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Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of a high-dimensional stationary,
multivariate long-range dependent (LRD) Gaussian time series.
In a time series graph, each component of the vector series
is represented by a distinct node, and associations between
components are represented by edges between the corresponding
nodes. In a recent work on graphical modeling of short-range
dependent (SRD) Gaussian time series, the problem was cast as
one of multi-attribute graph estimation for random vectors where
a vector is associated with each node of the graph. At each node,
the associated random vector consists of a time series component
and its delayed copies. A theoretical analysis based on short-
range dependence has been given in Tugnait (2022 ICASSP). In
this paper we analyze this approach for LRD Gaussian time
series and provide consistency results regarding convergence in
the Frobenius norm of the inverse covariance matrix associated
with the multi-attribute graph.

I. INTRODUCTION

Graphical models are an important and useful tool for
analyzing multivariate data [1]. Given a collection of random
variables, one wishes to assess the relationship between two
variables, conditioned on the remaining variables. Consider
a graph G = (V,€) with a set of p vertices (nodes) V =
{1,2,---,p} = [p], and a corresponding set of (undirected)
edges £ C [p] x [p]. Also consider a stationary, zero-mean,
p—dimensional multivariate Gaussian time series x(t), t =
0,£1,£2,---, with ith component x;(t). Given {x(¢)}, in
the corresponding graph G, each component series {z;(¢)}
is represented by a node (¢ in V'), and associations between
components {z;(t)} and {z;(t)} are represented by edges
between nodes ¢ and j of G. In a conditional independence
graph (CIG), there is no edge between nodes ¢ and j if and
only if (iff) x;(t) and z;(t) are conditionally independent
given the remaining p-2 scalar series x¢(t), £ € [p], £ # i,
#3512

Graphical models were originally developed for random
vectors [3, p. 234]. Such models have been extensively studied,
and found to be useful in a wide variety of applications
[4], [5]. Graphical modeling of real-valued time-dependent
data (stationary time series) originated with [6], followed by
[2]. A key insight in [2] was to transform the series to the
frequency domain and express the graph relationships in the
frequency domain. Nonparametric approaches for graphical
modeling of real time series in high-dimensional settings
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have been formulated in the form of penalized log-likelihood
in frequency-domain in [7]-[10]. Recently in [11] (Tugnait,
2022 ICASSP), a time-domain approach to graph structure
estimation for stationary Gaussian multivariate time series was
presented. All these works [7]-[11] assume that dependent
time series exhibits short-range dependence. A (zero-mean)
univariate stationary time series {y(¢)} is said to have long-
range dependence (long-memory) if its autocorrelation func-
tion 7y (1) = E{y(t+7)y(t)} satisfies >°7 __ |ry(7)| = o,
and short-range dependence (short-memory) otherwise [12].
A (zero-mean) multivariate stationary time series {x(t)} (p-
dimensional) is said to have long-range dependence (long-
memory) if its autocorrelation function R, (7) = E{z(t +
)& (t)} has the structure [R,(7)|jx = [R(7)]jpr% 1
where [A];; denotes (j, k)th component of A, d; € (0,0.5),
j=1,2,---,p, and R(7) € RP*P satisfies lim,_,, R(7) =
R [13]. Otherwise, {z(t)} (p-dimensional) is said to have
short-range dependence.

In [11], graphical modeling of time series was cast as one
of multi-attribute graph estimation for random vectors where
a vector is associated with each node of the graph. At each
node, the associated random vector consists of a time series
component and its delayed copies. A theoretical analysis based
on short-range dependence has been given in [11]. In this paper
we analyze the approach of [11] for LRD Gaussian time series
and provide consistency results regarding convergence in the
Frobenius norm of the inverse covariance matrix associated
with the multi-attribute graph.

Notation: We use S = 0 and S > 0 to denote that the sym-
metric matrix S is positive semi-definite and positive definite,
respectively. For a set V, |V| or card(V') denotes its cardinal-
ity. Z is the set of integers. Given A € RP*P_ we use ¢min(A),
®max(A), |A| and tr(A) to denote the minimum eigenvalue,
maximum eigenvalue, determinant and trace of A, respec-
tively. For B € RP*4, we define ||B| = \/¢max(B' B),
|Blr = Va(BTB) and |B|, = 3., |By|. where B,
is the (7,7)-th element of B (also denoted by [B];;). Given
A € RP*P, AT = diag(A) is a diagonal matrix with the same
diagonal as A, and A~ = A — A7 is A with all its diagonal
elements set to zero.

II. MULTI-ATTRIBUTE FORMULATION FOR TIME SERIES
GRAPHICAL MODELING [11]

Consider stationary Gaussian time series x(t) € R?, ¢t € Z,
with E{z(t)} = 0 and R,(7) = E{z(t + 7)=T ()}, 7 € Z.



The conditional independence relationships among time series
components {z;(t)}’s are encoded in edge set £ of G = (V, £),
V =1[p|, £ CV xV, where edge {i,j} € £ iff {x;(¢), t € Z}
and {z;(t), t € Z} are conditionally independent given the re-
maining p-2 components x_;; 7z = {xx(t) : k € V\{ij}, t €
Z}. Define ¢;_;;(t) = xi(t) — E{wi(t)|lw—ijz} €j—i;(t) =
xj(t)—E{x;(t)|x—i;z} and the power spectral density (PSD)
matrix S, (f), S.(f) = Y00 R.(1)e ?"/7. Then we
have the following equivalence [2]

edge {i,j} €& < [S;'(f)lij =0Vf €[0,1]
& E{ei‘,ij(t—i-T)eﬂ,ij(t)} =0VvVreZ. (1)

For some d > 1, let

[2;(t) 2i(t — 1) - x3(t — d)]T e R (2)
y(t) =[z] (t) z5 (t) --- sz(t)]T c R@+Dp 3)

We associate z; with the ith node of graph G = (V,€),
V =1p, &€ C VxV. We now have m = d + 1
attributes per node. Now {7,j} € & iff vectors z; and z;
are conditionally independent given the remaining p-2 vectors
{z0,0 € V\{ij}}. Let Q, = (E{y(t)y " (t)})~!. Define the
m X m subblock Qy”) of 2, as

N
.
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~
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Il

[Q?(j])]rs = [Qy](i—1)7n+r,(j—1)m+s ,y IS = ]-7 27 e, Mme.
“4)

Let z_;(t) = {zx(t) : k € V\{ij}}, €;—i;(t) = zi(t) —

E{zi(t)|z—i;(1)}, and e;_;;(t) = 2;(t) — E{z;(t)|z—i; (1)}

Then by multi-attribute graphical modeling [16],
{i,j}¢€ & Qi =0. )

Define _;;.1.q = {xx(s) : k € V\{ij},t —d <s <t}
eil—ij(t') = wi(t') — E{zi(t')|8—ij;e.a}, and g _45(t)) =
xj(t') — E{x;(t')|€_ij;,q}. Notice that e,;_;;(t') is an ele-
ment of e;_;;(t) for any t —d < ¢’ < t. As shown in [11],
we have

QZ(IZ]) =0 < E{@w“,i]‘(tl)ewﬂ,ij(tg)} = O,
for t—d<t,ty <t (6)

It follows from (6) that if we let d 1 oo, then checking if
Qg'] ) = 0 to ascertain (5) becomes a surrogate for checking
if the last equivalence in (1) holds true for time series graph
structure estimation without using frequency-domain methods.
This is the approach followed in [11].

III. SPARSE-GROUP GRAPHICAL LASSO SOLUTION

Consider a finite set of data comprised of n zero-mean
observations x(t), ¢t = 0,1,2,---,n — 1. Pick d > 1
and as in (3), construct y(¢t) for t = d,d +1,--- ,n — 1
with sample s1ze i = n — d. Define the sample covariance
3, =1 DD Ty(t)y ( ). If the vector sequence {y(t)}7—;
were id. d the log-likelihood (up to some constants) would be
given by In(|Q,|) — tr(nyQy) [17]. In our case the sequence

is not i.i.d., but as in [11], we will still use this expression as

a pseudo log-likelihood and following [11], [17], consider the
penalized negative pseudo log-likelihood
LSGL(Qy) == 1n(|Qy|) + t1”(2119.11) + P(Qy)7 @)
p
P(Ry) = oM Q|1 + (1 —a)mA ) _ 12777,  ®)
j#k

where P(€2,) is a sparse-group lasso penalty [4], [17], with
group lasso penalty (1 —a)mAY_0 127 |7, A > 0 and
lasso penalty oA [|€2,[|1, A > 0 is a tuning parameter, and
0 < o < 1. The function Lggr(§2,) is strictly convex in
Q, > 0. Unlike [11], we use (1 — a)mA in P(§2y) ( [11]
uses (1 — a)A); we follow [18] by scaling based on number
of grouped variables.

Following [17], an alternating direction method of mul-
tipliers (ADMM) approach (with variable splitting [19]) is
discussed in [11] to minimize Lggyr (£2,) w.r.t. €2,,.

IV. THEORETICAL ANALYSIS

Here we analyze consistency (Theorem 1) by invoking some
results from [17], as in [11], except that unlike [11], here we
consider LRD Gaussian time series.

To quantify the dependence structure of {x(¢)}, we will
follow [15].

(A0) Assume {z(t)} obeys x(t) = > -, A;e(t — i) where
{e(t)} is i.i.d., Gaussian, zero-mean with identity covari-
ance, e(t) € RP, A; € RP*P_ and

for all 4 > 0, some ¢, € (0,00), and vy > %

Since autocorrelation function R.(r) = E{z(t
ma’ ()} = 22 Airr Al [[Aige] = O(i% ), dg
0.5, ¢ k=1,2,---,p, then by [13, Prop. 3.1], [R, T)]qk
O(rdatde=1) ag |7| — oo. Setting v = 1 — min, d, it then
follows from [13, Prop. 3.1] that [R,(7)], = O(7%aTds=1) =
O(r1=2"), 7 > 0. For v > 1, R,(r) is (absolutely)
summable, hence, {x(t)} has short-range dependence (SRD).
For v € (3,1), R,() is not summable, implying LRD [12]-
[15].

In the SRD case, for v > 1, Assumption (A0) is satisfied if
x(t) is generated by an asymptotically stable vector ARMA
(autoregressive moving average) model with distinct “poles,”
satisfying x(t) = — Y 1 ®x(t — i) + >, Pie(t — i),
because in that case ||A;||r < a|Ag|" for some 0 < a <
oo where |Ag| < 1 is the largest magnitude “pole” (root of
c(z) == |[I+> 7, ®27"| = 0) of the model. It can be
shown that there exist 0 < b < oo and 1 < v < oo such that
al\g|® < bi~7 for i > 1, thereby satisfying assumption (AO).

By Assumption (AO0), it follows that with y(t) as in (3),
y(t) = > .2, Bie(t—i), e(t) € R™? is ii.d., Gaussian, zero-

||/\+



mean with identity covariance, m = d+1, B; € R(mp)x(mp),
for some B;’s such that

mp
Cq

> (Bl < i

k=1

max
1<g<mp

(10)

for all 4 > 0, with ¢, and  as in Assumption (AO). Now we
first restate [15, Lemma VI.2, supplementary] as Lemma 1 (y
is called § in [15]) as applied to 3, = D Ly(Hy T (t),
n=mn-d X, = E{yt)y'(t)} (The cases v =1 and
v = % are not in [15, Lemma VI.2, supplementary], but can
be inferred from [15, Lemma VI.1, supplementary].) It is the
basis of our Lemma 2 used in Theorem 1.

Lemma 1: Under Assumption (AO), the elements of the
sample covariance ﬁ)y satisfy the tail bound

2

P(‘[ﬁ: — 3y kl‘>2> <2 exp(—C, min(—— i ,L))
L n,y Jnfy

an

for every z > 0 and every k,l, where C,, € (0,00)

is a constant that depends only on ¢, in (9) and ~,
and (L,},J;}) = (ﬁ,ﬁ) for v > 1, (L}, J,}) =

(7, n/1n*(n)) for vy =1, (L}, 7)) = (n,n*7" 1) for

U5 > () = (/G o) for o = 4
and (L%, J}) = (n 4yt AP for 2>y > 10 e

Constant C,, results from the application of the Hanson-Wright
inequality [20].

In rest of this section we allow p and A to be a functions
of sample size n, denoted as p,, and \,, respectively. Lemma
1 is now exploited to derive Lemma 2.

Lemma 2: Under Assumption (AQO), the sample covariance
ﬁly satisfies the tail bound

1
P(max’[E —Eyo kl’>z*n> SW

8, 12)

for 7 > 2, under the following conditions on z,, > 0 and
sample size n =n —d :
(a) For v > %:

\/ln

and sample size satisfies n > N, , = N, if v € (1,00),

(mpn)7)/(nCy), (13)

where
Ng = 1In(2(mp,)")/Cu (14)
sample size satisfies n > N., = argmin{n
Va/ln*(R) > N,} if vy = 1, and @2 > N,, =
argmin{n : A*7/2 > N, }if y € (3,1).
(b) For v = §:
Zep = \/ln (mpy)7) In(n)/(nCy) , (15)
and sample size satisfies n > NZW = argmin{n
P =372 /In(n) > N,}.
(¢) For v € (7, f).
. \/ln (mp,)7)/(n¥—2C,) if N,<1
" In(2(mp,)7)/(n*71C,,) if Ng>1.

(16)

Proof. For v € (1, oo) and n > N2, using Lemma 1 it
is easy to verify that 22, /L, o < 2.,/ Jp - for specified 2.
Applying the union bound over all (mp,,)? entries of E -0
in Lemma 1, we have

p (nzalx‘[ﬁ)y - Eyo]kl’ > Z*n) < Py

= 2(mp,)* exp (_C“ % n)
1

=L (17)

= 2(mpy)? exp (ln(Q(mpn)T)*l) = (

For v € (2,1] and stated conditions on 7, we again have
22 /L~ < Zun/Jn ~ for the specified 2., and therefore, the
desired result follows in a manner similar to (17). For part
(b), when v = %, for the specified z,, and stated condition
on 7, we have zfn/L,w < Zyn/Jn, for the specified z.,,
and therefore, the desired result follows as before. For v €
( %, %), for the specified z..,, it is easy to verify that we have
220/ Ln~ < 2an/Jdn~ if Ny < 1, else we have 22, /L, , >
Zsn/Jn~ if Ng > 1. For N, < 1, the desired results follows
in a manner similar to (17). If N, > 1, v € (27 4) and z4, =
In(2(mp,)7)/(n*~1C,), then applying the union bound to

left-side of (12), we have

P (nﬁx‘[ﬁ)y - Eyo]kl’ > Z*n) < Py

In(2(mpy,)7)

= 2(mpy)? exp (—C’u W10,

n2’y—1)

1

gy Y

= 2(mpy,)? exp (In(2(mp,)7) ™) =
This completes the proof. W
Lemma 2 above replaces [17, Lemma 2] for dependency in
observations. Further assume
(A1) Let B0 = E{y(t)y"
ance of y(¢). Define &£, = {{%,j} :
where Q2,9 = Ey_o

(t)} > 0 denote the true covari-

QU #0, i #j)

!. Assume that card(E,0) = |E,0| <
Sno-

(A2) The minimum and maximum eigenvalues of 3, satisfy

O < Bmin S ¢min(2y0) S ¢max(2y0) S Bmax < 00.

Here Bunin and Bnax are not functions of n.

Let QyA = argming, .o Lsgr(§y). Theorem 1 estab-
lishes consistency of Qy  and its proof given in the Appendix,
closely follows the proof of [17, Theorem 1].

Theorem 1 (Consistency): Let 7 > 2, m=d+1,n=n—d.
and z,, and N, , be as in Lemma 2. Given real numbers
o1 € (0,1), 0o >0and C; >0, let Cy = \/TW-F].'FCL and

M =(1+01)*(2C2 + 2)/Briin: (19)
Zn =Zsn vV Mpn + m28n0 = 0(1) (20)

515mm
15 0,)2(2C5 + 52)} - @b

Nb—argmin{ﬁ P2, < (



Suppose the regularization parameter \,, and « € [0, 1] satisfy

Clz*n1/1+ Pn > A 2 Zup, -
msno

Then if assumptions (A0)-(A2) hold true, and the sample size
n = n — d satisfies 7 > max{N, ,, N} for v > % and

i > N, for v € (3, 3), with probability > 1 —1/(mp,)™ 2,

(22)

Q, satisfies

||Qu>\ - QyOHF < Mz,. (23)

In terms of convergence rate, | Qyx — Qyollr = Op (3,) o
Notice that for v > 2, we have

12,5 — yollr = Op(\/(mpy + m?s0) n(mpy) /n)
whereas for v € (3, 3), we have
Qyollr = Op(\/(mpy +m2s,0) In(mp,,) /nt1=2)

which can be much slower (since 1 > 4y — 2 > 0). Also, we
can allow m to increase with n so long as Z,, = o(1).

1€2,
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APPENDIX

Proof of Theorem 1: Let 2, = Q,0 + A with both
Q,, 2, >0, and

Q(Q) := Lsar(yo) — Lsarn(Qyo) -

The estimate Qy A, denoted by Q hereafter suppressing de-
pendence upon A and y, minimizes Q(€2), or equivalently,
A=0Q- Q0 minimizes G(A) = Q(Qyo + A). We will
follow the method of proof of [17, Theorem 1], based on [21,
Theorem 1]. Consider the set

On(M)={A : A=AT, |Allp =Mz}

(24)

(25)

where M and z,, are as in (19) and (20), respectively. Since
G(A) < G(0) = 0, if we can show that infA{G(A) : A €
0, (M)} > 0, then the minimizer A must be inside ©,,(M),
and hence ||AHF < MZ%,. It is shown in [21, (9)] that

1H(|Qy0 —+ A|) — ln(|Qy0|) = tr(ZyoA) — A1 (26)
where, with H (€20, A, v) = (Qy0+vA) 1@ (Qyo+vA)~?
and v denoting a scalar,

1
Ay =vec(A)T </ (1—-v)H(Qy0,A,v) dv> vec(A).
0
27

Noting that 27! = X and setting A\; = @\, and Ay = (1 —
a)mM,, we can rewrite G(A) as

G(A) = A + As + Az + Ay, (28)
where
Ay =tr ((ﬁ: - 2y0)A) , (29)
As =A1 (19,0 + A7 [ = 1950l1) (30)
Pn
=% Y (1958 + ADp — 125 15) . G
i.j=1i#]



Following [21, p. 502], we have

A% 1A
A > (32)
2[00l + TAID = 2 (5 + Mz,
where we have used the fact that [|Qyll = [Z,4] =
(bmax( ) (¢m1n( y())) ! < ﬁmlln and HA” S ”AHF
Mz,. We now consider As in (29). We have
mpn Mmpn
Ay = Z (X — X045+ Z[E — X0l (33)
i,j=13i] i=1
L1 Lo

To bound L;, using Lemma 2, with probability > 1 —
1/(mpn)™2,

|L1] < [[A7 ]} H}fﬂ}x\[i — Zyolij| S NA Tl zen . (34)

Similarly, by Cauchy-Schwartz inequality, Lemma 2 and (20),

| Lo| < [ATl1 24n < 2an /My [|AF[|F < AT |52,
(33)
Therefore, with probability > 1 — 1/(mp,)" 2,

|[Ao] < A7 Iy zen + [|AT ]| pZn . (36)

We now derive a different bound on As. Define A € RP»*Pn
with (i, j)-th element A;; = | AG9) |z, where Al is defined
from A similar to (4). By Cauchy-Schwartz inequality,

mp’ﬂ
a7 = > 1Ayl <mIAT]
i j=Lsi]
Pn
+ (1AM —jath) . 6D
k=1

=:B

Then using 3, [A®H) |y < mY, A < my/Bn | A5,
we have

Pn
Lol + 2en B < 20 (3 IAED ) < [|AF | o/ 2,
k=1

Therefore, an alternative bound is
|As| < ml|A” [y 2 + Vi [|AT || pZ, -

We now bound As in (30). Let c‘fyo denote the true en-
larged edge-set corresponding to &,o when one interprets
multi-attribute model as a single-attribute model. Let gﬁo
denote its complement. For an index set B and a matrix
C ¢ RP»*Pn  we write Cpg to denote a matrix in RP»*Pn
such that [CB]”‘ = Cjj if (Z,j) € B, and [CB]” =0 if

(38)

(i,j) ¢ B. Then, by definition, A~ = A .t Agc ,
A7 =l1Ag It + Az |1 We have
Az = Mi([19250 + A7 [l = [12,0]11)
=M(l1920 + Az b+ 1Az I = 11€2401)
M(lAg I = ”Ag oll) (39)

where we have used the triangle inequality [|€2,, + A2 » Il >

192,001 — 1Az ||1 Next we bound Ay in (31). Considering
the true edge- set Eyo for the multi-attribute graph, let £y de-

note its complement. If the edge {i,j} € £, then Q(” )
therefore, HQ @) 4 AW 5 — ||Q(l7 lr = ||A(”)HF FOT
{i,j} € &0, by the triangle inequality, ||Qgg) + A6

1925317 > —| ACD|| . Thus
Arz Rl Ag I~ 1Ag,, 1) (40)

Split Ay as Ay = ada+(1—a) Ag, apply bound (36) to aAs
and (38) to (1 — a)Ag, use ||A™[]; = ||A7 o+ A

and A~ [, = ||Ag,

£, ll1
i+ ||A£c |1 to yield

Ag+As + Ay > —|As| + M (]|A 550”1 1Az 1)
+X2(lAg b — 1A, 1)
> — (a|AT[lF + (1 — a)vVm |AT]|F)z,
+ Az (O = az.n)
1Az, (e — (1 - a)mz.)

- IIAgyOHl(Xl + azm) — IIA;,O 1Az + (1 — @)mz.n)
> —(a+ (1 —a)ym)||A|rz, — I\Agyolh(k + azin)
_ ||Agy0|\1(x2 + (1 — a)mz.,) (41)

wher_e we used the fact that for A, as in (22), A — OZap 2 0
and Ay — (1—a)mz., > 0, and |[AT||r < [[A]lp, |[AT|F <
||A|lr. By Cauchy-Schwartz inequality,

HAg()”l Vm2sno [|Ag |l < my/sno [Allr, (42)
1AL, Il < Vono |1A, Il < Vono |AllF = Vsno |A -

(43)
(1— a)y/m), we have
- [zn (1 +am /14 pn/(msno)) +A
+ Ohafm) /s | AlLp
_ [(\/E+ 1)z, + (M + %)m
—Cazn [|AllF (44)

where we used the fact that for A, as in (22), m,/sno(jxl +
(Aa/m)) < C1Z,, and a,, < 4/m. Using (28), the bound (32)
on A; and (44) on Ay + A3 + Ay, and ||A||p = M2, we

Using (41)-(43) and oy, := (o +
As+As + Ay >

Su0] 1AL

have with probability > 1 — 1/(mp, )™ 2,
1 Co
GA)> A% | ——— — Co— 45
@2 180 [ -G @

For n > N, if we pick M as specified in (19), we obtain
Mgn < MTNQ § 51/6min- Then

1 - 2w (202 +65)C SO 00
261 + Mz,)2 T 21+61)% oM 2

implying G(A) > 0. This proves the desired result. W
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