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ABSTRACT

We consider the problem of estimating differences in two Gaussian
graphical models (GGMs) which are known to have similar struc-
ture. The GGM structure is encoded in its precision (inverse covari-
ance) matrix. In many applications one is interested in estimating
the difference in two precision matrices to characterize underlying
changes in conditional dependencies of two sets of data. Exist-
ing methods for differential graph estimation are based on single-
attribute models where one associates a scalar random variable with
each node. In multi-attribute graphical models, each node represents
a random vector. In this paper, we analyze a group lasso penal-
ized D-trace loss function approach for differential graph learning
from multi-attribute data. An alternating direction method of mul-
tipliers (ADMM) algorithm is presented to optimize the objective
function. Theoretical analysis establishing consistency in support
recovery and estimation in high-dimensional settings is provided.
We illustrate our approach using a numerical example where the
multi-attribute approach is shown to outperform a single-attribute
approach.
Keywords: Sparse graph learning; differential graph estimation;
undirected graph; multi-attribute graphs.

1. INTRODUCTION

Graphical models provide a powerful tool for analyzing multivariate
data [1, 2]. In a statistical graphical model, the conditional statisti-
cal dependency structure among p random variables x1, x1, · · · , xp,
is represented using an undirected graph G = (V, E). The graph
G then is a conditional independence graph (CIG) where there is
no edge between nodes i and j (i.e., {i, j} 6∈ E) iff xi and xj
are conditionally independent given the remaining p-2 variables x`,
` ∈ [p], ` 6= i, ` 6= j. In particular, Gaussian graphical models
(GGMs) are CIGs where x is multivariate Gaussian. Suppose x has
positive-definite covariance matrix Σ with inverse covariance ma-
trix Ω = Σ−1. Then Ωij , the (i, j)-th element of Ω, is zero iff xi
and xj are conditionally independent. Such models for x have been
extensively studied. Given n samples of x, in high-dimensional set-
tings where p � 1 and/or n is of the order of p, one estimates Ω
under some sparsity constraints; see [3–6]. More recently there has
been increasing interest in differential network analysis where one
is interested in estimating the difference in two inverse covariance
matrices [9–11]. Given observations x and y from two groups of
subjects, one is interested in the difference ∆ = Ωy − Ωx, where
Ωx = (E{xx>})−1 and Ωy = (E{yy>})−1. The associated dif-
ferential graph is G∆ = (V, E∆) where {i, j} ∈ E∆ iff ∆ij 6= 0. It
characterizes differences between the GGMs of the two sets of data.
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We use the term differential graph as in [7, 8] ( [9–11] use the term
differential network). As noted in [11], in biostatistics, the differen-
tial network/graph describes the changes in conditional dependen-
cies between components under different environmental or genetic
conditions. For instance, one may be interested in the differences in
the graphical models of healthy and impaired subjects, or models un-
der different disease states, given gene expression data or functional
MRI signals [3, 12, 13].

In the preceding graphs, each node represents a scalar random
variable. In many applications, there may be more than one random
variable associated with a node. This class of graphical models has
been called multi-attribute graphical models in [14–17] and vector
graphs or networks in [18–21]. In a gene regulatory network, one
may have different molecular profiles available for a single gene,
such as protein, DNA and RNA. Since these molecular profiles are
on the same set of biological samples, they constitute multi-attribute
data for gene regulatory graphical models in [14, 16]. Consider p
jointly Gaussian vectors zi ∈ Rm, i ∈ [p]. We associate zi with
the ith node of graph G = (V, E), V = [p], E ⊆ V × V . We
now have m attributes per node. Now {i, j} ∈ E iff vectors zi and
zj are conditionally independent given the remaining p-2 vectors
{z` , ` ∈ V \{i,j}}. Let x = [z>1 z>2 · · · z>p ]> ∈ Rmp. Let
Ω = (E{xx>})−1 assuming E{xx>} � 0. Define the m × m
subblock Ω(ij) of Ω as [Ω(ij)]rs = [Ω](i−1)m+r,(j−1)m+s , r, s =
1, 2, · · · ,m. Then we have the following equivalence [16, Sec. 2.1]

{i, j} 6∈ E ⇔ Ω(ij) = 0 . (1)

This paper is concerned with estimation of differential graphs
from multi-attribute data. Given samples x(t), t = 1, 2, · · · , nx, of
x = [z>1 z>2 · · · z>p ]> ∈ Rmp where zi ∈ Rm, i ∈ [p], are jointly
Gaussian, and similarly given samples y(t), t = 1, 2, · · · , ny , of
y ∈ Rmp, our objective is to estimate the difference ∆ = Ωy−Ωx,
and determine the differential graph G∆ = (V, E∆) with edgeset
E∆ = {{k, `} : ‖∆(k`)‖F 6= 0}. Multi-attribute differential
graphs have not been investigated before. The work of [7, 8] is
similar to a multi-attribute formulation except that in [7, 8] x(t)
and y(t) are non-stationary (“functional” modeling), and instead
of a single record (sample) of x(t), t = 1, 2, · · · , nx and y(t),
t = 1, 2, · · · , ny , as in this paper, they assume multiple independent
observations of x(t), t ∈ T , and y(t), t ∈ T .

Notation: For a set V , |V | or card(V ) denotes its cardinal-
ity. Given A ∈ Rp×p, we use φmin(A), φmax(A), |A| and
tr(A) to denote the minimum eigenvalue, maximum eigenvalue,
determinant and trace of A, respectively. For B ∈ Rp×q , we de-
fine ‖B‖ =

√
φmax(B>B), ‖B‖F =

√
tr(B>B), ‖B‖1 =∑

i,j |Bij |, where Bij is the (i, j)-th element of B (also denoted
by [B]ij), ‖B‖∞ = maxi,j |Bij | and ‖B‖1,∞ = maxi

∑
j |Bij |.

The symbols ⊗ and � denote Kronecker product and Tracy-Singh
product [22], respectively. In particular, given block partitioned



matrices A = [Aij ] and B = [Bk`] with submatrices Aij and
Bk`, Tracy-Singh product yields another block partitioned ma-
trix A � B = [Aij � B]ij = [[Aij ⊗ Bk`]k`]ij [23]. Given
A = [Aij ] ∈ Rmp×mp with Aij ∈ Rm×m, vec(A) ∈ Rm

2p2

denotes the vectorization of A which stacks the columns of the
matrix A, and bvec(A) ∈ Rm

2p2 is given by bvec(A) =
[(vec(A11))> (vec(A21))> · · · (vec(Ap1))> (vec(A12))>

· · · (vec(Ap2))> · · · (vec(App))
>]>. Let S = E∆ = {{k, `} :

‖∆(k`)‖F 6= 0} where ∆ = [∆(k`)] ∈ Rmp×mp with ∆(k`) ∈
Rm×m. Then ∆S denotes the submatrix of ∆ with block rows
and columns indexed by S, i.e., ∆S = [∆(k`)](k,`)∈S . Suppose
Γ = A � B given block partitioned matrices A = [Aij ] and
B = [Bk`]. For any two subsets T1 and T2 of [p] × [p], ΓT1,T2

denotes the submatrix of Γ with block rows and columns indexed
by T1 and T2, i.e., ΓT1,T2 = [Aj` ⊗Bkq](j,k)∈T1,(`,q)∈T2

.

2. GROUP LASSO PENALIZED D-TRACE LOSS

Let x = [z>1 z>2 · · · z>p ]> ∈ Rmp where zi ∈ Rm, i ∈ [p],
are zero-mean, jointly Gaussian. Given i.i.d. samples x(t), t =
1, 2, · · · , nx, of x, and similarly given i.i.d. samples y(t), t =
1, 2, · · · , ny , of y ∈ Rmp, form the sample covariance estimates

Σ̂x =
1

nx

nx∑
t=1

x(t)x>(t) , Σ̂y =
1

ny

ny∑
t=1

y(t)y>(t) . (2)

and denote their true values as Σ∗x = Ω−∗x (= (Ω∗x)−1) and Σ∗y =
Ω−∗y . We wish to estimate ∆ = Ω∗y−Ω∗x and graph G∆ = (V, E∆),
based on Σ̂x and Σ̂y . Following the single-attribute formulation
of [10] (see also [24, Sec. 2.1]), we will use a convex D-trace loss
function given by

L(∆, Σ̂x, Σ̂y) =
1

2
tr(Σ̂x∆Σ̂y∆

>)− tr(∆(Σ̂x − Σ̂y)) (3)

where D-trace refers to difference-in-trace loss function, a term
coined in [25] in the context of graphical model estimation. The
function L(∆,Σ∗x,Σ

∗
y) is strictly convex in ∆ and has a unique

minimum at ∆∗ = Ω∗y − Ω∗x [10, 24]. When we use sample co-
variances, we propose to estimate ∆ by minimizing the group-lasso
penalized loss function

Lλ(∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) + λ

p∑
k,`=1

‖∆(k`)‖F (4)

where λ > 0 is a tuning parameter and ‖∆(k`)‖F promotes block-
wise sparsity in ∆ [26–28] where, if we partition ∆ into m × m
submatrices, ∆(k`) denotes its (k, `)th submatrix, associated with
edge {k, `} of the differential graph G∆ = (V, E∆). Lasso penalty
has been used in [10, 24] for single-attribute models.

Suppose
∆̂ = arg min

∆
Lλ(∆, Σ̂x, Σ̂y) . (5)

Even though ∆ is symmetric, ∆̂ is not. We can symmetrize it by
setting ∆̂sym = 1

2
(∆̂ + ∆̂>), after obtaining ∆̂.

3. OPTIMIZATION

Similar to [24] (also [10]), we use an alternating direction method
of multipliers (ADMM) approach [29] with variable splitting. Using

variable splitting, consider

min
∆,W

{
L(∆, Σ̂x, Σ̂y) + λ

p∑
k,`=1

‖W (k`)‖F
}

subject to ∆ = W .

(6)

The scaled augmented Lagrangian for this problem is [29]

Lρ = L(∆, Σ̂x, Σ̂y) + λ

p∑
k,`=1

‖W (k`)‖F +
ρ

2
‖∆−W + U‖2F

(7)

where U is the dual variable, and ρ > 0 is the penalty parameter.
Given the results ∆(i),W (i),U (i) of the ith iteration, in the (i+1)st
iteration, an ADMM algorithm executes the following three updates:

(a) ∆(i+1) ← arg min∆ La(∆), La(∆) := L(∆, Σ̂x, Σ̂y)+
ρ
2
‖∆−W (i) + U (i)‖2F

(b) W (i+1) ← arg minW Lb(W ), Lb(W ) :=

λ
∑p
k,`=1 ‖W

(k`)‖F + ρ
2
‖∆(i+1) −W + U (i)‖2F

(c) U (i+1) ← U (i) +
(
∆(i+1) −W (i+1)

)
Update (a): Differentiate La(∆) w.r.t. ∆ to obtain

0 =
∂La(∆)

∂∆
= Σ̂x∆Σ̂y − (Σ̂x − Σ̂y) + ρ(∆−W + U) (8)

⇒(Σ̂y ⊗ Σ̂x + ρI)vec(∆) = vec(Σ̂x − Σ̂y + ρ(W −U))
(9)

Direct matrix inversion solution of (9) requires inversion of a
(mp)2 × (mp)2 matrix. A computationally cheaper solution is
given in [10, 24], as follows. Carry out eigendecomposition of Σ̂x

and Σ̂y as Σ̂x = QxDxQ
>
x , QxQ

>
x = I and Σ̂y = QyDyQ

>
y ,

QyQ
>
y = I , where Dx and Dy are diagonal matrices. Then ∆̂

that minimizes La(∆) is given by

∆̂ =Qx

[
B ◦ [Q>x

(
Σ̂x − Σ̂y + ρ(W −U)

)
Qy]

]
Q>y (10)

where the symbol ◦ denotes the Hadamard product and B ∈
Rmp×mp organizes the diagonal of (Dy ⊗Dx + ρI)−1 in a matrix
with Bjk = 1/([Dx]jj [Dy]kk + ρ). Note that the eigendecompo-
sition of Σ̂x and Σ̂y has to be done only once. Thus

∆(i+1) =Qx

[
B ◦ [Q>x

(
Σ̂x − Σ̂y + ρ(W (i) −U (i))

)
Qy]

]
Q>y

(11)

Update (b): Here we have the group lasso solution [26–28]

(W (k`))(i+1)

=
(

1− (λ/ρ)

‖(∆(i+1) + U (i))(k`)‖F

)
+

(∆(i+1) + U (i))(k`) (12)

where (a)+ = max(0, a).
Convergence. A stopping (convergence) criterion follow-

ing [29, Sec. 3.3.1] can be devised. The stopping criterion is based
on primal and dual residuals being small where, in our case, at
(i+ 1)st iteration, the primal residual is given by ∆(i+1)−W (i+1)

and the dual residual by ρ(W (i+1) − W (i)). Convergence cri-
terion is met when the norms of these residuals are below some
threshold. The objective function Lλ(∆, Σ̂x, Σ̂y), given by (4), is



strictly convex. It is also closed, proper and lower semi-continuous.
Hence, for any fixed ρ > 0, the ADMM algorithm is guaranteed to
converge [29, Sec. 3.2], in the sense that we have primal residual
convergence to 0, dual residual convergence to 0, and objective
function convergence to the optimal value.

Model Selection. Following the lasso penalty work of [10] (who
invokes [12]), we will use the following criterion for selection of
group lasso penalty:

BIC(λ) =(nx + ny) ‖Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y)‖F
+ ln(nx + ny) |∆̂|0 (13)

where |A|0 denotes number of nonzero elements in A and ∆̂ obeys
(5). Choose λ to minimize BIC(λ). Following [10] we term it BIC
(Bayesian information criterion) even though the cost function used
is not negative log-likelihood although ln(nx + ny) |∆̂|0 penalizes
over-parametrization as in BIC. It is based on the fact that true ∆∗

satisfies Σ∗x∆
∗Σ∗y − (Σ∗x −Σ∗y) = 0

In our simulations we search over λ ∈ [λ`, λu], where λ` and
λu are selected via a heuristic as in [17]. Find the smallest λ, labeled
λsm for which we get a no-edge model; then we set λu = λsm/2
and λ` = λu/10.

4. THEORETICAL ANALYSIS

Here we analyze the properties of ∆̂ by following the approach(es)
of [10, 16, 24, 25, 30]. Define the true differential edgeset

S =E∆∗ = {{k, `} : ‖∆∗(k`)‖F 6= 0} , s = |S| . (14)

A necessary and sufficient condition for minimization of convex
Lλ(∆, Σ̂x, Σ̂y) given by (4) w.r.t. ∆ ∈ Rmp×mp is that ∆̂ min-
imizes (4) iff the zero matrix belongs to the sub-differential of
Lλ(∆, Σ̂x, Σ̂y). That is,

0 =
∂Lλ(∆, Σ̂x, Σ̂y)

∂∆
+ λZ(∆)

∣∣∣
∆=∆̂

=Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y) + λZ(∆̂) (15)

where Z(∆) ∈ ∂
∑p
k,`=1 ‖∆

(k`)‖F ∈ Rmp×mp, the sub-
differential of group lasso penalty term, is given by

(Z(∆))(k`) =

{
∆(k`)

‖∆(k`)‖F
if ‖∆(k`)‖F 6= 0

V ∈ Rm×m, ‖V ‖F ≤ 1, if ‖∆(k`)‖F = 0

(16)

In terms of m × m submatrices of ∆, Σ̂x, Σ̂y and Z(∆) corre-
sponding to various graph edges, using bvec(ADB) = (B> �
A)bvec(D) [22, Lemma 1], we may rewrite (15) as

(Σ̂y � Σ̂x)bvec(∆̂)− bvec(Σ̂x − Σ̂y) + λ bvec(Z(∆̂)) = 0
(17)

Define
Γ∗ = Σ∗y � Σ∗x , Γ̂ = Σ̂y � Σ̂x . (18)

Then (17) can be rewritten as[
Γ̂S,S Γ̂S,Sc

Γ̂Sc,S Γ̂Sc,Sc

] [
bvec(∆̂S)

bvec(∆̂Sc)

]
−
[

bvec((Σ̂x − Σ̂y)S)

bvec((Σ̂x − Σ̂y)Sc)

]
+ λ

[
bvec(Z(∆̂S))

bvec(Z(∆̂Sc))

]
=

[
0
0

]
. (19)

The general approach of [30] (followed in [10, 16, 24, 25]) is to
first solve the hypothetical constrained optimization problem with
known edgeset S

∆̃ = arg min
∆:∆Sc=0

Lλ(∆, Σ̂x, Σ̂y) (20)

where Sc is the complement of S. Since, by construction, ∆̃Sc = 0,
in this case (19) reduces to

Γ̂S,Sbvec(∆̃S)− bvec((Σ̂x − Σ̂y)S) + λ bvec(Z(∆̃S)) = 0 .
(21)

In the approach of [30], one investigates condition under which the
solution ∆̂ to (4) is the same as the solution ∆̃ to (20). This is done
by showing that ∆̂ satisfies (19). The choice ∆̂ = ∆̃ implies that
∆̂Sc = 0 and (21) is true with ∆̃ replaced with ∆̂. In order to
satisfy (19), it remains to show that for any edge e ∈ Sc,

‖Γ̂e,Sbvec(∆̃S)− bvec((Σ̂x − Σ̂y)e)‖2 < λ (22)

where for a ∈ Rq , ‖a‖2 =
√
a>a. This requires a set of suffi-

cient conditions, along with additional conditions for performance
characterization, which we discuss next.

As in [16], it is convenient to define an operator C(·) that
“operates on block matrices and outputs a smaller matrix with el-
ements that equal to the Frobenius norm of the original blocks,”
with C(Σ∗) ∈ Rp×p when Σ∗ ∈ Rmp×mp, Σ∗ ∈ {Σ∗x,Σ∗y},
and C(Σy � Σx) ∈ Rp

2×p2 while (Σy � Σx) ∈ R(mp)2×(mp)2 .
In particular, C(∆(k`)) = ‖∆(k`)‖F and C(Σ

(ij)
y ⊗ Σ

(k`)
x ) =

‖Σ(ij)
y ⊗Σ

(k`)
x ‖F .

In rest of this section we allow p, s and λ to be a functions of
sample size n, denoted as pn, sn and λn, respectively. Lemma 1
follows from [16, p. 1739] which is based on [30, Lemma 1].
Lemma 1: Suppose Σ̂ = (1/n)

∑n
t=1 x(t)x>(t), given n inde-

pendent samples {x(t)}nt=1 of x ∼ N (0,Σ∗), x ∈ Rmp. Define

C̃0 = 40m
(

max1≤i≤mpn Σ∗ii
)√

2
(
τ + ln(4m2)/ ln(pn)

)
. Then

P
(
‖C(Σ̂−Σ∗)‖∞ > C̃0

√
ln(pn)/n

)
≤ 1/pτ−2

n (23)

for any τ > 2 and n > 2(ln(4) + τ ln(mpn)). •
Using the union bound and Lemma 1, we have Lemma 2.
Lemma 2: Let Σ̂x and Σ̂y be as in (2). Define n = min(nx, ny),
σ̄xy = max{maxi Σ∗x,ii, maxi Σ∗y,ii} and

A = max
{
‖C(Σ̂x −Σ∗x)‖∞ , ‖C(Σ̂y −Σ∗y)‖∞

}
C0 =40mσ̄xy

√
2
(
τ + ln(4m2)/ ln(pn)

)
. (24)

Then for any τ > 2 and n > 2(ln(4) + τ ln(mpn)),

P
(
A > C0

√
ln(pn)/n

)
≤ 2/pτ−2

n • (25)

Define

M = max{‖C(Σ∗x)‖∞ , ‖C(Σ∗y)‖∞} , (26)
MΣ = max{‖C(Σ∗x)‖1,∞ , ‖C(Σ∗y)‖1,∞} , (27)

κΓ = ‖(Γ∗S,S)−1‖1,∞ , (28)

α = 1−max
e∈Sc

‖C(Γ∗e,S(Γ∗S,S)−1)‖1 (29)



where S and Γ∗ have been defined in (14) and (18). In (29), we
require 0 < α < 1, and the expression

max
e∈Sc

‖C(Γ∗e,S(Γ∗S,S)−1)‖1 ≤ 1− α

for some α ∈ (0, 1) is called the irrepresentability condition. Simi-
lar conditions are also used in [10, 16, 24, 25, 30].

Let ∆̂ be as in (5).
Theorem 1 : For the system model of Sec. 2, under the irrepre-
sentability condition (29) for some α ∈ (0, 1), if

λn = max
{ 8

α
,

3

αC̄α
snκΓMCMκ

}
C0

√
ln(pn)

n
(30)

n = min(nx, ny) > C2
0 ln(pn) max

{ 1

min{M2, 1} , 81M2s2
nκ

2
Γ,

9s2
n

(αC̄α)2
(κΓMCMκ)2

}
(31)

where CMκ = (3/2)(1 + κΓM
2
Σ), then with probability > 1 −

2/pτ−2
n , for any τ > 2, we have

(i) ‖C(∆̂−∆∗)‖∞ ≤ (Cb1 + Cb2)C0

√
ln(pn)
n

where Cb1 =3κΓ max
{ 8

α
,

3

αC̄α
snκΓMCMκ

}
Cb2 =9snκ

2
ΓM

2 , C̄α =
1− α

2(2M + 1)− 2αM
.

(ii) ∆̂Sc = 0.

(iii) ‖C(∆̂−∆∗)‖F ≤
√
sn ‖C(∆̂−∆∗)‖∞ .

(iv) Additionally, if min(k,`)∈S ‖(∆∗)(k`)‖F ≥

2(Cb1+Cb2)C0

√
ln(pn)
n

, then P (G∆̂ = G∆∗) > 1−2/pτ−2
n

(support recovery). •
The proof of Theorem 1 is omitted for lack of space. The main

effort is in proving part (i). Parts (iii) and (iv) follow immediately
from part (i) (as in [30, Theorem 1]), and part (ii) is a consequence
of the fact that ∆̂ = ∆̃.

Remark 1: Convergence Rate. If M , MΣ and κΓ stay
bounded with increasing sample size n, we have ‖C(∆̂−∆∗)‖F =

OP (s1.5
n

√
ln(pn)/n). Therefore, for ‖C(∆̂ − ∆∗)‖F → 0 as

n → ∞, we must have s1.5
n

√
ln(pn)/n → 0. The single-

attribute results in [10] need s2.5
n

√
ln(pn)/n → 0. Recall that

sn = |S| = |E∆|, number of edges in the differential graph. �

5. NUMERICAL EXAMPLE

We consider an Erdös-Rènyi graph where p nodes are connected to
each other with probability per = 0.5 and there arem = 3 attributes
per node. In the upper triangular Ωx, we set [Ω

(jk)
x ]st = 0.5|s−t|

for j = k = 1, · · · , p, s, t = 1, · · · ,m. For j 6= k, if the
two nodes are not connected, we have Ω(jk) = 0, and if nodes j
and k are connected, then [Ω(jk)]st is uniformly distributed over
[−0.4,−0.1] ∪ [0.1, 0.4]. Then add lower triangular elements to
make Ωx a symmetric matrix. To generate Ωy , we follow [10]
and first generate a differential graph with ∆ ∈ R(mp)×(mp) as an
Erdös-Rènyi graph with connection probability per = 0.05 (sparse):
if nodes j and k are connected, then each of m2 elements of ∆(jk)

is independently set to ±0.9 with equal probabilities. Then Ωy =

Ωx+∆. Finally add γI to Ωy and to Ωx and pick γ so that Ωy and
Ωx are both positive definite. With ΦxΦ

>
x = Ω−1

x , we generate
x = Φw with w ∈ Rmp as Gaussian w ∼ N (0, I), and similarly
for y. We generate n = nx = ny i.i.d. observations for x and y,
with m = 3, p = 100, n ∈ {100, 200, 300, 400, 800, 1200, 1600}.

Simulation results based on 50 runs are shown in Figs. 1 and
2. By changing the penalty parameter λ and determining the result-
ing edges, we calculated the true positive rate (TPR) and false posi-
tive rate 1-TNR (where TNR is the true negative rate) over 50 runs.
The receiver operating characteristic (ROC) is shown in Fig. 1 for
our multi-attribute approach (labeled “MA”) as well as for a single-
attribute approach (labeled “SA”), based on [24], where we first es-
timate an mp-node differential graph, and then use ‖∆̂(k`)‖F 6= 0
⇔ {{k, `} ∈ E∆. It is seen from Fig. 1 that our approach outper-
forms the SA approach (that uses the same cost but element-wise
lasso penalty instead of group-lasso penalty). In Fig. 2 we show the
results based on 50 runs for our approach when BIC parameter se-
lection method (Sec. 3) is applied. Here we show the TPR, 1-TNR
and F1score values along with the ±σ error bars. The proposed ap-
proach works well both in terms of F1 score and TPR vs 1-TNR.
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6. CONCLUSIONS

A group lasso penalized D-trace loss function approach for differ-
ential graph learning from multi-attribute data was presented. An
ADMM algorithm was presented to optimize the convex objective
function. Theoretical analysis establishing consistency of the esti-
mator in high-dimensional settings was performed. We illustrated
our approach using numerical examples where the multi-attribute
approach is shown to outperform a single-attribute approach in cor-
rectly detecting the differential graph edges with ROC as the perfor-
mance metric.
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