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ABSTRACT

We consider the problem of inferring the conditional independence
graph (CIG) of a sparse, high-dimensional, stationary matrix-variate
Gaussian time series. All past work on matrix graphical mod-
els assume that i.i.d. observations of matrix-variate are available.
Here we allow dependent observations. We consider a sparse-
group lasso based frequency-domain formulation of the problem
with a Kronecker-decomposable power spectral density (PSD), and
solve it via an alternating direction method of multipliers (ADMM)
approach. The problem is bi-convex which is solved via flip-flop op-
timization. We provide sufficient conditions for local convergence
in the Frobenius norm of the inverse PSD estimators to the true
value. This results also yields a rate of convergence. We illustrate
our approach using numerical examples.

Keywords: Sparse graph learning; matrix graph estimation; matrix
time series; undirected graph; inverse spectral density estimation.

1. INTRODUCTION

In graphical models, graphs display the conditional independence
structure of the variables, and learning the graph structure is equiv-
alent to learning a factorization of the joint probability distribution
of these random variables [1]. In a vector graphical model, the con-
ditional statistical dependency structure among p random variables
Z1,%1,- -, Tp, is represented using an undirected graph G = (V. &)
with a set of p vertices (nodes) V = {1,2,--- ,p} = [p], and a cor-
responding set of (undirected) edges £ C [p] x [p]. There is no edge
between nodes ¢ and j iff ; and x; are conditionally independent
given the remaining p-2 variables. Suppose « has positive-definite
covariance matrix 3 with precision matrix = 37! Then ©;;, the
(i,7)-th element of €2, is zero iff x; and x; are conditionally inde-
pendent [1]. Such models for & have been extensively studied [2—4].

These models are vector graphical models. Time series (de-
pendent data) graphical models are much less studied. Consider a
stationary p—dimensional multivariate Gaussian time series x(¢),
t =0,£1,4£2, -, with ith component z;(¢). In the correspond-
ing time series graph G = (V, £), there is no edge between nodes
i and j iff {z;(t)} and {z,(t)} are conditionally independent given
the remaining p-2 scalar series {xz¢(t), £ € [p], ¢ # i, £ # j} [5].
Vector graphical models (based only on the precision matrix £2) do
not necessarily capture the “true” series graphical model if the data
originates from a time-dependent series. Denote the power spec-
tral density (PSD) matrix of {x(¢)} by S.(f), where S.(f) =
> o Rea (1)e 2™ Ryu(t) = E{x(t + 7)x ' (t)}. In [5]
it was shown that conditional independence of two time series com-
ponents given all other components of the time series, is encoded by
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zeros in the inverse PSD, that is, {7, 7} ¢ & iff the (¢, 7)-th element
of S.(f). [S5 ()]s = O for every f.

The need for matrix-valued graphical models arises in several
applications [6-15]. Here we observe matrix-valued time series
{Z(t)} where Z(t) € RP*9. If one vectorizes using vec(Z), then
use of vec(Z) will result in a pg-node graph with (pq) x (pq) preci-
sion matrix, which could be ultra-high-dimensional and moreover, it
ignores any structural information among rows and columns of the
matrix observations [6]. Prior work [6—15] all assume that i.i.d. ob-
servations of Z are available for graphical modeling. Our objective
in this paper is to learn the graph associated with time-dependent
matrix-valued p x ¢ Gaussian sequence Z (t), given observations of
Z(t) fort =0,1,--- ,n— 1.

Notation: |A| and tr(A) denote the determinant and the trace
of the square matrix A, respectively, and etr(A) = exp(tr(A)).
[B];; denotes the (7, j)-th element of B, and so does Bj;. I, is
the m X m identity matrix. The superscripts * and H denote the
complex conjugate and conjugate transpose operations, respectively,
x ~ N.(m,X) denotes a random vector @ that is circularly sym-
metric (proper) complex Gaussian with mean m and covariance 33,
and ® denotes the Kronecker product.

2. SYSTEM MODEL

Random matrix Z € RP*? is said to have a matrix normal (Gaus-

sian) distribution if its pdf f(Z|M, X, ¥), characterized by M €

RPX 3 € RP*P, ¥ € R9*? is given by [16, Chap. 2]

etr( — Y Z-M)e (2 - M)Tz—l)
(Qﬂ)pq/2|2|q/2|\11|17/2

f(ZIM, 2, ¥) =

(e))
Equivalently,

vec(Z) ~ N (vec(M), ¥ ® ). 2)

Here W is the row covariance matrix and X is the column covariance
matrix [16] since the kth column Z.;, ~ N (0, [¥];;X) and the ith
row Z;| ~ N(0,[Z];; ).

Graphical modeling of random vectors to characterize condi-
tional dependence of its components [1, 3] has been extended to ma-
trix data with structured information [6-9, 13]. With Z € RP*¢
modeled as a zero-mean matrix normal vector and z = vec(Z), [6]
assumes

E{zz'} =0 @3%, 3)

which could be interpreted as follows. Let ¢ € R, y € RY, & ~
N(0,%)andy ~ N(0, ). Express Z as

Z=xy ,or z=vec(Z)=vec(zy )=yox @)



such that

BE{zz'} =E{(y®z)(y®z) } = E{(yy") @ (zz)")}
=F{yy } @ E{zx } =¥ X%, (5)

implying a separable covariance structure [17]. Let @ = X! and
T' = &' denote the respective precision matrices. Then Z;; and
Zy are conditionally independent given remaining entries in Z iff
(i) at least one of €2;; and I'y, is zero when i # k, j # £, (ii)
Qij = 0 when ¢ 7& k,j = Z, and (111) FM = 0 when i = k,
j # £ [6]. Prior work [6-9, 13] all assume that i.i.d. observations of
Z are available for graphical modeling.

In this paper we will model our time-dependent zero-mean
matrix-valued, stationary, p x g Gaussian sequence Z(t), z(t) =
vec(Z(t)), as having the separable covariance structure given by

E{z(t+71)z (1)} =¥(r)®@ = (6)

where ¥ (7), 7 = 0,+1, - - - models time-dependence while 3 > 0
is fixed. With {e(t)} i.i.d., e(t) ~ N(0, I), a generative model for
z(t) is given by

L
z(t)=> (B;® Fle(t—i), B; cR?, F € R )
i=0
L
= BE{z(t+7)z ()} = (D)_B:B_,)®(FF"). (8)
i—0 \“/—/
\ , =3

=¥(7)

An example considered in [6] is that of a United States Department
of Agriculture (USDA) dataset reporting itemized annual export to
major trading partners. The dataset with 40 years U.S. export is col-
lected for 13 trading partners and 36 items. Each observation in the
dataset can be denoted by a 13 x 36 matrix where the trading part-
ners and items, as the rows and columns, respectively, of this matrix,
are used as structural information for the observations. The basic
idea in matrix-valued graphs is to model the covariance of vec(Z)
as ¥ ® X reducing the number of unknowns from O(p?q?) in the
precision matrix for the “full” vectorized model to O(p?® + ¢*) for
the matrix model, while also preserving the structural information.
Given data, one estimates two precision matrices & = X! and
T' = ¥ ! In the matrix graph, conditional independence between
Z;; and Z, is determined by zeros in 2 and T" [6]. While [6] and
others ( [8—11]) all consider only i.i.d. observations, we allow possi-
ble temporal dependence in matrix observations via ¥ (7).

The PSD of {z(t)} is S.(f) = S(f) ® = where S(f) =
>, ®(r)e 77, Then S;'(f) = §~'(f) ® =, and by [5],
in the pg—node graph G = (V,&), |[V| = pq, associated with
{z(1)}, edge {i,j} € Eiff [SI'(f)]s;; = O for every f. This
does not account for the separable structure of our model. Noting
that S™'(f), f € [0,0.5], plays the role of ' = ¥ ™!, using [5, 6],
we deduce that {Z;;(t)} and {Zx(¢)} are conditionally indepen-
dent given remaining entries in { Z (¢)} iff (i) at least one of €2;; and
[S7™(f)]ke, f € [0,0.5] is zero when i # k, j # £, (i) Q45 = 0
when i # k, j = £, and (iii) [S ™' (f)]xe = O for f € [0,0.5] when
i=k,j#L.

As an example, consider x(t) = Zfzo Bie(t — i), L > 1,
where {€(t)} is zero-mean, i.i.d. Gaussian, with covariance= I,

1 0 0 0 0 O
Bo=1|0 Vvi—0? 0 . Br=1b 0 o,

a 0 V1 —a? 0 0 O
Bi=0Yi#0,i#L, |a| <1, b <1 ©)

Straightforward calculations yield

1 1 0 —a
. =R,,(0) = == 1—a®> 0], (10
I 0 1
1— (ab)? dq —a(l—b?)
SN (f) = di 1—a? 0 (11)
—a(1 —b?) 0 1—b?

where ¢ = (1—a?)(1—b%) and d; = —b(1—a?)e’*"fL. Notice that
in ', edges {1,2} and {2, 1} are missing whereas they are present
in S; 1 (f), thatis, T",, does not capture the true dependencies among
various components of the dependent series.

Our objective is to learn the graph associated with time-
dependent sequence { Z(t) }, given observationst = 0,1, -+ ,n—1,
under some sparsity constraints on € and S~'(f), f € [0,0.5].
Since oS (f) ® (™ !1Q) = S7I(f) ® Q, to resolve scaling
ambiguity, we will take 211 = 1.

3. PENALIZED NEGATIVE LOG-LIKELIHOOD

Given z(t) fort = 0,1,2,--- ,n — 1. Define the (normalized) DFT
d.(fm)of z(t), G = /=1, fm = m/n),overm = 0,1,--- ,n—1
as dz(fm) = <= 3120 2(t) exp (=527 fnt). Let Da(fm) =

NG S Z(t) exp (=527 fnt), then dz(fm) = vec(Dx(fm))-
It is established in [18] (see also [19]) that the set of random vec-

tors {d.( fm)}:@/ 2, is a sufficient statistic for any inference problem
based on dataset {z(t)}7=. Suppose S.(fx) is locally smooth, so
that S (fk) is (approximately) constant over K = 2m; + 1 consec-
utive frequency points f,,’s; in our case, this assumption applies to
S(fr). Pick M = | (%2 —my — 1)/K]| and
2 (k—DK+mi+1
f k = )

k:1727"'7M7 (12)
n

yielding M equally spaced frequencies f in the interval (0,0.5).
By local smoothness
S.(fre) =S.(fx) forl = —ms, —my; +1,--- ,my, (13)

(k—1)K +mi+ 144
. .

where fk,z = (14)

It is known ( [20, Theorem 4.4.1]) that asymptotically (as n —
00), d:(fm), m = 1,2,---,(n/2) — 1, (n even), are indepen-
dent proper, complex Gaussian N, (0, S.(f.)) random vectors, re-
spectively, provided all elements of R..(7) = E{z(t + )z (t)}
are absolutely summable. Denote the joint probability density func-
tion of d.(fm), m = 1,2,---,(n/2) — 1, as fo(D). Then we
have [18,19]

M mi *
D) — - exp(—g—_g)~
e =11 U iesias ez
(15)
where g:%df(fk,é)(s—l(fk)®2—1)dz(fk,@). (16)

Using trf(A"BCD") = (vec(A))' (D ® B)vec(C) and
IS(fr) ® | = |S(fe)P |=|?, and parametrizing in terms of
®), ;= S7'(fi) and 2 = X7, up to some constants the nega-
tive log-likelihood follows from (15) as ({®} denotes {®x, k =



17’M})

— L fp(D) x G, (@), {87)) = —Iﬁln(m\)

K Mpq
.M
- — In |P In|®| — x
1 : P
where Ay = &7 Z DY (fi,0)2D.(fr0)®5 . (18)

L=—my

In the high-dimension case, one needs to use penalty terms to
enforce sparsity and to make the problem well-conditioned. Impos-
ing a sparse-group lasso sparsity constraint on {®} (cf. [2,21,22])
and a lasso constraint on €2, we propose to minimize a penalized
version of negative log-likelihood w.r.t. € and {®},

L(QA{®}) = G(Q {2}, {®"}) + P(Q) + P,({®}), (19)

P
Pp(Q) = Ap Z ‘ng‘ (20)
i
M P » B
P{®}) = ado 37 D |[@uly| + (1= )VADN, 3 187
k=1 i#j oyt
20
where @7 = [[®1];; [®2]i; -~ [®ar)i] € CM, (22)

and « € [0, 1] and \p, \q > O are tuning parameters.

4. OPTIMIZATION

The objective function £(€2, {®}) in (19) is biconvex: (strictly)
convex in {®}, ®, > 0, for fixed €2, and (strictly) convex in €2,
Q > 0, for fixed {®}. As in [6,7] (and others) pertaining to the
1.i.d. observations case, and as is a general approach for biconvex
function optimization [23], we will use an iterative and alternating
minimization approach where we optimize w.r.t. 2 with {®} fixed,
and then optimize w.r.t. { ®} with €2 fixed at the last optimized value,
and repeat the two optimizations (flip-flop). There is no guarantee
that the algorithm converges to the global minimum, however, the
algorithm converges to a local stationary point of £(€2, {®}) [23].

With {®} denoting the estimate of {®}, fix {®} = {®} and
let £1(€2) denote £(€2, {®}) up to some irrelevant constants. We
minimize £ (£2) w.r.t. € to obtain estimate {2, where

£1(52) = (9 + St (25) + Py (), 23)

1

M .
mz > Re{D-(fr)®iDI (fr)}. 4

k=14=—my

S:

Fix @ = Q and and let £o({®}) denote £(2, {®}) up to some
irrelevant constants. We minimize £2({®}) w.r.t. {®} to obtain

estimate {®}, where

M
1 *
Ly({®}) = ~ 90 (In[®x] + In |Pr[)
k=1
1 L. .
+ 53ia > (sk.@k. + sk<1>k) +P({®), 25
N 1 & A
S, = % > DI (fr0)D: (fr). (26)
l=—my

Our optimization algorithm (used in our simulations) is as follows.
1. Tnitialize m = 1, Q) = I, @,(CO) =I,k=1,2---,M.

2. Set @ = Q™Y i (26). Use the iterative alternating direc-
tion method of multipliers (ADMM) algorithm [24], as out-
lined in [19, Sec. 4], to minimize Lo({®}) (given by (25))
w.r.t. {®} to obtain estimates 'I>§€m), k=1,2,---,M. Cost
(40) in [19] corresponds to (25) of this paper.

3. Set {®} = {&(™} in (24). Use the ADMM algorithm of
[25, Sec. III] (with av = 1 therein, no group-lasso penalty) to
minimize £1(2) w.r.t. €2, to obtain estimate Q™) Cost (7)
in [25] (after setting o« = 1) corresponds to (23) of this paper.
Normalize Qg’f) = 1 to resolve the scaling ambiguity. Let
m < m+ 1.

4. Repeat steps 2 and 3 until convergence.

4.1. BIC for selection of )\, \; (and «)

Given n, K and M, the Bayesian information criterion (BIC) is
given by (see also [19]) BIC(\,, A\g,) = —2KMqIn|Q2| +
2Kp 3Ly (= nf@uf + pter(Ar)) + InEM)(|90/2 +
ch\/le |(i>;C |0) where A}, is given by (18) with € and @, therein re-
placed with Qand ®y, respectively, |J |o denotes number of nonzero
elements in J, 2K M is total number of real-valued measurements
in frequency-domain and 2K is the number of real-valued mea-
surements per frequency point, with total M frequencies in (0, 7).
Pick «, Aq and )\, to minimize BIC. In our simulations we fixed
o = 0.05 and then picked Ay and A\, over a grid of values, as fol-
lows. We search over Aq € [Age, A\gu] and Ay € [Ape, A\pu] selected
via a heuristic as in [25]. Find the smallest A, and \,, labeled
Agsm and Apsm, for which we get a no-edge model; then we set
Aqu = Agsm /2 and A\g¢e = Agy/10; similarly for A, and Apy.

5. CONSISTENCY

Now we provide sufficient conditions for local convergence in the
Frobenius norm of the Kronecker-decomposable inverse PSD esti-
mators to the true value. Define g x (¢M) matrix €2 as

Q= (D1 Py - Pu]. 27
We now allow p, ¢, M, K (see (12)), A, and A\, to be functions of
sample size n, denoted as Py, qn, Mn, Kn, Apn and Agy, respec-
tively. Assume

(Al) The matrix time series {Z(¢)}¢2_., is zero-mean station-
ary, Gaussian, satisfying Y2 |[®(7)]xe| < oo for every
k.l € [q].

(A2) Define the true edgesets S, = {{3,5} [So (s #
0,i#j, 0< f<05,4,7€ [q} and Sp = {{i,j} : Qs /
0, i # 4, 4,5 € [p]}, where So(f) denotes DTFT of ¥(7)
and Qo = X' denotes the true value of Q2. Assume that
|Sq| < sqn and [Sp| < spn.

(A3) The minimum and maximum eigenvalues of ¢, X g, PSD
So(f) = 0 satisfy 0 < @q,min < minfe[o,o.s] ¢min(so(f))
and maxco,0.5] Pmax (S0 (f)) < Bgmax < co. Similarly,
0 < /Bp,min S ¢min (20) S ¢min(20) S /Bp,max < oo.
Here Bmin and Bmax are not functions of n (or py, gn).

Theorem 1 whose proof is omitted for lack of space, establishes con-
sistency of a local minimizer (€2, 2) of £(2,{®}) = L(Q, Q)



under assumptions (A1)-(A3). First we define some variables. For
7 > 2, define

Coq =80 rggX([go(f)]ee)JQ In(16¢7 M»)/ In(gn),  (28)

Cop =40 m]?x([zg}u,) V2In(4p7)/ In(pn) , (29)

Tan = V/Mu(gn + sqn) In(qn)/(Knpn) = o(1),  (30)
Tpn =V (Pn + Spn) (pn)/(MnKngn) = 0(1). (31

Recall that for random vectors vy, and x,, the notation y, =
Op (@) means that for any € > 0, there exist real R and integer N,
0 < R<ooand 0 < N < oo, such that P(|lyn| < Rljz.]|) >
1—eVn> N.

Theorem 1 (Consistency). For a € [0,1], any C; > 1, and Cy,,
and Co, as defined in (28) and (29), respectively, suppose Ap, and
Agn satisfy

Cop In(pn) <A< C1Cop 1+ Pn In(pn)

oo \| MuKngn = 7" = pa Spn ) MpKngn’
Coq In(gy) <A < C1Coq 14 An_ In(gn)
Mugn \| Knpn =" = Moaqn Sqn ) Knpn

Then under assumptions (A1)-(A3), there exists a local minimizer
(2, Q) of £(€2, Q) such that

12— Qollr = Op (rpn) , 12— Qollr = Op (rgn)  (32)

where 7, and rq, are as in (30) and (31), respectively. o

Remark 1. Proof of Theorem 1 is patterned after [11] pertaining
to matrix graphs, exploiting the results in [19] for dependent vector
time series and in [25] for multi-attribute graphical models with i.i.d.
data; in turn, all these results are based on the proof technique of
[26]. Theorem 1 helps determine how to choose M,, and K, so that
for given n, g, and pn, lim, o 7pn = 0 and limy, o0 7gn = 0.
See also [19, Remark 2]. [

6. NUMERICAL RESULTS

We use model (7)-(8) to generate synthetic data where ¥ (7) is con-
trolled via B;’s as in (9) and X is determined via an Erdds-Renyi
graph. We take p = ¢ = 15 and for ¥(7), B;’s in (7) have a
block-diagonal structure with 5 blocks, each block as in (9), where
in each 3 x 3 block, a, b are uniform over [—0.3,0.7], L is uniform
over {1,2,3,4,5}. In the Erdés-Reényi graph with p = 15 nodes,
the nodes are connected with probability p., = 0.05. In the upper
triangular , ,;; = 0if {i,5} & Sp, Q; is uniformly distributed
over [0.4, —0.1] U [0.1,0.4] if {4,5} € Sp, and ©Q;; = 0.5. With
Q =Q7, add &I to Q with x picked to make minimum eigenvalue
of Q= + &I equal to 0.5. Let 2 = FF (matrix square-root),
then F = F~ 1 in (7).

We applied our proposed approach with n = 256, M = 2,
K = 63 and compared with the approach of [6] (which is also the
approach of [7, 14], all of whom assume i.i.d. observations and have
two lasso penalties one each on €2 and T', counterpart to our ®y).
By changing the penalty parameters and determining the resulting
edges, we calculated the true positive rate (TPR) and false positive
rate 1-TNR (where TNR is the true negative rate) over 100 runs,
separately for €2 and {® }/T". The receiver operating characteristic
(ROC) is shown in Fig. 1 based on 100 runs. Fig. 1 shows that the
i.i.d. modeling of [6,7,14] is unable to capture the “dependent” edges

(cf. (7)) via I" whereas it has no issues with 2. Our approach works
well for both components of the graph Kronecker product.

—©— Q:dep., n=256 |
— % — <I>k: dep., n=256| 4
—5— Q:1ID, n=256
—-&— T 1ID, n=256

TPR

03 04 05 06 07 08 09 1
1-TNR

Fig. 1: ROC curves: plots labeled “IID” are from the approach of [6,
7,14], and the plots labeled “dep.” are from our proposed approach.
TPR=true positive rate, TNR=true negative rate

In Fig. 2 we show the results based on 50 runs for our approach
when BIC parameter selection method (Sec. 4.1) is applied. We take
n = 64,128,256,512,1024 with corresponding m; values as ei-
ther m¢ = 7,15,31,63,127 (M = 2), or my = 3,7,14,31,63
(M = 4); note K = 2my + 1. Here we show the TPR, 1-TNR and
Fiscore values for the overall graph (not the two Kronecker product
components separately) along with the ¢ error bars. The proposed
approach works well both in terms of F score and TPR vs 1-TNR.

Model Selection Based Results

1
09 4
0.8 1
0.7 1
z
£ 0.6 1
& 0.5 b
o
= 04 M= )
W —FF, M=4
03 -¥-TPRIM=2 | |
02k —F—TPR: M=4 ,
- B -1-TNR: M=2
o1r —4—1-TNR: M=4|
0 & o — ———————— 4
64 128 256 512 1024

n

Fig. 2: BIC based results of the proposed approach: F-scores, TPR
and 1-TNR

7. CONCLUSIONS

Sparse-group lasso penalized log-likelihood approach in frequency-
domain with a Kronecker-decomposable PSD was presented for ma-
trix graph learning for dependent time series. An ADMM-based flip-
flop approach for iterative optimization of the bi-convex problem
was presented. We provided sufficient conditions for consistency of
a local estimator of inverse PSD. We illustrated our approach using
anumerical example where our approach significantly outperformed
an existing i.i.d. modeling-based approach [6,7, 14] in correctly de-
tecting the graph edges with ROC as the performance metric.
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