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Abstract— This paper presents an Error-State Kalman Filter
(ESKF) for state estimation in a 2-DOF robotic prosthetic ankle.
The filter estimates the ankle angle in inversion-eversion (IE),
external-internal (EI), and dorsiflexion-plantarflexion (DP), using
measurements from two low-cost magnetic, angular rate, and
gravity sensor modules (MARGS), also known as 9-axis Inertial
Measurement Units (IMUs). To this end, we transformed raw
MARG measurements into body frames and modeled the states
and constraints of the 2-DOF robotic prosthesis in an Error State
Kalman Filter (ESKF). Experimental tests showed the proposed
ESKF provided better results than the Madgwick filter, a
commonly used attitude estimator. The proposed filter is
developed for ankle prostheses requiring direct angle
measurement and can be expanded to an online evaluation of ankle
angle in humans.

[. INTRODUCTION

Robotic lower-limb robotic legs aid amputees in their daily
activities, improving their quality of life. Amputees have a
slower gait and exert more energy during gait than healthy
individuals [1], [2]. This is mainly due to the lack of assistive
energy in passive prosthetic legs, unlike human neuromuscular
activities [3]. Furthermore, as amputees seek to compensate for
the lack of net positive energy in a passive prosthesis, secondary
injuries occur in other joints [4]. Thus, robotic lower limb
prostheses are required to assist amputees in daily activities.

During walking, the ankle generates torques in inversion-
eversion (IE), external-internal (EI), and dorsiflexion-
plantarflexion (DP) directions [5]. Therefore, the control of
lower-limb prostheses is a critical topic that has attracted
interest from many researchers. Position and effort controllers
are applied to the human ankle for rotations in one or two planes
of motion, IE and DP. Robotic prosthesis utilizes DC motors to
actuate the human ankle in one or two degrees of freedom.

A widely used prosthesis assembly is direct screw and
pulley assemblies between the DC motors and the prosthesis
foot [3], [6]-[10]. This strategy allows for control of the position
of the robotic ankle that rotates while constrained by a revolute
joint, tying the shank and foot frames together. DC motors are
also assembled remotely from the robotic ankle; motors are
connected to the ankle through Bowden cables [11], [12].
Remote assemblies of motors lower the weight of robotic
prosthetic legs. When either assembly strategy is used, the ankle
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angle is a feedback signal to the control schemes of the robotic
ankle prosthesis. Ankle angle is measured using direct and
indirect approaches. Direct approaches are made through joint
encoders placed on the prosthesis carbon fiber foot or at rotating
revolute joints, measuring the rotation of the ankle in DP [3],
[10], [12]. Indirect approaches include placing an encoder on
motors connected remotely to the ankle using Bowden cables
[11], [12]. The displacement of actuators isn't a reliable and
accurate measure of the ankle angle due to Bowden cables'
flexibility, deflection, and slippage around winch assemblies
with motors [13]. Latency issues caused by Bowden cable
assemblies also limit the position bandwidth of the ankle
prosthesis controller. Slippage in gears, pulleys, and ankle joints
causes an error in measuring ankle angle.

Attitude estimator algorithms are progressively utilized as
motion capture algorithms in robotic and human movement
studies. Such algorithms commonly use Inertial Measurement
Units (IMUs) due to their low cost and portability. Madgwick
et al. fused an IMU and magnetic angular rate and gravity
(MARG) sensors to estimate orientation using optimized
gradient descent. Their estimation results match the performance
of a Kalman-based algorithm [14]. Srang et al. fused joint state
and Stribeck friction parameter as a discontinuous friction
model. For attitude estimation, they used a continuous-discrete
unscented Kalman filter for which prediction and correction can
be made via unscented transform [15]. Wang et al. estimated the
yaw rate, sideslip angle, and vehicle speed of a three-degree-of-
freedom (TDOF) vehicle. Based on developed vehicle dynamics
and a continuous-time-state-space model, a robust cubature
Kalman filter is used to estimate the vehicle states [16]. Vitali et
al. implemented a robust error-state Kalman filter for estimating
IMU orientation. Their filter defined the true state as the sum of
a nominal and error state. They validated their work by placing
IMU on a coordinate measurement machine (CMM) [17]. Hasan
used a low-cost IMU and an eXogenous Kalman Filter to
estimate the position and attitude of a four Omni-wheeled ball
balancing robot (Ballbot). Hasan combined a Nonlinear
Observer (NLO) and a Linearized Kalman Filter (LKF) to
achieve non-linear estimation [18].

The team previously designed a 2-DOF robotic prosthesis,
where the ankle angle is estimated using an experimentally
computed Jacobian relationship between motor angels to ankle
angle [11]. The ankle is connected to the drums of the motor
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through a winch assembly of Bowden cables and steel wires.
During clinical trials, steel wires momentarily slipped from the
winch assembly, causing errors in the trajectory followed by the
robotic ankle. The control bandwidth was also limited due to
lag caused by the deflection of Bowden cables. In this work, an
actual direct reading of the ankle angle in two degrees of
freedom is derived independent of motor displacement; to
improve the team's previous work. This study uses a strain
gauge bridge to detect the heel strike and stance phase and two
magnetic, angular rate, and gravity sensor modules (MARGS)
as inputs to an Error-State Kalman filter (ESKF) that estimates
the shank and foot orientation. The ankle rotation in IE, EI, and
DP is computed through the relationship between shank and
foot quaternion orientations.

This paper first introduces related studies and research
challenges in section 1. Then, we briefly discuss the
methodology used previously to measure the ankle angle,
present in the new 2-MARG setup, strain gauge bridge
configuration, and finally, the Error-State Kalman Filter
(ESKF) methodologies. Lastly, the results, discussion, and
conclusion are presented in Sections III, IV, and V. Section VI
shows the availability of data and how the proposed work can
be replicated.

II. METHODS

A. Indirect ankle angle measurement through Jacobian
transformation

The Jacobian relationship between motor angle to ankle
angle is computed using a ground truth measurement of the
ankle angle fitted against the corresponding motor angle. The
ground truth measurement is retrieved using ten optical marker
cameras (OMC) (Miqus M5, Qualisys, Sweden) that track the
prosthetic shank (pylon) and foot (Fig. 1.a) quaternion
orientations (qs andqp respectively). The 2-DOF ankle
oscillates through a 2 Hz sine wave in DP and IE rotations while
tracked by the OMC for a duration of two minutes.

The quaternion product (®) between the shank quaternion
and the inverse foot quaternion equals ankle angle, gg, in
quaternion form (Equation 1). Consequently, ankle angle, 8, is
computed as shown in Equation 2 ([19], chapter 5). 8 represents
ankle angle rotation in IE (6,z), EI (68g), DP (6pp).

G =qr' @ s (1
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915
951
QDP

\

Where qg, qr, qs € S0(3) and 6 € R3.

The computed ankle angle (6,5 and 8pp) is fitted against
the encoder measurement of the motor's angles (¢, and ¢,)
using a 1% order regression fit as shown in Fig. 2. The linear
regression coefficient vectors are the Jacobian relationship
between the ankle and motor angels.
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Fig. 1 (a) OMC capture of shank and foot rigid bodies, (b) Accelerometer
calibration step while tracked by the OMC, (c) Gyroscope calibration step
while tracked by the OMC.

fit points
[ regression plane

Fig. 2 Regression fit of ankle angle (6,5 and 6),p) against motor angles

(¢1 and ).

B. 2-MARG setup and calibration

Two MARGs (Precision NXP 9-DOF, Adafruit, USA) are
rigidly connected to the prosthesis's pylon and spring foot to
represent the shank and foot frames, respectively, as shown in
Fig. 3, MARGS are sampled at 400 Hz.

{MARG,}

ZTL,'V Trta
X

MARG
{Ref} { 2}

(b)

Fig. 3 Assembly of 2 MARGs on the 2-DOF prosthesis. (a) placement of
MARG?’s relative prothesis pylon and carbon fiber foot (b) MARG’s tied to
universal joints through vectors g, and 1z, respectively.
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The angular velocity (w?), linear acceleration (af), and
magnetometer readings (m3) of the shank are calculated as
follows:

MARG, _7————
ws = Tgy,w, ' — b MarG, 3)
MARG, 7————
ai =Tsqa, ' — bomarc, (4)
S _ MARG,
m; = Tgpym, (5)

Similarly, the angular velocity (wf), linear acceleration
(af) and magnetometer readings (m?) of the foot are calculated:

MARG, 7
of = Tpyw, "% — bymare, (6)
MARG, 77—
af =Trqa, — * — bymare, @)
MARG,
m; = Tppmy (®)

Table 1 ESKF Inputs parameters table

Parameter Definition
w;mmal,z € R3 MARGs’ raw angular velocities
measurements

Average MARG angular velocity
bias

b marey, € R3

a:/IARGLZ

MARGs’ raw linear acceleration
measurements

€ R?

b marc,, € R3 Average MARG linear acceleration

bias
MARG. >
m, € R3 MARGs raw  magnetometer
measurements

Tow» Tsa» Tom € R3*3 Transformation matrices mapping
MARG, measurements to OMC

shank frame.

Transformation matrices mapping
MARG, measurements to OMC foot

TFWITFal TFm € R3X3

frame.

Tau € R® Position of MARG, in respect to
OMC shank frame

Trea € R3 Position of MARG, in respect to

OMC foot frame

The 2-MARGs are tied together using a universal joint, as
shown in Fig. 3b. The geometrical parameters
(Tsw» Tsa» Tews Tra» Tsiear Trea) are estimated using an extrinsic
calibration scheme with the OMC (Fig. 1 b, ¢). The prosthesis's
MARGs are excited using an operator in two steps, 1) the
operator vigorously moves the prosthesis linearly in the air in
all axes motion (X, y, z) to excite the MARGS' accelerometers,
then 2) the operator rotates the prosthesis in all axes motion to
excite the MARGs' gyroscopes. Each of the MARGS' axes is
excited for 10 seconds in each calibration step. The OMC
records the shank's and foot's orientation, translation, and body
rates in all stages. Measurements from MARG's (

MARG MARG .
. a7t are fitted against OMC measurements

based on continuous-time batch estimation to provide the

’
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transformation matrices between MARG frames and OMC
shank and foot frames [20]. The transformation matrices
account for 1) the coordinate frame rotation between the
MARGs and the prosthesis shank and foot, respectively, 2)
scaling errors, and 3) axis misalignment errors of the MARG
[21]. The intrinsic noise parameters of the = MARGs
(accelerometer, gyroscope) are estimated using Allan Variance
analysis [22]. Tspy, Tem, 1S calculated using the orthogonal
averages of Ty, Tsy and Tg,, Tpy respectively (under
MATLAB's  rotm2quat and  quat2rotm  function).

C. Strain gauge setup and calibration

Four strain gauge bridges (1033-
CEA-05-250UWA-350-ND, Digi-
Key, USA) were installed on the
prosthesis' spring foot to estimate the
ground reaction forces and moments.
The two spring leaves deflect under the
ground reaction forces and torques. The
most significant are the vertical force,
the DP moment, and the IE moment.

Due to vertical forces and bending
moments, the prosthesis foot was
modeled as two cantilever beams
deflecting along the sagittal plane.
Note that the foot is also subjected to
frontal and lateral forces and internal-
external moments, but at a much lower
significance. Thus, the main forces and moments can be
estimated by measuring the deflection of the two cantilevers. In
addition, by measuring the surface deflection of the foot in two
points, the force and moment in each beam can be estimated.

Fig. 4 Strain gauge
assembly on prosthesis
carbon foot.

A calibration procedure was performed to evaluate the DP
and IE moments, and the vertical force gave the voltages in the
four strain gauge bridges. The prosthesis held the ankle angle to
a constant position while the foot was pressed against a force
plate sensor (9260A A3, Kistler, Switzerland) to excite the strain
gauges to different sensing ranges.

This experiment captured synchronized data from the force
plate and the strain gauges at a sampling rate of 400 Hz for
approximately one minute. Then, a linear regression model
with 1% order and intercept components calculated the vertical
force (F,) and the DP and IE moments from the strain gauge
voltages.

The stance phase is used in the ESKF ankle angle estimation.
Stance (S) is identified as a Boolean variable depending on a
minimum threshold (k) force. K is empirically tuned through
trials (k = 2).

)

D. Error-State Kalman Filter

The mathematical modeling and filter implementation
followed the procedure proposed by Sola [23]. In their method,

Authorized licensed use limited to: Purdue University. Downloaded on September 13,2023 at 13:14:24 UTC from IEEE Xplore. Restrictions apply.



the pose of a rigid body was estimated by fusing data from an
IMU and an additional generic sensor. In this work, we
estimated the pose of two bodies, the foot, and shank, using two
MARGs, fusing their magnetometer measurements, and
including biomechanical constraints of the foot prosthesis as
measurements for the correction step the filter.

The system's nominal states (X¥) were modeled as the
orientation of the foot and shank; the position, velocity,
accelerometer bias, gyroscopic bias, and magnetometer's hard
iron distortion of the two MARGs. Unknown constant
parameters were also modeled as states to be estimated by the
filter in real-time. These parameters were the magnetic north
vector (constraining the x-axis component to zero), and the
external-internal (EI) angle of the prosthesis (Equation 2). The
EI angle (A5;) should be equal to zero because the ankle was
constructed with a universal joint; However, small errors in the
assembly and body definition of the foot and shank cause this
angle to be different than zero. The nominal states totaled 42
states.

x= [pf' Vr, Qg abf, be, mdF,

(10)
=1T
Ds, Vs, Qks» abs' Wbs' mds' by: m ]
Table 2 ESKF nominal states
Parameter Definition

ps Ps € R? Foot (f) and shank (s) MARGs’
position

vp, vs € R? Foot (f) and shank (s) MARGSs’
velocity

qr, qs € SO(3) Foot (f) and shank (s) MARGs’
quaternion orientation

aby, ab; € R3 Foot (f) and shank (s) MARGs’
acceleration bias

wby, whs € R3 Foot (f) and shank (s) MARGSs’
gyroscope bias

mdy, md; € R3 Foot (f) and shank (s) MARGs’
magnetometers’ hard iron distortion

b, € R Block yaw (heading of the block)

m e R3 Magnetic north vector

The state equations for the MARG states were modeled in a
commonly used indirect approach. The gyroscope and
acceleration measurements are used in the state update equation
rather than in the measurement equation. This simplifies the
modeling of the system, as it eliminates the higher-order
rotational differential equations.

The error states (0X) represented the error for all nominal
states as an additive error, except for the orientation variables,
65& = [ 8pf' 617]—", 8Qkf' (Sabf, (Sbe, 6mdp,

(11)
8ps, 6Vs, 8qys, Sabg, Swbg, 5mds, 6b,, 5m | T
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in which a rotational error in the inertial frame was included.
The nominal orientation states (qs, qxs) Were represented as
unit quaternions with four components, while their respective
errors were represented as orientation disturbances with three
components (8qys, 6qys )-

Ankle angle (9) is estimated by the filter using the states
qr, Qs as shown in Equations 1 and 2.

The biomechanical constraint equations for the ankle were
modeled as

Pr + ReeTrea — (0s + RsxTska) = 0 (12)
g, — asin (2(%0-%2 = qe,- %3)) =0 (13)
v, =0,if S=1 (14)

Where, Ry, and Rg; are respectively the orientation of the foot
and the shank in rotation matrices. These equations constrain
the foot and the shank to be connected by a pivot point, the
ankle, and to move only in two degrees of freedom (6,5 and
6pp) in respect to each other. In Equation (13), 8, is a constant
state of the filter, while, g is calculated as Equation (1).
Equation (14) reduces the translational drift of the filter
integration by setting the velocity of the foot MARG to zero
during the midstance (S). These equations were incorporated
into the filter as measurements with additive noise, which are
omitted. The noise covariance of the noise was adjusted
empirically, considering the mechanical backlash of the
universal joint, which would add errors to Equations (12) and
(13). While the noise in Equation (14) is mainly originated from
the compliance of the foot and ground.

The magnetometers (mf and m$) were incorporated into the
measurement equations to reduce the drift of the heading
angular error.

(15)
(16)

— . T A~
mf = Rg,m —mdg, if |mf mf —m| <€

_ . T _
m; = RL,m — md,, if |mts ms —m| <€

Where, m is the absolute value of the nominal magnetic field
in the area [24], €, is a tolerance for the magnetometer error.
These equations are used in the correction step when the
measured magnetic field does not deviate substantially from the
Earth's magnetic field. If the measurement deviates, there is
probably a strong nearby magnetic interference.

Both the update and correction steps of the filter are
executed at a rate of 400 Hz. The integration of the nominal and
error state equations was performed by a Runge-Kutta (RK4)
method and the Euler method [25]. Note that the Euler method
is more computationally efficient than the RK4 at the expense
of accuracy; However, error dynamics are slow and can be
integrated with the Euler method with similar accuracy.

III. RESULTS

The ESKF is implemented to the prothesis and tested for
accuracy in estimating the ankle angle. An un-impaired operator
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walks the prosthesis through several gait cycles (lasting a total
of 60 seconds), synchronously the prosthesis shank and foot are
tracked with the OMC to get a reference measurement of the
prosthesis ankle angle (Equations 1&2) as shown in Fig 5. The
ESKEF estimates the ankle angle in real-time. Fig. 6.a, b. shows

the estimate of the ESKF (solid line)
compared to the reference measurement
(dashed line). The accuracy of the ESKF
is compared to a general attitude
estimator's accuracy, the Madgwick filter.
The Madgwick filter (Fig. 6.c) was used
for evaluation because it has comparable
accuracy to generally used attitude
estimators such as the Extended Kalman
Filter (EKF) [14]. Madgwick filters
require a single tuning parameter, 3, and
the optimal value for B is empirically
tuned through a grid search.

Fig. 5 Healthy operator
walking 2-DOF
prosthetic ankle

Ankle Angle Estimation
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Fig. 6 Estimation of ankle angle by (a) ESKF for whole prosthesis gait
trail. (b, ¢, d) Ankle angle estimate during a 2 second time range.
Straight lines represent (b) ESKF, (¢) Madgwick filter (3=0.1) (d)
encoder-jacobian estimates, dashed lines represent ground truth.

The ESKF error is compared to the error of other estimates
(Table 3), showing an improvement of the proposed
methodology over our previous work (Fig. 6.d) and a
comparable attitude estimator.
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Table 3 RMSE of different ankle angle estimators

Estimator
Ankle angle
ESKF Madgwick Encoder
IE [RMSE °] 0.7724 1.3076 6.9526
EI [RMSE °] 0.8826 1.0018 -
DP [RMSE °] 1.3520 1.7640 6.3303

IV. DiscussioN

The proposed filter has implications for studying human
kinematics in any environment outside a laboratory,
specifically in outdoor environments. Due to the portability and
size of MARGs, the ESKF can be easily expanded to study the
kinematics of the ankle during outdoor walks of human
subjects. We conducted a preliminary study to highlight the
potential impacts of acquiring a healthy human subject (23-
year-old male, 80 kgs, 165 cm). Two MARGs are tapped into
the human subject like the prosthesis configuration (Fig. 7.a).

(a)

(b)
Fig. 7 2-MARG setups for human subject gait analysis during (a)
outdoor walk (b) OMC MARGS calibration.

The MARGSs are connected to a microcontroller (MCU,
Teensy 4.1, PIRC, USA) with a built-in SD card that stores data
packets of raw MARG readings (sampled at 400 Hz). MARGs
are tapped to the subject using athletic and skin-safe tape;
furthermore, wires are twisted and bundled together using wire
sleeves; thus, limiting interference with the subject's natural
gait. Data is read and stored on the MCU placed inside a fanny
pack; the MCU is powered using a small 3.7V Lipo battery. The
subject first repeats the MARGs calibration using the OMC
(Fig. 7.b), then the subject goes out for a 30-minute outdoor
trial. During the 30 minutes, the subject went up and downstairs,
walked outdoors, and stood in position to socialize.

At the end of the experiment, data is extracted from the SD
card and inputted to the ESKF (offline). There are two
differences between the prosthesis and human ESKF: 1) The
constraint equation limiting motion in EI for the prosthesis
ankle. The human ankle is modeled as a ball joint, allowing
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rotation in IE, EI, and DP, thus, the 2-DOF universal joint
constraint equation (Equation 13) is removed. 2) Stance phase
(8) is identified using changes in the linear acceleration of the
foot MARG (af) instead of the prosthesis's strain gauge bridge
(Equation 17); this is relevant due to regular spikes in the linear
acceleration of the foot MARG during stance phase [26].

(17)

Fig 8. Shows the estimate of ankle angle during the subject's
30-minute trial.
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Fig. 8 ESKF estimate of human ankle angle for a 30-minute outdoor
trail. Expected cyclic gait pattern observed during gait phase.

V. CONCLUSION

This paper proposes a new approach for online evaluation of
the ankle angle through an ESKF. The implemented ESKF
required two low-cost MARGS placed on the shank and spring
foot of a 2-DOF robotic prosthesis. MARG calibrations are
completed to correct scaling, orientation, and transformation
errors of the MARGS. A strain gauge assembly helps detect the
stance phase of gait cycles. Corrected MARG readings and a
Boolean stance variable are inputs to an ESKF. The EKSF
estimated 42 nominal states using Runge-Kutta integration and
40 error states using the Euler integration method. The
biomechanics of the prosthesis ankle was considered to correct
estimation accuracy. The proposed ESKF can be used for state
estimation in prostheses for direct angle measurement at a high
sampling rate. The proposed work allowed the team to have a
direct ankle angle of a previously designed prosthetic foot,
solving issues related to Bowden cable lag and limited
controller bandwidth.

Furthermore, the proposed methodology can be extended for
ankle angle measurement on human subjects to allow testing of
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gait cycle kinematics outside of proctored lab space (OMC
walkways).

VI. AVAILABILITY

The MATLAB and C++ deployment of the ESKF section
and experimental raw data described in the Methods section is
available through (https://github.com/hirolab/os-eskf).
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