
BOLT: BRIDGING THE GAP BETWEEN AUTO-TUNERS

AND HARDWARE-NATIVE PERFORMANCE

Jiarong Xing * 1 2 Leyuan Wang * 2 Shang Zhang 3 Jack Chen 3 Ang Chen 1 Yibo Zhu 2

ABSTRACT

Today’s auto-tuners (e.g., AutoTVM, Ansor) generate efficient tensor programs by navigating a large search space

to identify effective implementations, but they do so with opaque hardware details. Thus, their performance

could fall behind that of hardware-native libraries (e.g., cuBLAS, cuDNN), which are hand-optimized by device

vendors to extract high performance. On the other hand, these vendor libraries have a fixed set of supported

functions and lack the customization and automation support afforded by auto-tuners. Bolt bridges this gap and

achieves the best of both worlds by using hardware-native templated search, which is enabled by the recent

trend that vendor libraries (e.g., CUTLASS) are increasingly modularized and reconfigurable. Bolt provides new

opportunities to rethink end-to-end tensor optimizations at the graph, operator, and model levels. We demonstrate

this concept by prototyping in TVM on NVIDIA GPUsÐboth in large deployment in our production environment.

Our experiments show that Bolt can improve the inference speed of common convolutional neural networks by

2.5x on average over the state of the art, and it auto-tunes these models within 20 minutes.

1 INTRODUCTION

Auto-tuning engines (Chen et al., 2018b; Zheng et al., 2020a;

Adams et al., 2019; Zheng et al., 2020b) are at the heart of

a variety of DNN frameworks and compilers (Chen et al.,

2018a; Leary & Wang, 2018; Abadi et al., 2016; Paszke

et al., 2019). Example auto-tuners like AutoTVM (Chen

et al., 2018b) and Ansor (Zheng et al., 2020a) infer hardware

cost models from afar, by executing sample implementa-

tions on a particular device and observing their performance.

Building on the inferred cost models, auto-tuners take ten-

sor programs as inputs and navigate a large search space to

select effective transformations for high performance. Oper-

ating with opaque device models affords generality, as the

same approach can be applied to different hardware, without

requiring hardware details.

As a downside, treating devices as opaque models comes

with performance implicationsÐfor any specific devices,

it is likely that hardware-native performance as deliv-

ered by low-level vendor libraries is hard to come by.

Traditional vendor libraries (e.g., cuBLAS (NVIDIA, a),

cuDNN (Chetlur et al., 2014)) expose a fixed set of prim-

itives that are heavily hand-optimized for the underlying

hardware. For workloads that fit into their library primi-

*Equal contribution 1Department of Computer Science, Rice
University 2ByteDance 3NVIDIA. Correspondence to: Leyuan
Wang <leyuan.wang@bytedance.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

tives, and for users with expert device knowledge, directly

using such libraries extracts hardware-native performance.

For instance, auto-tuners like AutoTVM and Ansor do not

achieve competitive performance compared to cuBLAS

and cuDNN for non-FP32 compute-intensive operators on

NVIDIA GPUs because of their inefficient usage of tensor

cores. In our benchmarks, Ansor (Zheng et al., 2020a) only

achieves 20% of cuBLAS performance for FP16 GEMMs

on NVIDIA Tesla T4 GPUs (see Figure 1 for more details).

Related, opaque device models also lead to prolonged auto-

tuning time, as the search process is less informed by hard-

ware details. For example, it takes AutoTVM (Chen et al.,

2018b) 10 hours on x86 CPUs and 7 days on NVIDIA GPUs

to tune all workloads for ResNet-50 (Yu et al., 2021). This

has led to the development of special databases (SAMPL)

that cache and reuse tuning logs, but this approach only

goes so far. Models have increasing dynamism, not only

in terms of dynamic data structures (Liang et al., 2016) but

also dynamic shapes (Devlin et al., 2018), making caching

much less effective. The prolonged tuning time, as a result,

has hindered model developers from using rapid iterations

to test and improve model performance.

Can we achieve the best of both worlds, combining the flex-

ibility of auto-tuners and the hardware-native performance

as afforded by vendor implementations? Bolt bridges this

gap leveraging the trend that vendor libraries are increas-

ingly templated, reconfigurable with declarative parameters

to suit different scenarios, but exposing concise interfaces

that are potentially amenable to auto-tuning. An exemplar



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

of templated design, NVIDIA CUTLASS (NVIDIA, b), en-

codes efficient design patterns but does not commit to a

fixed set of primitives. Users can parameterize the templates

to suit their workloads, and they can extend and compose

templated primitives for new functionality. In a similar vein,

Intel OneDNN (Intel) and AMD ROCm (AMD) also share

this emerging trend for their platforms.

We propose to enable end-to-end DNN model optimizations

via hardware-native templated search utilizing the above

trend. Bolt operates on hardware-native templates which

interpose a thin layer between the high-level computational

graph and the low-level CUDA code, opening up oppor-

tunities for joint optimization. First, it generates tensor

programs with hardware-native performance via efficient

templated search. Second, by composing and extending tem-

plate primitives, Bolt enables novel computational graph-

level optimizations. Combined, Bolt enables auto-tuners to

achieve both graph-level and operator-level optimization

and to generate the implementations with hardware-native

performance using significantly shortened turnaround time.

Furthermore, Bolt also enables model-level optimizations by

proposing system-model codesign principles. If models are

designed in a system-friendly manner, they can fully utilize

the benefits of Bolt and achieve more efficient inference.

We prototype Bolt in TVM (Chen et al., 2018a) for NVIDIA

GPUs utilizing its open-sourced CUTLASS library, while

noting that the new design approach generalizes beyond this

scenario. Compared to Ansor, Bolt achieves 2.5x inference

speedup on widely-used convolutional neural networks; it

auto-tunes these workloads within 20 minutes. Our new

computational graph level optimizationÐpersistent kernel

fusionÐleads to a performance improvement up to 1.3x

and 2.0x on GEMMs and Conv2Ds. Finally, we validate

our model-level optimizationÐsystem-model codesignÐby

augmenting RepVGG models (Ding et al., 2021), which ef-

fectively improves model accuracy with less speed sacrifice.

Bolt has been deployed in our production setting, serving

real models and workloads, and its code has been merged

into the latest TVM (Wang).

We summarize our contributions as follows:

• We propose to bridge the gap between auto-tuners

and hardware-native performance by combining auto-

tuning and templated vendor libraries.

• We propose persistent kernel fusion that unleashes

more optimization opportunities and enables deeper

operator fusion.

• We propose a light-weight performance profiler that

searches for the best template parameters, with which

Bolt generates code in the vendor library convention

directly.

• We distill three system-friendly model design prin-

ciples from the design of Bolt and validate them by

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1024,1024,1024

2048,2048,2048

1280,768,768

1280,3072,768

1280,768,3072

N
o
rm

a
liz

e
d
 s

p
e
e
d

Workload(M,N,K)

Ansor cuBLAS

Figure 1. The speed of Ansor, implemented in TVM auto-

scheduler, under-performs significantly compared to the device

speed achievable in cuBLAS. Workloads: two large square

GEMMs and three GEMMs in BERT (Devlin et al., 2018), a

widely adopted NLP model, when the batch size is 32 and se-

quence length is 40.

applying to RepVGG models.

• We comprehensively evaluate the performance of Bolt

using CUTLASS on NVIDIA GPUs, which signifi-

cantly outperforms the state of the art.

2 BACKGROUND AND MOTIVATION

2.1 Auto-tuners have a performance gap

State-of-the-art DNN frameworks and compilers (Chen

et al., 2018b; Zheng et al., 2020a) leverage auto-tuning to

identify effective tensor implementations. Auto-tuners trans-

form a tensor program into an equivalent but structurally

different one, which delivers higher performance on the tar-

get. This is achieved by constructing a cost model of the

hardware via learningÐe.g., by building a training set with

sample programs and their performance on the target, and

by predicting which implementations are likely to be per-

formant when navigating the search space. Operating afar

from the hardware delivers benefits like platform generality,

but it also leads to two performance implications.

Lack of hardware-native performance. With opaque de-

vice models, tensor code generated by existing auto-tuners

usually has a performance gap for certain workloads (e.g.,

non-FP32 GEMM/Conv) as compared to hardware-native

performance delivered by vendor-tuned libraries, such as

cuBLAS and cuDNN. As concrete evidence, Figure 1 bench-

marks the FP16 GEMM speed of tensor programs generated

by Ansor (Zheng et al., 2020a), a state-of-the-art auto-tuner,

against the hardware-native speed as achieved by cuBLAS.

The auto-tuned program achieves less than 20% of the li-

brary performance. The reason is that NVIDIA GPUs have

special hardware architecture, tensor cores, to accelerate

FP16 computation, but they cannot be efficiently utilized by

Ansor that uses an opaque hardware model.

Inefficient program search. Opaque device models and in-

ferred hardware execution costs also lead to a less informed



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

tuning process. Existing auto-tuners spend days or weeks

when models have many different workloads, e.g., ResNet-

152 and Inception-V3 (Yu et al., 2021). Caching and reusing

previous tuning logs (SAMPL)) works well for static mod-

els, but not those with dynamic data structures (Liang et al.,

2016) or shapes (Devlin et al., 2018), where the exact work-

loads are only determined at runtime. In contrast, with

hardware-native templated search, Bolt reduces the tuning

time to tens of minutes for common models.

2.2 The emerging trend: Templated libraries

The optimizations in Bolt are made possible by an emerging

trend: vendor libraries are escaping the earlier generation

design with fixed primitives and becoming modularized and

composable. Controlled by a set of declarative parameters,

templates can be instantiated to suit different hardware and

workloads. New primitives can be composed from existing

ones, and creating new templates also has a lower barrier. In

addition, the templated libraries are efficient design patterns

that take into account device details, and extract hardware

performance at a level impossible from opaque auto-tuning.

Example: NVIDIA CUTLASS. Of particular interest to us

is CUTLASS (NVIDIA, b), an example templated library

from NVIDIA. CUTLASS provides reusable software com-

ponents in C++ templates for every layer of the CUDA

programming model for GEMM. With the right parameters,

it achieves high performance for thread-wide, warp-wide,

block-wide, and device-wide primitives. Such templates

leverage intricate device knowledge, specifically tensor

cores as integrated in NVIDIA Volta, Turing, and Ampere

GPUs, and optimize for a wide range of mixed-precision

computations including B1, INT4, INT8, FP16, BF16, FP32,

TF32, FP64, complex, and quaternion. By plugging in the

right tile size, data type, and other parameters, users can tap

into device-level performance for their workloads. Beyond

this example, Intel (Intel) and AMD (AMD) also exhibit

a similar trend in their designÐtemplated libraries with

parameterized control. This design principle, therefore, is

generalizable to other platforms.

CUTLASS leverages GPU tiling structures for efficient

GEMM implementationsÐby decomposing GEMMs into a

hierarchy of threadblocks and warp tiles. It optimizes data

movement for locality and carefully controls movement

from global to shared memory to the register files. Figure 2

illustrates the hierarchy and data movement from slower to

faster storage for GEMM operation C = A ·B. Figure 2(a)

shows the inputs A, B and result C in global memory and

their threadblock tiles in color (inputs A/B in pink/yellow

and the result C in green). Threadblock tiles can be divided

into warp tiles in shared memory as shown in Figure 2(b). In

this example, a threadblock tile can be split into eight warp

tiles which can be further partitioned into thread tiles in the

(a) (b) (c)

Figure 2. The GEMM hierarchy in CUTLASS, and the data move-

ment in threadblock and warp tiles.

register file as shown in Figure 2(c). From global memory

to shared memory and to register files, the memory size is

decreasing, but the read/write speed is increasing. Tensor

cores on NVIDIA GPUs take thread tiles as input and store

the output into register files to achieve higher performance.

2.3 Bolt: The best of both worlds

Insights. Our key insight is that emerging device libraries

enable a new design space for tighter auto-tuner integration.

First, templated libraries provide several desirable proper-

ties: (i) a set of reusable primitives that extract hardware-

native performance, which are (ii) easily parameterized for

different tensor shapes, therefore (iii) amenable to a tighter

integration with auto-tuning search; moreover, (iv) the ba-

sic primitives can be extended, customized, and composed

to form more sophisticated patterns to augment the search

(e.g., deeper operator fusion in Section 3.1). These proper-

ties in turn inform a better compiler design: (i) lightweight,

hardware-aware profiling by parameterized search, and (ii)

high-performance code generation that directly targets these

libraries. The insight has led to the design of Bolt that

bridges the gap between auto-tuners and hardware-native

performance. Bolt enables end-to-end optimizations as de-

scribed next.

Graph level: Enabling deeper operator fusion. Leverag-

ing the templated design, Bolt opens up new opportunities

for operator optimizations. This is because new optimiza-

tions can be introduced to the device libraries via template

customization. Bolt develops a new operator fusion tech-

nique called persistent kernel fusion for improved perfor-

mance. Operator fusion computes multiple operators us-

ing only one kernel, reducing data shuffling to memory to

improve locality (Abdolrashidi et al., 2019), but operator

fusion in existing auto-tuners (Chen et al., 2018a; Leary &

Wang, 2018; Roesch et al., 2019; Abadi et al., 2016; Paszke

et al., 2019; Jia et al., 2019; Abdolrashidi et al., 2019) does

not interact well with performant, device libraries. For in-

stance, computing Conv2D+BiasAdd+Hardswish in a single

kernel improves performance, but the resulting operator may

not be supported by fixed-function libraries like cuDNN.



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

Deeper fusion

Perf profiler

…

TVM relay graph

Optimized relay graph

Bolt subgraph TVM subgraph

Codegen
Codegen

Tensor program

DNN model

Graph-level 

optimization 

(Section 3.1)
Operator-level 

optimization

(Section 3.2)

System-model 

codesign

(Section 3.3)

Graph partition

Figure 3. The workflow of Bolt. Blue boxes are our contributions.

Via a templated design, Bolt enables new search space that

considers deeper fusion, thus opening up graph-level opti-

mizations.

Operator level: Automating templated code generation.

Templated libraries by themselves, however, are too low-

level for common users. Precisely instantiating the param-

eters to govern tiling sizes and data types creates a heavy

burden. Also, the templated primitives are simply building

blocks, and they need to be assembled into complete DNN

models for execution. Bolt conquers their difficulty of use

by combining the library primitives and auto-tuners. It de-

signs a light-weight performance profiler to search for the

best template parameters automatically. By efficiently using

the hardware details, the profiler significantly shortens the

search time. The search results are later used to instanti-

ate templates and generate the low-level tensor code with

hardware-native performance.

Model level: System-friendly models. The end-to-end op-

timizations in Bolt also shed light on efficient model design.

We propose to design models in a system-friendly manner

so that they can efficiently use the optimization provided

by the underlying system to achieve better inference perfor-

mance. In Bolt, we have summarized three system-model

codesign principles and validated them by augmenting sev-

eral RepVGG models (Ding et al., 2021).

3 BOLT DESIGN

Figure 3 illustrates the workflow of Bolt. It follows a BYOC

(Bring Your Own Codegen) (Chen et al., 2021) approach,

carving out a suitable subgraph of the tensor program and

offloading it to Bolt for optimization. Starting from DNN

models written in popular frameworks (e.g., TensorFlow,

PyTorch, MXNet), Bolt reuses the TVM frontend to parse

the model into a relay graph. On this graph, it invokes

computational graph optimizations (e.g., deeper fusion) and

then performs graph partition over the optimized graph. Bolt

next performs hardware-native profiling to search for the

best kernel for each operator in the Bolt subgraph. Finally,

Bolt generates high-performance CUDA code which will be

compiled together with the code generated by TVM into a

single runtime file. In the ensuing discussion, we start with

the graph-level, deeper fusion opportunities enabled by Bolt,

and move down to the automated code generation including

the light-weight performance profiler and templated code

generator, and finally discuss the system-friendly model

design principles distilled from Bolt.

3.1 Enabling deeper operator fusion

Bolt enables novel graph-level optimizations by extending

hardware-native templates. Specifically, Bolt introduces

persistent kernels which enable novel deeper operator fu-

sion. As shown in Figure 4(a), it works on epilogue fu-

sion as a basis, and further fuses two or more sequential

GEMMs/Convs. Fusing multiples GEMMs or Convs into

a single operator improves performance in the following

ways: (i) eliminating memory traffic for storing and load-

ing inter-layer activations; (ii) eliminating launch latency

which is especially beneficial for short kernels with small

batch sizes; (iii) enlarging optimization scope for the com-

piler to explore more instruction scheduling options (Wu

et al., 2012). Figure 4(b) shows the kernel view of persistent

kernel fusion.

Prerequisite: Epilogue fusion. As a prerequisite for persis-

tent kernel fusion, Bolt first integrates the epilogue fusion

provided in CUTLASS, which fuses a GEMM/Conv kernel

with its following epilogues all together into one operator, so

that we can further leverage persistent kernels. The epilogue

fusion patterns in CUTLASS include: (i) element-wise op-

erators, (ii) data type conversion, (iii) broadcast vector over

columns, and (iv) partial reduction over columns. Bolt

identifies these patterns in the computational graph and gen-

erates corresponding algorithmic policy automatically. Bolt

takes epilogue fusion as a starting point and develops deeper

fusions using persistent kernels.

3.1.1 Persistent kernel (GEMM/Conv) fusion

Persistent kernels allow fusing multiple GEMMs or Convs

into one operator to improve performance. As illustrated in

Figure. 4(b), when two GEMM/Conv operations are fused

together, the main loops of math computation for the two op-

erators run back-to-back in a single fused kernel. The output

activation for the first GEMM/Conv, in this case, can stay

in faster GPU memory, e.g., register files. This eliminates

the need for storing the GEMM0/Conv0 output activation

back to global memory, launching the GEMM1/Conv1 ker-

nel, and loading the GEMM1/Conv1 input activation from

global memory. Bolt automatically identifies the opportu-



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

Load Activation

Non-fused:

Launch
Load 

Weights

Main Loop

Store Activation

Fused:

GEMM/conv 0

GEMM1 Bias ReLU GEMM2 Bias ReLU

Non-fused:

GEMM1 Bias ReLU

Epilogue fusion:

GEMM2 Bias ReLU

GEMM1 Bias ReLU

Persistent kernel fusion:

GEMM2 Bias ReLU

Load ActivationLaunch
Load 

Weights

Main Loop

Store Activation

GEMM/conv 1

Load ActivationLaunch
Load 

Weights

Main Loop

Store Activation

Main Loop

(a) The graph view of persistent kernel fusion

(b) The kernel view of persistent kernel fusion

Load 

Weights

Figure 4. The graph view and kernel view of persistent kernel

fusion for back-to-back GEMMs/Convs.

nity to use persistent kernels and generates CUDA code by

creating new templates in CUTLASS. We describe the back-

to-back GEMM fusion in detail, and convolution fusion

works similarly.

A back-to-back GEMM is defined as:

D0 = α0A0 ·W0 + β0C0, (1)

D1 = α1D0 ·W1 + β1C1, (2)

with A0,W0 and W1 as matrix inputs, αs and βs as scalar

inputs, and C0, C1 as pre-existing matrices (bias), which

will be overwritten by the output. In order to fuse back-

to-back GEMMs, output activation D0 of the first GEMM

layer must be used as input activation of the second GEMM

layer. This requires that the M dimension of the GEMM

stays the same for all layers. For back-to-back Convs, this

requires that all subsequent Convs (from the 2nd) must use

1× 1 filter with no padding and a stride of one.

Key property: Threadblock residence. The key challenge

of persistent kernels is to compute the 2nd GEMM/Conv

without loading its input activation from the global mem-

ory. This requires each output threadblock of the 1st

GEMM/Conv to remain within the same threadblock mem-

ory (either in the shared memory or register files) as the

respective input threadblock for 2nd GEMM/Conv. We

call this threadblock residence. If it does not hold, the 2nd

GEMM/Conv has to fetch data from the global memory,

eliminating the benefits of persistent kernels. For GEMM

fusion, threadblock residence requires ThreadBlock N =

GEMM N for each operator. As for Conv fusion, the require-

Thread

Block

Thread

Block
M

K0

K
0

N0/K1

N
0
/K

1

N1

A0

W0
W1

D0/A1 D1

GEMM 0 GEMM 1

Figure 5. Illustration of threadblock-residence of GEMM fusion.

Colored boxes represent one single threadblock. This requires

ThreadBlock0 N = N0, ThreadBlock1 N = N1.

……

Warp (RF) Warp (RF)

(RF)

(SMEM)
(SMEM)

ThreadBlock of GEMM 1

Warp tile 
(RF)

(RF)

A1

(RF)

W1 fragment

W0
W1

Warp tile of GEMM 1

D0/A1 tile D1 tileA0 tile

(SMEM)

A
1
 f
ra

g
m

e
n
t

D1 tile

Figure 6. RF-resident fusion in a threadblock of back-to-back

GEMMs. The threadblock and warp size requirements are:

Warp0 N=ThreadBlock0 N=N0, Warp1 N=ThreadBlock1 N=N1.

ment is ThreadBlock N = Conv output channel. Figure 5

visualizes this requirement. With threadblock residence, we

develop two designs for different scenarios.

RF-resident fusion. When the weight matrix W1 can be

completely streamed into a warp tile in its N dimension

(as indicated in Figure. 6), threadblock-residence can be

satisfied by storing the output activation for each thread-

block entirely in the register file (RF). By doing so, the 2nd

GEMM/Conv can compute without touching other warps

for W1. We call this RF-resident fusion which requires that

the warp size has to follow Warp N = ThreadBlock N =

GEMM N for each layer. In RF-resident fusion, each warp

will own a chunk of the accumulator data in the RF (referred

to as accumulator fragment) produced by the current layer.

This will be used entirely as the input for the next layer

computed by the same warp. We develop a warp fragment

iterator to extract the data from the accumulator fragment

and feed it into warp-level MMA operations. RF-resident

fusion incorporates back-to-back MMA pipelines by extend-

ing the threadblock-level GEMM design in CUTLASS. Our

design has no interference across GEMM operations. The

only extra operation for the 2nd GEMM is to get warp frag-

ments from the previous accumulator and perform epilogue

computation all in the RF.

Shared memory-resident fusion. RF-resident GEMM fu-



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

……

Warp Warp

(RF)

(SMEM)
(SMEM)

Warp

(RF)

Warp

ThreadBlock of GEMM 1

Warp 
tile 

(RF)

(RF)

A1

(RF)

W1 fragments

(RF)

Warp 
tile 

(RF)

W0
W1

Warp tiles of GEMM 1

D0/A1 tile D1 tileA0 tile

(SMEM)

A
1

 f
ra

g
m

e
n

t

D1 tiles

Figure 7. Shared memory-resident fusion in a threadblock of back-

to-back GEMMs. The threadblock size requirements are: Thread-

Block0 N = N0 ̸= Warp0 N, ThreadBlock1 N = N1 ̸= Warp1 N.

sion creates higher RF pressure especially when GEMM N

is large, which will potentially harm the kernel performance

and limit the applicable scenarios. To solve the problem, we

propose shared memory-resident fusion to relax the warp

size restriction. In this design, when the 2nd GEMM/Conv

requires data sharing between warps, the data can be staged

into shared memory instead of RF. Figure 7 shows an ex-

ample where the computation for D1 has to stream W1

fragments from multiple warp tiles in the N dimension.

Thus, the accumulator data produced in GEMM0 must be

transferred from RF to shared memory in order to be loaded

by GEMM1. The data chunk owned by each warp will be

shared in M dimension for the next layer. By doing so,

the warp size restriction of Warp N in RF-resident fusion

can be relaxed. To enable shared memory-resident fusion,

we introduce a smem fragment iterator as the mechanism

to store the accumulator tile into shared memory, and then

fetch fragment from shared memory for the 2nd GEMM. In

order to achieve higher performance, we carefully design

the shared memory layout to avoid any shared memory bank

conflict when storing the accumulators of the 1st kernel and

loading it for the 2nd one.

Summary. RF-resident and shared memory-resident fusion

enable deeper fusion of sequential GEMMs/Convs. Based

on the back-to-back fusion, Bolt can support fusing multiple

GEMMs/Convs by extending the persistent kernel templates

and duplicating the GEMM pipelines.

3.2 Automating templated code generation

3.2.1 Challenges in code generation

Templated libraries pose new challenges for end-to-end ten-

sor program optimization. Foremost, these templates usu-

ally do not provide complete functionality for end-to-end

models, but only support a subset of operators. One naÈıve

solution is to develop a full compiler stack from scratch for

each hardware, but this does not scale. Bolt addresses this

challenge by employing a BYOC (Bring Your Own Code-

gen) (Chen et al., 2021) approach. It enables us to reuse the

existing compiler stacks (e.g., TVM) as much as possible

and focus only on the optimization and code generation

using templated device libraries.

A naÈıve application of BYOC does not solve the entire prob-

lem. First, templated device libraries by themselves are

not directly runnable. They require users to instantiate the

template with well-tuned parameters to achieve good perfor-

mance, but BYOC does not support such performance profil-

ing. Bolt addresses the problem by proposing a light-weight

hardware-native performance profiler that can search for the

best parameters for an operator with a specific workload

within minutes. In addition, conventional BYOC regards

device libraries as agnostic external functions and gener-

ates hardware code with hooks to invoke them at runtime.

This design makes it difficult to customize the hardware

library and support new optimizations, such as layout trans-

formation and kernel padding. Bolt resolves the problem by

viewing the library as a whitebox and generating code in its

convention directly. In the following, we will describe our

detailed design.

3.2.2 Light-weight performance profiler

Bolt designs a light-weight performance profiler, which

searches for the best template parameters. By effectively

using the hardware details, Bolt can search for relevant

template parameters directly. This stands in contrast to a

hardware-agnostic approach that must infer and apply tun-

ing heuristics in the search process, which needs to navigate

a larger search space. Thus, Bolt avoids trying many unfruit-

ful combinations and speeds up the search.

Specifically, Bolt first extracts the performance-related pa-

rameters in CUTLASS templates including threadblock,

warp, and instruction shapes, swizzling functor, and stages,

etc. It then determines their possible values according to

the GPU architecture as well as tuning guidelines that are

specific to each hardware. Example hardware-specific guide-

lines include (i) within the capacity of register files, Bolt

prefers large warp tile sizes to achieve a higher compute-

memory ratio, (ii) four or eight warps per threadblock

tends to have better performance when running on mod-

ern NVIDIA GPUs, (iii) small problem sizes need small

threadblock sizes to launch enough threadblocks to keep

more SMs busy, etc. It worth noting that the tuning parame-

ters and guidelines are supported within the Bolt compiler,

so it does not incur extra burden to the users. For each GPU

architecture, Bolt produces tens of best parameter combina-

tions and generates the corresponding sample programs by

initiating the template. Note that these sample programs are

reusable across models and workloads by given different

inputs. Therefore, at runtime, Bolt can profile the perfor-

mance by calling the pre-generated sample programs with

concrete inputs.



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

3.2.3 Templated code generation

Traditional BYOC systems (Chen et al., 2021) cannot target

code generation in templated format; they treat such libraries

as external functions at runtime. In contrast, Bolt produces

low-level tensor implementations in the CUTLASS conven-

tion by instantiating the templates with the best parameters

identified by the profiler. Our approach has two advantages.

First, the generated code delivers superior performance, e.g.,

can reach 300 TFLOPS throughput for FP16 GEMM on

Ampere A100, which is more than 95% of the hardware the-

oretic limit. Second, it provides full flexibility to add novel

optimizations in the generated code. In Bolt, we develop

the following two optimizations.

Layout transformation. CUTLASS supports only NHWC

layout for Convs because it is faster than NCHW lay-

out (NVIDIA, c). But not all models are written in the

desired layoutÐe.g., all Pytorch models use NCHW. To

enable more optimization opportunities, Bolt performs a

layout transformation pass before tuning the model to alter

all Conv layouts to NHWC. Instead of naÈıvely adding lay-

out transformation operators before and after every Conv

operator, which incurs high overhead and prevents operator

fusion, Bolt directly converts all Conv operators to NHWC

layout. Respectively, Bolt transforms the input to the same

format and switches the final output back to NCHW.

Kernel padding. Although CUTLASS supports alignments

8, 4, 2, 1 to cover all different workloads, the performance

varies significantly across different alignments. The largest

vectorized load and store supported by NVIDIA GPUs are

128 bits, so the most efficient way to use it for FP16 data

type is alignment 8 (128/16). Using alignment 8 in this case

can reduce the load and store instruction counts, as well as

the number of predicates needed by every load and store

instruction. Tensor shapes with a dimension that cannot

be divided by 8 will have to use smaller alignments. For

instance, the first layer of convolutional neural networks

usually has three input channels, which has to use alignment

1. This will suffer from non-coalesced memory access and

shared memory bank conflicts. Therefore, Bolt automati-

cally pads unaligned tensors to use alignment 8. It allows

us to not only fully utilize tensor core acceleration, but also

to reduce memory loading time. Bolt implements padding

by augmenting the generated CUDA code directly to save

extra kernel launch overhead. The padding requires new

tensors to hold temporary data. Allocating and initiating

these new tensor within the kernel will create significant

memory overhead. Instead, we pre-allocate the memory by

adding new variables in the model’s parameters that can be

used by the kernel directly.

3.3 Designing system-friendly models

The graph-level optimization (e.g., persistent kernel fusion)

and operator-level optimization (e.g., automated padding)

in Bolt also shed light on model-level optimization oppor-

tunities. Models that are designed in a way that effectively

make use of the system strengths can lead to more efficient

inference. We call this system-model codesign, which can

help build system-friendly models running more efficiently.

Bolt identifies the following principles for this codesign.

Exploring different activation functions with epilogue

fusion. The selection of activation functions has a notable in-

fluence on the accuracy of DNN models (Prajit et al., 2017).

Over the years, a line of activation functions have been

designed, such as ReLU (Nair & Hinton, 2010) and its vari-

ants, GELU (Hendrycks & Gimpel, 2016), Softplus (Zheng

et al., 2015), and Hardswish (Howard et al., 2019). In Bolt,

the epilogue fusion will fuse activations with the leading

GEMM/Conv to reduce the overhead of activations. There-

fore, model designs could explore different activation func-

tions in their models and identify the most effective one.

Deepening models with 1×1 Convs. Deepening neural

networks to achieve higher accuracy is a commonly-used

model design technique. For instance, ResNet (He et al.,

2016) has different depths from 18 layers to 151 layers with

increasing accuracy. However, the inference speed will drop

quickly as the depth increases. Deepening models with

1×1 Convs, on the other hand, only incurs low computation

overhead in Bolt. This is because of the persistent kernel

fusion optimization. Therefore, although deepening models

with 1×1 Convs does not increase accuracy to the same

extent as larger kernels, one can still add 1×1 Convs to

improve the accuracy with reduced speed loss.

Aligning tensor shapes to use GPUs more efficiently. As

we discussed in Section 3.2.3, tensor shapes have signifi-

cant impacts on the efficiency of models running on GPUs.

Although Bolt will automatically perform padding over un-

aligned tensors, the padding itself will incur extra overhead,

as shown in Table 3. As a result, one could design mod-

els with aligned tensor shapes to achieve higher efficiency,

avoiding the additional padding overhead.

4 EVALUATION

Our evaluation of Bolt focuses on the following aspects.

First, we perform microbenchmarks to evaluate the perfor-

mance of Bolt in terms of GEMM/Conv2D computation,

epilogue fusion, persistent kernel fusion, and kernel padding.

Second, we evaluate the end-to-end performance of Bolt

on widely-used convolutional neural networks. Finally, we

apply our system-model codesign principles to the RepVGG

models (Ding et al., 2021) as a case study.



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

Setup. Our experiments are performed on a single NVIDIA

Tesla T4 GPU. We use Ansor (Zheng et al., 2020a), the state-

of-the-art auto-tuner in TVM as our baseline. All inference

computations in the evaluation use the FP16 data type.

4.1 Microbenchmarks

4.1.1 GEMM/Conv2D performance

We first evaluate the performance of Bolt-generated GEMM

and Conv2D implementations. For GEMMs, we evaluate

a) typical GEMMs in BERT (Devlin et al., 2018) where the

batch size is 32 and sequence length is 40 and b) two square

GEMMs. For the Ansor baseline, we tune each workload

for 2000 trials for performance optimization, following the

TVM official example. We run each workload 1000 times

and compute the average speed; results are shown in Fig-

ure 8a. Ansor adopts a strategy that aggressively consumes

all register files to achieve higher performance. However,

this greedy approach is only effective for less compute-

intensive workloads. Therefore, Bolt is 6.1-9.5x faster than

Ansor on compute-intensive workloads and achieves 1.9x

speedup on the one that is less compute-intensive. Similarly,

we measure the speed of Conv2D in Figure 8b. The work-

loads are extracted from ResNet-50 using a batch size of 32.

All Conv2Ds in the table are using (3, 3) kernels and (1, 1)

zero padding. For all cases, Bolt is 2.7-3.5x faster than An-

sor. Overall, Bolt achieves significantly higher performance

as the tuning strategy based on hardware-native templates

extracts native performance.

4.1.2 Epilogue fusion performance

We then evaluate the effectiveness of epilogue fusion

on element-wise operators. We choose one work-

load for GEMM and Conv2D from Figure 8 respec-

tively and measure the performance of the pattern

GEMM/Conv2D+BiasAdd+Activation. We experiment

on four different activation functions: ReLU, GELU,

Hardswish, and Softplus, and the results are shown in Fig-

ure 9. Our baseline here is Bolt without epilogue fusion, in

which Bolt only computes the GEMM/Conv2D and TVM

will fuse the BiasAdd and activation and compute them as

one operator. As we can see, epilogue fusion improves the

computation speed for both GEMM and Conv2D. The av-

erage speedup for GEMM and Conv2D is 1.45x and 1.38x

respectively. We have observed similar performance gains

on other workloads (not shown).

4.1.3 Persistent kernel fusion performance

We next evaluate the performance of persistent kernel fu-

sion. First, we use Bolt to fuse two GEMMs with the pattern

GEMM1+ReLU+GEMM2+ReLU into one GEMM oper-

ator using RF-based or shared-memory based persistent

kernels, depending on their performance. The baseline

Table 1. The performance of fusing two back-to-back GEMMs

using persistent kernels. Each GEMM is followed by a ReLU

epilogue and all of them will be fused into one kernel.

1st GEMM 2nd GEMM Normalized speed

M N K M N K w/o fuse. w/ fuse.

2464 1 4 2464 4 1 1.00 1.24

16384 64 256 16384 16 64 1.00 1.34

32768 128 576 32768 64 128 1.00 1.28

128320 32 96 128320 96 32 1.00 1.46

Table 2. The performance of fusing two back-to-back Conv2Ds

using persistent kernels. Each Conv2D is followed by a BiasAdd

and a ReLU epilogue. The 3× 3 Conv2D uses (1, 1) padding and

the 1× 1 Conv2D uses (1, 1) stride and does not have padding.

3×3 Conv2D 1×1 Conv2D Normalized speed

H, W IC, OC strides H, W IC, OC w/o fuse. w/ fuse.

2242 3, 48 (2, 2) 1122 48, 48 1.00 1.10

1122 48, 48 (2, 2) 562 48, 48 1.00 1.41

562 48, 48 (1, 1) 562 48, 48 1.00 1.87

2242 3, 64 (2, 2) 1122 64, 64 1.00 1.24

1122 64, 64 (2, 2) 562 64, 64 1.00 1.12

562 64, 64 (1, 1) 562 64, 64 1.00 2.02

is Bolt with only epilogue fusion that computes the two

GEMMs sequentially. Results are presented in Table 1.

Workloads are extracted from real recommendation models,

e.g., DCNv2 (Wang et al., 2021), DLRM (Naumov et al.,

2019). As we can see, the persistent kernel fusion acceler-

ates the computation by 1.2x-1.5x. For Convs, we extract

the 3×3 Conv2Ds from the first a few layers in the RepVGG

models and create a 1 × 1 Conv2D for each of them. As

shown in Table 2, our persistent kernel fusion can improve

the computation speed by 1.1x-2.0x. Note that our persis-

tent kernels can fuse more than two GEMMs/Convs, which

can further improve the performance by saving intermediate

memory access and kernel launch.

4.1.4 Padding performance and overhead

We now evaluate the performance benefit of automated

padding and its extra overhead in Bolt. In Table 3, we

choose a few Conv2D workloads in our production of which

the input channels are not divisible by 8. Without padding,

these workloads can only compute with alignment 2. Bolt

will automatically pad them to the closest 8-divisible sizes,

thus leveraging alignment 8. We measure the normalized

computation speed of Bolt with and without padding. As

we can see, after padding, the speed can be improved by

1.8x on average. However, the padding itself will incur ex-

tra overhead: in this benchmark, the average time spent on

padding over the total computation time (padding+Conv2D

computation) is 16%. This is further evidence of our 3rd

system-friendly model design principleÐmodels should be

designed with aligned tensor shapes.



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

 0

 2

 4

 6

 8

 10

32,768,768
1280,3072,768

1280,768,768

1280,768,3072

2048,2048,2048

1024,1024,1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

Workload (M,N,K)

Ansor Bolt

(a) GEMM performance.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

562,642,(1,1)

562,1282,(2,2)

282,1282,(1,1)

282,2562,(2,2)

142,2562,(1,1)

142,5122,(2,2)

72,5122,(1,1)

N
o

rm
a

liz
e

d
 s

p
e

e
d

Workload ((H, W), (IC, OC), strides)

Ansor Bolt

(b) Conv2D performance.

Figure 8. The performance of Bolt on GEMMs and Conv2Ds. Figure 8a shows the speed of GEMMs in BERT (batch size=32, sequence

length=40) and two square GEMMs. Figure 8b shows the speed of 3× 3 Conv2Ds in ResNet-50 (batch size=32, all Conv2Ds use (1, 1)

zero padding).

 0

 0.5

 1

 1.5

 2

ReLU GELU Hardswish Softplus

N
o

rm
a

liz
e

d
 s

p
e

e
d

Epilogue function (GEMMs)

Bolt w/o fusion Bolt w/ fusion

(a) GEMM epilogue fusion.

 0

 0.5

 1

 1.5

 2

ReLU GELU Hardswish Softplus
N

o
rm

a
liz

e
d

 s
p

e
e

d

Epilogue function (Conv2Ds)

Bolt w/o fusion Bolt w/ fusion

(b) Conv2D epilogue fusion.

’

Figure 9. The performance of epilogue fusion on pattern GEMM/Conv2D+BiasAdd+Activation. The workload of the GEMM is M=1280,

N=3072, and N=768. The workload of the Conv2d is H=W=56, IC=OC=64, kernel=(3, 3), stride=(1,1), and padding=(1,1).

Table 3. The performance and overhead of Bolt’s automated

padding. Unpadded Conv2Ds are computed with alignment=2;

after being padded, alignement=8 can be used. The cost of padding

is the time spent on the padding over the total computation time

(padding+Conv2D).

N H, W IC, OC kernel padding
Norm. speed

Cost
unpad pad

32 20, 26 46, 32 (3, 3) (1, 1) 1.00 1.62 18%

32 20, 26 46, 32 (5, 5) (2, 2) 1.00 1.95 9%

128 14, 19 46, 32 (5, 7) (0, 0) 1.00 1.77 15%

288 11, 15 46, 32 (5, 7) (0, 0) 1.00 1.71 18%

32 20, 26 174, 64 (3, 3) (1, 1) 1.00 1.60 24%

32 20, 26 174, 64 (5, 5) (2, 2) 1.00 1.99 12%

4.2 End-to-end optimization

We evaluate the performance of Bolt on end-to-end model

optimization by experimenting on six widely-used convo-

lutional neural networks. Our baseline is Ansor which per-

forms auto-tuning to optimize performance. We configure

Ansor following the official example and set the tuning trials

to the recommended 900 × the number of tasks. We use a

batch size of 32 and data type of FP16 for all models. The

inference speed and tuning time are shown in Figure 10. As

we can see, Bolt has significant better inference performance

compared to Ansor. In particular, Bolt is 4.2x faster on VGG

models, 1.5x faster on ResNet models, and 2.6x faster on

RepVGG models. On average, Bolt improves the inference

speed by 2.8x compared to Ansor. In terms of tuning time,

as shown in Figure 10b, Bolt can complete the tuning much

faster than Ansor because Bolt uses hardware-native tem-

plated search which greatly reduces the searching space.

Concretely, Bolt can finish the tuning within 20 minutes for

all models while Ansor takes 12 hours on average.

4.3 System-friendly models: RepVGG case study

Finally, we perform a case study on RepVGG (Ding et al.,

2021) to show the effectiveness of our system-model code-

sign principles. RepVGG is a VGG-like convolution neural

network which only uses 3×3 Conv2Ds to achieve higher ac-

curacy and faster inference speed. The key idea of RepVGG

is to train high-accuracy models with branches and remove

those branches by re-parameterization to accelerate the in-

ference. We apply our system-friendly model principles to

augment RepVGG. In our experiments, models are trained

on ImageNet with FP32 using the Swin Transformer train-

ing codebase (Liu et al.), but they are quantized to FP16 for

inference without accuracy loss. The inference runs on an

NVIDIA Tesla T4 GPU with a batch size of 32.

Changing activation functions. We first augment RepVGG

by trying different activation functions. The original

RepVGG model selects ReLU as its activation function,

but we also experiment with GELU (Hendrycks & Gim-



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

 0

 2000

 4000

 6000

 8000

 10000

VGG-16
VGG-19

ResNet-18
ResNet-50

RepVGG-A0

RepVGG-B0

S
p

e
e

d
 (

im
a

g
e

s
/s

e
c
)

Models

Ansor Bolt

(a) Inference speed.

102

103

104

105

106

VGG-16
VGG-19

ResNet-18
ResNet-50

RepVGG-A0

RepVGG-B0

T
u
n
in

g
 t
im

e
 (

s
e
c
)

Models

Ansor Bolt

(b) Tunning time.

Figure 10. The normalized inference speed and tuning time for widely used convolutional neural networks.

Table 4. The top-1 accuracy and speed of RepVGG-A0 using differ-

ent activation functions (120 epochs + simple data augmentation).

Activation Top-1 accuracy Speed (images/sec)

ReLU 72.31 5909

GELU 72.38 5645

Hardswish 72.98 5713

Softplus 72.57 5453

pel, 2016), Hardswish (Howard et al., 2019), and Soft-

plus (Zheng et al., 2015). The top-1 accuracy and inference

speed of RepVGG-A0 with different activation functions

is shown in Table 4. We have found that activation func-

tions do affect the accuracyÐRepVGG-A0 with Hardswish

achieves 0.67% higher accuracy. Meanwhile, the inference

speed does not show too much difference. Even with Soft-

plus that has complex computation, the speed only drops by

7.7%.

Deepening the model with 1×1 Conv2Ds. We apply our

2nd codesign principle by adding a 1×1 Conv2D after each

3× 3 Conv2D (except for the last one which has too many

output channels). The 1× 1 Conv2Ds have the same input

and output channels, with strides of (1, 1) and no padding.

Bolt will fuse adjacent 3 × 3 and 1 × 1 Conv2Ds using

persistent kernels if the fusion is beneficial. To verify the

effectiveness of each individual principle, we do not change

the activation function in this experiment. As shown in

Table 5, adding 1× 1 Conv2Ds can improve the accuracy

with minimal speed loss. The accuracy is increased by

0.82%, 0.77%, and 0.74% for RepVGGAug-A0, A1, and

B0 respectively. Their speed drops by 15.3% on average.

Combined effect. Finally, we combine the above two tech-

niques and train the model with advanced augmentation, la-

bel smoothing, and mixup in 300 epochs. For RepVGG-A0,

we train it for 300 epochs with only simple augmentation,

which has better accuracy. As shown in Table 6, designing

models in a system-friendly manner can improve accuracy

more efficiently. For example, in original RepVGG models,

B0 is built by augmenting A1 with more 3 × 3 Conv2Ds,

which has 1% higher accuracy and 21.8% lower speed com-

pared to A1. In our augmentation, however, RepVGGAug-

Table 5. The top-1 accuracy and speed of original RepVGG models

and their augmentation with 1× 1 Conv2Ds (200 epochs + simple

data augmentation).

Model Top-1 accuracy Speed Params

RepVGG-A0 73.05 7861 8.31

RepVGG-A1 74.75 6253 12.79

RepVGG-B0 75.28 4888 14.34

RepVGGAug-A0 73.87 6716 13.35

RepVGGAug-A1 75.52 5241 21.7

RepVGGAug-B0 76.02 4145 24.85

Table 6. The top-1 accuracy and speed of original RepVGG models

and their augmentation with 1 × 1 Conv2Ds+Hardswish (300

epochs + advanced augmentation, label smoothing, and mixup).

Model Top-1 accuracy Speed (images/sec)

RepVGG-A0 73.41 7861

RepVGG-A1 74.89 6253

RepVGG-B0 75.89 4888

RepVGGAug-A0 74.54 6338

RepVGGAug-A1 76.72 4868

RepVGGAug-B0 77.22 3842

A1 is augmented by adding 1× 1 Conv2Ds which has simi-

lar speed overhead, but the accuracy is improved by 1.83%

than RepVGG-A1. Note that designers have the flexibil-

ity to make a trade off between accuracy and speed. For

instance, by adding only 1 × 1 Conv2Ds to the first three

layers of RepVGG-A0 and using Hardswish, we can get

a RepVGAug-A0 model with 74.02% Top-1 accuracy and

7288 images/sec speed.

5 DISCUSSION

Other libraries, platforms, and models. Although we use

NVIDIA CUTLASS and GPUs to demonstrate the design

of Bolt, our approach is not bound to any specific devices

or libraries. Applying Bolt principles to other templated

libraries and hardware platforms, such as OneDNN (Intel)

for Intel hardware and ROCm (AMD) for AMD devices, are

an interesting future step. Furthermore, Bolt’s techniques

focus on improving the computation speed of GEMM and



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

CONV, so they are not model-specific. As these operations

are common for many DNN models, Bolt is useful for non-

CNN models as well (e.g., NLP models, where the encoders

make wide use of GEMMs).

Persistent kernel fusion limitations. Although persistent

kernels can fuse any sequential GEMMs/Conv2Ds follow-

ing the threadblock residence, we design it specifically for

memory-bound operators, which is consistent with the moti-

vation of general operator fusion. That is, Bolt can improve

the performance for sequential GEMMs with small N and

K dimensions but large M dimensions and Conv2Ds with

small channels. Fusing compute-bound operators could lead

to performance drops because of the threadblock residence

requirement.

6 RELATED WORK

Auto-tuners. Many DNN frameworks and compilers em-

ploy auto-tuning strategies to search for the tensor imple-

mentation with optimal performance (Chen et al., 2018b;

Zheng et al., 2020a; Adams et al., 2019; Zheng et al., 2020b).

As they infer the hardware cost model by trying different

tensor implementations and measuring their performance,

this takes hours to days. Moreover, the generated tensor pro-

grams cannot achieve hardware-native performance. Bolt

bridges the gap between auto-tuners and hardware-native

performance.

Operator fusion. Operator fusion is an important graph-

level optimization (Chen et al., 2018a; Abadi et al., 2016;

Leary & Wang, 2018; Paszke et al., 2019; Abdolrashidi

et al., 2019; Jia et al., 2019). However, existing operator

fusion only considers one GEMM/Conv and its adjacent

operators, e.g., BiasAdd, ReLU, and the fusion is not well

supported by vendor libraries. Bolt enables new operator

fusion with high performance. For instance, the proposed

persistent kernel fusion can fuse a sequence of GEMMs and

Convs, further improving the performance. Our persistent

kernel is different from Persistent RNNs (Diamos et al.,

2016) which is manually designed specifically for RNNs

without using tensor cores.

System-friendly model design. RepVGG (Ding et al.,

2021) designs system-friendly models by employing multi-

branch architectures in training models to pursue high accu-

racy and by removing the branches via re-parameterization

for the inference. Also, RepVGG uses only 3× 3 Conv2Ds

which are well-supported by the hardware. Bolt further

extends the idea by proposing system-model codesign prin-

ciples, and uses RepVGG as a concrete case study.

7 CONCLUSION

This paper presents Bolt, which bridges the gap between

auto-tuners and device library performance. Bolt utilizes

the emerging trend that vendor libraries are becoming mod-

ularized and composable. It combines the flexibility of auto-

tuners and the hardware-native performance of templated

device libraries to achieve the best of both worlds. Our

design enables new tensor-level and graph-level optimiza-

tions, and inspires system-friendly model design insights.

Our experiments show that Bolt can achieve 2.5× speedup

on widely-used convolutional neural networks compared

against the state of the art. Moreover, it finishes its auto-

tuning within 20 minutes.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-

back on this work. We also thank our colleagues at

BytedanceÐespecially Shibiao Nong, Yiyao Sheng, and

Cuiqing LiÐfor their help with setting up the GPU training

and auto-tuning environments. Jiarong Xing and Ang Chen

were partially supported by NSF grants CNS-2106751 and

CNS-2016727.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.

Tensorflow: A system for large-scale machine learning.

In Proc. OSDI, 2016.

Abdolrashidi, A., Xu, Q., Wang, S., Roy, S., and Zhou, Y.

Learning to fuse. In NeurIPS ML for Systems Workshop,

2019.

Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-

M., Gharbi, M., Steiner, B., Johnson, S., Fatahalian, K.,

Durand, F., et al. Learning to optimize halide with tree

search and random programs. ACM Transactions on

Graphics (TOG), 38(4):1±12, 2019.

AMD. ROCm libraries. https://rocmdocs.amd.

com/en/latest/ROCm_Libraries/ROCm_

Libraries.html.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,

H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. TVM:

An automated end-to-end optimizing compiler for deep

learning. In Proc. OSDI, 2018a.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze,

L., Guestrin, C., and Krishnamurthy, A. Learning to opti-

mize tensor programs. arXiv preprint arXiv:1805.08166,

2018b.



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

Chen, Z., Yu, C. H., Morris, T., Tuyls, J., Lai, Y.-H., Roesch,

J., Delaye, E., Sharma, V., and Wang, Y. Bring your

own codegen to deep learning compiler. arXiv preprint

arXiv:2105.03215, 2021.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,

Tran, J., Catanzaro, B., and Shelhamer, E. cudnn:

Efficient primitives for deep learning. arXiv preprint

arXiv:1410.0759, 2014.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M.,

Coates, A., Elsen, E., Engel, J., Hannun, A., and Satheesh,

S. Persistent RNNs: Stashing recurrent weights on-chip.

In Proc. ICML, 2016.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J.

RepVGG: Making VGG-style convnets great again. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 13733±13742, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770±778, 2016.

Hendrycks, D. and Gimpel, K. Gaussian error linear units

(gelus). arXiv preprint arXiv:1606.08415, 2016.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,

Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,

et al. Searching for MobileNetv3. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pp. 1314±1324, 2019.

Intel. oneAPI deep neural network library (oneDNN).

https://github.com/oneapi-src/oneDNN.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M.,

and Aiken, A. TASO: optimizing deep learning computa-

tion with automatic generation of graph substitutions. In

Proceedings of the 27th ACM Symposium on Operating

Systems Principles, pp. 47±62, 2019.

Leary, C. and Wang, T. XLA - tensorflow, compiled, 2018.

Liang, X., Shen, X., Feng, J., Lin, L., and Yan, S. Semantic

object parsing with graph lstm. In European Conference

on Computer Vision, pp. 125±143. Springer, 2016.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,

and Guo, B. Swin transformer: Hierarchical vision trans-

former using shifted windows. https://github.

com/microsoft/Swin-Transformer.

Nair, V. and Hinton, G. E. Rectified linear units improve

restricted boltzmann machines. In Icml, 2010.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sun-

daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.,

Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cher-

niavskii, I., Lu, Y., Krishnamoorthi, R., Yu, A., Kon-

dratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V.,

Jia, B., Xiong, L., and Smelyanskiy, M. Deep learning

recommendation model for personalization and recom-

mendation systems. CoRR, abs/1906.00091, 2019. URL

https://arxiv.org/abs/1906.00091.

NVIDIA. cuBLAS. a. https://developer.nvidia.

com/cublas.

NVIDIA. CUTLASS: CUDA templates for linear algebra

subroutines. b. https://github.com/NVIDIA/

cutlass.

NVIDIA. Tensor layouts in memory: NCHW

vs NHWC. c. https://docs.nvidia.

com/deeplearning/performance/

dl-performance-convolutional/index.

html#tensor-layout.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-

son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

L., Bai, J., and Chintala, S. Pytorch: An imperative

style, high-performance deep learning library. In Wal-

lach, H., Larochelle, H., Beygelzimer, A., d'AlchÂe-Buc,

F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-

formation Processing Systems 32, pp. 8024±8035. Curran

Associates, Inc., 2019.

Prajit, R., Zoph, B., and Quoc, V. L. Swish: a self-gated

activation function. arXiv preprint arXiv:1710.059417,

2017.

Roesch, J., Lyubomirsky, S., Kirisame, M., Weber, L., Pol-

lock, J., Vega, L., Jiang, Z., Chen, T., Moreau, T., and

Tatlock, Z. Relay: A high-level compiler for deep learn-

ing. arXiv preprint arXiv:1904.08368, 2019.

SAMPL. Tophub autotvm log collections. https://

github.com/tlc-pack/tophub.

Wang, L. [BYOC] CUTLASS integration (#9261).

https://github.com/apache/tvm/commit/

541f9f2d8aef9697fd7ccb6a7c0644da273f33b6.

Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong,

L., and Chi, E. DCN V2: Improved deep & cross net-

work and practical lessons for web-scale learning to rank

systems. In Proceedings of the Web Conference 2021, pp.

1785±1797, 2021.



Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

Wu, H., Diamos, G., Cadambi, S., and Yalamanchili, S.

Kernel weaver: Automatically fusing database primitives

for efficient gpu computation. In Proceedings of the 45th

Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO-45 ’12, 2012.

Yu, C. H., Shi, X., Shen, H., Chen, Z., Li, M., and Wang,

Y. Lorien: Efficient deep learning workloads delivery. In

Proceedings of the Seventh ACM Symposium on Cloud

Computing, 2021.

Zheng, H., Yang, Z., Liu, W., Liang, J., and Li, Y. Im-

proving deep neural networks using softplus units. In

2015 International Joint Conference on Neural Networks

(IJCNN), pp. 1±4. IEEE, 2015.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali,

A., Wang, Y., Yang, J., Zhuo, D., Sen, K., et al. Ansor:

Generating high-performance tensor programs for deep

learning. In Proc. OSDI, 2020a.

Zheng, S., Liang, Y., Wang, S., Chen, R., and Sheng, K.

Flextensor: An automatic schedule exploration and opti-

mization framework for tensor computation on heteroge-

neous system. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, pp. 859±873,

2020b.


