.5 19.69 22.06 16.46 18.76 23.4 26.48

between APs and the devices that connect to them by 7.74×. This forms communities of tightly grouped devices and their
AP, thus allowing for faster communication between them. As it can be seen in Table 6, compared to state-of-the-art HFL
solutions, MOHAWK improves the communication efficiency for HFL under mobile and heterogeneous environments by
up to 3.87×. In Fig. 7, we show that to achieve a given accuracy threshold, the amount of energy spent for communication
is drastically reduced (up to 3.87×) compared to current state-of-the-art approaches.

4.3 Ablation studies

Batch size variation. We perform an ablation study with 𝑘2 = 5 to determine the best batch size to run MOHAWK
with. For this, we fix 𝑘1 = 1 to run the ablation experiments faster. We evaluate four different batch sizes on all datasets.
As can be seen in Table 7, the best batch size by far, for all datasets, is the batch size of 8.

Variation of 𝑘1 and 𝑘2. Using 𝑘1 = 1 results in lower accuracies for CIFAR10 and CIFAR100 so we followed up with
another ablation study. We explore for MNIST and CIFAR10 different 𝑘1 local epochs and 𝑘2 dynamic edge aggregations
to see which values work better. The jump in accuracy improvement from 𝑘1 = 1 to 𝑘1 = 5 proves to be much larger
than the jump in accuracy between 𝑘1 = 5 and 𝑘1 = 10 (see Table 8). Since we consider real edge devices and the local

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

Table 8. Ablation study for MOHAWK accuracy [%] using different 𝑘1 and 𝑘2 values with batch size 64. We observe a big jump in
accuracy from 𝑘1 = 1 to 𝑘1 = 5, hence we use 𝑘1 = 5 in the main experiments for both MNIST and CIFAR10.

Dataset IID (𝛼 = 100) Non-IID (𝛼 = 0.1)
𝑘2 2 5 10 2 5 10

MNIST
𝑘1 = 1 98.74 98.49 98.32 98.4 97.9 97.45
𝑘1 = 5 98.86 98.83 98.91 98.69 98.45 98.35
𝑘1 = 10 98.91 98.79 98.69 98.75 98.44 98.39

CIFAR10
𝑘1 = 1 55.43 50.67 48.24 49.86 44.55 41.31
𝑘1 = 5 73.76 68.36 64.97 64.22 57.62 53.85
𝑘1 = 10 76.74 74.29 71.96 69.6 64.13 60.69

Table 9. Ablation study on MOHAWK scalability for larger, more realistic numbers of devices and APs on CIFAR10 with 𝑘1 = 5 and
𝑘2 = 5. Overall, we observe MOHAWK provides similar performance in all scenarios, while other approaches have large performance
reductions.

Data Devices APs HierFAVG MACFL MOHAWK

IID (𝛼 = 100)

1,000 100 72.4 73.67 78.22
1,000 500 58.24 58.61 76.88
1,000 1,000 52.2 52.34 76.82
10,000 1,000 56.53 57.21 77.95

Non-IID (𝛼 = 0.1)

1,000 100 62.23 65.26 71.09
1,000 500 50.85 51.0 69.78
1,000 1,000 45.22 45.5 69.29
10,000 1,000 48.47 49.62 70.88

updates happen every hour, we assume for simulations 𝑘1 = 5 as a fair middle ground to use. Considering hardware
heterogeneity, some low-budget devices may take up to one hour to train 5 local epochs, hence this also accounts for
realistic training times.

Scalability of MOHAWK. We show in Table 9, using larger numbers of APs and devices, how scalable is MOHAWK.
We observe similar performance in terms of accuracy on CIFAR10 for both IID and non-IID settings, while all other
HFL solutions have a decrease in accuracy as we increase the number of APs. This is because MOHAWK uses selective
global aggregation, which makes it robust to variabilities in the number of APs considered.

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

Table 10. Hardware prototype experiment for 𝑘2 = 5 in the IID setting using 𝑘1 = 1 for MNIST and 𝑘1 = 5 for CIFAR10. The wasted
energy is the energy a device spends training and communicating with the cloud without the cloud actually considering the local
model for aggregation. We observe MOHAWK not only uses far less energy overall, but it also wastes less energy.

Energy [Joules] MNIST IID (𝛼 = 100) CIFAR10 IID (𝛼 = 100)
HierFAVG MOHAWK Improv. HierFAVG MOHAWK Improv.

Cumulative wasted /experiment 6,893,090 J 2,690,005 J 2.56× 37,021,657 J 14,969,761 J 2.47×
Cumulative consumed /experiment 10,563,326 J 7,707,298 J 1.37× 43,893,178 J 40,041,313 J 1.1×

Average wasted /device 94 ± 39 J 42 ± 23 J 2.24× 475 ± 112 J 243 ± 130 J 1.95×
Average consumed /device 137 ± 34 J 87 ± 12 J 1.57× 548 ± 100 J 470 ± 23 J 1.17×

Average wasted /comm. round 514 ± 464 J 121 ± 135 J 4.25× 2,615 ± 2,082 J 668 ± 610 J 3.91×
Average consumed /comm. round 727 ± 644 J 612 ± 520 J 1.19× 3,165 ± 2,325 J 3,262 ± 2,445 J 0.97×

Fig. 8. Hardware prototype with 36 Raspberry Pi 3B+ (outer semicircle of devices) and 36 Smart Power 2 devices (inner semicircle)
used for real-time power and energy measurements.

4.4 Hardware Prototyping and Validation

As can be seen in Fig. 8, we designed and built a custom testbed with 36 Raspberry Pi 3B+ devices. Each of the Raspberry
Pi devices is connected to a Smart Power 2 device for real-time power and energy measurements. We run FL using a
GPU server and communicate through wireless using a local router. We measure the total amount of energy spent in a
36 device experiment using 20APs. We use the GPU server to run the global server and the 20 APs.

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

We consider a device is wasting energy if it is training a model which is not ultimately aggregated. Thus, such devices
are not improving the learning performance of the FL system, but are wasting their already limited resources (e.g.,
battery, memory). To the best of our knowledge, no current HFL state-of-the-art methods account for this kind of
wasted energy. This is why, on our hardware prototype, we run only HierFAVG as a baseline. We use 𝑘1 = 1 for MNIST
and 𝑘1 = 5 for CIFAR10, running only the IID setting on both datasets. As seen in Table 10, MOHAWK achieves up
to 4.25× less energy wasted (on average) per communication round and up to 2.24× less energy wasted (on average)
per device. The total energy wasted over the entire experiment is reduced up to 2.56×; this shows how much more
energy-efficient MOHAWK is in real scenarios. The energy measurements represent the energy spent on both training
and communication while performing FL.

5 CONCLUSION

We have proposed a Mobility and Heterogeneity-Aware Dynamic Community Selection algorithm (MOHAWK) for
mobile federated learning systems. Our approach takes into consideration the real devices mobility and selects the
closest access point for every device to connect; this leads to significant reduction in the energy consumption for
communication. To improve the learning performance, we have proposed two new aggregation strategies, namely,
dynamic edge aggregation and selective global aggregation, that increase the number of devices aggregated at every
time step by up to 39.78%; this also helps the global model learn up to 3.88× faster, while also achieving a higher
accuracy, on average.

Limitations and future work. The current communication model can be improved in several ways, e.g., by considering
channel scheduling, and multi-hop networks of APs. For dynamic edge aggregation, we currently consider all available
devices regardless of the quality and security vulnerability of their local model. A more robust and secure selection of
devices could improve the overall performance. All these ideas are left for future work.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant CCF-2107085 and in part by Cisco Research, Inc. The work of G. de
Veciana was supported by NSF Grant No. 2148224 which is supported in part by funds from OUSD R&E, NIST, and
industry partners as specified in the Resilient & Intelligent NextG Systems (RINGS) program.

MOHAWK IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

REFERENCES
[1] Mehdi Salehi Heydar Abad, Emre Ozfatura, Deniz Gunduz, and Ozgur Ercetin. 2020. Hierarchical federated learning across heterogeneous cellular

networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8866–8870.
[2] Sawsan AbdulRahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad, Chamseddine Talhi, and Mohsen Guizani. 2020. A survey on federated

learning: The journey from centralized to distributed on-site learning and beyond. IEEE Internet of Things Journal 8, 7 (2020), 5476–5497.
[3] Tracy Camp, Jeff Boleng, and Vanessa Davies. 2002. A survey of mobility models for ad hoc network research. Wireless communications and mobile

computing 2, 5 (2002), 483–502.
[4] Liane Cassavoy. 2021. How Fast Is 4G LTE Wireless Service? Accessed: 2023-02-26.
[5] Wei Chen, Kartikeya Bhardwaj, and Radu Marculescu. 2021. Fedmax: mitigating activation divergence for accurate and communication-efficient

federated learning. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September
14–18, 2020, Proceedings, Part II. Springer, 348–363.

[6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017. EMNIST: Extending MNIST to handwritten letters. In 2017 international
joint conference on neural networks (IJCNN). IEEE, 2921–2926.

[7] Chenyuan Feng, Howard H Yang, Deshun Hu, Zhiwei Zhao, Tony QS Quek, and Geyong Min. 2022. Mobility-aware cluster federated learning in
hierarchical wireless networks. IEEE Transactions on Wireless Communications 21, 10 (2022), 8441–8458.

[8] Foursquare. 2023. Independent Location Data & Location Technology Platform. Accessed: 2023-02-26.
[9] Juan C Herrera, Daniel B Work, Ryan Herring, Xuegang Jeff Ban, Quinn Jacobson, and Alexandre M Bayen. 2010. Evaluation of traffic data obtained

via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation Research Part C: Emerging Technologies 18, 4 (2010), 568–583.
[10] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects of non-identical data distribution for federated visual classification.

arXiv preprint arXiv:1909.06335 (2019).
[11] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. A close examination of performance and

power characteristics of 4G LTE networks. In Proceedings of the 10th international conference on Mobile systems, applications, and services. 225–238.
[12] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang. 2021. Personalized cross-silo federated learning

on non-iid data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 7865–7873.
[13] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset. online: http://www. cs. toronto. edu/kriz/cifar. html 55, 5 (2014).
[14] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/ (1998).
[15] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated learning on non-iid data silos: An experimental study. In 2022 IEEE 38th

International Conference on Data Engineering (ICDE). IEEE, 965–978.
[16] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated learning: Challenges, methods, and future directions. IEEE signal

processing magazine 37, 3 (2020), 50–60.
[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated optimization in heterogeneous

networks. Proceedings of Machine learning and systems 2 (2020), 429–450.
[18] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. 2020. Client-edge-cloud hierarchical federated learning. In ICC 2020-2020 IEEE International

Conference on Communications (ICC). IEEE, 1–6.
[19] Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B Letaief. 2022. Hierarchical federated learning with quantization: Convergence analysis and

system design. IEEE Transactions on Wireless Communications (2022).
[20] Yi Liu, Xingliang Yuan, Zehui Xiong, Jiawen Kang, Xiaofei Wang, and Dusit Niyato. 2020. Federated learning for 6G communications: Challenges,

methods, and future directions. China Communications 17, 9 (2020), 105–118.
[21] Bing Luo, Xiang Li, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. 2021. Cost-effective federated learning in mobile edge networks. IEEE

Journal on Selected Areas in Communications 39, 12 (2021), 3606–3621.
[22] Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. 2020. HFEL: Joint edge association and resource allocation for cost-efficient hierarchical

federated edge learning. IEEE Transactions on Wireless Communications 19, 10 (2020), 6535–6548.
[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep

networks from decentralized data. In Artificial intelligence and statistics. PMLR, 1273–1282.
[24] Hideya Ochiai and Hiroshi Esaki. 2008. Mobility entropy and message routing in community-structured delay tolerant networks. In Proceedings of

the 4th Asian Conference on Internet Engineering. 93–102.
[25] Hideya Ochiai, Yuwei Sun, Qingzhe Jin, Nattanon Wongwiwatchai, and Hiroshi Esaki. 2022. Wireless ad hoc federated learning: A fully distributed

cooperative machine learning. arXiv preprint arXiv:2205.11779 (2022).
[26] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing. 2021. Clusterfl: a similarity-aware federated learning system for

human activity recognition. In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services. 54–66.
[27] Md Ferdous Pervej, Jianlin Guo, Kyeong Jin Kim, Kieran Parsons, Philip Orlik, Stefano Di Cairano, Marcel Menner, Karl Berntorp, Yukimasa Nagai,

and Huaiyu Dai. 2022. Mobility, Communication and Computation Aware Federated Learning for Internet of Vehicles. In 2022 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 750–757.

[28] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020. Tackling the objective inconsistency problem in heterogeneous
federated optimization. Advances in neural information processing systems 33 (2020), 7611–7623.

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Farcas et al.

[29] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian, Xingyao Li, Zhiming He, Xudong Wu, Xianlong Wang, Yunhao Liu, Zhi Liao, et al. 2022. Mobile
access bandwidth in practice: Measurement, analysis, and implications. In Proceedings of the ACM SIGCOMM 2022 Conference. 114–128.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hierarchical Federated Learning
	2.2 Mobility Models and Scalability
	2.3 Hardware Validation

	3 Methodology
	3.1 Device Availability and Distribution
	3.2 Communication Model
	3.3 MOHAWK Framework

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Empirical Results
	4.3 Ablation studies
	4.4 Hardware Prototyping and Validation

	5 Conclusion
	Acknowledgments
	References

