IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

Exploring Scalable Parallelization for Edit
Distance-Based Motif Search

Jungiao Qiu* and Ali Ebnenasir

Abstract—Motif Searching is an important problem that can reveal crucial
information from biological data. Since the general motif searching is NP-hard and
the volume of biological data is growing exponentially in recent years, there is a
pressing need for developing time and space-efficient algorithms to find motifs. In
this paper, we explore scalable parallelization for Edit Distance-Based Motif
Search (EMS). We introduce two parallel designs, recursEMS which integrates the
existing EMS solver into a parallel recursion tree running in multiple processes,
and parEMS that presents a novel thread-based method which awoids the storage
of redundant motif candidates. To make the parallel designs practical, we
implement SPEMS, a Scalability-sensitive Parallel solver for EMS. For any given
biological dataset and search instance, SPEMS can provide an EMS
parallelization towards the optimal performance, or a sub-optimal performance but
being more space efficient. Evaluations on two real-world DNA dataset
TRANSFAC and ChiIP-seqshow that SPEMS can obtain 10x geometric mean
speedup over the state-of-the-art at the expense of no less than 74.7% memory
overheads, or provide 2.2 x geometric mean speedup with the possibility of
consuming less memory, when running on a 48-core machine.

Index Terms—Edit-distance motif search, parallelism

+

1 INTRODUCTION

BIOLOGICAL data mining plays a critical role in a large group of
real-world applications ranging from protein function domain
detection and function inference to disease diagnosis and treat-
ment optimization [1]. Among various biological data mining
problems, a significant one is Edit distance-based Motif Search
(EMS), whose objective is to find all common patterns with a
certain length appearing in a set of biological sequences (e.g.,
genes or proteins strings). EMS has applications in identifying
characteristic functional units and detecting rare events occur-
ring in biological sequences [2], [3]. While there are numerous
methods for solving EMS, there is a pressing need for algo-
rithms and tools that scale well in terms of both time and space
when running on modern parallel architectures (e.g., multi-cores
CPUs and GPUs). This paper presents a step towards develop-
ing parallel EMS solvers that strike a balance between execution
time and memory usage.

Most existing approaches simply consider the algorithms of
EMS solvers as “naturally parallel,” based on the observation that
the targeted biological sequences are independent from each
other, but they poorly exploit such intrinsic parallelism. For exam-
ple, Grundy et al. [4] developed a parallel implementation and a
web interface for a DNA and protein motif discovery tool called
MEME [5] on supercomputers. Qin et al. [6] build up a bioinfor-
matics tool for searching motifs with certain structural and bio-
chemical properties in DNA or protein sequences. Ferretti et al. [7]
parallelize structural motif search in proteins on distributed and
shared memory systems. Recently, Pal et al. [8] present a com-
pressed tree structure to store candidate motifs, however, this tree
cannot easily be used in shared memory-based parallel platforms.

e Jungiao Qiu is with the Department of Computer Science, City University of Hong
Kong, Kowloon Tong, Hong Kong. E-mail: junqiqiu@cityu.edu.hk.

o Ali Ebnenasir is with the Department of Computer Science, Michigan Technological
University, Houghton, MI 49931 USA. E-mail: acbnenas@mtu.edu.

Manuscript received 22 December 2021; revised 20 July 2022; accepted 11 September
2022. Date of publication 23 September 2022; date of current version 3 April 2023.
(Corresponding author: Jungiao Qiu.)

Digital Object Identifier no. 10.1109/TCBB.2022.3208867

1587

Instead, the authors of [8] utilize a simple array to store candidate
motifs, which greatly undermines the efficiency of parallelization.
This is an issue related to porting the highly optimized sequential
EMS solvers into parallel platforms, where there is an urgent need
for efficient data structures that enable concurrent data storage
and retrieval. Moreover, most existing parallelization methods
only have an emphasis on time efficiency, whereas considering
both time and space efficiency makes the design of parallel EMS
solvers more appealing yet more challenging.

Contributions. In order to address the aforementioned chal-
lenges, this paper provides two parallel algorithms for EMS. Spe-
cifically, we present:

e a time-efficient parallel algorithm, called recursEMS, that
introduces the logic of a recursive EMS algorithm in a par-
allel fashion. recursEMS outperforms EMS2 [8] and
EMS3 [9] methods in terms of time, however, underper-
forms in terms of memory costs;

e a hash map-based parallel algorithm, called parEMS, for
exploring the possibility of achieving both time and space-
efficient EMS on shared-memory multicores platforms;

e the proofs of correctness of recursEMS and parEMS, as
well as complexity analysis of these parallel algorithms;

e the implementations of a Scalability-sensitive Parallel
solver for EMS (SPEMS) which integrates the two proposed
parallel EMS algorithms;

e evaluations on two real-world DNA datasets (TRANS-
FAC and ChIP-seq) and a synthetic dataset, and hard
instances of EMS where we validate the effectiveness of
recursEMS and parEMS in terms of both time and space
costs; and

e experimental results which show that SPEMS can provide
10x geometric mean speedup over the state-of-the-art at
the expense of no less than 74.7% memory overheads, or
provide 2.2x geometric mean speedup with the possibility
of consuming less memory, when running on a 48-core
machine. While recursEMS is the fastest algorithm (to the
best of our knowledge), parEMS strikes a balance between
time and space efficiency.

The rest of this paper is organized as follows. Terminology used
and the formal statement of EMS problem are provided in Section 2.
Then Section 3 presents the two proposed parallel EMS algorithms,
each followed by their complexity analyses, and Section 4 shows
implementations of the two parallel algorithms in SPEMS. Section 5
presents our experimental results. Some related work will be dis-
cussed in Section 6. Finally, Section 7 makes a brief conclusion and
introduces some future works.

2 PRELIMINARIES

This section first introduces terminology used in the rest of the paper,
then formally states the EMS problem and the existing solvers.

2.1 Motif Searching

Two strings = and y in an alphabet . are in Levenshtein distance (a.
ka. edit distance) d of each other iff (if and only if) z can be
obtained from y (and vice versa) by d operations of deleting, replac-
ing or inserting symbols of X in any position of y (respectively, z).
A string y with length [(an I-mer) is a d-neighbor of z iff y has an
edit distance of at most d from z, thus the length of z is between [—
d and [+ d. The set of all strings y that can be obtained from x with
an edit distance of at most d is called the d neighborhood of z,
denoted Ny(z). We also say that y is obtainable from z, which
reflects the symmetric relation.

1545-5963 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See hitps:/iwww.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7776-3944
https://orcid.org/0000-0001-7776-3944
https://orcid.org/0000-0001-7776-3944
https://orcid.org/0000-0001-7776-3944
https://orcid.org/0000-0001-7776-3944
https://orcid.org/0000-0001-5266-1087
https://orcid.org/0000-0001-5266-1087
https://orcid.org/0000-0001-5266-1087
https://orcid.org/0000-0001-5266-1087
https://orcid.org/0000-0001-5266-1087
mailto:junqiqiu@cityu.edu.hk
mailto:aebnenas@mtu.edu

1588

P ey Sz

Sq

Fig. 1. lllustration of applying the parallel design in [8] to find out all (4, 1)-motifs in 5
with 8 sequences, assuming there are 8 available processing units.

Lemma 1 (Symmetry). y is in edit distance d of z iff x is in edit dis-
tance d of y.

Previous work [10], [11] proves Lemma 1 by showing that the
basic operations of insertion, deletion and substitution are reversible.
Let Sub(s) denote the set of all non-null substrings of a sequence s.
We follow [8] in defining Suby;q)(s) as the set of strings of length !
within the edit distance d of any substring = € Sub(s) of length [—
d < k <1+ d. In other words, the set Suby 4 (s) is the union of all
Ny(z) of length I for any k-mer z, wherel —d < k <1+ d.

Definition 1 ((, d)-motif). z is an (I, d)-motif (with length | and dis-
tance d) of two sequences s, and s iff = appears in s, and s, with an
edit distance d. That is, x belongs to the intersection of Suby 4(s1) and
S’H.b(]'d) [82).

2.2 Problem Statement

This section states the problem of Edit distance-based Motif Search
(EMS). The input to the problem is a set S of n independent
sequences while each sequence s; € S has a length m; > 0. While
in general sequences of S can have different lengths, for simplicity
of our analysis we make the assumption that they have the same
length; i.e, m; = m for 0 < i < n. The objective is to find out all
strings of length [that appear in each s; with an edit distance no
more than d.

Problem 1 (EMS). For a given set S of n > 0 sequences, and integers |
and d, find all (1,d)-motifs of S.

By generalizing Definition 1, we know z is an (1, d)-motif of a set
S of n Strings of lﬂrlgth m Iﬁc T e (Sﬂ'b(]'d) (81) n Slﬂb(l'd)(.?g) e
Sub g (s,))- This intersection-oriented definition builds up the foun-
dation for parallel EMS solvers.

State-of-the-Art. There has been a significant amount of research
efforts on solving the EMS problem (as discussed in Section 6).
Recent works focus on developing efficient neighbourhood genera-
tion [8], [9]. Their key idea is to generate and store compact d-neigh-
bors (which are the candidate motifs) with wildcard characters.
These works [8], [9] claim that EMS solvers can be nicely parallelized.
Specifically, in [8], each sequence is divided into chunks and then
available threads will process over these chunks in parallel (with
the existing EMSsolver). Fig. 1 illustrates an example. Eight process-
ing units are available when all (4, 1)-motifs in a set S of 8 sequences
should be found. This parallel design first applies all processing
units on the first sequence s,, and makes processing units execute
the existing EMS solver over the divided chunks. When this parallel
execution is finished, we can construct the union of all generated d-
neighbours and thus get Suby)(s1). The processing units then

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

A~

Clntersect >

[subasss) | [Subiasfsa |
* E 3 E 3
t t, ty
[ar - e] [mc--c] [e .]
— Sj—s — Sp—— — S5 —

Fig. 2. Recursion tree of applying Algorithm 1 to example shown in Fig. 1.

move to the second sequence and construct Subyy 1)(s2). By generat-
ing the intersection of Sub4y)(s1) and Sub y)(s2), all (4, 1)-motifs in
the first two sequences are collected. Following the same strategy,
the original EMS problem can be solved.

Motivation. Though previous works claim that parallelization is
enabled for the existing sequential EMS solvers by utilizing the above
parallel design, the efficient data structures used for sequential EMS
cannot be directly used in a parallel setting due to concurrency
issues. For example, in [8], a tree based data structure is proposed to
store the motif candidates. However, this structure cannot be directly
used in the concurrent algorithms. In fact, the parallel versions of the
latest EMS solvers [8], [9] are not available for all multi-core
machines, due to their extremely high memory consumption.

3 PARALLEL EMS ALGORITHMS

This section presents two advanced parallel EMS algorithms called
recursEMS and parEMS.

3.1 Overview of recursEMS

The recursion-driven parallel framework has been well studied
and routinely used for a wide range of applications [12]. Inspired
by recursive parallel methods, we propose Algorithm 1 where we
find all (I, d)-motifs from input sequences in a recursive manner. If
S is empty (Lines 1-3) then Algorithm 1 returns the empty motif
set. Otherwise, if S contains just one sequence s (Line 11), then we
compute Suby q)(s). For multiple sequences, Algorithm 1 partitions
S into two equal-size subsets S; and S, (Line 5), and then recurs on
the two subproblems (Lines 6 and 7). Finally, Algorithm 1 returns
the intersection of the results in the two subproblems (in Line 8).
Fig. 2 presents the recursion tree of applying Algorithm 1 to the
same EMS problem discussed in Fig. 1. Notice that recursEMS uti-
lizes coarse-grain parallelism where each processing unit works on
an entire sequence instead of sub-strings of a sequence.

Algorithm 1. recursEMS(S, 1, d)

Result: (I, d)-Motifs in the set of strings §
if |§| =0 then
return ;
if |§| > 1then
: Partition the set S evenly into two subsets S; and S;
Ci = fork(recursEMS(S1, 1, d));
Cy := fork(recursEMS(S,, 1, d));
C:=CNCy
return C;
else
return Sub 4 (s), where s € S;
// fork a process that calculates Sub 4 (s);

—
= AR L

it

Theorem 1 (Soundness). Algorithm 1 is sound.

Proof. The soundness of Algorithm 1 means that any string
returned by Algorithm 1 is actually an (I, d)-motif of the set S.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

We prove that by induction on the levels of the recursion tree,
starting from the leaves as the base case. The base case of the proof
is for the case where there is a single sequence in S. Line 11 cor-
rectly computes the set of I-mers of any substring = of length £,
wherel — d < k <[+ d. The soundness of this step is based on the
neighborhood generation algorithm of [8], i.e., any string returned
in Line 11 appears in s with an edit distance d. Thus, by definition,
the strings returned in Line 11 are ({, d)-motifs of the only sequence
in S. The induction hypothesis states that Algorithm 1 has correctly
computed ([, d)-motifsinlevel j, where1 < j < logn, of the recur-
sion tree. In the inductive step we prove that (I, d)-motifs are cor-
rectly computed in level j + 1. At level j, we have n/(27!) sets of
l-mers. Then, in level j + 1, we group the sets each containing at
most two sets and take intersection of the sets in every group, cre-
atingn/(27) sets of I-mers that appear in all sets of level j within a
distance d. Therefore, the resulting set in level logn (i.e., the root)
contains all (I, d)-motifs of S. a

Theorem 2 (Completeness). Algorithm 1 is complete.

Proof. We show that if there is an (I, d)-motif for the set S, then
Algorithm 1 finds it. By contradiction, let = be an (I, d)-motif
that Algorithm 1 fails to return. Thus, x must appear in all n
sequences in § within an edit distance d. That is, Ny(z) inter-
sects with (S’L{.b(]‘d) [81) n Sﬂb(]‘d) [82) N S’H.b(]‘d) [Sn)). As a
result, z should have appeared in each leaf of the recursion
tree. This means that z would have climbed up the tree and
would have been returned. In other words, if Algorithm 1
doesn’t return a string z as an (I, d)-motif, then z is not an
(1, d)-motif for S. O

3.2 Complexity Analysis of recurseEMS

To examine the benefits brought by recursEMS, we first analyze its
worst case asymptotic time complexity and then compare it with
the state-of-the-art.

Theorem 3. The worst case asymptotic time complexity of Algorithm 1
is O(mndd+17d+1[3|%).

Proof. At the level of leaves of the recursion tree (Line 11), we need
to compute the d-neighbors of each sequence of length m. We
use Pal et al.’s approach [8] to compute the d-neighbors. This
step of the algorithm has an asymptotic time complexity of
O(md®11|2|%) for each leaf. Since we execute all leaves in paral-
lel, the overall time cost of the leaf level remains O(md®*![9|3[%).
Pal et al. [8] state that the cost of intersecting the d-neighbor-
hoods for n sequences is at most O(mnd?*1[4*1|3|*). Algorithm
1, however, intersects leaves in a pairwise fashion. Thus, the
time complexity of intersecting two leaves is O(md*11#+1[3|).
Since the height of the recursion tree in Fig. 2 is at most logn,
and in each level i we do at most n/(2°) intersections, we have
O(n) intersection operations in the tree. Therefore, the asymp-
totic time complexity of Algorithm 1is O(mnd*14+1|3)). 0O

Note that, Algorithm 1 does not improve the asymptotic time
complexity of the current EMS solvers [8], but we may still get
experimental benefit because recursEMS removes the union opera-
tions needed for constructing each Subyq(si). In fact, our experi-
ments (Section 5) show that recursEMS provides 94% time
efficiency improvement compared with the state-of-the-art algo-
rithms, while it underperforms for 220% in terms of space costs.
Next section presents another parallel algorithms that is both time
and space efficient.

3.3 parEMS: Parallelization With Introducing Concurrent
Data Structure

In this section, we propose a novel design called parEMS, as shown

in Algorithm 2 and 3. The rationale behind it is to avoid the

1589

redundant storage of same motif candidates found by different
processing units and implicit calculation of the intersections per-
formed in recursEMS. We achieve this goal by using a shared hash
map for n parallel threads, where all threads can store the [-mers
that they generate if it is not already generated by other threads.
Algorithm 2 presents the pseudo code running in n threads as
the leaves of the recursion tree. However, it does not explicitly per-
form any set intersections. Instead, we use a shared concurrent hash
table thatis a key-value storage system (Line 1 in Algorithm 2). The
key is the generated I-mer and the value is a bitset of length n. For a
given I-mer z, the kth bit in its bitset (where 1 < k < n) is set to 1 iff
thread k has generated z. Similar to recursEMS, each thread j uti-
lizes the algorithm of [8] for the generation of d-neighbors (Line 2-3)
of the jth sequence in S. The while loop in Line 4 processes each
I-mer as long as there are such strings. Spedifically, thread j checks
whether the generated I-mer z is already in the concurrent hash
table. If that is the case (Lines 9-10), then that means another thread
has already generated and stored z. In this case, we just set the jth
bit of the bitset associated with z in order to indicate that thread j
has also generated z. Otherwise, thread j inserts z and sets the jth
bit of the associated bitset. A thread terminates when there are no
more [-mers. When all threads have terminated, Algorithm 3
searches through the hash table and returns every I-mer whose asso-
ciated value (i.e., bitset) is equal to a string of only 1 s. Each bitset
indicates that its key (i.e., -mer) has been generated by all threads.
Thatis, such [-mers are in the intersection of all d-neighborhoods.

Algorithm 2. Thread j in parEMS

Input: ds[j] : sequences in S associated with thread j
Result: (I, d)-Motifs of ds[j] generated by thread j.
1: KeyValuePointer kv;
2: dNHood := generate-d-neighbors(ds[j]);
3: Imer := next-d-neighbor(dNHood);
4: while (Imer # NULL) do
kv =con_hash_table.find (Imer);
if (kv = NULL) then
con_hash_table insert (Imer,kv — Value.set(j));
else
(kv — Value).set(j);
Imer := next-d-neighbor(dNHood);

oA

—

Algorithm 3. Extract Motifs

Input: con_hash_table: the concurrent hash table used.
Result: (I, d)-Motifs of the set S.
: keyValuePointer kv;
kv := con_hash_table begin();
M :=0;
: while (kv # NULL) do
if ((kv — Value) = 1*) then
// All bits are equal to 1;
M = MU {kv — Key};
kv = con_hash_table next();
return M;

LN D R

Theorem 4. The asymptotic time complexity of parEMS method (Algo-
rithms 2 and 3) is O((md*'14|2|") + «|2['), where a denotes the load
factor of the hash table.

Proof. Upon the discovery of an [-mer z, thread j stores z in the con-
current hash table and /or sets the jth bit of the bit vector associ-
ated with x. The expected time complexity of insert, find and set
operations is O(c), where o denotes the load factor of the concur-
rent hash table. The worst case number of iterations of the for-loop
in Line 4 of Algorithm 2 depends on the worst case number of
[-mers generated for each sequence, which is O(|2]"). Thus, the

1590 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023
TABLE 1 TABLE 2
Implementations of RecursEMS and ParEMS Datasets Overview
recursEMS parEMS Dataset #5eq Length Dataset #5eq Length
Programming Model Processes/Tasks Threads hm01r 18 2000 yst08r 11 1000
Shared Memory Access Serialized Concurrently hm02r 9 1000 egrl 3000 <=469
Data Structure used Tree Hash Map hm03r 10 1500 elfl 3000 <=635
Creation Overheads Heavy Lightweight hm04r 13 2000 hnf4 3000 <=297
hm08r 15 500 myc 3000 <=305
. hm20r 35 2000 nfy 3000 <=819
asymptotic cost of interacting with the hash table is O(«|Z|'). T hm26r 9 1000 spl 3000 <=723
complexity of generating d-neighbors of a sequence is mus02r 9 1000 suf 3000 <=314
O(md*1193|%) (according to [8]). Ideally, if each thread runs on ~ musllir 12 500 yyl 2077 <=411
anindependent core in a parallel fashion, then the time complexity 523;; g 15%08 synt 20 600

of general'mg d-neighbors ofall n sequences has an upper bound of
O(md**'1%3|*). Therefore, the overall asymptotic time complexlty
of parEMS is O((md®**114[3|%) + «|Z[').

4 IMPLEMENTATION

We use C++ to implement the algorithms of Section 3 in a toolset
called Scalability-sensitive Parallel EMS (SPEMS) solver. SPEMS
provides a uniform interface to solve various EMS instances via
recursEMS or parEMS. The major arguments to the interface
include the (I, d) instances, the path to targeted biological data, and
the performance or memory usage expectation, i.e., best perfor-
mance or sub-optimal performance but possible to be space effi-
cient. If high space efficiency is desired and the number of
sequences is smaller than a predefined threshold, parEMS will be
selected. The interface also supports explicitly choosing a parallel
scheme. The number of cores used is automatically configured —
we choose the smaller number between the number of available
cores and the number of input sequences.

For the implementation of recursEMS in SPEMS, we utilize the
EMS solver in [8] to generate the motif candidates for a single
sequence (line 11 in Algorithm 1). Considering that the EMS solver
(i.e.,, EMS2 [8]) provides a tree structure, which is time-efficient but
requires huge memory usage in storing intermediate motifs candi-
dates, we choose the multiple processes programming model,
instead of thread model (like POSIX Threads), to avoid any mem-
ory overflow. Spedifically, we use the POSIX compliant system call
fork() to create a new process run in separate memory spaces.
Fig. 2 indicates the communication between nodes, i.e., the inter-
section, only occurs among children and parents, and the intersec-
tions in the same level can be run in parallel. However, to avoid
memory overflow, we introduce mmap to create a new mapping in
the virtual address space for performing intersections in shared
memory, and then only enable serialized shared memory access
among processes. We implement parEMS by introducing the con-
current hash map provided by Intel Threading Building Blocks
(TBB), which permits multiple lightweight threads to concurrently
access key-vale pairs. The key is the generated motif candidate
(i.e., a string), and the value is a bit set. Table 1 summarizes some
features of the implementations. The source code is available at:
https:/ / github.com/AutoPalSys /SPEMS.

5 EXPERIMENTAL RESULTS

This section presents the experimental evaluation of SPEMS. We
first introduce the experimental setup. Then, we compare the exe-
cution time and memory consumption of different parallel algo-
rithms. We also vary the (I, d) instances as well as the number of
cores to assess their scalabilities.

5.1 Experimental Setup

We compare SPEMS with the prior solvers EMS2 [8] and its
advanced version EMS3 [9]. Though these two solvers claim that
the corresponding parallel designs are easily implemented, only

sequential implementations are available.'All settings in these two
solvers follow their papers [8], [9]. We perform all experiments on
a machine equipped with Intel Xeon Gold 6248R CPUs (total 48
cores) and 384 GB RAM. All programs are written in C++and com-
piled by GCC 7 with the “-O3” optimization flag. We collected exe-
cution time and resource usage by utilizing Linux system calls. The
results reported are the average of three repetitive runs.

Datasets. The benchmarks are mainly collected from two catego-
ries of real-world DNA datasets, named as TRANSFAC and ChIP-
seq. The first category TRANSFAC [13] contains DNA sequences
from three specdies: human (dataset names with prefix hm), mouse
(dataset names with prefix mus), and Saccharomyces cerevisiae
(dataset names with prefix yst). The second category ChIP-seq [14]
consists of eight Homo sapiens datasets, with being named after the
corresponding transcription factor. We also evaluate SPEMS on a
synthetic dataset proposed in [8] to further verify the effectiveness
of our work. In such a dataset, a specific motif has been planted in
each sequence for testing the (I =12, d = 2) instance. All detailed
information can be found in Table 2. Note that for ChIP-seq, we fol-
low the settings in [9], i.e., if the number of sequences in the origi-
nal source is larger than 3000, only the first 3000 sequences are
used for evaluation.

5.2 Performance: Time and Space

Table 3 reports the execution time and the memory consumption of
different algorithms. The workload of each core in our machine is
determined by the ratio of the number of sequences to the number
of cores. For example, in dataset hm01r, there are 18 sequences and
thus only 18 cores are used for parallel execution. If the number of
available cores is less than the number of sequences, all available
cores will be used (ie., 48 cores in our experiments) in several
rounds of execution where in each round each core processes one
sequence. We skip the scenario where multiple cores process one
input sequence and leave this for future work with introducing
finer-grained parallelism (in fact, other levels of finer-grained par-
allelisms can also be introduced, such as ILP or SIMD vector units).
The (I, d) instances evaluated are the preliminary challenging cases
reported in [9].

Comparison With the State-of-the-Art. The proposed algorithms
recursEMS and parEMS outperform EMS2 and EMS3 in terms of
time for both real-world datasets, with reaching 10x geometric
mean speedup in recursEMS and 2.2x in parEMS. Both parallel
algorithms achieve significant improvements on ChIP-seq. How-
ever, for the majority of datasets, they both consume more mem-
ory. In particular, recursEMS significantly underperforms in terms
of space costs when running on TRANSFAC, with 255% memory
overheads. This is due to the fact that all d-neighbors generated by

1. We evaluated these two EMS solvers by directly using their published arti-
facts, and the parallel implementations crashed when running over the testing
datasets on our machine.

https://github.com/AutoPalSys/SPEMS

|IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023 1591
TABLE 3
Performance Comparison: Execution Time and Memory Consumption in Real-World Datasets
Datasets instance = EMS2 EMS3 recursEMS parEMS Datasets instance @~ EMS2 EMS3 recursEMS parEMS
hmO1r (14,2) 7597 s 5298s 5.81s 2545s yst03r (14,2) 6.13s 489s 117 s 3.03s
1.17GB 5.05GB 10.64 GB 413 GB 0.32GB 14GB 1.32GB 047 GB
hm(2r (15,2) 2048s 17.25s 321s 8.88s yst08r (14,2) 21.01s 13.15s 263s 8.57s
084GB 361GB 431GB 1.37GB 0.64 GB 2.78GB 3.81GB 1.16 GB
hm03r (15,2) 38.71s 32.29s 530s 13.30s egrl 9,2) 94645 69.28s 4598 1847 s
1.26GB 545GB 6.35GB 197 GB 1800MB 71.83MB 43814 MB 841.72 MB
hmO4r (14, 2) 52.09s 36.21s 5.64s 20.57s elfl 9,2) 162.96 s 11094 s 7.68s 3166s
1.18GB 5.11GB 8.31GB 294 GB 2352MB 9733MB 63839MB 83428 MB
hmO8r (13,2) 1092s 79653 097s 441s hnf4 9,2) 120.18s 87.10s 5.55s 2134s
024GB 1.03GB 1.89GB 0.78 GB 1379MB 7547MB 55942 MB 830.45MB
hm20r (13,2) 118.83s 77.56s 5.16s 295853 myc (9,2) 124.42 s 93.01s 551s 25.61s
076 GB 3.29GB 1455 GB 491 GB 1918 MB 7547MB 54412 MB 851.87 MB
hm?26r (15,2) 21.93s 16.46s 3.23s 10.03s nfy 9,2) 116.76 s 87.77 s 7.17s 3348s
080GB 346GB 424 GB 1.39GB 2260MB 98.05MB 49023 MB 890.75 MB
mus(2r (15,2) 2271s 16.84s 3.50s 8.77s spl (9,2) 123.08s 91.05s 5945 2091 s
084GB 361GB 429GB 1.18 GB 21.00 MB 82.1 MB 538.84 MB 890.27 MB
musllr (13,2) 823s 6.13s 095s 3.83s srf 9,2) 926253 66.44 35 447 s 16.83s
023GB 1.01GB 1.45GB 0.61 GB 16.72 MB 65.3 MB 45397 MB 870.68 MB
yst0lr (15,2) 21.61s 17.23s 3.20s 8.37s yyl 9,2) 112.77 s 84.03s 647 s 30.04s
0.88GB 379GB 427 GB 1.16 GB 2651 MB 14084MB 452.27GB 650 MB

different processes are stored in memory, where there may be a lot
of redundant [-mers. Moreover, the inputs and outputs of the inter-
section operations in recursEMS should also be stored. Though
parEMS presents efficient memory usage when running on the first
category, it raises the space cost for ChIP-seq, up to 5919%. The
memory cost explosion comes from the bitsets stored in the concur-
rent hash map. For example, in dataset egrl, every motif candidate
stored in the hash map needs to match to a 3000-bits value because
we have three thousand threads. When running different algo-
rithms on the synthetic dataset, we observe that recursEMS and
parEMS bring 10.6x and 2.4x speedup, respectively (compared
with EMS2). The results are similar to the ones on dataset TRANS-
FAC. All algorithms generate the same motif outputs. In general,
EMS2 and EMS3 have significantly lower space costs than the pro-
posed methods. This is to some extent predictable because recur-
sEMS and parEMS are parallel methods with multiple threads or
processes, whereas EMS2 and EMS3 are single-thread /process
sequential programs, which naturally consume less memory. But
note that, the multi-threads/processes programs are still possible
to reach similar memory cost by further investing fine-grained
management in recursEMS and parEMS.

recursEMS Versus parEMS. Comparing the two proposed paral-
lel methods recursEMS and parEMS, we observe that, on average
recursEMS performs 5x better in terms of time costs for the

MEMS? EEMS) ErecamEMS O parEMs SEMSZ BEMSS ErecuntM3 BpartMs

. 000 7 . 1oood
3 “ E o
5] ; g 8
1 10 i 100 N
£ g i &
z om T m o Bp B
LN £ N Y R
™ @ E .Y %é i &
= : "N v ‘; |

[13] 114.2.| 11&2] (lQZJ [l! 3} (‘4 n .y III ﬂ IW ﬂ ﬂﬁvz] 13,3 (4.3 (53

(a) hm01r (b) hm20r
HEMS] gEMSE gresunEMS g parEMS HEMSD gEMSE grecunEM3 gparEMS

i
i

Tl

TR

Execution Time flug, secands|
5

Exeation Tive [log. seconds]
s B

s

L
o
SRS

b E B B
[TR T] 149,31

(e) egrl

datasets in Category 1, where the length of sequences are large but
the number of sequences is smaller than the number of cores. By
contrast, when it comes to space costs, parEMS performs 51% bet-
ter on average. The space cost improvement is due to the use of a
concurrent hash table by parEMS, where no redundant /-mers are
stored and the extra space needed for the bitset values are limited.
As for Category 2, recursEMS outperforms parEMS in terms of
both time and space cost (4.1x and 1.6x, respectively). In principle,
parEMS has a better asymptotic time complexity compared with
recursEMS, as presented in Section 3. However, the overhead from
a large number of find, insert and set operations on the concurrent
hash map causes the poor timing performance of parEMS. The
huge memory usage of parEMS in Category 2, as mentioned above,
comes from the extra space used in bitset values. Nonetheless,
when considering both time and space costs in a dataset with lim-
ited number of sequences, parEMS may provide a more efficient
solution (based on our experiments).

Summary. recursEMS has a higher speedup (with respect to the
best of EMS2 and EMS3) across the board. The speedups of both
recursEMS and parEMS are better for shorter sequences. Moreover,
both proposed methods outperform EMS2 and EMS3 in terms of
execution time. Overall, recursEMS is the best method in terms of
timing.

WEMSZ DEMG] ErecursEMS @parEMs FEMS EreqmEME @parEMS

= 000 g 20000 =
E g 5 B
- / s g
H Z z] §§
E 8 g R
g b E %
g " i 5 it
s oW ¥ F ¥ 8
g B i) 2 N
I TR R B R
[B : b 1 B 8 5 i3 B B B
1220 (a2 (15,2 (16.2) (13,3) (4.3 (83 1.2 (42 (82 (62 (1A (M43 (8N
(c) mus02r (d) ystolr

HEMS] gEMSS mrecunsEMS g parEMS NEMS] mEMSD greunBMS g parEMS

2

1050

Lkl %3

ma o kA @m0 @A B3

Ewecution Time {Ing. seconds]
Ewecution Time {Iog. seconds)
SRS

Vozvereisrin
SRR
P v rrvrreisrsicize]
e

o T
o B

18,3

=
B

(h) myc

Fig. 3. Scalability Analysis 1 in Execution Time: Execution Time of Applying Different Algorithms on Eight Representative Datasets under different (I, d) instances.

1592
00 o EMS2 EEMSS WrecursEMs 0 parEMS . SEME2 EMS W recursEMS I parEMs
E i
7 H
Im |
3 ow E i
a E al
o e e el .ol gl P tie —oBla ola Mo ol o %
(13,2) (M2 082 6 ua a: m.aj 18,3) DRI A % eI (% (M3 (89
(a) hmO1r (b) hm20r
18 ™ EMS2 B ENMS3 W recursEMS @ parEMS 4 HEMSZ G EMS3 @ recursEMS 1 parEMs.
_ 3 _ s
2 s 23
= 2
i: 55 i
.; - ? 1 |
L 2 I
I3
i

N _j] il _Hm _jﬂ 4 Y am _‘.E P fa _JI] v

—_m -
.2 ®,2) 82 .z ®y 8.3 0,3 .2 (L) =2 0.2 83 83 10,3

(f)elf1

(e) egrl

Memory Usage [GB)

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

GEMS2 BEMS] EreoonEMS BparkMs SEMS2 GEMS} BreantMS EpreMs

@
s
0
0

1
I 3
wn én i! mw ;
7 - J " g
P T - .‘:‘EEH § E{ Al 0 . e L. Bl [l

Memory Usage |G8)
B

o]

W,
B ey

032 (43 083 (82 (A3 (43 (153 l‘3 B ﬂkf.l [AER] f“ﬂ 13,3 ﬂ'l]
(c) mus02r (d) ystO1r
. EMS2 G EMs3 W recusEMS mparEMs " & EME2 BEMS3 mrecursEMs W parEMs
s _as
g, h £,
& g5 & a5
i [uE
S 15 1 E 15
i i
as il 23 i
S ..J%i o [_‘.ﬂ il __la _jl] o/
2 8.2 ZJ l"“" Ll 15 !l =3 “Q\!fl ma 8.2 8.2} ez By @y 1.3
(g) hnt4 (h) myc

Fig. 4. Scalability Analysis 1 in Memory Usage: Memory Usage of Applying Different Algorithms on Eight Representative Datasets under different (I, d) instances.

5.3 Scalability

This section examines the scalability of the proposed algorithms
with respect to the hardness of the EMS instance and the number
of utilized cores.

Varying (I, d) Instances. Figs. 3 and 4 show the execution time and
memory usage of applying different algorithms to eight representative
datasets (we select 4 datasets from each category) under various (/, d)
instances. Similar to prior work [8], we only consider the performance
over the challenging instances, where! € [13,16] and d € [2, 3].

Overall, recursEMS and parEMS scale well in terms of execution
time as the (I, d) instances become harder. For recursEMS, when run-
ning on the instances shown in Table 3, the speedups over the
sequential EMS2 range from 6.75x to 23.01x, and the speedups over
EMS3 range from 5.21 x to 16.87x. Fig. 3 illustrates that as the instan-
ces become more challenging, the speedup of recursEMS keeps
nearly the same when the number of cores used remains constant.
For example, in dataset hm01r, all speedups are almost around 11.9x
in the tested (I, d) instances. The results demonstrate that as the prob-
lem size becomes larger, recursEMS can maintain the time efficiency.
A similar situation can be found for parEMS to a lesser extent.

Varying the Number of Cores. Fig. 5 illustrates how parEMS and
recursEMS scale when we increase the number of cores for a fixed-
size instance (i.e., [= 9, d = 2). We observe that as the number of
cores goes beyond 40 the time effidency of parEMS flattens, whereas
recursEMS preserves its efficiency with almost the same rate. Based
on our experience, achieving better speedups depends on how effi-
ciently d-neighbors can be generated, which heavily relies on having
cost-effective concurrent data structures for storing them.

Summary. For a fixed d, growing [would increase the execution
time but not significantly. For a fixed [, increasing d results in signifi-
cant growth in execution time, espedally for long sequences. This is
because the complexity of d-neighbor generation is exponential in
terms of d (where d is both the base and the exponentof some terms).
For a fixed d (respectively, l), increasing [(respectively, d) adds to

25 —s—egrl [recursEMS])
—s—elfl (recursEMS)
—s—hnf4 (recursEMS)
20 myc {recursEMS)

4 —s—egrl (parEMS)
: —elfl (parEMS)
Yo1s —s—hnf4 (parEMS)
g —w—myc (parEMS)
5
S 10
h=]
1)
L7
&

5

- —
;;"_:;:Ff'-_—»——u— —— "
0
0 10 20 “ . .

#Cores

Fig. 5. Scalability Analysis 2: Speedup over EMS2 when applying SPEMS on 4
ChlP-seqdatasets (| =9andd = 2).

the space costs significantly because the number of l-mers is
increased significantly. As for scalability with respect to the number
of processors, the space costs of recursEMS are higher than parEMS
in most cases, for both long and short sequences. In the context of
datasets with smaller sequences, recursEMS scales much better
when increasing the number of cores. parEMS strikes a balance
between time and space costs. Thus, if there are memory limitations,
then parEMS is a better choice than recursEMS.

6 RELATED WORK

There exists a rich body of work in finding motifs in biological
sequences. Among them, the Planted Motif Search (PMS) and
Edited-distance-based Motif Search (EMS) are two critical research
directions. Both problems have been identified as NP-Hard [15],
and existing solvers mainly fall into three categories: exact, approx-
imate and randomized methods. Exact methods include Davila
et al.’s work [16] where they propose multiple PMS algorithms for
generating the common neighbors for every pair of I-mers from dif-
ferent strings. Nicolae et al. [3] further improve the performance by
using the pruning conditions to efficiently generate neighborhoods
for multiple [-mers. Yu et al. [17] design PairMotif to effectively
restrict the motif search space. Soundarajan et al. [18] develop a
couple of hash-based heuristics to further reduce both the search-
ing space and unnecessary computations used in the traditional
tree-based branch and bound mechanisms. On the other hand,
instead of collecting all desired motifs, approximate algorithms are
developed for fast searching. These algorithms [19], [20] apply heu-
ristic search techniques to avoid some redundant computations
while ensuring the search accuracy reaching the required level. In
recent years, more flexible algorithms [9], [21], [22] are proposed to
allow customized design which consider the balance between out-
put accuracy and computational performance. Randomized algo-
rithms [23] initially form a random subset of the input strings as a
small subproblem, and solve the random subproblem using an
existing deterministic algorithm. Then, they use the solution of the
random subproblem to find the solution of the main problem.
Thus, the final results heavily depend on the random subproblem.
In addition to developing efficient motif search algorithms,
researchers have also proposed many methods and tools for intro-
ducing parallel computing. Perera et al. [24] implement the
enhanced brute force algorithm using the POSIX thread library to
accelerate motif finding in DNA sequences on multicore CPUs.
Abbas et al. also work on the multicore platform, but focused on
another exact motif search algorithm, called cVoting [25]. Kong-
munvattana [26] studies parameter spaces which include the
length of motifs, the number of input sequences, the allowable
Hamming distance, and the number of processor cores, to find an
optimal point for load balancing between parallel processes when

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

they are collaboratively and concurrently searching for motifs. Roy
et al. [27] solve motif search problems by using streaming execu-
tion over a large set of non-deterministic finite automata (NFA)
and thus took advantage of an emerging parallel architecture.
Kazemian et al. [28] target the decomposition granularity of motif
finding algorithm and parallelize a PMS algorithm (qPMS9) on
multi-core systems with dynamic scheduling of threads and effi-
cient parallelization of loops using OpenMP library. Salomon et al.
[29] introduced a dynamic load balancing method into heteroge-
neous computation models in which CPU and GPU collaborate to
exploit the maximum efficiency on the system.

In contrast with randomized and approximate methods, our
approach is an exact method for the EMS problem (instead of
PMS). To the best of our knowledge, the state-of-the-art EMS meth-
ods include EMS2 [8] and EMS3 [9], and the proposed SPEMS
approach significantly outperforms these method on many data-
sets in the challenging benchmarks ChIP-seg and TRANSFAC.

7 CONCLUSION

We proposed two parallel algorithms for Edit distance-based Motif
Search, namely recursEMS and parEMS, and integrated them into
a scalability-sensitive parallel EMS solver SPEMS. The recursEMS
algorithm significantly improves time efficiency of the state-of-the-
art when evaluated with respect to two real-world datasets
(TRANSFAC and ChIP-seq) and a synthetic dataset. However, there
is room for improving its space efficiency. parEMS remedies this
problem by proposing a novel method that avoids storing redun-
dant strings while utilizing a concurrent hash table.

In future work, we will investigate a more efficient concurrent
data structure for storing and retrieving strings. For instance, it is
desirable to have a concurrent data structure that can work faster but
less memory intensive for motifs with wildcards. The other direction
that should be complementary with EMS parallelization is to explore
vectorization, which in fact introduces finer-grained parallelization.

ACKNOWLEDGMENTS

We thank all anonymous reviewers for their constructive com-
ments. This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. 2105006. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. This work was per-
formed when the first author was an assistant professor at Michigan
Technological University.

REFERENCES

[11 K. Raza, “Application of data mining in bioinformatics,” 2012, arXiv:1205.1125.

[2] K. Benkrid, P. Velentzas, and S. Kasap, “A high performance reconfigura-
ble core for motif searching using profile HMM,"” in Proc. NASAJESA Conf.
Adaptive Hardware Syst., 2008, pp. 285-292.

[3] M. Nicolae and 5. Rajasekaran, “Efficient sequential and parallel algorithms
for planted motif search,” BMC Bioinf., vol. 15, no. 1, pp. 1-10, 2014.

[4] W.N. Grundy, T. L. Bailey, and C. P. Elkan, “Parameme: A parallel imple-
mentation and a web interface for a DNA and protein motif discovery
tool,” Bioinformatics, vol. 12, no. 4, pp. 303-310, 1996.

[5]1 T.L.Bailey and C. Elkan, “Unsupervised leaming of multiple motifs in bio-
polymers using expectation maximization,” Mach. Learn., vol. 21, no. 1,
pp. 51-80, 1995.

[6] J. Qin, S. Pinkenburg, and W. Rosenstiel, “Parallel motif search using
parseq,” in Proc. Parallel Distrib. Comput. Netw., 2005, pp. 601-607.

[71 M. Ferretti and M. Musci, “Geometrical motifs search in proteins: A parallel
approach,” Parallel Comput., vol. 42, pp. 60-74, 2015.

[8] S. Pal, P. Xiao, and S. Rajasekaran, “Efficient sequential and parallel algo-
rithms for finding edit distance based motifs,” BMC Genomic., vol. 17, no. 4,
pp-. 315326, 2016.

[9]1 P. Xiao, X. Cai, and S. Rajasekaran, “EMS3: An improved algorithm for
finding edit-distance based motifs,” IEEEfACM Trans. Comput. Biol. Bioinf.,
vol. 18, no. 1, pp. 27-37, Jan. /Feb. 2021.

[10] E.S.Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 522-532, May 1998.

1583

[11] M. Li, B. Ma, and L. Wang, “On the closest string and substring problems,”
J. ACM, vol. 49, no. 2, pp. 157171, 2002.

[12]]J. Misra, “Powerlist: A structure for parallel recursion,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, pp. 1737-1767, 1994.

[13] M. Tompa et al., “Assessing computational tools for the discovery of
transcription factor binding sites,” Nature Biotechnol., vol. 23, no. 1,
pp- 137-144, 2005.

[14] P.Kheradpour and M. Kellis, “Systematic discovery and characterization of
regulatory motifs in encode TF binding experiments,” Nucleic Acids Res.,
vol. 42, no. 5, pp. 29762987, 2014.

[15]]. K. Lanctot, M. Li, B. Ma, 5. Wang, and L. Zhang, “Distinguishing string
selection problems,” Inf. Comput., vol. 185, no. 1, pp. 41-55, 2003.

[16]]. Davila, S. Balla, and S. Rajasekaran, “Fast and practical algorithms for
planted (1, d) motif search,” IEEEJACM Trans. Comput. Biol. Bioinf., vol. 4,
no. 4, pp. 544-552, Oct—Dec. 2007.

[17]1 Q. Yu, H. Huo, Y. Zhang, and H. Guo, “Pairmotif: A new pattem-driven
algorithm for planted (I, d) DNA motif search,” PLoS One, vol. 7, no. 10,
2012, Art. no. e48442.

[18] S. Soundarajan, M. Salomon, and]. H. Park, “Efficient branch and bound
motif finding with maximum accuracy based on hashing,” in Proc. IEEE 9th
Annu. Comput. Commun. Workshop Conf., 2019, pp. 0866—0872.

[19] C.-W. Huang, W-S. Lee, and S-Y. Hsieh, “An improved heuristic algo-
rithm for finding motif signals in dna sequences,” IEEE/ACM Trans. Com-
put. Biol. Bioinf., vol. 8, no. 4, pp. 959-975, Jul. /Aug. 2010.

[20] C.Sun, H. Huo, Q. Yu, H. Guo, and Z. Sun, “An affinity propagation-based
DNA motif discovery algorithm,” BioMed Res. Int., vol. 2015, 2015,
Art. no. 853461.

[21] H. Al-Shaikhli and E. de Doncker, “gsmf: An approximate algorithm for
quotum planted motif search on chip-seq data,” in Proc. IEEE Int. Conf. Elec-
tro Inf. Technol., 2019, pp. 434—440.

[22] F.B. Ashraf and M. S. R. Shafi, “Mfea: An evolutionary approach for motif
finding in dna sequences,” Informat. Med. Unlocked, wol. 21, 2020,
Art. no. 100466.

[23] P. Xiao, S. Pal, and S. Rajasekaran, "qPMS10: A randomized algorithm for
efficiently solving quorum planted motif search problem,” in Proc. IEEE
Int. Conf. Bioinf. Biomed., 2016, pp. 670-675.

[24] P. Perera and R. Ragel, “Accelerating motif finding in dna sequences with
multicore cpus,” in Proc. IEEE 8th Int. Conf. Ind. Inf. Syst., 2013, pp. 242-247.

[25] Y.Xu,]. Yang, Y. Zhao, and Y. Shang, “An improved voting algorithm for
planted (I, d) motif search,” Inf. Sci., vol. 237, pp. 305-312, 2013.

[26] A.Kongmunvattana, “Load balancing for parallel motif discoveries,” Int. J.
Comput. Appl., vol. 124, no. 13, pp. 29-34, 2015.

[27] 1 Roy and S. Aluru, “Discovering motifs in biological sequences using the
micron automata processor,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 13,
no. 1, pp. 99-111, Jan. /Feb. 2015.

[28] F.S.Kazemian, M. Fazlali, A. Katanforoush, and M. Rezvani, “Parallel imple-
mentation of quorum planted (1, d) motif search on multi-core/many-core
platforms,” Microprocessors Microsystems, vol. 46, pp. 255-263, 2016.

[29] M. Salomon, S. Soundarajan, and J. H. Park, “PDMF: Parallel dictionary
motif finder on multicore and GPU,” in Proc. IEEE 21st Int. Conf. High Per-
form. Comput. Commun.; IEEE 17th Int. Conf. Smart City; IEEE 5th Int. Conf.
Data Sci. Syst., 2019, pp. 114-122.

Jungiao Qiu received the bachelor’s degree from
Sun Yat-sen University, in 2015, and the PhD
degree from the computer science and engineer-
ing department, University of California, Riverside,
in 2020. He is currently an assistant professor of
computer science with the City University of Hong
Kong. Before joining City University of Hong Kong,
he was an assistant professor of computer sci-
ence with Michigan Technological University. His
research interests include parallel computing and
high-performance data analytics.

Ali Ebnenasir received the bachelor's and mas-
ter's degrees from the University of Isfahan and
Iran University of Science and Technology, in 1994
and 1998, respectively, and the PhD degree from
Computer Science and Engineering Department,
Michigan State University (MSU). He is currently
an associate professor of computer science with
Michigan Technological University and a senior
member of the ACM. After finishing his postdoc-
toral fellowship with MSU, in 20086, he joined the
Department of Computer Science, Michigan Tech.
His research interests include software dependability, formal methods
and parallel and distributed computing.

= For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

