
  

 
 

Abstract— This paper presents an Error-State Kalman Filter 

(ESKF) for state estimation in a 2-DOF robotic prosthetic ankle. 

The filter estimates the ankle angle in inversion-eversion (IE), 

external-internal (EI), and dorsiflexion-plantarflexion (DP), using 

measurements from two low-cost magnetic, angular rate, and 

gravity sensor modules (MARGs), also known as 9-axis Inertial 

Measurement Units (IMUs). To this end, we transformed raw 

MARG measurements into body frames and modeled the states 

and constraints of the 2-DOF robotic prosthesis in an Error State 

Kalman Filter (ESKF). Experimental tests showed the proposed 

ESKF provided better results than the Madgwick filter, a 

commonly used attitude estimator. The proposed filter is 

developed for ankle prostheses requiring direct angle 

measurement and can be expanded to an online evaluation of ankle 

angle in humans.  

I. INTRODUCTION 

Robotic lower-limb robotic legs aid amputees in their daily 
activities, improving their quality of life. Amputees have a 
slower gait and exert more energy during gait than healthy 
individuals [1], [2]. This is mainly due to the lack of assistive 
energy in passive prosthetic legs, unlike human neuromuscular 
activities [3]. Furthermore, as amputees seek to compensate for 
the lack of net positive energy in a passive prosthesis, secondary 
injuries occur in other joints [4]. Thus, robotic lower limb 
prostheses are required to assist amputees in daily activities. 

  During walking, the ankle generates torques in inversion-
eversion (IE), external-internal (EI), and dorsiflexion-
plantarflexion (DP) directions [5]. Therefore, the control of 
lower-limb prostheses is a critical topic that has attracted 
interest from many researchers. Position and effort controllers 
are applied to the human ankle for rotations in one or two planes 
of motion, IE and DP. Robotic prosthesis utilizes DC motors to 
actuate the human ankle in one or two degrees of freedom.  

A widely used prosthesis assembly is direct screw and 
pulley assemblies between the DC motors and the prosthesis 
foot [3], [6]–[10]. This strategy allows for control of the position 
of the robotic ankle that rotates while constrained by a revolute 
joint, tying the shank and foot frames together. DC motors are 
also assembled remotely from the robotic ankle; motors are 
connected to the ankle through Bowden cables [11], [12]. 
Remote assemblies of motors lower the weight of robotic 
prosthetic legs. When either assembly strategy is used, the ankle 
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angle is a feedback signal to the control schemes of the robotic 
ankle prosthesis. Ankle angle is measured using direct and 
indirect approaches. Direct approaches are made through joint 
encoders placed on the prosthesis carbon fiber foot or at rotating 
revolute joints, measuring the rotation of the ankle in DP [3], 
[10], [12]. Indirect approaches include placing an encoder on 
motors connected remotely to the ankle using Bowden cables 
[11], [12]. The displacement of actuators isn't a reliable and 
accurate measure of the ankle angle due to Bowden cables' 
flexibility,  deflection, and slippage around winch assemblies 
with motors [13]. Latency issues caused by Bowden cable 
assemblies also limit the position bandwidth of the ankle 
prosthesis controller. Slippage in gears, pulleys, and ankle joints 
causes an error in measuring ankle angle.  

Attitude estimator algorithms are progressively utilized as 
motion capture algorithms in robotic and human movement 
studies. Such algorithms commonly use Inertial Measurement 
Units (IMUs) due to their low cost and portability. Madgwick 
et al. fused an IMU and magnetic angular rate and gravity 
(MARG) sensors to estimate orientation using optimized 
gradient descent. Their estimation results match the performance 
of a Kalman-based algorithm [14]. Srang et al. fused joint state 
and Stribeck friction parameter as a discontinuous friction 
model. For attitude estimation, they used a continuous-discrete 
unscented Kalman filter for which prediction and correction can 
be made via unscented transform [15]. Wang et al. estimated the 
yaw rate, sideslip angle, and vehicle speed of a three-degree-of-
freedom (TDOF) vehicle. Based on developed vehicle dynamics 
and a continuous-time-state-space model, a robust cubature 
Kalman filter is used to estimate the vehicle states [16]. Vitali et 
al. implemented a robust error-state Kalman filter for estimating 
IMU orientation. Their filter defined the true state as the sum of 
a nominal and error state. They validated their work by placing 
IMU on a coordinate measurement machine (CMM) [17]. Hasan 
used a low-cost IMU and an eXogenous Kalman Filter to 
estimate the position and attitude of a four Omni-wheeled ball 
balancing robot (Ballbot). Hasan combined a Nonlinear 
Observer (NLO) and a Linearized Kalman Filter (LKF) to 
achieve non-linear estimation [18]. 

The team previously designed a 2-DOF robotic prosthesis, 
where the ankle angle is estimated using an experimentally 
computed Jacobian relationship between motor angels to ankle 
angle [11]. The ankle is connected to the drums of the motor 
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through a winch assembly of Bowden cables and steel wires. 
During clinical trials, steel wires momentarily slipped from the 
winch assembly, causing errors in the trajectory followed by the 
robotic ankle. The control bandwidth was also limited due to 
lag caused by the deflection of Bowden cables. In this work, an 
actual direct reading of the ankle angle in two degrees of 
freedom is derived independent of motor displacement; to 
improve the team's previous work. This study uses a strain 
gauge bridge to detect the heel strike and stance phase and two 
magnetic, angular rate, and gravity sensor modules (MARGs) 
as inputs to an Error-State Kalman filter (ESKF) that estimates 
the shank and foot orientation. The ankle rotation in IE, EI, and 
DP is computed through the relationship between shank and 
foot quaternion orientations. 

This paper first introduces related studies and research 
challenges in section I. Then, we briefly discuss the 
methodology used previously to measure the ankle angle, 
present in the new 2-MARG setup, strain gauge bridge 
configuration, and finally, the Error-State Kalman Filter 
(ESKF) methodologies. Lastly, the results, discussion, and 
conclusion are presented in Sections III, IV, and V. Section VI 
shows the availability of data and how the proposed work can 
be replicated. 

II. METHODS 

A. Indirect ankle angle measurement through Jacobian 

transformation 

The Jacobian relationship between motor angle to ankle 
angle is computed using a ground truth measurement of the 
ankle angle fitted against the corresponding motor angle. The 
ground truth measurement is retrieved using ten optical marker 
cameras (OMC) (Miqus M5, Qualisys, Sweden) that track the 
prosthetic shank (pylon) and foot (Fig. 1.a) quaternion 
orientations (𝑞𝑆 and𝑞𝐹 respectively). The 2-DOF ankle 
oscillates through a 2 Hz sine wave in DP and IE rotations while 
tracked by the OMC for a duration of two minutes. 

The quaternion product (⨂) between the shank quaternion 
and the inverse foot quaternion equals ankle angle, 𝑞𝜃, in 
quaternion form (Equation 1). Consequently, ankle angle, 𝜃, is 
computed as shown in Equation 2 ([19], chapter 5). 𝜃 represents 
ankle angle rotation in IE (𝜃𝐼𝐸), EI (𝜃𝐸𝐼), DP (𝜃𝐷𝑃). 
 

𝑞𝜃 = 𝑞𝐹
−1 ⨂  𝑞𝑆 (1) 

𝜃 = {

𝜃𝐼𝐸
𝜃𝐸𝐼
𝜃𝐷𝑃

} =

{
  
 

  
 𝑎𝑡𝑎𝑛2(

2(𝑞𝜃0. 𝑞𝜃1 + 𝑞𝜃2. 𝑞𝜃3)

𝑞𝜃0
2 − 𝑞𝜃1

2 − 𝑞𝜃2
2 − 𝑞𝜃3

2) 

asin (2(𝑞𝜃0 . 𝑞𝜃2 − 𝑞𝜃1 . 𝑞𝜃3))

𝑎𝑡𝑎𝑛2(
2(𝑞𝜃0. 𝑞𝜃3 + 𝑞𝜃1. 𝑞𝜃2)

𝑞𝜃0
2 + 𝑞𝜃1

2 − 𝑞𝜃2
2 − 𝑞𝜃3

2)}
  
 

  
 

  

Where 𝑞𝜃 ,  𝑞𝐹 , 𝑞𝑆 ∈ 𝑆𝑂(3) and  𝜃 ∈ ℝ3. 

(2) 

The computed ankle angle (𝜃𝐼𝐸 𝑎𝑛𝑑 𝜃𝐷𝑃) is fitted against 

the encoder measurement of the motor's angles (𝜙1 𝑎𝑛𝑑 𝜙2) 

using a 1st order regression fit as shown in Fig. 2. The linear 

regression coefficient vectors are the Jacobian relationship 

between the ankle and motor angels.   

 

 
( a ) 

 
( b ) 

 
( c ) 

 

Fig.  1 (a) OMC capture of shank and foot rigid bodies, (b) Accelerometer 

calibration step while tracked by the OMC, (c) Gyroscope calibration step 

while tracked by the OMC. 

 

 
Fig.  2 Regression fit of ankle angle (𝜃𝐼𝐸  𝑎𝑛𝑑 𝜃𝐷𝑃) against motor angles 

(𝜙1 𝑎𝑛𝑑 𝜙2). 

B. 2-MARG setup and calibration 

 
 Two MARGs (Precision NXP 9-DOF, Adafruit, USA) are 

rigidly connected to the prosthesis's pylon and spring foot to 
represent the shank and foot frames, respectively, as shown in 
Fig. 3, MARGs are sampled at 400 Hz. 

  
( a ) ( b ) 

 

MARG

{MARG2}
x

z
y

{Ref}

{MARG1}

Fig.  3 Assembly of 2 MARGs on the 2-DOF prosthesis. (a) placement of 

MARG’s relative prothesis pylon and carbon fiber foot (b) MARG’s tied to 

universal joints through vectors 𝑟𝑠𝑘𝐴  and 𝑟𝐹𝑡𝐴  respectively. 
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The angular velocity (𝜔𝑡
𝑆), linear acceleration (𝑎𝑡

𝑆), and 

magnetometer readings (𝑚𝑡
𝑆) of the shank are calculated as 

follows: 

𝜔𝑡
𝑆 = 𝑇𝑆𝑤𝜔𝑡

𝑀𝐴𝑅𝐺1 − 𝑏𝜔 𝑀𝐴𝑅𝐺1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3) 

𝑎𝑡
𝑆 = 𝑇𝑆𝑎𝑎𝑡

𝑀𝐴𝑅𝐺1 − 𝑏𝑎 𝑀𝐴𝑅𝐺1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4) 

𝑚𝑡
𝑆 = 𝑇𝑆𝑚𝑚𝑡

𝑀𝐴𝑅𝐺1   (5) 

 
        Similarly, the angular velocity (𝜔𝑡

𝐹), linear acceleration 
(𝑎𝑡
𝐹) and magnetometer readings (𝑚𝑡

𝐹) of the foot are calculated: 

𝜔𝑡
𝐹 = 𝑇𝐹𝑤𝜔𝑡

𝑀𝐴𝑅𝐺2 − 𝑏𝜔 𝑀𝐴𝑅𝐺2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (6) 

𝑎𝑡
𝐹 = 𝑇𝐹𝑎𝑎𝑡

𝑀𝐴𝑅𝐺2 − 𝑏𝑎 𝑀𝐴𝑅𝐺2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (7) 

𝑚𝑡
𝐹 = 𝑇𝐹𝑚𝑚𝑡

𝑀𝐴𝑅𝐺2   (8) 

 

 
The 2-MARGs are tied together using a universal joint, as 

shown in Fig. 3.b. The geometrical parameters 
(𝑇𝑆𝑤 , 𝑇𝑆𝑎 , 𝑇𝐹𝑤 , 𝑇𝐹𝑎 , 𝑟𝑠𝑘𝐴 ,  𝑟𝐹𝑡𝐴)  are estimated using an extrinsic 
calibration scheme with the OMC (Fig. 1 b, c). The prosthesis's 
MARGs are excited using an operator in two steps, 1) the 
operator vigorously moves the prosthesis linearly in the air in 
all axes motion (x, y, z) to excite the MARGs' accelerometers, 
then 2) the operator rotates the prosthesis in all axes motion to 
excite the MARGs' gyroscopes. Each of the MARGs' axes is 
excited for 10 seconds in each calibration step. The OMC 
records the shank's and foot's orientation, translation, and body 
rates in all stages. Measurements from MARG's ( 

𝜔𝑡
𝑀𝐴𝑅𝐺1,2 , 𝑎𝑡

𝑀𝐴𝑅𝐺1,2 
) are fitted against OMC measurements 

based on continuous-time batch estimation to provide the 

transformation matrices between MARG frames and OMC 
shank and foot frames [20]. The transformation matrices 
account for 1) the coordinate frame rotation between the 
MARGs and the prosthesis shank and foot, respectively, 2)  
scaling errors, and 3) axis misalignment errors of the MARG 
[21]. The intrinsic noise parameters of the  MARGs 
(accelerometer, gyroscope) are estimated using Allan Variance 
analysis [22].  𝑇𝑆𝑚 , 𝑇𝐹𝑚 ,  is calculated using the orthogonal 
averages of 𝑇𝑆𝑎, 𝑇𝑆𝑤 and 𝑇𝐹𝑎, 𝑇𝐹𝑤  respectively (under 
MATLAB's rotm2quat and quat2rotm function).  
 

C. Strain gauge setup and calibration 

 
Four strain gauge bridges (1033-

CEA-05-250UWA-350-ND, Digi-
Key, USA) were installed on the 
prosthesis' spring foot to estimate the 
ground reaction forces and moments. 
The two spring leaves deflect under the 
ground reaction forces and torques. The 
most significant are the vertical force, 
the DP moment, and the IE moment. 

Due to vertical forces and bending 
moments, the prosthesis foot was 
modeled as two cantilever beams 
deflecting along the sagittal plane. 
Note that the foot is also subjected to 
frontal and lateral forces and internal-
external moments, but at a much lower 
significance. Thus, the main forces and moments can be 
estimated by measuring the deflection of the two cantilevers. In 
addition, by measuring the surface deflection of the foot in two 
points, the force and moment in each beam can be estimated. 

A calibration procedure was performed to evaluate the DP 
and IE moments, and the vertical force gave the voltages in the 
four strain gauge bridges. The prosthesis held the ankle angle to 
a constant position while the foot was pressed against a force 
plate sensor (9260AA3, Kistler, Switzerland) to excite the strain 
gauges to different sensing ranges.  

This experiment captured synchronized data from the force 
plate and the strain gauges at a sampling rate of 400 Hz for 
approximately one minute. Then, a linear regression model 
with 1st order and intercept components calculated the vertical 
force (𝐹𝑦) and the DP and IE moments from the strain gauge 

voltages. 

The stance phase is used in the ESKF ankle angle estimation. 
Stance (𝑆) is identified as a Boolean variable depending on a 
minimum threshold (𝑘) force. 𝐾 is empirically tuned through 
trials (𝑘 = 2).  

 

 

 

D. Error-State Kalman Filter  

The mathematical modeling and filter implementation 

followed the procedure proposed by Sola [23]. In their method, 

Parameter Definition 

𝜔𝑡
𝑀𝐴𝑅𝐺1,2 ∈  ℝ3 MARGs’ raw angular velocities 

measurements  

 𝑏𝜔 𝑀𝐴𝑅𝐺1,2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∈  ℝ3 Average MARG angular velocity 

bias 

𝑎𝑡
𝑀𝐴𝑅𝐺1,2  ∈  ℝ3 MARGs’ raw linear acceleration 

measurements  

 𝑏𝑎 𝑀𝐴𝑅𝐺1,2  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∈  ℝ3 Average MARG linear acceleration 

bias 

𝑚𝑡

𝑀𝐴𝑅𝐺1,2 ∈  ℝ3 MARGs’ raw magnetometer 

measurements 

𝑇𝑆𝑤 , 𝑇𝑆𝑎 , 𝑇𝑆𝑚  ∈  ℝ
3𝑥3  Transformation matrices mapping 

𝑀𝐴𝑅𝐺1 measurements to OMC 

shank frame.   

𝑇𝐹𝑤 , 𝑇𝐹𝑎 , 𝑇𝐹𝑚 ∈  ℝ
3𝑥3 Transformation matrices mapping 

𝑀𝐴𝑅𝐺2 measurements to OMC foot 

frame.   

𝑟𝑠𝑘𝐴  ∈  ℝ
3 Position of 𝑀𝐴𝑅𝐺1 in respect to 

OMC shank frame 

 𝑟𝐹𝑡𝐴  ∈  ℝ
3 Position of 𝑀𝐴𝑅𝐺2 in respect to 

OMC foot frame 

 

Table 1 ESKF Inputs parameters table 

𝑆 =  {    
1, 𝐹𝑦 > 𝑘 

  0, 𝐹𝑦 < 𝑘  
 

(9) 

 

 

Fig.  4 Strain gauge 

assembly on prosthesis 

carbon foot. 
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the pose of a rigid body was estimated by fusing data from an 

IMU and an additional generic sensor. In this work, we 

estimated the pose of two bodies, the foot, and shank, using two 

MARGs, fusing their magnetometer measurements, and 

including biomechanical constraints of the foot prosthesis as 

measurements for the correction step the filter. 

 

The system's nominal states (𝑥̂) were modeled as the 

orientation of the foot and shank; the position, velocity, 

accelerometer bias, gyroscopic bias, and magnetometer's hard 

iron distortion of the two MARGs. Unknown constant 

parameters were also modeled as states to be estimated by the 

filter in real-time. These parameters were the magnetic north 

vector (constraining the x-axis component to zero), and the 

external-internal (EI) angle of the prosthesis (Equation 2). The 

EI angle (𝜃̅𝐸𝐼) should be equal to zero because the ankle was 

constructed with a universal joint; However, small errors in the 

assembly and body definition of the foot and shank cause this 

angle to be different than zero. The nominal states totaled 42 

states. 

 

 

 

 

 

The state equations for the MARG states were modeled in a 

commonly used indirect approach. The gyroscope and 

acceleration measurements are used in the state update equation 

rather than in the measurement equation. This simplifies the 

modeling of the system, as it eliminates the higher-order 

rotational differential equations. 

 

The error states (𝛿𝑥̂) represented the error for all nominal 

states as an additive error, except for the orientation variables, 

in which a rotational error in the inertial frame was included. 

The nominal orientation states (𝑞𝑘𝑓 ,  𝑞𝑘𝑠) were represented as 

unit quaternions with four components, while their respective 

errors were represented as orientation disturbances with three 

components (𝛿𝑞𝑘𝑓 , 𝛿𝑞𝑘𝑠 ). 

 

Ankle angle (𝜃) is estimated by the filter using the states 

𝑞𝐹 ,  𝑞𝑆 as shown in Equations 1 and 2. 

 

The biomechanical constraint equations for the ankle were 

modeled as 

𝑝𝑓 + 𝑅𝐹𝑡𝑟𝐹𝑡𝐴 − (𝑝𝑠 + 𝑅𝑆𝑘𝑟𝑆𝑘𝐴) = 0 (12) 

𝜃̅𝐸𝐼 − asin (2(𝑞𝜃0 . 𝑞𝜃2 − 𝑞𝜃1 . 𝑞𝜃3)) = 0 (13) 

𝑣1 = 0, if  𝑆 = 1 (14) 

Where, 𝑅𝐹𝑡 and 𝑅𝑆𝑘 are respectively the orientation of the foot 

and the shank in rotation matrices. These equations constrain 

the foot and the shank to be connected by a pivot point, the 

ankle, and to move only in two degrees of freedom (𝜃𝐼𝐸 and 

𝜃𝐷𝑃) in respect to each other. In Equation (13), 𝜃̅𝐸𝐼, is a constant 

state of the filter, while, 𝑞𝜃 is calculated as Equation (1). 

Equation (14) reduces the translational drift of the filter 

integration by setting the velocity of the foot MARG to zero 

during the midstance (𝑆). These equations were incorporated 

into the filter as measurements with additive noise, which are 

omitted. The noise covariance of the noise was adjusted 

empirically, considering the mechanical backlash of the 

universal joint, which would add errors to Equations (12) and 

(13). While the noise in Equation (14) is mainly originated from 

the compliance of the foot and ground. 

  The magnetometers (𝑚𝑡
𝐹 and 𝑚𝑡

𝑆) were incorporated into the 

measurement equations to reduce the drift of the heading 

angular error.  

𝑚𝑡
𝐹 = 𝑅𝐹𝑡

𝑇 𝑚̅ − 𝑚𝑑𝑓, if  |𝑚𝑡
𝐹𝑇𝑚𝑡

𝐹 − 𝑚̂| < 𝜖𝑚 (15) 

𝑚𝑡
𝑆 = 𝑅𝑆𝐾

𝑇 𝑚̅ − 𝑚𝑑𝑠, if  |𝑚𝑡
𝑆𝑇𝑚𝑡

𝑠 − 𝑚̂| < 𝜖𝑚 (16) 

  

Where, 𝑚̂ is the absolute value of the nominal magnetic field 

in the area [24], 𝜖𝑚 is a tolerance for the magnetometer error. 

These equations are used in the correction step when the 

measured magnetic field does not deviate substantially from the 

Earth's magnetic field. If the measurement deviates, there is 

probably a strong nearby magnetic interference. 

 

Both the update and correction steps of the filter are 

executed at a rate of 400 Hz. The integration of the nominal and 

error state equations was performed by a Runge-Kutta (RK4) 

method and the Euler method [25]. Note that the Euler method 

is more computationally efficient than the RK4 at the expense 

of accuracy; However, error dynamics are slow and can be 

integrated with the Euler method with similar accuracy.  

III. RESULTS 

The ESKF is implemented to the prothesis and tested for 
accuracy in estimating the ankle angle. An un-impaired operator 

𝑥̂ = [ 𝑝𝑓 , 𝑣𝑓 , 𝑞𝑘𝑓 , 𝑎𝑏𝑓 , 𝑤𝑏𝑓 , 𝑚𝑑𝐹 , 

𝑝𝑠, 𝑣𝑠, 𝑞𝑘𝑠, 𝑎𝑏𝑠, 𝑤𝑏𝑠 , 𝑚𝑑𝑠 , 𝑏𝑦 , 𝑚̅ ] 
𝑇 

(10) 

 

𝛿𝑥̂ = [ 𝛿𝑝𝑓 , 𝛿𝑣𝑓 , 𝛿𝑞𝑘𝑓 , 𝛿𝑎𝑏𝑓 , 𝛿𝑤𝑏𝑓 , 𝛿𝑚𝑑𝐹 , 

𝛿𝑝𝑠, 𝛿𝑣𝑠, 𝛿𝑞𝑘𝑠, 𝛿𝑎𝑏𝑠 , 𝛿𝑤𝑏𝑠 , 𝛿𝑚𝑑𝑠, 𝛿𝑏𝑦 , 𝛿𝑚̅ ] 
𝑇 

(11) 

 

Parameter Definition 

𝑝𝑓 ,  𝑝𝑠 ∈ ℝ
3 Foot (𝑓) and shank (s) MARGs’ 

position 

𝑣𝑓 ,  𝑣𝑠 ∈ ℝ
3 Foot (𝑓) and shank (s) MARGs’ 

velocity 

𝑞𝐹 ,  𝑞𝑆 ∈ 𝑆𝑂(3) Foot (𝑓) and shank (s) MARGs’ 

quaternion orientation 

𝑎𝑏𝑓 ,  𝑎𝑏𝑠 ∈  ℝ
3 Foot (𝑓) and shank (s) MARGs’ 

acceleration bias 

𝑤𝑏𝑓 ,  𝑤𝑏𝑠 ∈  ℝ
3 Foot (𝑓) and shank (s) MARGs’ 

gyroscope bias 

𝑚𝑑𝑓 ,  𝑚𝑑𝑠 ∈ ℝ
3 Foot (𝑓) and shank (s) MARGs’ 

magnetometers’ hard iron distortion 

𝑏𝑦  ∈  ℝ
  Block yaw (heading of the block)   

𝑚̅  ∈  ℝ3 Magnetic north vector 

 

Table 2 ESKF nominal states 
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walks the prosthesis through several gait cycles (lasting a total 
of 60 seconds), synchronously the prosthesis shank and foot are 
tracked with the OMC to get a reference measurement of the 
prosthesis ankle angle (Equations 1&2) as shown in Fig 5. The 
ESKF estimates the ankle angle in real-time. Fig. 6.a, b. shows 

the estimate of the ESKF (solid line) 
compared to the reference measurement 
(dashed line). The accuracy of the ESKF 
is compared to a general attitude 
estimator's accuracy, the Madgwick filter. 
The Madgwick filter (Fig. 6.c) was used 
for evaluation because it has comparable 
accuracy to generally used attitude 
estimators such as the Extended Kalman 
Filter (EKF) [14]. Madgwick filters 
require a single tuning parameter, 𝛽, and 
the optimal value for 𝛽 is empirically 
tuned through a grid search. 

 

The ESKF error is compared to the error of other estimates 

(Table 3), showing an improvement of the proposed 

methodology over our previous work (Fig. 6.d) and a 

comparable attitude estimator.  

 

IV. DISCUSSION 

The proposed filter has implications for studying human 

kinematics in any environment outside a laboratory, 

specifically in outdoor environments. Due to the portability and 

size of MARGs, the ESKF can be easily expanded to study the 

kinematics of the ankle during outdoor walks of human 

subjects. We conducted a preliminary study to highlight the 

potential impacts of acquiring a healthy human subject (23-

year-old male, 80 kgs, 165 cm). Two MARGs are tapped into 

the human subject like the prosthesis configuration (Fig. 7.a).  

 

 
( a ) 

 
( b ) 

 

The MARGs are connected to a microcontroller (MCU, 

Teensy 4.1, PJRC, USA) with a built-in SD card that stores data 

packets of raw MARG readings (sampled at 400 Hz). MARGs 

are tapped to the subject using athletic and skin-safe tape; 

furthermore, wires are twisted and bundled together using wire 

sleeves; thus, limiting interference with the subject's natural 

gait. Data is read and stored on the MCU placed inside a fanny 

pack; the MCU is powered using a small 3.7V Lipo battery. The 

subject first repeats the MARGs calibration using the OMC 

(Fig. 7.b), then the subject goes out for a 30-minute outdoor 

trial. During the 30 minutes, the subject went up and downstairs, 

walked outdoors, and stood in position to socialize.   

 

At the end of the experiment, data is extracted from the SD 

card and inputted to the ESKF (offline). There are two 

differences between the prosthesis and human ESKF: 1) The 

constraint equation limiting motion in EI for the prosthesis 

ankle. The human ankle is modeled as a ball joint, allowing 

MARG

MCU

 Fig.  5 Healthy operator 
walking 2-DOF 

prosthetic ankle 

 
Fig.  6 Estimation of ankle angle by (a) ESKF for whole prosthesis gait 
trail. (b, c, d) Ankle angle estimate during a 2 second time range. 

Straight lines represent (b) ESKF, (c) Madgwick filter (β=0.1) (d) 

encoder-jacobian estimates, dashed lines represent ground truth. 

 

Table 3 RMSE of different ankle angle estimators 

  
Ankle angle  

Estimator 

ESKF Madgwick Encoder 

IE [RMSE °]   0.7724 1.3076 6.9526 

EI [RMSE °]   0.8826 1.0018 - 

DP [RMSE °]   1.3520 1.7640 6.3303 

 

Fig.  7 2-MARG setups for human subject gait analysis during (a) 

outdoor walk (b) OMC MARGs calibration. 
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rotation in IE, EI, and DP, thus, the 2-DOF universal joint 

constraint equation (Equation 13) is removed. 2) Stance phase 

(𝑆) is identified using changes in the linear acceleration of the 

foot MARG (𝑎𝑡
𝐹) instead of the prosthesis's strain gauge bridge 

(Equation 17); this is relevant due to regular spikes in the linear 

acceleration of the foot MARG during stance phase [26]. 

 

Fig 8. Shows the estimate of ankle angle during the subject's 

30-minute trial. 

V. CONCLUSION 

This paper proposes a new approach for online evaluation of 

the ankle angle through an ESKF. The implemented ESKF 

required two low-cost MARGs placed on the shank and spring 

foot of a 2-DOF robotic prosthesis. MARG calibrations are 

completed to correct scaling, orientation, and transformation 

errors of the MARGs. A strain gauge assembly helps detect the 

stance phase of gait cycles. Corrected MARG readings and a 

Boolean stance variable are inputs to an ESKF. The EKSF 

estimated 42 nominal states using Runge-Kutta integration and 

40 error states using the Euler integration method. The 

biomechanics of the prosthesis ankle was considered to correct 

estimation accuracy. The proposed ESKF can be used for state 

estimation in prostheses for direct angle measurement at a high 

sampling rate. The proposed work allowed the team to have a 

direct ankle angle of a previously designed prosthetic foot, 

solving issues related to Bowden cable lag and limited 

controller bandwidth.   

 

Furthermore, the proposed methodology can be extended for 

ankle angle measurement on human subjects to allow testing of 

gait cycle kinematics outside of proctored lab space (OMC 

walkways).  

VI. AVAILABILITY 

The MATLAB and C++ deployment of the ESKF section 

and experimental raw data described in the Methods section is 

available through (https://github.com/hirolab/os-eskf). 
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