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Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of a high-dimensional stationary,
multivariate long-range dependent (LRD) Gaussian time series.
In a time series graph, each component of the vector series
is represented by a distinct node, and associations between
components are represented by edges between the corresponding
nodes. In a recent work on graphical modeling of short-range
dependent (SRD) Gaussian time series, the problem was cast as
one of multi-attribute graph estimation for random vectors where
a vector is associated with each node of the graph. At each node,
the associated random vector consists of a time series component
and its delayed copies. A theoretical analysis based on short-
range dependence has been given in Tugnait (2022 ICASSP). In
this paper we analyze this approach for LRD Gaussian time
series and provide consistency results regarding convergence in
the Frobenius norm of the inverse covariance matrix associated
with the multi-attribute graph.

I. INTRODUCTION

Graphical models are an important and useful tool for
analyzing multivariate data [1]. Given a collection of random
variables, one wishes to assess the relationship between two
variables, conditioned on the remaining variables. Consider
a graph G = (V, E) with a set of p vertices (nodes) V =
{1, 2, · · · , p} = [p], and a corresponding set of (undirected)
edges E ⊆ [p] × [p]. Also consider a stationary, zero-mean,
p−dimensional multivariate Gaussian time series x(t), t =
0,±1,±2, · · · , with ith component xi(t). Given {x(t)}, in
the corresponding graph G, each component series {xi(t)}
is represented by a node (i in V ), and associations between
components {xi(t)} and {xj(t)} are represented by edges
between nodes i and j of G. In a conditional independence
graph (CIG), there is no edge between nodes i and j if and
only if (iff) xi(t) and xj(t) are conditionally independent
given the remaining p-2 scalar series x`(t), ` ∈ [p], ` 6= i,
` 6= j [2].

Graphical models were originally developed for random
vectors [3, p. 234]. Such models have been extensively studied,
and found to be useful in a wide variety of applications
[4], [5]. Graphical modeling of real-valued time-dependent
data (stationary time series) originated with [6], followed by
[2]. A key insight in [2] was to transform the series to the
frequency domain and express the graph relationships in the
frequency domain. Nonparametric approaches for graphical
modeling of real time series in high-dimensional settings
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have been formulated in the form of penalized log-likelihood
in frequency-domain in [7]–[10]. Recently in [11] (Tugnait,
2022 ICASSP), a time-domain approach to graph structure
estimation for stationary Gaussian multivariate time series was
presented. All these works [7]–[11] assume that dependent
time series exhibits short-range dependence. A (zero-mean)
univariate stationary time series {y(t)} is said to have long-
range dependence (long-memory) if its autocorrelation func-
tion ry(τ) = E{y(t+ τ)y(t)} satisfies

∑∞
τ=−∞ |ry(τ)| =∞,

and short-range dependence (short-memory) otherwise [12].
A (zero-mean) multivariate stationary time series {x(t)} (p-
dimensional) is said to have long-range dependence (long-
memory) if its autocorrelation function Rx(τ) = E{x(t +
τ)x>(t)} has the structure [Rx(τ)]jk = [R̃(τ)]jkτ

dj+dk−1

where [A]jk denotes (j, k)th component of A, dj ∈ (0, 0.5),
j = 1, 2, · · · , p, and R̃(τ) ∈ Rp×p satisfies limτ→∞ R̃(τ) =
R̄ [13]. Otherwise, {x(t)} (p-dimensional) is said to have
short-range dependence.

In [11], graphical modeling of time series was cast as one
of multi-attribute graph estimation for random vectors where
a vector is associated with each node of the graph. At each
node, the associated random vector consists of a time series
component and its delayed copies. A theoretical analysis based
on short-range dependence has been given in [11]. In this paper
we analyze the approach of [11] for LRD Gaussian time series
and provide consistency results regarding convergence in the
Frobenius norm of the inverse covariance matrix associated
with the multi-attribute graph.

Notation: We use S � 0 and S � 0 to denote that the sym-
metric matrix S is positive semi-definite and positive definite,
respectively. For a set V , |V | or card(V ) denotes its cardinal-
ity. Z is the set of integers. Given A ∈ Rp×p, we use φmin(A),
φmax(A), |A| and tr(A) to denote the minimum eigenvalue,
maximum eigenvalue, determinant and trace of A, respec-
tively. For B ∈ Rp×q , we define ‖B‖ =

√
φmax(B>B),

‖B‖F =
√

tr(B>B) and ‖B‖1 =
∑
i,j |Bij |, where Bij

is the (i, j)-th element of B (also denoted by [B]ij). Given
A ∈ Rp×p, A+ = diag(A) is a diagonal matrix with the same
diagonal as A, and A− = A−A+ is A with all its diagonal
elements set to zero.

II. MULTI-ATTRIBUTE FORMULATION FOR TIME SERIES
GRAPHICAL MODELING [11]

Consider stationary Gaussian time series x(t) ∈ Rp, t ∈ Z,
with E{x(t)} = 0 and Rx(τ) = E{x(t + τ)xT (t)}, τ ∈ Z.



The conditional independence relationships among time series
components {xi(t)}’s are encoded in edge set E of G = (V, E),
V = [p], E ⊆ V ×V , where edge {i, j} ∈ E iff {xi(t), t ∈ Z}
and {xj(t), t ∈ Z} are conditionally independent given the re-
maining p-2 components x−ij,Z = {xk(t) : k ∈ V \{i,j}, t ∈
Z}. Define ei|−ij(t) = xi(t) − E{xi(t)|x−ij,Z}, ej|−ij(t) =
xj(t)−E{xj(t)|x−ij,Z} and the power spectral density (PSD)
matrix Sx(f), Sx(f) =

∑∞
τ=−∞Rx(τ)e−j2πfτ . Then we

have the following equivalence [2]

edge {i, j} 6∈ E ⇔ [S−1
x (f)]ij = 0 ∀f ∈ [0, 1]

⇔ E{ei|−ij(t+ τ)ej|−ij(t)} = 0 ∀τ ∈ Z . (1)

For some d ≥ 1, let

zi(t) =[xi(t) xi(t− 1) · · · xi(t− d)]> ∈ Rd+1 (2)

y(t) =[z>1 (t) z>2 (t) · · · z>p (t)]> ∈ R(d+1)p . (3)

We associate zi with the ith node of graph G = (V, E),
V = [p], E ⊆ V × V . We now have m = d + 1
attributes per node. Now {i, j} ∈ E iff vectors zi and zj
are conditionally independent given the remaining p-2 vectors
{z` , ` ∈ V \{i,j}}. Let Ωy = (E{y(t)y>(t)})−1. Define the
m×m subblock Ω

(ij)
y of Ωy as

[Ω(ij)
y ]rs = [Ωy](i−1)m+r,(j−1)m+s , r, s = 1, 2, · · · ,m .

(4)
Let z−ij(t) = {zk(t) : k ∈ V \{i,j}}, ei|−ij(t) = zi(t) −
E{zi(t)|z−ij(t)}, and ej|−ij(t) = zj(t)−E{zj(t)|z−ij(t)}.
Then by multi-attribute graphical modeling [16],

{i, j} 6∈ E ⇔ Ω(ij)
y = 0 . (5)

Define x̃−ij;t,d = {xk(s) : k ∈ V \{i,j} , t − d ≤ s ≤ t},
exi|−ij(t

′) = xi(t
′) − E{xi(t′)|x̃−ij;t,d}, and exj|−ij(t

′) =
xj(t

′)− E{xj(t′)|x̃−ij;t,d}. Notice that exi|−ij(t′) is an ele-
ment of ei|−ij(t) for any t − d ≤ t′ ≤ t. As shown in [11],
we have

Ω(ij)
y = 0 ⇔ E{exi|−ij(t1)exj|−ij(t2)} = 0,

for t− d ≤ t1, t2 ≤ t. (6)

It follows from (6) that if we let d ↑ ∞, then checking if
Ω

(ij)
y = 0 to ascertain (5) becomes a surrogate for checking

if the last equivalence in (1) holds true for time series graph
structure estimation without using frequency-domain methods.
This is the approach followed in [11].

III. SPARSE-GROUP GRAPHICAL LASSO SOLUTION

Consider a finite set of data comprised of n zero-mean
observations x(t), t = 0, 1, 2, · · · , n − 1. Pick d > 1
and as in (3), construct y(t) for t = d, d + 1, · · · , n − 1
with sample size n̄ = n − d. Define the sample covariance
Σ̂y = 1

n̄

∑n−1
t=d y(t)y>(t). If the vector sequence {y(t)}n−1

t=d

were i.i.d., the log-likelihood (up to some constants) would be
given by ln(|Ωy|)− tr(Σ̂yΩy) [17]. In our case the sequence
is not i.i.d., but as in [11], we will still use this expression as

a pseudo log-likelihood and following [11], [17], consider the
penalized negative pseudo log-likelihood

LSGL(Ωy) = − ln(|Ωy|) + tr(Σ̂yΩy) + P (Ωy), (7)

P (Ωy) = αλ ‖Ω−y ‖1 + (1− α)mλ

p∑
j 6=k

‖Ω(jk)
y ‖F , (8)

where P (Ωy) is a sparse-group lasso penalty [4], [17], with
group lasso penalty (1 − α)mλ

∑p
j 6=k ‖Ω

(jk)
y ‖F , λ > 0 and

lasso penalty αλ ‖Ω−y ‖1, λ > 0 is a tuning parameter, and
0 ≤ α ≤ 1. The function LSGL(Ωy) is strictly convex in
Ωy � 0. Unlike [11], we use (1 − α)mλ in P (Ωy) ( [11]
uses (1 − α)λ); we follow [18] by scaling based on number
of grouped variables.

Following [17], an alternating direction method of mul-
tipliers (ADMM) approach (with variable splitting [19]) is
discussed in [11] to minimize LSGL(Ωy) w.r.t. Ωy .

IV. THEORETICAL ANALYSIS

Here we analyze consistency (Theorem 1) by invoking some
results from [17], as in [11], except that unlike [11], here we
consider LRD Gaussian time series.

To quantify the dependence structure of {x(t)}, we will
follow [15].

(A0) Assume {x(t)} obeys x(t) =
∑∞
i=0 Aie(t − i) where

{e(t)} is i.i.d., Gaussian, zero-mean with identity covari-
ance, e(t) ∈ Rp, Ai ∈ Rp×p, and

max
1≤q≤p

√√√√ p∑
k=1

([Ai]qk)2 ≤ ca
(max(1, i))γ

(9)

for all i ≥ 0, some ca ∈ (0,∞), and γ > 1
2 .

Since autocorrelation function Rx(τ) = E{x(t +
τ)x>(t)} =

∑∞
i=0 Ai+τA

>
i , if |[Ai]qk| = O(idq−1), dq <

0.5, q, k = 1, 2, · · · , p, then by [13, Prop. 3.1], [Rx(τ)]qk =
O(τdq+dk−1) as |τ | → ∞. Setting γ = 1 − minq dq , it then
follows from [13, Prop. 3.1] that [Rx(τ)]qk = O(τdq+dk−1) =
O(τ1−2γ), τ > 0. For γ > 1, Rx(τ) is (absolutely)
summable, hence, {x(t)} has short-range dependence (SRD).
For γ ∈ ( 1

2 , 1), Rx(τ) is not summable, implying LRD [12]–
[15].

In the SRD case, for γ > 1, Assumption (A0) is satisfied if
x(t) is generated by an asymptotically stable vector ARMA
(autoregressive moving average) model with distinct “poles,”
satisfying x(t) = −

∑q
i=1 Φix(t − i) +

∑r
i=0 Ψie(t − i),

because in that case ‖Ai‖F ≤ a|λ0|i for some 0 < a <
∞ where |λ0| < 1 is the largest magnitude “pole” (root of
c(z) :=

∣∣I +
∑q
i=1 Φiz

−i
∣∣ = 0) of the model. It can be

shown that there exist 0 < b < ∞ and 1 < γ < ∞ such that
a|λ0|i ≤ b i−γ for i ≥ 1, thereby satisfying assumption (A0).

By Assumption (A0), it follows that with y(t) as in (3),
y(t) =

∑∞
i=0 Biē(t− i), ē(t) ∈ Rmp is i.i.d., Gaussian, zero-



mean with identity covariance, m = d+1, Bi ∈ R(mp)×(mp),
for some Bi’s such that

max
1≤q≤mp

√√√√mp∑
k=1

([Bi]qk)2 ≤ ca
(max(1, i))γ

(10)

for all i ≥ 0, with ca and γ as in Assumption (A0). Now we
first restate [15, Lemma VI.2, supplementary] as Lemma 1 (γ
is called β in [15]) as applied to Σ̂y = 1

n̄

∑n−1
t=d y(t)y>(t),

n̄ = n − d, Σy0 = E{y(t)y>(t)}. (The cases γ = 1 and
γ = 3

4 are not in [15, Lemma VI.2, supplementary], but can
be inferred from [15, Lemma VI.1, supplementary].) It is the
basis of our Lemma 2 used in Theorem 1.
Lemma 1: Under Assumption (A0), the elements of the
sample covariance Σ̂y satisfy the tail bound

P
(∣∣∣[Σ̂y −Σy0]kl

∣∣∣ ≥ z) ≤ 2 exp(−Cu min(
z2

Ln,γ
,
z

Jn,γ
))

(11)
for every z > 0 and every k, l, where Cu ∈ (0,∞)
is a constant that depends only on ca in (9) and γ,
and (L−1

n,γ , J
−1
n,γ) = (n̄, n̄) for γ > 1, (L−1

n,γ , J
−1
n,γ) =

(n̄, n̄/ ln2(n̄)) for γ = 1, (L−1
n,γ , J

−1
n,γ) = (n̄, n̄2γ−1) for

1 > γ > 3
4 , (L−1

n,γ , J
−1
n,γ) = (n̄/ ln(n̄), n̄2γ−1) for γ = 3

4 ,
and (L−1

n,γ , J
−1
n,γ) = (n̄4γ−2, n̄2γ−1) for 3

4 > γ > 1
2 . •

Constant Cu results from the application of the Hanson-Wright
inequality [20].

In rest of this section we allow p and λ to be a functions
of sample size n, denoted as pn and λn, respectively. Lemma
1 is now exploited to derive Lemma 2.
Lemma 2: Under Assumption (A0), the sample covariance
Σ̂y satisfies the tail bound

P

(
max
k,l

∣∣∣[Σ̂y −Σy0]kl

∣∣∣ > z∗n

)
≤ 1

(mpn)τ−2
(12)

for τ > 2, under the following conditions on z∗n > 0 and
sample size n̄ = n− d :
(a) For γ > 3

4 :

z∗n =
√

ln(2(mpn)τ )/(nCu) , (13)

and sample size satisfies n̄ ≥ Nz,γ = Na if γ ∈ (1,∞),
where

Na = ln(2(mpn)τ )/Cu , (14)

sample size satisfies n̄ ≥ Nz,γ = arg min{n̄ :√
n̄/ ln2(n̄) ≥ Na} if γ = 1, and n̄ ≥ Nz,γ =

arg min{n̄ : n̄(4γ−3)/2 ≥ Na} if γ ∈ ( 3
4 , 1).

(b) For γ = 3
4 :

z∗n =
√

ln(2(mpn)τ ) ln(n)/(nCu) , (15)

and sample size satisfies n̄ ≥ Nz,γ = arg min{n̄ :
n̄(4γ−3)/2

√
ln(n̄) ≥ Na}.

(c) For γ ∈ ( 1
2 ,

3
4 ):

z∗n =

{ √
ln(2(mpn)τ )/(n4γ−2Cu) if Na ≤ 1

ln(2(mpn)τ )/(n2γ−1Cu) if Na > 1.
(16)

Proof. For γ ∈ (1,∞) and n̄ ≥ N2
a , using Lemma 1 it

is easy to verify that z2
∗n/Ln,γ ≤ z∗n/Jn,γ for specified z∗n.

Applying the union bound over all (mpn)2 entries of Σ̂y−Σy0

in Lemma 1, we have

P

(
max
k,l

∣∣∣[Σ̂y −Σy0]kl

∣∣∣ > z∗n

)
≤ Ptb

= 2(mpn)2 exp

(
−Cu

ln(2(mpn)τ )

nCu
n

)
= 2(mpn)2 exp

(
ln(2(mpn)τ )−1

)
=

1

(mpn)τ−2
. (17)

For γ ∈ ( 3
4 , 1] and stated conditions on n̄, we again have

z2
∗n/Ln,γ ≤ z∗n/Jn,γ for the specified z∗n, and therefore, the

desired result follows in a manner similar to (17). For part
(b), when γ = 3

4 , for the specified z∗n and stated condition
on n̄, we have z2

∗n/Ln,γ ≤ z∗n/Jn,γ for the specified z∗n,
and therefore, the desired result follows as before. For γ ∈
( 1

2 ,
3
4 ), for the specified z∗n, it is easy to verify that we have

z2
∗n/Ln,γ ≤ z∗n/Jn,γ if Na ≤ 1, else we have z2

∗n/Ln,γ >
z∗n/Jn,γ if Na > 1. For Na ≤ 1, the desired results follows
in a manner similar to (17). If Na > 1, γ ∈ ( 1

2 ,
3
4 ) and z∗n =

ln(2(mpn)τ )/(n2γ−1Cu), then applying the union bound to
left-side of (12), we have

P

(
max
k,l

∣∣∣[Σ̂y −Σy0]kl

∣∣∣ > z∗n

)
≤ Ptb

= 2(mpn)2 exp

(
−Cu

ln(2(mpn)τ )

(n2γ−1Cu)
n2γ−1

)
= 2(mpn)2 exp

(
ln(2(mpn)τ )−1

)
=

1

(mpn)τ−2
. (18)

This completes the proof. �
Lemma 2 above replaces [17, Lemma 2] for dependency in

observations. Further assume

(A1) Let Σy0 = E{y(t)y>(t)} � 0 denote the true covari-
ance of y(t). Define Ey0 = {{i, j} : Ω

(ij)
y0 6= 0, i 6= j}

where Ωy0 = Σ−1
y0 . Assume that card(Ey0) = |Ey0| ≤

sn0.
(A2) The minimum and maximum eigenvalues of Σy0 satisfy

0 < βmin ≤ φmin(Σy0) ≤ φmax(Σy0) ≤ βmax <∞ .

Here βmin and βmax are not functions of n.

Let Ω̂yλ = arg minΩy�0 LSGL(Ωy). Theorem 1 estab-
lishes consistency of Ω̂yλ and its proof given in the Appendix,
closely follows the proof of [17, Theorem 1].
Theorem 1 (Consistency): Let τ > 2, m = d+ 1, n̄ = n−d.
and z∗n and Nz,γ be as in Lemma 2. Given real numbers
δ1 ∈ (0, 1), δ2 > 0 and C1 > 0, let C2 =

√
m+ 1 + C1, and

M =(1 + δ1)2(2C2 + δ2)/β2
min, (19)

z̃n :=z∗n
√
mpn +m2sn0 = o(1) , (20)

Nb = arg min

{
n̄ : z̃n ≤

δ1βmin

(1 + δ1)2(2C2 + δ2)

}
. (21)



Suppose the regularization parameter λn and α ∈ [0, 1] satisfy

C1 z∗n

√
1 +

pn
msn0

≥ λn ≥ z∗n . (22)

Then if assumptions (A0)-(A2) hold true, and the sample size
n̄ = n − d satisfies n̄ > max{Nz,γ , Nb} for γ ≥ 3

4 and
n̄ > Nb for γ ∈ ( 1

2 ,
3
4 ), with probability > 1− 1/(mpn)τ−2,

Ω̂yλ satisfies
‖Ω̂yλ −Ωy0‖F ≤Mz̃n . (23)

In terms of convergence rate, ‖Ω̂yλ −Ωy0‖F = OP (z̃n) •
Notice that for γ > 3

4 , we have

‖Ω̂yλ −Ωy0‖F = OP (
√

(mpn +m2sn0) ln(mpn)/n )

whereas for γ ∈ ( 1
2 ,

3
4 ), we have

‖Ω̂yλ −Ωy0‖F = OP (
√

(mpn +m2sn0) ln(mpn)/n4γ−2 )

which can be much slower (since 1 > 4γ − 2 > 0). Also, we
can allow m to increase with n so long as z̃n = o(1).
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APPENDIX

Proof of Theorem 1: Let Ωy = Ωy0 + ∆ with both
Ωy, Ωy0 � 0, and

Q(Ω) := LSGL(Ωy0)− LSGL(Ωy0) . (24)

The estimate Ω̂yλ, denoted by Ω̂ hereafter suppressing de-
pendence upon λ and y, minimizes Q(Ω), or equivalently,
∆̂ = Ω̂ − Ωy0 minimizes G(∆) := Q(Ωy0 + ∆). We will
follow the method of proof of [17, Theorem 1], based on [21,
Theorem 1]. Consider the set

Θn(M) :=
{
∆ : ∆ = ∆>, ‖∆‖F = Mz̃n

}
(25)

where M and z̃n are as in (19) and (20), respectively. Since
G(∆̂) ≤ G(0) = 0, if we can show that inf∆{G(∆) : ∆ ∈
Θn(M)} > 0, then the minimizer ∆̂ must be inside Θn(M),
and hence ‖∆̂‖F ≤Mz̃n. It is shown in [21, (9)] that

ln(|Ωy0 + ∆|)− ln(|Ωy0|) = tr(Σy0∆)−A1 (26)

where, with H(Ωy0,∆, v) = (Ωy0+v∆)−1⊗(Ωy0+v∆)−1

and v denoting a scalar,

A1 =vec(∆)>
(∫ 1

0

(1− v)H(Ωy0,∆, v) dv

)
vec(∆) .

(27)

Noting that Ω−1 = Σ and setting λ̄1 = αλn and λ̄2 = (1 −
α)mλn, we can rewrite G(∆) as

G(∆) = A1 +A2 +A3 +A4 , (28)

where

A2 =tr
(

(Σ̂−Σy0)∆
)
, (29)

A3 =λ̄1

(
‖Ω−y0 + ∆−‖1 − ‖Ω−y0‖1

)
, (30)

A4 =λ̄2

pn∑
i,j=1;i6=j

(
‖Ω(ij)

y0 + ∆(ij)‖F − ‖Ω(ij)
y0 ‖F

)
. (31)



Following [21, p. 502], we have

A1 ≥
‖∆‖2F

2(‖Ωy0‖+ ‖∆‖)2
≥ ‖∆‖2F

2
(
β−1

min +Mz̃n
)2 (32)

where we have used the fact that ‖Ωy0‖ = ‖Σ−1
y0 ‖ =

φmax(Σ−1
y0 ) = (φmin(Σy0))−1 ≤ β−1

min and ‖∆‖ ≤ ‖∆‖F =
Mz̃n. We now consider A2 in (29). We have

A2 =

mpn∑
i,j=1;i6=j

[Σ̂−Σy0]ij∆ji︸ ︷︷ ︸
L1

+

mpn∑
i=1

[Σ̂−Σy0]ii∆ii︸ ︷︷ ︸
L2

(33)

To bound L1, using Lemma 2, with probability > 1 −
1/(mpn)τ−2,

|L1| ≤ ‖∆−‖1 max
i,j

∣∣[Σ̂−Σy0]ij
∣∣ ≤ ‖∆−‖1 z∗n . (34)

Similarly, by Cauchy-Schwartz inequality, Lemma 2 and (20),

|L2| ≤ ‖∆+‖1 z∗n ≤ z∗n
√
mpn ‖∆+‖F ≤ ‖∆+‖F z̃n .

(35)

Therefore, with probability > 1− 1/(mpn)τ−2,

|A2| ≤ ‖∆−‖1 z∗n + ‖∆+‖F z̃n . (36)

We now derive a different bound on A2. Define ∆̃ ∈ Rpn×pn
with (i, j)-th element ∆̃ij = ‖∆(ij)‖F , where ∆(ij) is defined
from ∆ similar to (4). By Cauchy-Schwartz inequality,

‖∆−‖1 =

mpn∑
i,j=1;i6=j

|∆ij | ≤ m‖∆̃−‖1

+
( pn∑
k=1

‖∆(kk)‖1 − ‖∆+‖1
)

︸ ︷︷ ︸
=:B

. (37)

Then using
∑
k ‖∆(kk)‖1 ≤ m

∑
k ∆̃kk ≤ m

√
pn ‖∆̃+‖F ,

we have

|L2|+ z∗nB ≤ z∗n (

pn∑
k=1

‖∆(kk)‖1) ≤ ‖∆̃+‖F
√
m z̃n .

Therefore, an alternative bound is

|A2| ≤ m‖∆̃−‖1 z∗n +
√
m ‖∆̃+‖F z̃n . (38)

We now bound A3 in (30). Let Ēy0 denote the true en-
larged edge-set corresponding to Ey0 when one interprets
multi-attribute model as a single-attribute model. Let Ēcy0

denote its complement. For an index set B and a matrix
C ∈ Rpn×pn , we write CB to denote a matrix in Rpn×pn
such that [CB]ij = Cij if (i, j) ∈ B, and [CB]ij = 0 if
(i, j) 6∈ B. Then, by definition, ∆− = ∆−Ēy0

+ ∆−Ēcy0
, and

‖∆−‖1 = ‖∆−Ēy0
‖1 + ‖∆−Ēcy0

‖1. We have

A3 = λ̄1(‖Ω−y0 + ∆−‖1 − ‖Ω−y0‖1)

= λ̄1(‖Ω−y0 + ∆−Ēy0
‖1 + ‖∆−Ēcy0

‖1 − ‖Ω−y0‖1)

≥ λ̄1(‖∆−Ēcy0
‖1 − ‖∆−Ēy0

‖1) (39)

where we have used the triangle inequality ‖Ω−y0 +∆−Ēy0
‖1 ≥

‖Ω−y0‖1 − ‖∆
−
Ēy0
‖1. Next we bound A4 in (31). Considering

the true edge-set Ey0 for the multi-attribute graph, let Ecy0 de-
note its complement. If the edge {i, j} ∈ Ecy0, then Ω

(ij)
y0 = 0,

therefore, ‖Ω(ij)
y0 + ∆(ij)‖F − ‖Ω(ij)

y0 ‖F = ‖∆(ij)‖F . For
{i, j} ∈ Ey0, by the triangle inequality, ‖Ω(ij)

y0 + ∆(ij)‖F −
‖Ω(ij)

y0 ‖F ≥ −‖∆(ij)‖F . Thus

A4 ≥ λ̄2(‖∆̃−Ecy0
‖1 − ‖∆̃−Ey0

‖1) . (40)

Split A2 as A2 = αA2+(1−α)A2, apply bound (36) to αA2

and (38) to (1 − α)A2, use ‖∆−‖1 = ‖∆−Ēy0
‖1 + ‖∆−Ēcy0

‖1
and ‖∆̃−‖1 = ‖∆̃−Ey0

‖1 + ‖∆̃−Ecy0
‖1 to yield

A2+A3 +A4 ≥ −|A2|+ λ̄1(‖∆−Ēcy0
‖1 − ‖∆−Ēy0

‖1)

+ λ̄2(‖∆̃−Ecy0
‖1 − ‖∆̃−Ey0

‖1)

≥− (α‖∆+‖F + (1− α)
√
m ‖∆̃+‖F )z̃n

+ ‖∆−Ēcy0
‖1(λ̄1 − αz∗n)

+ ‖∆̃−Ecy0
‖1(λ̄2 − (1− α)mz∗n)

− ‖∆−Ēy0
‖1(λ̄1 + αz∗n)− ‖∆̃−Ey0

‖1(λ̄2 + (1− α)mz∗n)

≥− (α+ (1− α)
√
m) ‖∆‖F z̃n − ‖∆−Ēy0

‖1(λ̄1 + αz∗n)

− ‖∆̃−Ey0
‖1(λ̄2 + (1− α)mz∗n) (41)

where we used the fact that for λn as in (22), λ̄1 −αz∗n ≥ 0
and λ̄2−(1−α)mz∗n ≥ 0, and ‖∆+‖F ≤ ‖∆‖F , ‖∆̃+‖F ≤
‖∆‖F . By Cauchy-Schwartz inequality,

‖∆−Ēy0
‖1 ≤

√
m2sn0 ‖∆−Ēy0

‖F ≤ m
√
sn0 ‖∆‖F , (42)

‖∆̃−Ey0
‖1 ≤

√
sn0 ‖∆̃−Ey0

‖F ≤
√
sn0 ‖∆̃‖F =

√
sn0 ‖∆‖F .

(43)

Using (41)-(43) and αm := (α+ (1− α)
√
m), we have

A2+A3 +A4 ≥ −
[
z∗n

(
1 + αm

√
1 + pn/(msn0)

)
+ λ̄1

+ (λ̄2/m)
]
m
√
sn0 ‖∆‖F

≥ −
[
(
√
m+ 1)z̃n + (λ̄1 +

λ̄2

m
)m
√
sn0

]
‖∆‖F

≥ −C2z̃n ‖∆‖F (44)

where we used the fact that for λn as in (22), m
√
sn0(λ̄1 +

(λ̄2/m)) ≤ C1z̃n, and αm ≤
√
m. Using (28), the bound (32)

on A1 and (44) on A2 + A3 + A4, and ‖∆‖F = Mz̃n, we
have with probability > 1− 1/(mpn)τ−2,

G(∆) ≥ ‖∆‖2F
[

1

2(β−1
min +Mz̃n)2

− C2
C0

M

]
. (45)

For n̄ ≥ Nb, if we pick M as specified in (19), we obtain
Mz̃n ≤MrN2

≤ δ1/βmin. Then

1

2(β−1
min +Mz̃n)2

≥ β2
min

2(1 + δ1)2
=

(2C2 + δ2)C0

2M
> C2

C0

M
,

implying G(∆) > 0. This proves the desired result. �
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