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Abstract—There has been considerable controversy regarding
the accuracy and privacy of de-identification mechanisms used
in the U.S. Decennial Census. We theoretically and experi-
mentally analyze two such classes of mechanisms, swapping
and differential privacy, especially examining their effects on
ethnoracial minority groups.

We first prove that the expected error of queries made on
swapped demographic datasets is greater in sub-populations
whose racial distributions differ more from the racial dis-
tribution of the global population. We also prove that the
probability that m unique entries exist in a sub-population
shrinks exponentially as the sub-population size grows. These
properties suggest that swapping, which prioritizes unique
entries, will produce poor accuracy for minority groups.

We then empirically analyze the impact of swapping and
differential privacy on the accuracy and privacy of a de-
mographic dataset. We evaluate accuracy in several ways,
including methods that stress the effect on minority groups.
We evaluate privacy by counting the number of re-identified
entries in a simulated linkage attack. Finally, we explore
the disproportionate presence of minority groups in identified
entries.

Our empirical findings corroborate our theoretical results:
for minority representation, the utility of differential privacy
is comparable to the utility of swapping, while providing
a stronger privacy guarantee. Swapping places a dispropor-
tionate privacy burden on minority groups, whereas an ϵ-
differentially private mechanism is ϵ-differentially private for
all subgroups.

1. Introduction

An urgent need for comparative analysis of the data de-
identification methods of swapping and differential privacy
has emerged with the U.S. Census Bureau’s controversial

*These authors contributed equally to this work.
†Work done while at Columbia University and Tufts University.

decision to transition from swapping to differential privacy
in the 2020 Census. After swapping as used in the 2010 U.S.
Census was shown to be vulnerable to reconstruction attacks
[1], the U.S. Census Bureau adopted differential privacy,
which affords stronger privacy guarantees. This decision
sparked an ongoing debate about the utility of differentially
private census data.

Policy decisions are rooted in demographic data. From
the allocation of economic assistance funding to infrastruc-
ture and voting implementation, the data collected, analyzed,
and released by groups such as the U.S. Census Bureau
affects the lives of all residents. The use of demographic data
allows for highly targeted and effective decision-making by
governments and by industry worldwide. However, accurate
large-scale datasets of personal information come at a price:
the price of privacy.

The privacy-utility trade-off is the relationship between
data accuracy and privacy. It represents the notion that with
increased privacy, decreased utility necessarily follows, and
vice versa. This phenomenon is important to consider in
the context of demographic data. Specifically, privacy is
integral to maintaining a safe society for minority groups.
Consider the role of census data in the establishment of
Japanese internment camps: U.S. Census Bureau block data
was used to target Japanese-Americans for imprisonment
during World War II [2]. Census data, with sensitive fields
intact, provides easy access to identifying information about
specific individuals, and has the power to inflict significant
harm on all represented communities.

Furthermore, privacy is necessary for achieving a high
response rate and obtaining accurate responses. As noted in
Baldrige v. Shapiro, “an accurate census depends in large
part on public cooperation[,]” relying on “assurances that
information furnished to the Secretary [of Commerce] by
individuals is to be treated as confidential” [3].

Groups such as the U.S. Census Bureau lessen this
identification risk by de-identifying datasets. The most re-
cent method of de-identification chosen for use in the U.S.
census is differential privacy. Differential privacy (DP) is a
relatively new formal privacy definition, spanning a class
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of de-identification algorithms that serve as a means to
satisfy the evolving need for anonymization and accuracy.
Throughout this paper, we examine the legitimacy of DP’s
application to demographic data, specifically regarding mi-
nority populations within a dataset.

There has been significant opposition regarding the
adoption of DP in the U.S. census. Critics claim that DP
produces less accurate population counts, and diminishes
minority representation. The accuracy of demographic data
is especially important, as its use cases are sensitive: U.S.
census data is used for funding integral assistance pro-
grams including Medicaid, Head Start, SNAP, and block
grant programs for community mental health services [4];
under-representation can lead to under-funding of national
and block-based assistance programs. Groups such as the
National Congress of American Indians (NCAI) have cited
concern over DP’s impact on small populations, and have
pushed back on its use [5]. The criticisms of groups such
as NCAI are valid, in that by nature, DP does introduce
inaccuracy into a dataset; DP generally offers less utility
for smaller population subsets than for larger population
subsets. However, these criticisms do not consider whether
this phenomenon occurs in the de-identification methods that
preceded DP.

We compare DP and its predecessor: the data pertur-
bation method used in the 2010 U.S. Census, known as
swapping. First, we prove that the expected error in count
queries performed on a dataset de-identified by random
swapping is higher for subpopulations with distributions
further from the global population distribution, e.g., diverse
block groups within more homogenous states. We then prove
that the probability that a fixed number of unique entries
exist in a subpopulation decreases exponentially as the sub-
population size increases. Thus, we expect the accuracy of
swapping to degrade as subpopulation size shrinks, and we
expect swapping methods that prioritize unique entries to
be swapped to exhibit more extreme accuracy degradation
in small subpopulations.

We then empirically evaluate the accuracy and privacy of
datasets produced by both swapping-based and DP mecha-
nisms. Our implementations are largely inspired by the U.S.
Census Bureau, due to their importance as a user of DP for
demographic data. We use a geometric mechanism in the
central differential privacy model, similar to a simplified
version of the U.S. Census Bureau’s TopDown Algorithm
without post-processing. We implement two standard ap-
proaches to swapping, including both a randomized and
similarity-threshold based metric for swap selection; we run
these swapping mechanisms for various similarity thresholds
and with various approaches to randomness. We measure the
accuracy of these mechanisms by computing histograms by
race over each dataset type, and comparing these histograms
to the true race histograms. We compare histograms using
three metrics: a variant of KL divergence, mean squared
error, and the number of minority race-ethnicity groups
whose populations significantly decreased. We analyze the
privacy of the swapped data by simulating a linkage attack
and counting the number of identified entries.

We show both theoretically and empirically that when
DP and swapping are implemented at an acceptable privacy
level, their utility with regard to minority representation is
comparable for demographic datasets similar to and similar
in dimensionality to the U.S. census redistricting data. We
present the accuracy and privacy levels found across a wide
range of ϵ values and swap rates, for block groups in
counties of various demographic makeups.

2. Background and Related Work

Data swapping was introduced by Dalenius and Reiss in
[6]. It involves selecting pairs of rows in a database and, for
each pair, exchanging the values in a subset of their columns.
The number of entries that are swapped is parameterized by
the swap rate: a higher swap rate means more exchanges
and more privacy.

Differential privacy [7] is a rigorous privacy definition.
Broadly speaking, a de-identification mechanism is differ-
entially private if for any two datasets differing at only one
row, the distribution of the mechanism’s output is roughly
the same. The amount that the distributions may differ is
parameterized by the privacy parameter, ϵ. DP is achieved
using randomized mechanisms, which typically introduce
structured noise (e.g., additive noise from a Laplacian dis-
tribution) to de-identify data.

In 2020, the U.S. Census Bureau switched from using
traditional disclosure avoidance methods (primarily swap-
ping) to using the differentially private TopDown Algorithm
(TDA) [8]. This decision has been criticized by data users
concerned about a decrease in data utility due to inaccuracy
introduced by DP [9], along with minority groups concerned
about population undercounts [5], [10]. A lawsuit was filed
by the State of Alabama against the U.S. Department of
Commerce and the U.S. Census Bureau; in part of this
lawsuit, the State of Alabama argued that the inaccuracy
introduced by the use of DP in the 2020 U.S. Census
will make the data unusable for redistricting. Alabama lost
on purely legal grounds; the data quality issue was not
addressed.1

It is important to note that while the choice of de-
identification method for the 2020 U.S. Census is up for
debate, the U.S. Census Bureau’s move away from swapping
as implemented in the 2010 U.S. Census was imperative.
Since the law mandates that census data not be individually
identifying [11], the 2010 implementation of swapping,
which was shown to be vulnerable to reconstruction attacks
[1], is no longer viable. When many queries (i.e., aggregate
statistics) over confidential data are released, such as in the
U.S. census, a threat to privacy is database reconstruction,
where an attacker uses the answers to the queries to rebuild
the confidential database. Dinur and Nissim [12] showed that
for a dataset represented using n bits, noise of magnitude
Ω(

√
n) must be added to prevent reconstruction attacks. In

1. https://www.brennancenter.org/our-work/court-cases/alabama-v-u
s-dept-commerce lists all major filings, rulings, etc. As of September 9,
2021, Alabama had withdrawn its suit and not refiled.
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practice, de-identification methods, likely including those of
the U.S. Census Bureau before 2020, often do not use this
level of noise, suggesting that many publicly available de-
identified datasets are vulnerable to such attacks. This vul-
nerability was confirmed for 2010 U.S. Census data by the
U.S. Census Bureau in 2018, when their team of researchers
launched a reconstruction attack on the publicly available
census data and found that 46% of their reconstructed entries
exactly matched the corresponding original entries [13, page
32].

We are not the first to examine the impact of DP
mechanisms on minority subpopulations in the context of
the U.S. census. In particular, several studies use the U.S.
Census Bureau’s 2010 demonstration data, which includes
the 2010 U.S. Census data de-identified using a version
of their TopDown Algorithm, the mechanism designed by
the U.S. Census Bureau to produce differentially private
tabular summary statistics. These studies compare the 2010
TopDown-Algorithm-produced data to the official 2010 U.S.
Census data, which was de-identified using traditional dis-
closure avoidance methods (i.e., their swapping algorithm).
In [14], Santos-Lozada et al. compare mortality rates com-
puted using the 2010 TDA-produced data and the official
2010 U.S. Census data. They find higher levels of discrep-
ancy in mortality rates for minority categories (e.g., Non-
Hispanic Black) as compared to more populous categories
(e.g., Non-Hispanic White). In [15], Hauer and Santos-
Lozada find substantial distortion in COVID-19 mortality
rates computed using differentially private data for small
population groupings. Again, they use the 2010 U.S. Census
data, which was de-identified using swapping, as a baseline.

Their results show that swapping and the differentially
private TopDown Algorithm produce different data, but they
do not show which method yields more accurate data.
A direct comparison of the impact of swapping and DP
mechanisms on U.S. census data is challenging since the
unmodified data cannot be released due to statutory require-
ments [11]. We bypass this issue by generating synthetic
data as our ground truth data and de-identifying this data
using both swapping and DP.

Other works examine the TopDown Algorithm’s general
fitness for use, not necessarily focusing on minority groups.
In [16], Wright and Irimata simulate the TopDown Algo-
rithm with ϵ = 4 on Rhode Island data and find increased
variability in smaller subpopulations. In [17], Cohen et al.
develop an experimental framework for analyzing TopDown
Algorithm’s impact on redistricting data, propose improve-
ments for the Census Bureau and data users, and find that
some concerns about usability can be overcome. Garfinkel
et al. [18] attribute some of the challenges surrounding the
adoption of DP to data users’ unfamiliarity with DP, and
they highlight a need for improved communication between
data users and the Census Bureau. In [19], Kenny et al. argue
that the TopDown Algorithm is both too inaccurate to be
used for redistricting and not sufficiently private. However,
this paper has been contested by DP experts [20].

The effect of DP on minority groups has been examined
in other contexts as well. Bagdasaryan, Poursaeed, and

Shmatikov [21] show that for neural networks trained using
DP-SGD, the accuracy cost is greater for minority groups,
and any accuracy disparity in non-DP training is exacerbated
when DP is applied. Xu, Du, and Wu [22] give a modified
differentially private stochastic gradient descent algorithm,
dubbed DPSGD-F, that mitigates this cost disparity. This
line of research is interesting and relevant, but not easily
applicable to our setting: DP applied during the training of
machine learning models will face different challenges than
DP applied to histograms over demographic data.

Separately, there has been work examining the impact
of data swapping. Hawes and Rodrı́guez [23], using 1980
U.S. Census data, show that even when 50% of households
are swapped, 12.96% of the population can be re-identified.
Kim [24] shows that swapping methods that prioritize at-risk
individuals degrade the manifestation of jointly distributed
variables in the de-identified data. Ramchandran et al. [25]
simulate a linkage attack to correlate American Community
Survey and Public Use Microdata Sample data, which were
de-identified using swapping and released by the U.S. Cen-
sus Bureau.

We are the first that we know of to directly compare the
effects of swapping to the effects of DP on minority under-
representation across a wide range of ϵ values and swap
rates. We do so by generating synthetic microdata using
2010 U.S. Census data, de-identifying our synthetic data
using swapping and DP mechanisms, and comparing the
accuracy and privacy levels afforded by these methods at
varying swap rates and ϵ values. We use a DP mechanism
similar to the Census Bureau’s Top-Down Algorithm, but
without U.S.-census-specific post-processing. Thus, our re-
sults apply more generally to demographic data of a similar
structure.

De-identifying demographic data in a way that preserves
minority representation is relevant to contexts beyond the
U.S. census. For example, Ito et al. [26] compare several DP
mechanisms for computing official population statistics in
Japan. In Israel, survey data released to the public by Israel’s
Central Bureau of Statistics was re-identified by a group of
students at Tel Aviv University [27]. While we use the U.S.
census as a case study, our results help inform the global
issue of preserving minority representation while ensuring
sufficient privacy levels in publicly available demographic
datasets resembling the U.S. Decennial Census. We perform
additional analyses to show how our methods do and don’t
generalize to higher-dimensional data.

2.1. Definitions

We include the definition of ϵ-differential privacy from [7]:

Definition 1 (ϵ-differential privacy [7]). A randomized al-
gorithm M with domain N|X | is ϵ-differentially private if
for all S ⊆ Range(M) and for all x, y ∈ N|X | such that
||x− y||1≤ 1:

Pr[M(x) ∈ S] ≤ eϵ Pr[M(y) ∈ S]
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One accuracy measure used in this paper is the µ-
smoothed Kullback-Leibler divergence (Dµ

KL) from Tan-
tipongpipat et al. [28]:

Definition 2 (Dµ
KL [28]). For small µ > 0, the µ-smoothed

KL divergence between an original distribution P and an
altered distribution Q is

Dµ
KL(P ||Q) :=

∑
x∈supp(P )

(P (x) + µ) log

(
P (x) + µ

Q(x) + µ

)

3. Theoretical Analysis

We first prove that if entries are chosen uniformly at ran-
dom to be swapped, the expected error of a counting query
performed over a subpopulation is higher for subpopulations
whose distributions differ more from the global population
distribution.

In this section, by random swapping with swap rate κ,
we mean the de-identification method in which each row
is chosen to be swapped with probability κ. If a row r is
designated to be swapped, r is replaced with the values
of another row r′ chosen uniformly at random from the
entire dataset. While some swapping methods replace only
a subset of the values rather than the entire row, these results
apply to such methods, since we can restrict the database
to include only the attributes that are swapped. In practice,
most implementations swap r and r′. Since we examine this
method’s effect on only a subset of the dataset, if r is in this
subset and r′ is not, it is not relevant that r′ is replaced with
r unless r′ was also in this subset. If our subset is small, this
happens rarely. Thus we can treat r as being replaced for
the sake of simplifying the analysis while still maintaining
a realistic model.

We examine the effect of random swapping on the
accuracy of counting queries (e.g., the size of the Asian
population) on a small subset of the dataset.

Let D be a dataset. Let S ⊆ D be a subset of the
rows in D. In U.S. census data, S may represent a block,
for example. Let S′ denote the dataset obtained by taking
the output of the swapping mechanism on input D, and
restricting it to the rows in S. If S represents a block in
a dataset, S′ is that block’s data after swapping is carried
out. Suppose we are interested in the number of rows that
fall into some category; e.g., we wish to know how many
residents in our block are Asian. Let c(·) denote the number
of rows in database · that are in category c.

Theorem 1 (Random Swapping and Counts). Let n = |S|
be the number of rows in S, α = c(S)

|S| be the fraction of

rows in S in category c, and β = c(D)
|D| be the fraction of

rows in the entire dataset D in category c. Then:

E
[∣∣∣∣c(S′)

|S′|
− c(S)

|S|

∣∣∣∣] = |n(α+ κ(β − α))− nα|
n

= |κ(β−α)|

The proof is by linearity of expectation and algebraic
manipulation. For interested readers, we have included it
and the proof of Theorem 2 in Appendix A.

This difference increases with |β−α|. Thus, subpopula-
tions with different distributions than the overall dataset will
have a higher accuracy loss of count statistics compared to
subpopulations distributed similarly to the overall dataset.
For example, random swapping will significantly diminish
the size of the Asian population in a predominately Asian
block if the proportion of Asian people is much greater
within the block than in the whole database. It also increases
with the swap rate κ, meaning as more entries are swapped,
this difference becomes more pronounced.

Next, we analyze the probability that a subpopulation
S of size n has at least m unique rows. A row is unique
if there exists no other row in the dataset with that row’s
attribute combination.

We model the data as having each row drawn i.i.d.
from some underlying joint distribution A1, . . . , Ak over the
attributes with support A. Since the rows are drawn inde-
pendently, we can let R be a random variable representing
an arbitrary row and let Pi := PrA1,...,Ak

[R = ri] denote
the probability that R equals a given row ri.

Theorem 2 (Unique Rows and Population Size). Let E1 be
the event that any m of the n rows in the dataset are unique.
Let E2 be the event that the first m rows in the dataset are
unique. Then the following hold:

(1) Pr[E2] =
∑

{rj}j∈[m]⊆A
m!

(
m∏
i=1

Pi

)(
1−

m∑
i=1

Pi

)n−m

(2) Pr[E2] ≤ Pr[E1]

(3) Pr[E1] ≤
∑

{rj}j∈[m]⊆A
nm

(
m∏
i=1

Pi

)(
1−

m∑
i=1

Pi

)n−m

The proof is straightforward, by computing the relevant
probabilities and applying a union bound for (3). See Sec-
tion A.2.

As n grows, the
(
1−

∑m
i=1 Pi

)n−m
term will decrease

faster than the nm term increases (recalling that m here is
a constant), and the

(∏m
i=1 Pi

)
term will stay fixed. Pr[E2]

also decreases exponentially in n. Thus, we have bounded
the probability that any m rows are unique between two
functions that decrease exponentially in n.

Asymptotically, large groups have an exponentially
lower probability of having m unique rows than small
groups for any fixed m. Thus any de-identification method
whose inaccuracy level increases with the number of unique
entries will swap more entries and consequently introduce
more inaccuracy in small populations. This applies to swap-
ping as implemented in the U.S. census: in the 2000 U.S.
Census, “the probability of swapping was increased to those
cases where disclosure risk was thought to be higher such as
cross-tabulations of key variables, smaller blocks, and also
households that contained unique races in that census block”
[13, Page 28]. The implementation in the 2010 U.S. Census
was “largely similar.”

While useful for analyzing the general behavior of this
phenomenon, asymptotics are not as informative for specific
values of n. For this reason, we also evaluate these methods
empirically.
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4. Empirical Evaluation Method

We empirically evaluate the accuracy and privacy impact
of swapping and differentially private mechanisms. Our
analysis focuses on minority representation in the context
of the privacy-utility trade off; we evaluate the under-
representation of minority groups following the use of mech-
anisms resembling those of the U.S. census, run on synthetic
demographic data.

4.1. Creating Data

Exact U.S. census data records can only be publicly
released after 72 years [29], thus we created synthetic data
that preserve key characteristics of modern communities.

The smallest unit of organization of U.S. census data
is a block [30]; the next-smallest unit is a called a block
group. Block groups are clusters of blocks, with populations
totaling between 600-3,000 [31]. The U.S. Census Bureau
recommends that data users aggregate blocks together for
improved accuracy [32]; thus we chose to create our data
in block group format.

We created synthetic data with populations of 600-1,500
per block group, based upon published block and county
data from the 2010 Census. We standardized our block group
sizes to lessen the impact of block group size on results, as
we primarily examine the impact of minority group status
on accuracy and privacy.

We selected nine counties from across the U.S., of
varying degrees of diversity. We retrieved published data
regarding the age and sex of county residents from the
2010 Census, as well as household size and tenure data of
residents from the 2019 American Community Survey. For
our race data, we used published 2010 Census block data:
we randomly selected blocks within each county, combining
data from multiple blocks when necessary to create block
groups of our desired size. Through doing so, we aimed to
preserve the idiosyncratic nature of race data on a low level,
data that we worried would be lost at county scale.

While our data does not exactly equal any block group’s
true values, it closely resembles U.S. Decennial Census data,
and we treat it as the ground truth data for the remainder
of our work. This allows us to evaluate the effectiveness
of the de-identification mechanisms using the same ground
truth data. Each individual is represented by exactly one
row in our dataset. Each attribute (age, sex, Hispanic Y/N,
race, household size, household tenure) is represented by
a column (table in Appendix B for convenience). Thus our
ground truth dataset for a given block group has n rows and
6 columns, where n is the number of people in that block
group. Our data closely mirrors the fields collected in the
U.S. Decennial Census; see Appendix B and [33].

4.2. Swapping Implementations

The exact swapping implementation used by the Census
Bureau has not and will not be released, as the Census

Bureau has shown that this will allow for potential re-
identification [34]. In order to account for this uncertainty,
we examine two general approaches to swapping: one that
swaps data with a random record, and one that swaps data
with a similar record, defined by a similarity threshold. We
believe our work to be fair generalizations of the methods
likely implemented by the Census Bureau.

Based upon the work of Kim [24], we created an adapted
version of swapping for our synthetic data, requiring the
selection of a swap rate (the percentage of the data to be
swapped), and a variable to swap on. The data about an
individual intended to be swapped can come from inside of
the dataset or from a separate dataset. In the context of the
U.S. census, the data should come from a different census
block in the same county or state. We chose to swap from a
one-million member synthetic data sample of the appropriate
state, including race, age, etc. We created these synthetic
state datasets by sampling from the true distributions of the
state for each attribute query.

In choosing entries to be swapped, we prioritize unique
dataset entries, as these require the greatest intervention to
preserve privacy, and such prioritization has been suggested
in documents published by the Census Bureau [13].

All of our swapping approaches entail the exchange of
an entry marked for swapping with another entry within
the same state. For comprehensiveness, we use several
implementations varying on the choice of entry to swap
with. We ran each of these implementations at varying swap
rates, ranging from .01 (swapping 1% of the data) to 1.0
(swapping 100% of the data) for each of the blocks. Note
that although swapping affects two entries, we always swap
an entry within our block group with an entry outside the
block group. Thus, the swap rate is the percentage of entries
in the block group that have been swapped.

Random Swapping. Our true random approach involves
exchanging the data marked for swapping with a uniformly
random row from the true state distribution.

Our pseudo-random approach involves drawing a uni-
formly random entry from the subset of the state dataset
with matching (or nearly matching) values for the attributes
of age and sex. We refer to this as swapping on the age and
sex attributes, similar to Algorithm 2’s implementation of
swapping on the number of individuals in the household in
the work of Kim [24]. This means that when swapping an
entry, we preserve the true values of its age and sex char-
acteristics, and pull an individual from our state distribution
that possesses the same values for these characteristics, with
a race randomly drawn from the state’s distribution.

Similar Swapping. Similar swapping involves swapping an
entry with another entry within some similarity threshold. If
there are multiple entries within this threshold, we choose
one uniformly at random; if none fit, we expand the thresh-
old until matches are available.

We define similarity notions for race, age, and sex. For
race (with Hispanic origin encoded), we define similarity
based on the frequencies of the races in the United States
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Figure 1: Method of frequency-based race ordering.

as a whole. A populous race is similar to another populous
race but not to a lower population race. This distribution is
outlined in Figure 1.

For age, the threshold represents the number of years by
which an entry’s age can differ from the age of the entry
with which it is swapped. For sex, a similarity threshold of
1 or greater simply means that sex is not a match constraint.
For example, we could set a similarity threshold of 1; this
would mean that a row with age 21, sex of female, and race
encoding 64 could be swapped with an individual of age
21±1 (20, 21, 22), sex M or F, and a race of 64, 5, or 63 (see
Figure 1). In our runs, we swapped on age, sex, and race; we
ran mechanisms at similarity thresholds of 0, 1, and 3. In the
remainder of the work, we refer to these mechanisms as 0-
Similar, 1-Similar, and 3-Similar. We chose these thresholds
to capture a range of possible implementations, as will be
examined in Section 4.4 and Section 4.5.

4.3. Differential Privacy Implementation

We implemented a simpler version of the TopDown
Algorithm, which omits post-processing and uses fewer
queries. We designed our version to be easier to analyze
and more easily generalizable to applications beyond the
U.S. census.

In our mechanism, we first compute counting queries
over subsets of the population. We construct our queries
to simulate similar queries used in the 2010 Demonstration
Data Product [35, Table 2.1]. In our queries, we use age
buckets of varying sizes. For example, age buckets of size
15 means individuals are grouped into age ranges 0-14, 15-
29, etc. Our mechanism is parameterized by the number of
age buckets; for the given grouping into buckets, it outputs
the following noisy queries. For each combination of (age
bucket) x (Hispanic Y/N) x (Census race 0-62) x (household
size 1-4), we compute the size of the population with these
attribute values. We then add noise drawn from a Geometric
distribution to each of these counts, using the Geometric
class from IBM’s Differential Privacy Library [36], [37].
Our mechanism sometimes yields negative values, which
we map back to 0 when measuring accuracy. This post-
processing does not affect the privacy of our mechanism.

We publish these noisy counts for each query of this
form; in this model, noise is added to the output of each
query on the dataset, and the output of the mechanism is a
series of queries and answers. The set of queries to be made
must be known during the data de-identification process, and
noise is added only when queries are made. For example,
if the mean of a set of values is queried, a mechanism in
the centralized model may compute the true mean and add
noise to the output.

Our mechanism adds noise to each of these queries.
Our additive noise value k is drawn with the following
probability, where α = eϵ: Geo(α) =

(
α−1
1+α

)
α−|k|.

Since the subsets over which our counting queries are
performed are disjoint, and the geometric mechanism oper-
ating on each query is ϵ-differentially private [38], [39], our
mechanism is ϵ-differentially private.

This implementation reflects a baseline for TDA capa-
bility. We are limited by data and processing power, and
are thus incapable of exactly replicating TDA. The Census
Bureau ran TDA on 21 AWS r5.24xlarge instances, at
$6.048 per hour [40], [41]. To calculate one run for one
epsilon value, all instances needed to be run for almost 25
hours, costing $3,175. Our work would require 5,000 of
these runs (as we ran 200 epsilon values 25 times), which
would increase our costs to millions of dollars.

TDA computes many overlapping counting queries at
various levels of granularity (e.g., block level, county level,
state level, country level), leveraging this hierarchy of
queries to improve accuracy [42]. We would thus expect
similar or improved accuracy from TDA compared to our al-
gorithm, given TDA’s ability to draw from higher level query
data and adjust. In addition to using a wider array of queries,
TDA involves extensive post-processing to comply with
U.S. census-specific requirements. For example, the total
state counts must be exact. We perform only minimal post-
processing: when computing the Dµ

KL, we round negative
population counts to 0. Though we do not reproduce TDA
exactly, our implementation captures the general behavior
of TDA, and generalizes to demographic data beyond the
U.S. census.

4.4. Accuracy

In order to evaluate the accuracy of data produced by
various DP and swapping mechanisms, we compute the
accuracy of a histogram of the de-identified race data. This
histogram is formatted 2 (Hispanic) x 63 (census race). For
the original and swapped data, this histogram is computed
by counting the number of individuals in each of these
categories. For the differentially private data, this histogram
is computed by aggregating the counts of the individuals in
each of these categories, summing across all age buckets
and household sizes. We treat the histogram as a vector of
length 126 for accuracy evaluation.

Metrics. For each de-identified dataset (i.e. at each swap
rate and each epsilon value and age bucket count), we use
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Figure 2: Dµ
KL results for various mu values; 0-threshold similar swapping (left) and binary DP mechanism (right), Alameda.

three accuracy metrics to specifically convey representation
of minority populations. The first is the mean squared error
(MSE) of the histogram of the counting queries over the de-
identified dataset, as compared to the equivalent histogram
over the original dataset. The second is the µ-smoothed
Kullback-Leibler divergence (Dµ

KL) from Tantipongpipat et
al. [28], which is a tunable distance measure between two
probability distributions, where the parameter µ tunes how
heavily low-probability events are weighted. As when com-
puting the MSE, we first compute the empirical distributions
of races in the de-identified data and the original data. We
then compute their Dµ

KL distance. Whereas MSE treats the
accuracy of all groups equally (regardless of size), Dµ

KL
allows for us to understand mechanism impact on minority
populations: in our application, low-probability events corre-
spond to minority groups. Therefore, lower values of µ mean
smaller groups have a larger impact on the Dµ

KL, resulting
in higher Dµ

KL values as seen in Figure 2. Thus, we chose
.0001 for our value of µ, to emphasize minority populations.
A smaller Dµ

KL value represents better accuracy; a small
MSE value also represents better accuracy.

Finally, we compute the number of minority race-
ethnicity groups whose population significantly decreased
under the de-identification mechanism. A population qual-
ifies as significantly decreased if its de-identified size is
≤ 75% of its true size. This metric is meant to reflect the
number of groups to which funds are severely underallocated
because of the de-identification process.

In the graphs that follow, we compute our accuracy
metrics for several implementations of our DP and swapping
mechanisms. Our similar swapping mechanism is parame-
terized by the similarity threshold; that is, how close we
require two swapped entries to be when swapped. Across the
board, we observe that a smaller threshold results in higher
accuracy. We note that across our accuracy measurements,
the Threshold-0 swapping variant maintains good accuracy.
This implementation is meant to show a baseline for how
well we can expect swapping to do. Since each row is
swapped with a very similar (identical, if possible) row,
accuracy is largely preserved. However, we show later that
the privacy is poor, since the data changes minimally.

Our DP mechanism is parameterized by the number of
age buckets. Recall that our DP de-identified data consists

of the population size of each combination of (age bucket)
x (Hispanic Y/N) x (census race 0-62) x (household size
1-4). When there are 45 age buckets, each including 2 ages,
this data is much more granular. Since our mechanism adds
noise to the population count of each attribute combination,
more noise is added when there are more age buckets.
The accuracy of our DP mechanisms is worse for smaller
age group sizes, since having more age buckets means
more queries to which noise is added. We note that our
queries with two age buckets are most similar to the Census
Bureau’s redistricting data, which uses a binary voting age
variable.

Dµ
KL and Diversity. We define minority ethnoracial groups

as those making up less than 10% of their block group. For
all county block groups and mechanisms, Dµ

KL produced
similar levels of accuracy for counties of similar diversity.
This is consistent with the use of Dµ

KL. As can be seen in
Figure 2, greater minority emphasis (a lower µ value) results
in a higher Dµ

KL value. This reflects worse accuracy of
minority group representation under de-identification mech-
anisms, suggesting that block groups with larger minority
populations will experience worse accuracy. However, we
will examine the accuracy of both swapping and DP; noting
that while both mechanism types produce similar minority-
emphasized accuracy values, DP is far more consistent
across varying diversity levels in practice.

Figures 3, 4, and 5 display the Dµ
KL accuracy trends

for every mechanism, for block groups of high diversity
(Alameda), medium diversity (Fayette), and low diversity
(Jefferson). From Theorem 1, we expect the error in random
swapping to be greater in groups whose racial distributions
differ more from the state racial distribution. The trend
present in Figure 3 confirms this: the highest diversity
block groups, whose distributions differ significantly from
their overall states, show the highest error from swapping.
This trend is additionally present for similar swapping, as
shown in Figure 4. Our swapping mechanisms thus produce
more accurate datasets for groups where there were fewer
individuals of minority races than for groups with more
individuals belonging to minority races.

In DP data, however, noise is added independently of
the block group’s racial distribution; therefore, we expected
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Figure 3: Dµ
KL results for varying diversity: random swap-

ping, all swap rates.

Figure 4: Dµ
KL results for varying diversity: similar swap-

ping, all swap rates.

Figure 5: Dµ
KL results for varying diversity: DP, all ϵ values.

its accuracy to be more consistent for all groups. This is
supported in our findings, as can be seen in Figure 5, where
accuracy does not vary based upon block group diversity.

Selecting Parameter Ranges For Comparison. We use
the U.S. Census Bureau’s choice of privacy parameters to
inform what we consider reasonable epsilon values and
swap rates. The Census Bureau has stated that for the 2020
redistricting data, they will use epsilon values of ϵ = 2.47
for housing data and ϵ = 17.14 for the persons file, giving
a total global privacy-loss budget of ϵ = 19.61 [43], and
swap rates implemented ranging from 5% to 50% [44]. Our
queries contain both attributes present in the housing file
(e.g., household size) and attributes present in the persons
file (e.g., age). They are inspired by the second-to-last query
in [35, Table 2.1(b)], with the addition of household size
and the removal of citizenship, which was removed from
the 2020 Census. We additionally implement more granular
age queries, using up to 45 age buckets, rather than grouping
individuals only by voting age. We let our graphs vary from
ϵ = 2 to ϵ = 10, to capture a range of interesting and
reasonable values that may be assigned in practice to our
queries. Since we do not use TDA exactly, and our queries
differ slightly from those of the U.S. Census Bureau, our ϵ
value does not correspond exactly to theirs.

Take note that for Figures 6, 7, 8, 9, and 10, the swap
rates and epsilon values shown on the top and bottom x-
axes are not directly correlated (i.e., an epsilon of 2 is not
equal to a swap rate of .5). We do not intend to draw a direct
comparison; rather, we contextualize these parameters using
our empirical accuracy and privacy results.

Dµ
KL Results. Figures 6 and 7 display Dµ

KL results for
all swapping and DP mechanisms under these parameter
bounds, for two counties of varying diversity: Alameda (high
diversity) and Washington (low diversity). Block groups of
medium diversity (such as Fayette) show results between
the extremes of Alameda and Washington, as we would
expect. Similar swapping mechanisms produce accuracy
levels similar to our DP mechanism with 2, 6, and 45 age
buckets.

Observe that the swapping curves in Figures 6 and 7
change drastically in slope at swap rates of roughly 0.25
and 0.05 respectively. We call this the ’uniqueness threshold’
and further discuss its significance later, in the context of
privacy.

These results stand regardless of the attributes in the
counting query. While our graphs display queries over His-
panic x race groups, queries over (age bucket) x Hispanic
x race x (household size) show a similar trend: see Figure
8. Although the accuracy of queries over all four attributes
is worse than for queries over just Hispanic x race for both
mechanisms, the relative accuracies of swapping and DP
remain consistent.

MSE Results. In order to validate our findings regarding
mechanism impact on minority dataset members, we eval-
uated the MSE specifically for the minority subset of our
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Figure 6: Dµ
KL: Alameda (high diversity), all mechanisms.

Figure 7: Dµ
KL: Washington (low diversity), all mechanisms.

datasets (those belonging to races with frequencies below
10%). As can be seen in Cibola County in Figure 9, these
results support our findings using Dµ

KL: for all reasonable
parameters, swapping and DP produce comparable accuracy.
As in Dµ

KL as well, DP asymptotically approaches zero
error, while swapping’s trend is less predictable, and varied
greatly across counties and implementations. This similarity
between results from Dµ

KL and a second measure, MSE,
provides greater confidence in our findings, and suggests the
strength of DP in achieving acceptable accuracy for minority
groups.

Additionally, to confirm that our trends for minority
population segments were not misrepresentative of overall
mechanism behavior, we evaluated the MSE over the global
population of each block group.

For all block groups, the MSE for the DP mecha-
nisms was similar. For all group sizes, DP approaches zero
MSE for the given range of epsilon values. The MSE was
additionally promising for similar swapping mechanisms,
but less consistent. The MSE for random swapping varied

Figure 8: Accuracy of race x Hisp. vs. 4-attribute queries.

greatly across counties, was unpredictable for various swap
rates within each county, and was far from zero.

Generally, the MSE for swapping was lower for block
groups of lower diversity and higher for block groups of
higher diversity, as shown in Figure 9 for Jefferson and
Alameda Counties respectively. This trend was not present
for DP, where the MSE was relatively consistent across
block groups, regardless of diversity. This is the same phe-
nomenon suggested by Theorem 1 and present in the Dµ

KL
figures.

The MSE results for all block groups confirm our con-
fidence in the representativeness of our mechanisms: the
parameter ranges where we see reasonable performance
resemble those chosen by the Census Bureau. As we see
in Jefferson and Alameda block groups in Figure 9, around
an epsilon value of 2, the value provided as a benchmark
from the Census Bureau, we begin to see good accuracy
levels.

Underallocation. We measured the number of (Hispanic)
x (census race) groups whose populations significantly de-
creased due to de-identification. The trend is similar to the
one observed in Dµ

KL and MSE, and it is shown for Cibola
County in Figure 10.

Takeaways. Our findings suggest that for the use case
of the U.S. Census Bureau, accuracy is comparable for
both swapping and DP. In our analysis using MSE, Dµ

KL,
and underallocation, for both the general population and
of minority populations, DP’s accuracy was comparable,
if not better, for reasonable epsilon values and relevant
age group sizes. Additionally, DP’s accuracy trend was
consistent across diversity levels, and its misrepresentation
of diverse groups was less severe than that of swapping.

4.5. Privacy

Different levels of perturbation correlate with different
levels of privacy. In our DP mechanism, the privacy param-
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Figure 9: MSE results for Alameda, Cibola, and Jefferson Counties.

Figure 10: Underallocation: number of minority groups with
significant population loss. Cibola (high diversity).

eter ϵ also parameterizes the Geometric distribution from
which the noise is drawn. A lower value of ϵ means more
noise and a stronger privacy guarantee. Thus for our DP
mechanisms, this relationship between noise level, given by
the geometric distribution, and privacy level, given by the
ϵ-DP guarantee, is nicely defined. This relationship is less
predictable for swap rate and privacy; therefore, we empir-
ically evaluate the privacy of our swapping mechanisms.

Measuring Privacy Through Database Linkage. To mea-
sure privacy for the swapped datasets, we use the success
rate of a simulated database linkage attack, in which an
attacker matches entries from our de-identified dataset to a
publicly available dataset. This is a powerful and relevant
privacy attack. Narayanan and Shmatikov [45] famously
correlated a de-identified Netflix database with publicly
available IMDb profiles by matching users’ viewing histo-
ries. The public IMDb profiles often included names, which
Narayanan and Shmatikov linked to supposedly private
Netflix watch histories. Though this may seem innocuous,
your viewing history may reveal your sexual orientation or
political leanings. Thus, we used this attack to correlate our

de-identified data to a public dataset in a similar manner.
Our attack models an attacker trying to learn specifically

whether an individual is Hispanic. We use Algorithm 1 from
[25], which Ramachandran et al. used to correlate American
Community Survey and Public Use Microdata Sample data.
For each block group, we start with our ground truth data
for that block group. We create a synthetic dataset P by
restricting the ground truth data to include exactly the age,
race, and household size of every individual in that county.
These fields are those relevant for executing our attack, but
you can think of P as also containing a more sensitive
attribute, such as income. For each dataset D de-identified
via swapping, we run Algorithm 1 from [25] on inputs P
and D to count the number of confirmed matches. A match
is a row in the public dataset that matches exactly one row in
the de-identified dataset with respect to age bucket, census
race, and household size. A confirmed match is a match
where the row in the public dataset represents the same
individual in the de-identified dataset, and whose Hispanic
value is the same in the de-identified dataset and the ground
truth dataset. We call these confirmed matches identifiable
or identified.

Privacy of DP Data. This re-identification algorithm fails
for datasets de-identified using our DP method. Recall that
the de-identified data produced by our DP mechanism is a
histogram of counting queries describing the population size
of each combination of (age bucket) x (Hispanic) x (census
race) x (household size). There is no notion of rows here,
so we cannot run the attack as described.

One might instead measure the success of an attack
that attempts to learn whether an individual is Hispanic by
comparing the size of the Hispanic and non-Hispanic groups
matching their other attributes. However, this attack is at
its core statistical inference, and it produces good results
even for individuals whose data is not present in any of
the datasets. This is unfair—guessing whether someone is
Hispanic based on whether their neighbors are Hispanic
should not constitute a privacy violation. DP experts in
[20] discuss further why such attacks are not individually
identifying. We also considered creating rows according to
the empirical distribution over the attributes given by the
DP histogram, and running the same attack we used on the
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Figure 11: Confirmed match percentages for total popula-
tion, Alameda.

Figure 12: Confirmed match percentages for ethnoracial
minority segment of population, Alameda.

swapped data for this new dataset. However, this method is
also subject to the statistical inference issue.

Overall Results. Figure 11 displays the total number of
identifiable entries in the Alameda block group for varying
swap rates. Results for the random swapping implementa-
tion were very similar. These identified entries represent
individuals matched uniquely from the public dataset to the
de-identified dataset.

The number of identified entries exhibits weak privacy
for smaller swap rates, and significantly stronger privacy
as the swap rate increases past a given value; however, the
relationship between this swap rate and these privacy values
is unpredictable. We additionally observe this ‘uniqueness
threshold’ in privacy protection is approximately at the swap
rate where the block group runs out of unique entries to
swap. Since the number of unique entries ranges from 10

to 461 across our block groups, the swap rate at which all
unique entries have been swapped out varies greatly from
block group to block group.

As we interpret these results, it is helpful to establish
a rate of permissibility for dataset re-identification. While
there is no federal mandate or recommendation regarding a
privacy threshold for demographic data specifically, we may
look to the regulation of medical data via HIPAA. Works
surrounding HIPAA’s Safe Harbor Act, such as [46] [47],
reference a “nationally accepted standard of re-identification
risk” of .04%. Medical data is, by nature, different from
census data, but it is important to remember that census
demographic data may be used in database matching with
secondary, even more personal data, in the same way that the
demographic data contained in these HIPAA datasets reveals
personal medical data. We may keep this value of .04% in
mind in our own demographic dataset privacy evaluation.

After the aforementioned ‘uniqueness threshold’, many
block groups have a significantly lower rate of identification,
often below 2%. However, this is not the case for diverse
counties such as Alameda and Hawaii: at a swap rate
of 0.5, these county block groups face similar swapping
identification rates as high as 12%. Even at a swap rate
of 1.0 (where all data has been swapped), some similar
swapping mechanisms were still producing identification
rates more than 100 times the precedented rate of .04 %.
This nonzero identification rate occurs even when all data
has been swapped, because entries are swapped with similar
entries, i.e., (in a simplified case) an entry representing the
only individual with age 20-30 will likely remain the only
entry in this age range after similarity swapping has been
carried out. For this same reason, group size has significant
impact on privacy: it is far more likely that a 45-year-old
will be the only entry in the age group 44-45, as opposed
to the age group 30-45. This is why in Figure 11, the
identification rate is significantly higher for mechanisms
evaluated at smaller group sizes. This suggests that there
is a significantly higher threat to privacy for groups of high
diversity, as they will contain more unique entries.

Minority Impact. We further evaluated the privacy impact
of swapping mechanisms specifically for minority groups.
In order to do so, we set a threshold of less than 10% of
the population to define a minority ethnoracial group, and
determined the number of identifiable entries from minority
groups.

Figure 12 displays the findings for the Alameda County
block group, the same block group shown in Figure 11.
There is a significantly higher threat to privacy for the
minority groups in the county—the risk is nearly five times
higher that a minority will be identified than for the Alameda
block group as a whole.

This is still the case for largely homogeneous groups—
take, for example, Washington County. Overall identification
rates were low, maxing out at about 4% for 0 swap rate.
This is because the block group had a population fitting
our definition of minority of 38, compared to its total
population of 1,090. However, the identification rate for this
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minority population subset is significantly higher, at roughly
30%, 55%, and 80% for age group sizes of 2, 15, and 45
respectively for 0 swap rate. For the age groups of 15 and
45, roughly 10% of this minority subset remains identifiable
even at a swap rate of 0.8. It is clear that database matching
poses a significant risk to privacy of swapped datasets, but
further, that individuals from minority groups in a dataset
face the brunt of this burden.

5. Overall Findings

Our findings show that there is a significant risk of re-
identification posed by swapping mechanisms. The Census
Bureau must limit its range of swap rates to only those with
permissible privacy: for all of our swapping mechanisms, a
wide range of low swap rates yield poor privacy.

Thus, these lower swap rates are not usable. At swap
rates with acceptable privacy levels, the accuracy is poor.
When swapping is implemented at a swap rate that yields
acceptable privacy, DP has comparable or improved ac-
curacy for all reasonable values of epsilon. Thus, although
we do not determine which swap rates and epsilon values
give equal privacy, our findings indeed support DP.

To demonstrate, we look back to our swapping data in
Figure 6 for Alameda: in Figure 11, we observe unaccept-
able privacy (> 0.5% identifiable) for swap rates lower than
0.2. Thus, we are limited to using swap rates greater than
0.2, for which the Dµ

KL of swapping is above .07. This
Dµ

KL value is significantly impaired in comparison with
DP, which generally remains under a value of .07 within
its entire range of reasonable ϵ values (with the exception
of 45 buckets, which is unnecessarily granular compared
to the census queries). The same pattern is true for our
underrepresentation metric in Figure 10; thus, more minority
groups will suffer significant resource underallocation under
swapping than under DP.

In fact, we see that under swapping, minority groups
suffer worse accuracy and privacy than their majority coun-
terparts. For example, for the Cibola block group, we see in
Figure 12 that a significant number of race-ethnicity groups
remains at least 75% underrepresented at any swap rate
higher than 0.2. This is not the case for DP, for which
the number of severely underrepresented groups approaches
zero by an epsilon value of 5.5 for the two mechanisms of
realistic bucket sizes (15 and 45). Since concerns surround-
ing DP largely surrounded the impact on minority groups,
it is notable that DP seems to produce better results.

Under swapping mechanisms, diverse communities
(groups with more unique entries) suffer worse accuracy
and privacy. Furthermore, for swapping, accuracy comes at
the expense of privacy, but not in a predictable manner. It is
challenging to choose a swap rate that provides adequate
accuracy and privacy, especially for counties with large
segments of the population being from minority groups.
DP is better in this sense, providing a mechanism that can
reliably achieve reasonable privacy and accuracy simultane-
ously, producing consistent results across groups of varying
diversity.

Figure 13: Privacy of similar swapping for a Cibola block
group dataset of 15 attributes.

6. Limitations and Further Work

Our work is only intended to draw conclusions about
datasets similar in size and structure to the U.S. Decennial
Census data. For questionnaires such as the American Com-
munity Survey (ACS), with significantly more attributes, a
more fine-grained mechanism will be necessary to represent
DP’s capability.

We have seen that swapped data, especially data pertain-
ing to minority groups, is susceptible to linkage attacks, even
for Decennial Census data with relatively few attributes.
This risk is even more pronounced for more detailed data.
The number of unique individuals increases with the number
of attributes, limiting us to a much higher swap rate. Fur-
thermore, when individuals are unique in the entire dataset,
not just their geographic subregion, swapping provides no
protection against identification. We ran our swapping suite
on a 15-attribute dataset to confirm this phenomenon. For
Cibola, a high diversity county, the accuracy is similar to
the accuracy of swapping for our smaller dataset, since
we measure the same queries. The inflection point where
accuracy plateaus is at a much higher swap rate of 0.8,
since many more rows are unique in this dataset. While
the accuracy is good, we see in Figure 13 that privacy is
abysmal: even at a swap rate of 100%, no swapping variant
reaches below 15%. On such detailed data, naive swapping
cannot achieve any satisfactory privacy guarantee.

Because of computation costs, we analyze the variance
of our DP mechanism rather than simulating it. The accuracy
of our naive mechanism degrades significantly for large
datasets, since the amount of noise increases with the num-
ber of attribute combinations: for a dataset with c attribute
subcombinations per (race) x (Hisp), the variance given
our mechanism with parameter ϵ of each race x Hispanic
population count is 2ceϵ

(1−eϵ)2 . Thus the variance of each (race)
x (Hisp) population count in our 15-attribute dataset is
4.94×109 eϵ

(1−eϵ)2 for our mechanism with parameter ϵ. The
derivations of these expressions are given in Appendix A.3
for interested readers. In practice, the data steward would
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make fewer, possibly overlapping queries instead of one
query for each attribute combination, especially as the num-
ber of attributes increase. The necessary amount of noise
depends on the chosen queries but should be vastly smaller
than the amount of noise introduced when computing the
count of every attribute combination. For example, the race
histogram of a dataset with any number of attributes could
be computed with DP simply by adding geometric noise to
each race’s population count, yielding a variance of only

2eϵ

(1−eϵ)2 . Our naive method makes every possible query to
apply to all use cases and thus introduces the maximum
amount of noise; specific use cases will likely require fewer
queries and vastly less noise.

Further work could compare DP and swapping on more
detailed datasets, with a more sophisticated DP mechanism.
Implementing DP for more detailed data is notoriously chal-
lenging, and the U.S. Census Bureau has has announced that
they will not implement DP for the ACS until at least 2025.
Upon release of this mechanism, we may examine efficacy
of their DP implementation for the ACS’ more complex
data. Additionally, we used a single attack for all swapping
implementations. Intuitively, the swapping implementation
with a similarity threshold of 0 should afford less privacy
than that with a similarity threshold of 3, since swaps in the
first version introduce less variation. A more tailored attack
may capture this relationship between threshold and privacy,
and we suspect that the low-threshold similarity swaps result
in even more privacy loss than our attack shows.

7. Conclusion

It is necessary to evaluate the impact of DP before
widespread implementation—especially when its use case is
as significant as the U.S. census. Ensuring that this analysis
is effective and representative has been challenging, in part
due to limited data access and processing constraints. We
show that when swapping is implemented at a swap rate
necessary for acceptable privacy, DP has comparable or
improved accuracy for all reasonable values of epsilon.

We directly compare DP and swapping, using the same
ground truth dataset for all of our implementations. We are
the first to perform this direct comparison for a wide range
of swap rates and ϵ values. Previous publicly available work
has either treated 2010 Census data as the ground truth
[14], [15], when in reality it was modified via swapping;
or it has considered only few ϵ values and swap rates [16].
While it is possible that more comprehensive analysis was
carried out by the U.S. Census Bureau, this analysis is
likely confidential due to privacy concerns. We believe this
paper puts into question current works critiquing DP’s use
in cases like the U.S. census. Our findings show that when
swapping is implemented at a sufficient swap rate to remove
identifiable entries, DP shows comparable, often improved,
accuracy for all reasonable values of epsilon.

The privacy guarantees afforded by DP may promote
greater census participation, in turn yielding higher accu-
racy. As we examined in Section 4.5, swapping poses a
significant threat of large-scale identification by database

matching. This threat particularly impacts minority groups:
even at a swap rate of 1.0, similar swapping mechanisms
still produce minority identification rates as high as 12%
(Figure 12). Swapping places a disproportionate privacy bur-
den on minority groups, whereas an ϵ-differentially private
mechanism is ϵ-differentially private for all subgroups.

As we have seen with census data’s involvement in iden-
tifying Japanese individuals for internment [2], protecting
the privacy these minority groups is especially important.
Because, unlike swapping, DP guarantees little and quan-
tifiable change in overall data by the participation of one,
its use better protects these individuals’ privacy and may
convince individuals previously hesitant to participate.

In addition to privacy, we similarly examined how
these mechanisms impacted minority group accuracy. As
suggested by Theorems 1 and 2 and verified empirically,
minority groups are more likely unique and prioritized for
swapping. This results in minority entries being swapped
away from our block groups, yielding worse accuracy for
more diverse counties as expected from Theorem 1. We find
that accuracy rapidly decreases until a swap rate is reached
where all unique entries have been swapped, at which point
the accuracy decreases more slowly. This dramatic cliff for
minority groups in swapping is not present with epsilon
values for DP, since the noise added is data-independent.

Given DP’s similar accuracy and greater privacy relative
to swapping, our work supports DP for use cases such
as the U.S. Decennial Census. There are further concerns
to examine; as mentioned, we ran a simplified version of
TDA due to processing constraints, and we used synthetic
data due to privacy constraints. Furthermore, our work does
not consider substantial variation of county size—our block
groups consist of a limited variation in size, which captures
typical block groups but does not encompass outliers present
in the true census. We intend for this work to serve as
an analytical evaluation of these modern de-identification
tools, and we hope that it will inspire further analytical
work examining the merits of DP in demographic data de-
identification.
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Appendix A.
Proofs of Theorems

A.1. Proof of Theorem 1

Proof.

E[c(S′)] =
∑
r∈S

r in cat.

(
(1− κ) + κ · c(D)

|D|

)
+

∑
r∈S

r not in cat.

κ · c(D)

D

= c(S) ·
(
1− κ+ κ

c(D)

|D|

)
+ (|S|−c(S))κ

c(D)

|D|
= n(α+ κ(β − α))

where n = |S| is the number of rows in S, α = c(S)
|S| is the

fraction of rows in S in category c, and β = c(D)
|D| is the

fraction of rows in the entire dataset D in category c. Thus,
the expected difference between c(S′)

|S′| and c(S)
|S| is

E
[∣∣∣∣c(S′)

|S′|
− c(S)

|S|

∣∣∣∣] = 1

n
|n(α+ κ(β − α))− nα|

= |κ(β − α)|

A.2. Proof of Theorem 2

Proof. Let A1, ..., Ak be random variables modeling
each of k attributes. They may be jointly distributed.
Let A denote the support of (A1, ..., Ak). Each element

in A is a combination of attribute values. Let the ith

row in S be represented by a random variable Ri. The
probability that the first m rows in the dataset are unique is:

∑
{r1,...,rm}

⊆A

(
m!

m∏
i=1

Pr[Ri = ri]

n∏
i=m+1

Pr
[
Ri /∈ {rj}j∈[m]

])

The sum is over all sets of m unique attribute combi-
nations in A; that is, sets {r1, ..., rm} ⊆ A where ri ̸= rj
for i ̸= j. For each such set, there are m! ways for the
first m rows to be assigned to these combinations such that
no two rows have the same combination. The first m rows
with values {r1, ..., rm} are unique if none of the remaining
n−m rows take on any of these values.

Let E denote the event that the first m rows are unique.
Since the rows are drawn independently, we can let R be a
random variable representing an arbitrary row and let Pi :=
PrA1,...,Ak

[R = ri] denote the probability that R equals a
given row ri. We can simplify the above expression: Pr[E ] =∑

{r1,...,rm}⊆A
(
m!
∏m

i=1 Pi

) (
1−

∑m
i=1 Pi

)n−m
.

We use this to upper and lower bound the probabil-
ity that at least m rows are unique. Since the rows are
chosen i.i.d, for any set of m rows, the probability that
those rows are unique is Pr[E ]. Thus by a union bound,
the probability that any m rows are unique is at most
Pr[ any m rows are unique ] ≤

(
n
m

)
Pr[E ].

The probability that any m rows are unique is at least
the probability that the first m rows are unique. Putting this
together, we have Pr[E ] ≤ Pr[ any m rows are unique ] ≤(
n
m

)
Pr[E ].

For a fixed m, both Pr[E ] and
(
n
m

)
Pr[E ] decrease ex-

ponentially in n, since
(
n
m

)
≤ nm

m! :

(
n

m

)
Pr[E ] ≤

∑
{r1,...,rm}⊆A

nm

(
m∏
i=1

Pi

)(
1−

m∑
i=1

Pi

)n−m

A.3. DP Variance

We simulate adding geometric noise to each attribute
combination. For each combination of race and ethnicity,
we sum the noisy values of the subcategories. The number
of values for each attribute are as follows. Age: # buckets;
house size: 4; household tenure: 2; heat: 9; housing type:
9; military: 2; move in date: 6; property value: 7; rent: 8;
number of rooms: 9; year built: 15; selected monthly owner
costs: 7. Thus for a given combination of race and ethnicity,
there are (# buckets) × 4 × 2 × 9 × 9 × 2 × 6 × 7 × 8 ×
9 × 15 × 7 = 411, 505, 920 × (# buckets) categories. For
(# buckets) = 6, this is c = 2469035520 = 1.47 × 109
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categories. The variance of a random variable with the
geometric distribution with parameter α is The variance is

∞∑
k=−∞

k2
α− 1

1 + α
α−|k| =

2(α− 1)

1 + α

∞∑
k=0

k2α−k

=
2(α− 1)

1 + α

α(α+ 1)

(α− 1)3

=
2α

(α− 1)2

which is 2eϵ

(1−eϵ)2 for α = eϵ. Thus the variance of our
mechanism is

2ceϵ

(1− eϵ)2
≈ 4.94× 109

eϵ

(1− eϵ)2

We include a table of the variance of the (race) x (Hisp)
population counts for datasets with varying numbers of c
attribute combinations per (race) x (Hisp) bucket. The given
values of variance are for ϵ = 4.

Our mechanism for our smaller Decennial Census
dataset has c = 8 for 2 age buckets, c = 24 for 6 age
buckets, and c = 180 for 45 age buckets.

# attribute combinations Variance

1 0.038

8 (2 age buckets) 0.304

10 0.380

24 (6 age buckets) 0.912

50 1.901

100 3.801

180 (45 age buckets) 6.841

100 38.011

general x 0.038× x

Appendix B.
Data Format

As shown in the table above, our dataset include all
of the features collected about individuals and households
in the U.S. Decennial Census ([33], see “What information
does the census collect? What questions does the census
ask?”).

Our query, [Age x Sex x Race x Hispanic x House-
holdSize], was chosen based upon true Census queries. The
National Academies’ Census Data Products outlines the
queries from the 2010 Demonstration Data Products[35].
Our selected query is more comprehensive than all those
listed, combining the queries listed in 2.1b and 2.1c. Thus,
this query can be used to make any of the other provided
queries, and provides a complete de-identification mecha-
nism. We suggest that using a less comprehensive query
would further improve DP’s accuracy. While we only look
at accuracy from the perspective of race, we swap/add noise
to all features except for household tenure.

The counties that we used for our block groups include:

• High diversity: Alameda County, CA; Hawaii
County, HI; Cibola County, NM

• Medium diversity: Grand Forks County, ND;
Fayette County, GA; Nantucket County, MA

• Low diversity: Jefferson County, MO; Armstrong
County, PA; Washington County, VT
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