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Abstract—Finite State Machine (FSM) plays a critical role in
many real-world applications, ranging from pattern matching
to network security. In recent years, significant research efforts
have been made to accelerate FSM computations on different
parallel platforms, including multicores, GPUs, and DRAM-
based accelerators. A popular direction is the speculation-centric
parallelization. Despite their abundance and promising results,
the benefits of speculation-centric FSM parallelization on GPUs
heavily depend on high speculation accuracy and are greatly
limited by the inefficient sequential recovery.

Inspired by speculative data forwarding used in Thread Level
Speculation (TLS), this work addresses the existing bottlenecks
by introducing speculative recovery with two heuristics for thread
scheduling, which can effectively remove redundant computations
and increase the GPU thread utilization. To maximize the
performance of running FSMs on GPUs, this work integrates
different speculative parallelization schemes into a latency-
sensitive framework, GSpecPal, along with a scheme selector
which aims to automatically configure the optimal GPU-based
parallelization for a given FSM. Evaluation on a set of real-world
FSMs with diverse characteristics confirms the effectiveness of
GSpecPal. Experimental results show that GSpecPal can obtain
7.2x speedup on average (up to 20x) over the state-of-the-art
on an Nvidia GeForce RTX 3090 GPU.

Index Terms—Finite State Machine, Speculative Paralleliza-
tion, GPU

I. INTRODUCTION

Finite State Machine (FSM) is a fundamental computational
model that has been used in a wide range of real-world applica-
tions, including data analytics [1], [2], motif searching [3], [4],
natural language processing [5], [6], malware detection [7],
[8], and others. Two commonly used FSM representations in
these applications include a non-deterministic finite automaton
(NFA) and a deterministic finite automaton (DFA). Figure 1
shows an FSM example, div7, which can be used to check
if a given binary number can be divided by seven. An FSM
can be represented as a transition graph (Figure 1(a)) or a
transition table (Figure 1(b)). Figure 1(c) illustrates how an
FSM executes state transitions on the given input sequentially.

Previous research has tried to use domain-specific accel-
erators, for example, the Micron Automata Processor (AP),
for FSM-based computations [9]-[11]. However, there are
some limitations when accelerating FSM computations on AP,
including high reconfiguration latency and limited support for
arithmetic computations. AP has not been commercialized and
in fact its development has been discontinued [12], [13]. In

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00053

481

So Si S; S; S, Ss Ss
0 Sy |S;[Ss|S6|S:|S5]Ss
1(S;(S5|Ss(S0|S:|Sa|S6

(b) Transition Table

[0 1 o . 1

So=>Sp=>S|=>S; > - =8

(a) Transition Graph

(c) div7 runs on a binary input string

Fig. 1: An FSM example div7. In (a), state sq is the initial
state (marked by an incoming edge) as well as an accepting
state (shown in double-circles).

recent years, the research community has turned back to ac-
celerate FSM-based computations on traditional von Neumann
architectures (e.g., CPUs and GPUs). Compared with CPU,
GPU shows more potential because of its massive power in
data parallel computing.

In past decades, GPUs have been mainly utilized as
throughput-oriented processors for accelerating FSM compu-
tations [8], [14]-[18]. A recent study [19] has proposed a
speculation-centric technique to explore the latency-sensitive
optimization for FSM computations on GPUs. It first divides
the given input stream into multiple chunks, then relies on enu-
merative speculation [20] to enable parallel FSM processing
on each chunk. Thanks to the high speculation accuracy and an
efficient parallel tree-like verification technique, this approach
can achieve significant speedups on a set of FSMs. However,
when the high speculation accuracy cannot be guaranteed,
it still requires the sequential verification and recovery to
ensure the correctness, and thus leads to under-utilization of
GPU threads and dilutes the benefits from parallelization.
Though another recent research [21] develops a higher-order
speculation to activate multiple threads during the recovery, in
some cases, the number of idle threads is still large, which is
a major source of inefficient FSM computation on GPUs.

In this paper, we solve the poor thread utilization problem
by showing that the speculation in any chunk can be specu-
latively verified and then re-execution can start earlier (if it
is needed). Therefore, we propose an aggressive paralleliza-
tion design which breaks the one-to-one binding relationship
between threads and chunks during verification and recovery.
We also show that well organized thread scheduling in this
aggressive parallel design is necessary for reducing redundant



computations. We thus introduce two heuristics, a round-
robin based and a nearest first based algorithm, to guide
threads working on different chunks for speculative recovery.
In addition, to avoid excessive GPU global memory access,
we propose an FSM transformation technique, and develop
a hierarchical design for storing the speculative execution
and recovery results. Finally, to enable shortest response time
for any given FSM and input stream, we integrate different
speculative parallelization schemes as well as a scheme se-
lector into a framework, called GSpecPal. Our evaluation of
GSpecPal on a set of real-world FSM benchmarks with various
characteristics confirms its effectiveness in accelerating FSM
computations on GPUs, yielding 7.2x speedup on average and
maximum 20X speedup.
In summary, this work makes the following contributions.

« First, it proposes an aggressive speculative recovery de-
sign with two heuristics for thread scheduling, to enable
efficient FSM parallelization on GPUs.

Second, through performance analyses on various par-
allelization schemes, it reveals the efficiency issues on
speculative FSM parallelization on GPUs, and guides the
selection of optimal parallelization scheme.

Finally, it designs and implements a latency-sensitive
framework and confirms its effectiveness on a set of real-
world benchmarks.

II. BACKGROUND AND MOTIVATIONS

In this section, we first provide a brief background on FSMs
and their parallelization. Then we present the previous efforts
on accelerating FSM computations via GPUs, in particular,
the state-of-the-art speculative DFA parallelization on GPUs.
Finally, we point out the bottlenecks of the existing approaches
and motivate our work.

A. FSM Basics and Parallel Strategies

An FSM can be represented as a tuple (Q, X, qo, d, F),
where () is a finite set of states, X is the alphabet, ¢y € @
is the initial state, 6 : Q X X — (@ is the transition function
which indicates the output state(s) when given a state and an
input symbol (usually represented as a transition table), and
F' is the set of reporting or accepting states. Depending on
whether an input symbol can activate multiple output states in
one transition, FSMs can be deterministic or non-deterministic.
Every NFA can be converted to an equivalent DFA [22].
Lines 6-14 in Algorithm 1 show how an FSM runs on a
given input stream. An FSM starts with the initial state(s) and
consumes one input symbol at a time. At each symbol, the
FSM may activate one or multiple states by looking up the
transition table. This process repeats until all input symbols
are consumed. Besides state transitions, the FSM may also
invoke an output function ¢ on the current activated states and
input symbol. In this paper, we follow the settings in previous
work [19], [23], [24] and assume such a ¢ function is a void
function at each step. We only invoke an output function after
we know the end state, to report an accept or reject decision

482

TABLE I: Notations

[ Notations [ Description ]

N the number of threads

QS; a concurrent queue of ranked spec. states on chunk ¢

VR a vector of spec. execution or recovery records on

5 chunk ¢ (each record is a state pair {start, end})
ID of the latest chunk being truly verified
f (i.e., frontier)
tid, cid thread ID and chunk ID
end., end, | end state of the current and predecessor chunk

[23]. To make the presentation easy to follow, we also include
some other important notations in Table 1.

FSM Parallelization. The existing mechanism of FSM com-
putations exhibits parallelism at multiple levels, as shown in
Algorithm 1. Various FSMs as well as input streams can be
processed simultaneously (Lines 2-3). These two sources of
parallelism are called FSM-level parallelism and Stream-level
parallelism, respectively [18]. When running an FSM over one
input stream, however, the FSM processing is considered as
“embarrassingly sequential” [25], [26]. Data dependencies ex-
ist in each step of FSM state transitions, i.e., the next activated
state(s) always depends on the current activated state(s) and
the current input symbol. Prior studies have found that this
FSM processing can still get benefits from parallelization. In
NFA processing, since there may be more than one state being
activated in each step, multiple transitions can be executed at
the same time (Lines 9-10). Such a parallelism is called State-
level parallelism [27]. On the other hand, in DFA processing
(as shown in Figure 1), the inherent data dependencies prevent
any parallelism from being exposed.

Algorithm 1 Parallelism in FSM Computations [18], [27]
> Input: a set of FSM benchmarks S fsm and a set of inputs Sin.
: procedure PARALLEL_FSM(S fsm, Sin)

1

2 Forall (FSMs fsm in S fsm)

3 Forall (Inputs in in Sin)

4: Sact.insert( f sm.init_state());

5: FSM_Processing(fsm, in, Sact);

6: procedure FSM_PROCESSING(fsm, in, Sact)

7: Table[- - - ][- - -] = fsm.transition_table();

8: for i = 1 : in.length do

9: Forall (states st in Sact) > Sact is a set of states
10: Sact’ .insert(Table[st][in.at(:)]); ©> state transitions
11: o(Sact’, in.at(i)); > assume ¢ is a void func.
12: swap(Sact, Sact’);
13: Sact’ .clear();
14: return Sact;

To break data dependencies in DFA processing, existing
efforts mainly fall into two directions: speculative [26], [28]
and enumerative [23], [24] parallelization. Algorithm 2 shows
the default 3-phase algorithm used for speculative DFA par-
allelization. After partitioning an input stream into 7' chunks
evenly, the speculative method predicts a start state for each
chunk (except the first one) to enable parallel execution,
then relies on sequential verification and recovery to ensure
the correctness. The enumerative method, on the other hand,
enumerates all the possible states for each chunk and thus



allows different chunks to run in parallel. Then the real
execution path can be determined by connecting the end state
of each chunk to the start state of its successor. In recent years,
a new approach called enumerative speculation is proposed
to combine the above two ideas [19], [20]. In fact, all these
approaches exploit chunk-level parallelism.

Algorithm 2 Default Speculative DFA Parallelization with
Sequential Verification and Recovery [26], [29], [30]

1: procedure SPEC_DFA_PROCESSING(fsm, in)

IT = partition(in, N);

Forall (thread i =1 : N)
QS; = predict(I1(z));
end = FSM_Processing(fsm, I1(z), QS;.front());
V R;.push_back({QS;.front(), end});

Jjoin();

end, = V R1[0].end;

9: for: =2: N do

> partitioning
> parallel speculative exec.

> seq. verification and recovery

10: if end, # V R;[0].start then

11: end. = FSM_Processing(fsm, I1(7), endy);
12: else

13: end. = V R;[0].end;

14: end, = end.;

B. GPU Acceleration

The parallel FSM computations described in Algorithm 1
fit well for GPUs: different sources of parallelism can be
deployed onto different levels on GPU architectures, i.e., grids,
thread blocks, and warps [19], [27]. As massively parallel
architectures, GPUs enable thousands of concurrent threads
and have higher memory bandwidth (orders of magnitude
more than CPUs), so in the past decade, a significant amount
of work has been proposed on accelerating FSM compu-
tations via GPUs [8], [16]-[18]. Most existing GPU-based
FSM parallelizations are built on FSM-level and stream-level
parallelism to reach higher throughput, and ignore the peak
performance (i.e., the response time) of running over a single
input stream. Furthermore, their implementations usually rely
on NFAs, considering that NFAs present state-level parallelism
and NFAs are inherently memory efficient [27].

As the demand for real-time data analytics increases, achiev-
ing low latency becomes critical, and thus makes DFAs be
more attractive since DFAs can provide faster per-character
processing (only one state transition in each step). Meanwhile,
even though GPUs are notorious for having poor latency,
the massive compute power still makes GPUs great parallel
platforms in exploring latency optimization for FSMs. In this
paper, we focus on optimizing the peak performance of DFA
parallelization on GPUs. In the following sections, the terms
FSM and DFA will be used interchangeably.

State of The Art. Recently, Xia et al. [19] proposed a
latency-sensitive technique, called Parallel Merge (PM), for
efficient DFA processing on GPUs. PM enables chunk-level
parallelism by utilizing enumerative speculation and develops
a parallel tree-like merge technique to reduce the overhead
in sequentially verifying the speculation. Figure 2 shows an
example of applying PM onto Div7. Each thread executes
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Fig. 2: An illustrative example of running div7 with PM.

DFA processing over a divided chunk with starting from two
speculative states, instead of just one state, and maintains
both state transition paths. After threads in the same warp
finish their speculative execution, intra-warp verification (@)
is performed. Since both end states in chunk ¢ can find their
matches to the speculative start states in chunk ¢ + 1 (thread
7 and ¢ + 1 are in the same warp), the execution results of
these two threads can be merged together. After all warps
finish the local verification and merge the results, inter-warp
verification (@) is performed. If a mismatch is found (e.g., the
end state s in chunk ¢4-1), PM marks the path s3—sg—>s¢ as
invalid rather than re-executing chunk ¢ + 2 with start state sg
immediately. Such a strategy is to avoid unnecessary recovery.
To be more specific, assuming that the start state of chunk
is verified to be si, the real end state of chunk ¢ + 1 is ss.
In this case, missing the execution results starting from sg on
chunk 742 does not prevent us from getting the desired ground
truth. Finally, when the inter-warp verification and merge are
completed, the ground truth can be determined by checking
the valid paths.

C. Motivations

While PM shows promising results on running DFA com-
putations on GPUs, it turns out that this technique has two
major limitations, which are discussed in the following.

The benefits brought by PM heavily rely on a high spec-
ulation accuracy. To ensure that, PM and some other prior
studies [20] adopt spec-k, which maintains & transition paths
starting from various speculated states during speculative
execution. However, this enumerative speculation introduces
some unnecessary executions. Figure 3 shows the normalized
execution time of maintaining 4, 6, and 8 state transition
paths on divided chunks, with ignoring the verification and
recovery. More overheads can be seen with a larger k since
more redundant state transitions are introduced. Moreover, in
previous work of utilizing spec-k [19], [20], the value of k is
determined statically and does not change across all divided
chunks. As such, a thread may waste compute resources when
k is set to be too large on an easy-to-predict chunk, or may
need recovery later when & is too small to cover the desired
ground truth on the assigned chunk.

On the other hand, even though the speculation accuracy
could be generally high, the sequential verification and re-
covery may still occur and then reduce the benefits from
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Fig. 3: Execution time of spec-k normalized to the spec-1
solution (neither verification nor recovery is performed).

parallel execution. Though the state-of-the-art has proposed an
architecture-aware parallel verification approach and a delayed
recovery strategy which optimistically speculates a mismatch
as invalid, the sequential recovery bottleneck remains when a
mis-speculation really affects the determination of the ground
truth and needs to be addressed. For instance, in Figure 2,
if the execution path s3—sg—>sg is part of the ground truth,
recovery starting from sg over chunk ¢+ 2 is unavoidable. This
sequential verification and recovery problem is more serious
when running DFAs on GPUs, since it causes a large fraction
of GPU threads to be idle and thus poor hardware utilization.

Ideally, if both verification and recovery can be done in
parallel with all threads activated, speculative FSM paralleliza-
tion on GPUs can be more efficient. In the next section we
propose an advanced speculative parallelization, to address the
performance bottlenecks described above.

III. SPECULATIVE RECOVERY

This section first presents the insights of speculative recov-
ery. Then based on FSM properties and speculation character-
istics, we discuss two heuristics that can be used to improve the
performance. Finally we analyze the efficiencies of different
parallel schemes for further building a scheme selector.

A. Insights

An interesting observation is that the speculative FSM par-
allelization suffers from a similar kind of inefficiency of serial
mis-speculation recovery as the conventional Thread Level
Speculation (TLS). A well-known solution to this inefficiency
is adding nested speculation, which enables earlier verification
and recovery by forwarding the speculative data [31]-[33]. PM
in fact is a special variant of this speculative verification and
recovery approach. It forwards multiple speculative execution
results from a thread to the successor thread, but when a
mismatch is found (by comparing the forwarded end state with
the speculative start states in the successor), it optimistically
speculates that the mismatch is harmless and thus delays the
recovery, as described in Section II-B.

Another recent study [21] shows a more conservative ap-
proach, which introduces immediate Speculative Recoveries
activated by Ending states from predecessor threads (SRE).
Though it is originally designed for multicores, it can also be
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Algorithm 3 Speculative Recovery activated by the Ending
State from Predecessor (SRE)
1: kernel SPEC_RECOVERY_END(fsm, in)

2: f=0;

3: __shared__ mark = false;

4: while f < N do

5: found = false;

6: end, = end_state_comm(end.); > thread comm.
7: for record : V Ry;q do

8: if end, == record.start then

9: found = true;

10: end. = record.end; > update current end state
11: break;

12: if tid == f then

13: mark = found,

14: f++;

15: sync();

16: if mark == false and found == false then

17: end. = FSM_Processing(fsm, II(tid), end));

18: V Ryiq.push_back({end,, end.});

implemented on GPUs with slight modifications. Algorithm
3 presents the verification and recovery kernel executed by
each thread. Note that, SRE follows the first two phases
in the default speculative parallelization (i.e., lines 2-7 in
Algorithm 2). But similar to PM, it allows each thread to
concurrently forward results of speculative execution and then
start the earlier verification (lines 4-8). Instead of delaying the
recovery when a mismatch is found, it triggers the re-execution
immediately. Thanks to the FSM state convergence property
(i.e., different FSM states may transit to the same state after
running on a certain length of inputs), the end state from the
previous chunk has a higher possibility to be the ground truth,
compared with the original speculative start states [21]. More
recoveries are executed and some of them may be redundant
in SRE, but among these speculative recoveries, the one occurs
in the frontier chunk, i.e., the chunk where the first mismatch
is found, belongs to the must-be-executed recovery, thus the
overhead brought by redundant recovery can be covered by
the parallel execution (lines 12-18).

However, SRE also suffers from the low thread utilization:
a thread will be activated and start a recovery task only
when it finds a mismatch on the assigned chunk. To address
this limitation, we propose an aggressive speculative recovery
which breaks the one-to-one binding relationship between
threads and chunks. When thread ¢ finishes the speculative
execution on chunk 4, it may be assigned to any other chunk
j (j # 1) for a speculative recovery. Moreover, the speculative
recovery task may start from a randomly selected state if no
mismatch is found on the current chunk.

B. Two Thread Scheduling Heuristics

An aggressive speculative recovery may improve the thread
utilization by randomly scheduling re-execution tasks to idle
threads. However, this random scheduling may still yield little
performance improvement: some threads may do redundant
work in a chunk where the speculation accuracy is high and
thus waste computing resources; while some others may start



the re-execution from the states which are nearly impossible
to be the correct ones. To achieve the optimal performance
of speculative recovery, we need to answer the following
two thread scheduling problems: (1) which chunk should a
thread work on for recovery? and (2) which FSM states
should a recovery start from? In the following, we present
two heuristics to address these two problems.

Round-Robin (RR). Round-robin scheduling is an algorithm
widely used in process and network schedulers [34]. A set
of tasks are assigned to each process in equal portions and
in a circular order. The first heuristic is to introduce round-
robin scheduling into speculative verification and recovery, as
shown in Algorithm 4. When a must-be-done recovery appears
on chunk ¢ (the frontier), instead of letting the rest threads
be idle or randomly assigning recovery tasks to threads, this
round-robin based heuristic makes each thread work on a
chunk with the following rules: if a thread originally works
on the chunk j during speculative parallel execution and j > %
(such a thread is called rear thread), it stays on the current
chunk and starts verification and recovery by speculating the
end state from chunk j — 1 as the ground truth (lines 20-21).
In other words, the rear threads follow the same strategy in
SRE. On the other hand, other threads are assigned to work on
chunk ¢+ 1 to chunk N with round-robin scheduling applied.
This design ensures that the maximum number of threads
working on a chunk should be 1 + [(i —1)/(T —4)], and
no thread is wasted on the chunks which have been verified.
Because the speculation in each chunk generates a queue
@S, of speculative states, where states are ranked by their
probabilities to be the ground truth, a straightforward way to
answer the second scheduling problem for non-rear threads is
to let them follow the order in QS; to choose a speculative
state (lines 24-25) and then execute the recovery. Note that
QS; is a concurrent queue to ensure thread-safety.

Algorithm 4 Round Robbin based Speculative Recovery
(RR); derived from Algorithm 3

16: if mark == true then

17: continue;

18: else

19: if tid > f then

20: cid = tid;

21: st = endp;

22: else

23: cd=(f+1)+ (tid—1)% (N — f); > let cid # tid
24: st = QSciq.front();

25: QSciq.dequeue();

26: end,, = FSM_Processing(fsm, I(cid), st);
27: V Reia.push_back({st, end.});

28: if found == false and tid > f then

29: end. = end.;

Nearest First (NF). Unlike the randomized and the RR based
scheduling, this nearest-first heuristic assigns the non-rear
threads to execute recovery on the chunks nearest to the fron-
tier. All previous designs are built on a strong assumption that
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speculations on various chunks are usually similar (i.e., input
insensitive). But we observe that in some cases, it is difficult
to make an accurate speculation when running on a specific
portion of the given input stream. That requires us to provide
more resources for making speculation and recovery, so the
nearest first heuristic is proposed. Algorithm 5 summarizes its
basic idea. All non-rear threads are first scheduled to execute
recoveries on the chunk 7+ 1 (which is right after the frontier)
with enumerating the rest start states in the speculation queue.
If the number of the non-rear threads is larger than the size
of speculation queue in chunk ¢ + 1, then chunk ¢ + 2, chunk
1+ 3, and the rest rear chunks become the target in order, until
all non-rear threads have been scheduled (lines 25 - 34).

Algorithm 5 Nearest First based Speculative Recovery (NF);
derived from Algorithm 3

16: if mark == true then

17: continue;

18: else

19: (cid, st) = NF_Sched (tid, i, preEnd);
20: end, = FSM_Processing(fsm, Il(cid), st);
21: V Reiq.push_back({st, end,});

22: if found == false and tid > f then

23: end. = end.;

24:

25: procedure NF_SCHED(tid, f, endy)

26: if tid > f then

27: return (tid, endp);

28: else

29: for cid=f+1: N do
30: if QS.iq.size() # O then
31: st = QSeiq.front();
32: QS¢iq.dequeue();

33: break;

34: return (cid, st);

C. Efficiency Analysis

At high level, the execution time of speculative FSM
parallelization can be broken down into three parts: the time
spent on predicting start states 7,4, the time spent on parallel
speculative execution T}, and the verification and recovery
time T’ g

Tspec = Tp?"ed + Tpar + Tv&r (1)

We utilize the same predictor (more details can be found
in Section IV-A) for the given FSM and input stream in all
speculation-centric parallelization, and the speculation over
different chunks can be done in parallel, so we consider the
prediction cost as a constant (denoted as C'). During spec-
ulative execution, PM requires each thread maintain k state
transition paths (i.e., spec-k), while other schemes demand
each thread start FSM transitions from only one predicted
state. To quantitatively denote the overhead, we introduce the
metric redundancy factor ay, = Ty /Tp1, where Ty, and Ty
are the parallel speculative execution time in utilizing spec-
k and spec-1, respectively. It is expected that o, > 1 when
k > 1. As the major difference among various parallelization
schemes locates in verification and recovery, in the following,



we elaborate the details of T, and then analyze the total
execution time for each scheme.

Analysis of PM. The verification and recovery phase in PM
mainly consists of two stages. In the first stage, a parallel tree-
like verification is performed and there are log/N rounds paral-
lel verification in total. During each round, every thread needs
to pass k end states to the successor (the time spent is denoted
as T,omm(k)) and provides runtime checks for each end state
received from its predecessor thread to determine whether
there is a match or not (the cost is represented as Ty, (k)).
No recovery will be performed in this stage. The second stage,
on the other hand, is a sequential verification and recovery
for handling any must-be-done recovery appearing after the
first stage. During the sequential verification, if a mismatch
is found on chunk ¢ (assuming the probability of a mismatch
occurs is PPM), we have to provide a immediate recovery on
the current chunk. Putting all together, the execution time of
PM can be represented as

logN'
Tear = C+ Ty X ok + Y (Teomm (k) + Toer (k)

=1

N (@)
+ Z PL‘PN[ X (TcomWn(]-) + T’UET(k) + Tpl)
i=2

In Equation 2, P"M is fixed after we made the speculation
on chunk i and it equals to 1 — accu**, where accul*™*
denotes the speculation accuracy of utilizing spec-k. Note that
speculation in different chunks is independent.

Analysis of spec-1 based Speculative Recovery. For other
schemes utilizing speculative recovery, a common strategy is:
after speculative execution, there will be at least one thread
getting an end state from its predecessor and then check if
a mismatch is found until the entire input stream has been
verified. Once a mismatch is found, a recovery is executed.
As described above, the two heuristics make the threads busy
even they don’t find a mismatch, but this cost can be hidden by
the must-be-done recovery in the frontier. In general, the total
execution time for parallelization with speculative recovery is
N

Tsp=C+Tpt + Y (Teomm(1) + Toer(1) + PP x T1)  (3)

=2

In Equation 3, P° indicates the probability of starting a
recovery in the frontier chunk 4. Different from PiP M

(C))

where AP denotes the accuracy increment in chunk i due to
starting an earlier recovery with end state from its predecessor,
and AP indicates that other threads are assigned to run on
chunk 7 with other speculative states and thus we can increase
the probability to avoid a recovery (AP = () when applying
Algorithm 3).
Discussion. Based on the above analysis, we compare the
performance of different parallelization schemes and get hints
about when a specific scheme works most efficiently.

First, the quality of start state prediction is apparently
critical for the performance. If the speculation technique used

PiSR —1— (accu.zpec-l + AiEnd + Af’pez;S)
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spec-1 - . . .
can ensure that accu;’ " is high, the dominant cost in every

speculation-centric parallelization should be in the parallel
speculative execution phase, and thus introducing least redun-
dant work during speculative execution is the best choice. But
if it is more likely to get a correct speculation only when trying
multiple predicted states, applying spec-k should be beneficial
even though it may introduce redundant computations.

Second, the FSM predictors used in GPUs are usually
lightweight to avoid heavy overheads, so it is possible that the
probability of a mis-speculation occurs is high even though £ is
set to be a large number. To reduce this probability, a potential
direction is increasing the values of AE"? and APP°*. Based
on their definitions above, the former one is affected by the
FSM convergence property (AlE"d is large when any pair of
FSM states easily converge [26], [28]), while the latter is still
affected by the quality of speculation.

Overall, the efficiency of applying a parallel scheme de-
pends on the speculation technique used and the FSM con-
vergence property. However, FSM transition behaviors are
complex and diverse [21]. Instead of precisely producing a
closed-form solution for determining the optimal paralleliza-
tion scheme, we propose a selector guided by the analysis
above, to infer which scheme can work well in general for the
given FSM and input data.

IV. GSPECPAL

Following parallelization schemes discussed in Section III,
we develop GSpecPal, a latency-sensitive framework that
leverages speculative parallelization to maximize the peak
performance of FSM processing on GPUs. At high-level,
GSpecPal consists of four components, including state pre-
diction, state transition, verification and recovery, and parallel
scheme selection. We next present each of them in order.

A. State Prediction

As discussed in Section III-C, the speculation accuracy
greatly affects the performance of FSM parallelization. The
key challenge is to determine the likelihoods of different
states to be the real start state on a divided chunk. Previous
studies have proposed various FSM predictors [26], [28], but
these predictors usually target CPU-based FSM processing,
requiring tedious online or offline training runs in practice. In
fact, the tradeoff between speculation accuracy and training
overhead is still under exploration.

Recently, a relatively lightweight prediction technique called
all-state lookback-2 [19]-[21] has been utilized in FSM par-
allelization on GPUs. Basically, it executes FSM transitions
with starting from all states over the last two characters of the
predecessor chunk, and thus produces a set of end states. The
state convergence property ensures that all impossible states
are ruled out and the real start state on the current chunk must
be contained in the produced end state set. The likelihood
of a state to be the real start state is simply determined by
its frequency of appearance in the end state set. Since start
state prediction is not the focus of this work, we follow this
technique and integrate it into GSpecPal.
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(b) The transformed DFA
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Fig. 4: Applying the Transformation Optimization to a DFA
with 4 states. The shadowed area in (b) are considered as hot
transitions and will be stored in GPU shared memory.

B. State Transition

The major operation in DFA computations is the state transi-
tion state = Table[state][symbol]. A significant difficulty in
FSM processing on GPUs is that the memory access pattern on
the transition table is data-dependent and thus unpredictable.
For current GPU architectures, the memory needed for storing
FSM transition table is usually larger than the shared mem-
ory size. For instance, in NVIDIA GeForceRTX 3090, the
available shared memory is no more than 100KB per SM,
which cannot hold the entire transition table of an FSM with
thousands of states. But storing the transition table in global
memory may make the transition table lookup extremely ex-
pensive. To reduce excessive global memory accesses, existing
work [18], [19] keeps a copy of a partial transition table
(the hot portion) into shared memory before the execution
starts, and expect most of the transition can be completed by
accessing the copy.

The implementation of state transition in GSpecPal is sim-
ilar to the one in PM [19]. For allocating hot state transitions
in shared memory, an offline profiling is applied to count the
frequency of each state in the original transition table. Then
transitions activated by the states with the highest frequencies
are promoted to shared memory until there is no more space.
Note that once the allocation is done, it won’t change during
the FSM processing. In each step of state transitions, we need
to examine whether the current transition has been cached
— if it is, a shared memory access is enough, otherwise, a
global memory access is needed. To efficiently perform the
examination, PM introduces a hash table based method. More
specifically, a hash table Hots is also constructed and put
into shared memory. In every state transition, a hash table
access Hots[hash(state)] (with a constant time complexity)
is performed at first, where hash(state) is the hash function.
Frequency-Based DFA Transformation. The above hash
table based approach in fact introduces one extra shared
memory access (to the hash table) and one more computation
(in the hash function) in each step. To avoid extra overheads
and reduce global memory access as much as possible, we
propose a new approach to store the hot state transitions
in shared memory. The key idea is to transform the FSM
transition table according to the state frequency.

More specifically, after ranking the states based on their
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Fig. 5: Illustrating the data layout in GPU shared memory and
register files for efficient verification and recovery.

frequency in the original transition table, we re-layout the table
by grouping hot transitions (i.e., the transitions activated by
states with higher frequencies) as well as replacing the state
IDs with their corresponding ranks. To preserve the semantics
of the original FSM, we also maintain a state ID mapping rule.
Figure 4 shows an example of applying this transformation
optimization to a DFA with 4 states. In this example, we
just need to check if the state ID is less than 2 during state
transitions, instead of accessing a hash table to determine
whether the current state is a hot state.

C. Verification and Recovery

After the parallel speculative execution is completed, we
invoke the verification and recovery to ensure the correctness.
GSpecPal adopts the parallel verification approach used in
PM. Since one-to-one mapping relationship between threads
and chunks may be broken during the aggressive speculative
recovery, i.e., a recovery task running on chunk ¢ may be
executed by thread j (i # j), a key challenge is about
how to load and store the results of speculative recovery
efficiently. Figure 5 shows how GSpecPal organizes data in
GPU shared memory and register files for efficient verification
and recovery. Here both threads ¢ and j execute recovery tasks
on chunk 7 and thread 7 is a rear thread. Because thread i
keeps checking whether is a match for the end state from
the predecessor until chunk ¢ is verified, we build up V R;
on registers which can be efficiently accessed by thread ¢ to
store the speculative execution or recovery records on chunk
i (as shown in Figure 5 @). Records in VR; come from two
sources. Different from VRf”d, which stores records directly
generated by thread 4, VR?"°"* maintains the speculative
recovery records from other threads. Since registers in thread
i are private to other threads, we use shared memory (as
shown in Figure 5 @) for communication: thread j first stores
recovery results to shared memory, then thread ¢ loads those
results back to registers for future verification. In fact, the
number of registers used for V R?""“"* affects the performance
of speculative parallelization: if using few registers, we cannot
hold all recovery results from other threads; but if using a
large number of registers, the frequent load, store and runtime
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checking may downgrade the benefits from speculative recov-
ery. In Section V, we will examine this with experiments.

D. Parallel Scheme Selection

Guided by the analysis in Section III-C, we build up a
decision tree as the scheme selector in GSpecPal, as shown
in Figure 6. It briefly summarizes the two key factors used
for selecting the parallel scheme on GPUs, i.e., the quality of
speculation (the orange nodes) and FSM convergence property
(the gray nodes). However, considering the cost of precisely
capturing speculation characteristics and FSM properties, the
decision tree used in GSpecPal is in coarse-grained level and
it is a simplified version of the model introduced in [21].
Basically, for a given FSM, we run the predictor on a piece of
training input and collect the speculation accuracy. To confirm
whether the speculation is highly input-sensitive, we examine
the similarity of speculation results over different portions
of the training input. We also perform a lightweight state
convergence profiling, by counting the number of unique states
after running 10 steps of transitions starting from all states.

V. EVALUATION

In this section, we evaluate the effectiveness of GSpecPal
on a set of real-world benchmarks from ANMLZoo [35] and
its improved version AutomataZoo [36].

A. Methodology

The evaluation of GSpecPal includes all four speculation-
based parallel schemes as well as the scheme selection. Note
that, PM and SRE are proposed by prior work [19] and [21],
respectively. We integrate them into GSpecPal framework, and
the implementations are based on our best understanding of
their work. And we consider PM with spec-4 as the baseline
for comparison.

Experimental Setup. We conduct all experiments on a system
consisting of two Intel 3.0GHz Xeon Gold 6248R processors
and an Nvidia GeForce RTX 3090 GPU (Ampere architecture)
[37]. The GPU device contains 82 streaming multiprocessors,
each consisting of 128 cores and 100KB of shared memory,
and is equipped with 24GB of global memory. The system
runs CentOS Linux release 7.9.2009 (Core). All GPU codes
are compiled with CUDA 11.2 toolkit and NVCC V11.1.105
using the highest optimization level. We report the GPU kernel
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time collected by using CUDA events. The timing results
reported are the average of five repetitive runs. We do not
report 95% confidence interval of the average as the variation
is not significant. In fact, we observed that the experimental
results are consistent across different runs, i.e., the variance
in execution time was around 1%. For a fair comparison
with prior work [19], [21], the I/O time and data structure
preparation time are not included since prior work does not
focus on optimizing them. These costs are expected to be
amortized as inputs or FSMs are repeatedly used and memory
technologies like NVLink and unified memory develops.

B. Benchmarks

ANMLZoo and AutomataZoo are two diverse automata pro-
cessing benchmark suites consisting of multiple real-world
FSM-based applications from different domains. In this paper,
we collect FSMs from 3 applications, including a widely used
network intrusion detection system (NIDS) Snort, an open
source virus-detection tool ClamAV, and PowerEN, a regular
expression benchmark suite originally developed by IBM.
Each application contains thousands of Perl-compatible regular
expressions, so similar to prior work [24], we compile these
regular expressions to DFAs using RE2 [38], an open-source
regular expression library. However, instead of compiling an
individual regular expression, each FSM in our evaluation is
generated from a disjunction of multiple randomly selected
regular expressions. We finally produce 12 FSMs for each
application. Table II shows characteristics of these FSMs.

There are twenty 10MB inputs provided for each FSM:
the inputs to Snort FSMs are network traffic traces collected
from a Linux server with tcpdump; the inputs to ClamAV
are concatenations of the binary executables from a Linux
machine; and the input trace files to PowerEN are released
from IBM [39]. A 1MB trace is randomly selected from each
group of inputs (i.e., 0.5%) and used for collecting the FSM
properties offline. These offline profiling results are reported
from the second column to the last column in Table II.

C. Results

Effect of Register Usage. Since the number of registers used
for V RZ™°" (where speculative recovery results from other
threads are stored) may greatly affect the performance of
verification and recovery, as discussed in Section IV-C, we
first investigate its best setting. Figure 7 shows the normalized
execution time of applying parallel scheme RR on different
groups of FSMs with using various number of registers for
V RS™e"s Two groups of benchmarks (Snort and clamAV)
achieve the best performance when the number of registers
used is 16. When running on FSMs from PowerEN, the best
number of registers used is 18, but the performance lost in
using 16 registers is less than 1%. As we continue to increase
the number of registers, the execution time slightly increases
on all benchmarks. This implies that the ground truth in a
speculation usually appears in the top 16 states in ().S;, which
is also observed in [23]. In the following, we empirically use
16 registers for VR in RR and NF.



TABLE II: Benchmarks

Source | #States [ accuracy(spec-I) | accuracy(spec-4) | #DFAs with [ #unigStates(10 trans.) | Profiling Time
[ range [ mean [ range | mean | range [ mean | highly input-sensitive spec. | range [ mean |  (seconds)
Snort [423,42k] | 10k | [0, 100%] | 23% | [0, 100%] | 38% 3 [1.8,27.2] 10.7 0.6
ClamAV | [541, 8k] 3k | [0, 100%] | 16% | [0, 100%] | 39% 5 [2, 24] 9.7 0.6
PowerEN | [109, 1501] | 650 | [0, 85%] | 29% | [0, 85%] | 30% 6 [3. 32] 123 0.6
0.9 Analysis of Improvement. We observe that the DFA Trans-
_ gSnort @ClamAV [ PowerEN formation introduced in Section IV-B can bring a 15% perfor-
-+ mance improvement on average, but the detailed evaluation is
n . . . . .
08 06 0.263 skipped due to space limitation. To have a better understanding
EQ 0.284 £ ; ;
= . of the improvement from speculative recovery, we further
8E 0.302 00 examine the speculation accuracy and the number of active
30 - . .
8% 03 threads during recovery, as shown in Table III. Note that the
u £ first four columns in Table III report the runtime speculation
= accuracy, which is defined as the frequency of the matches
0 occurring in verification. It represents the quality of state
8 10 12 14 16 18 20 24 28 prediction as well as the benefits from speculative recovery.
#regs used for VRP!ers The extremely high speculation accuracy of PM running on

Fig. 7: Performance sensitivity to the number of registers used
for V RS™"* (the parallel scheme evaluated is RR; the number
of registers used for VRS is 16).

Overall Comparison. Figure 8 reports the speedup of all
three speculative recovery schemes and the proposed selector,
compared with PM, on three benchmark groups. On average,
RR achieves 6.25x speedup and NF achieves 6.76x among
all 36 FSMs. However, these two aggressive speculative re-
covery schemes yield inconsistent speedups across various
FSMs, ranging from 0.11x to 18x. The reason is that the
parallelization performance depends on the speculation and
FSM properties. On some benchmarks (SnortI-2, ClamAVI-3
and PowerEnl-2), PM yields the best performance among all
parallel schemes in GSpecPal. This implies that the enumer-
ative speculation (spec-k) used in PM is easier to cover the
correct start state and thus recovery is generally unnecessary
for these benchmarks. It can be observed that on Snort3-4 and
ClamAV4-5, SRE performs better than other parallel schemes
(up to 20x) while RR and NF also perform well in general.
This demonstrates the benefits of utilizing end states from
predecessor chunks to trigger the earlier recovery. For the
rest benchmarks, the performance improvement from the two
heuristics is significant, with an average speedup of 8.11x and
8.87x, respectively.

As for the scheme selector, by feeding the decision tree
with collected properties shown in Table II, it can pick the
best parallel scheme for 29 out of 36 cases (i.e., 80.6%
accuracy). The reasons of selecting the sub-optimal parallel
scheme for the rest 7 FSMs are (1) the selection model in fact
is built in a coarse-grained level and (2) only a tiny portion
of testing inputs is used for offline profiling. Though it cannot
perfectly predict the optimal scheme of running a given FSM
on GPUs, it won’t cause significant performance lost (only 3%
on average) comparing to the ideal selection. The selector can
obtain a 7.2x speedup on average.
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Snortl-2 confirms the benefits of utilizing spec-k. For Snort3-
4, SRE, RR and NF all reach significant high speculation
accuracy, which aligns with their similar numbers of active
threads during recovery (as shown in the last three columns).
On the rest FSMs, RR and NF boost the accuracy because
the number of threads activated during recovery is one to two
orders of magnitude higher than the ones in PM and SRE.

TABLE III: Runtime speculation accuracy and the average
number of threads activated during recovery for Snort DFAs
running in different schemes.

Accuracy (%) [[ Average #Active Threads |

’ Snort H PM [ SRE] RR | NF || PM [ SRE | RR | NF |
I 997 | 02 | 974 | 940 || 1 T [ 1649 | 2296
2 |[ 1000 | 02 | 988 | 941 || 0 | 1 | 1758 | 2357
3 95.0 | 999 [ 999 [ 999 [ T | 51 | 630 | 630
4 979 [ 999 [ 999 [ 999 [ T | 31 | 510 | 510
5 986 | 82 | 999 [ 999 | 1T | 15 | 113.0 | 113.0
6 01 | 02 [ 947 [ 937 | 1 T [ 1541 | 2223
7 01 | 02 [ 946 [ 937 | 1 T [ 1600 | 2223
8 01 | 02 [ 924 [ 932 | 1 T | 158.1 | 2094
9 00 | 02 [ 942936 | 1 | 2 | 168.1 | 2352
10 05 | 02 [ 953 [ 937 || I | 2 | 1742 | 2373
11 01 | 02 [963 [ 939 |[ 1 T | 1644 | 2270
2 01 | 02 [ 956 ] 938 || 1 T | 1725 | 2241

We also investigate how the high thread utilization in RR and
NF affects the recovery performance. The recovery execution
time per chunk, which is normalized to the one in SRE, is
reported in Figure 9 (the 12 DFAs are randomly selected from
3 groups). We observe that the costs of recovery per chunk in
RR and NF are generally higher than the ones in SRE because
of the resource contention. However, we also found that NF
with a larger number of threads activated during recovery
performs more efficiently than RR on all selected FSMs. This
is because a lot of threads in NF run on the same divided
chunk during recovery, which reduces thread divergence and
improves data locality.
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VI. RELATED WORK

This section summarizes the related work into three cate-
gories: FSM-based applications, parallelization on DFAs, and
GPU accelerations.

FSM-based Applications. FSMs form the backbone of a
variety of data processing routines. They are built for deep
packet inspection, which requires packet payloads matching
against a large set of patterns [7], [8]. FSMs are also used in
motifs searching, an important application in bioinformatics,
and run across multiple nucleic acid sequences in order to find
approximately conserved sub-sequences [3], [4]. Applications
in natural language processing, such as part-of-speech tagging,
also involve heavy usages of FSMs [5], [6].

Parallelization on DFAs. To break the data dependencies of
“embarrassingly sequential” DFA computations, the current
efforts mainly fall into two directions: speculative and enumer-
ative parallelization. Zhao et al. [26] first propose principled
speculation which configures speculations automatically based
on pre-profiling. Later in [28], an on-the-fly principled specu-
lation is proposed for reducing the overhead of pre-processing.
There are a series of studies [11], [30], [40] on speculative
FSM parallelization, which consist of granularity, scalability
and energy efficiency analysis. On the other hand, Pan et
al. [1] start to use enumeration for parallelization. Except
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for a specific application, Mytkowicz et al. [23] propose a
general data-parallel approach based on the parallel prefix-
sums algorithm. To reduce the overhead from enumeration,
Jiang et al. [20] then propose speculative enumeration. Except
for the SRE design, [21] also proposes path fusion to improve
the performance of enumerative parallelization.

GPU Accelerations. There has been a significant amount of
work on accelerating applications on GPUs. Here we only
introduce research closely related to our work. Cascarano et al.
[16] propose the first GPU-based NFA engine and then Liu et
al. [7] analyze the bottleneck of NFA computations on GPUs
and develop an engine that optimizes the irregular memory
access and low thread utilization. Nourian et al. [12] further
propose compiler supports for optimizing memory access.

VII. CONCLUSIONS

This work targets the principal limitation in the existing
latency-sensitive designs of speculative FSM parallelization
on GPUs. To address the performance bottleneck caused
by sequential verification and recovery, this work explores
efficient speculative recovery. By breaking the one-to-one
mapping between threads and divided chunks, the speculative
recovery design can enable parallel verification and recovery,
and improve the GPU thread utilization. To leverage the
proposed design, this work develops GSpecPal, a latency-
sensitive FSM parallelization framework which integrates four
parallelization schemes and a scheme selector. Experiments
show that GSpecPal outperforms the state-of-the-art by up to
20x, demonstrating the effectiveness of speculative recovery.
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