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ABSTRACT

We consider the problem of inferring the conditional independence

graph (CIG) of a sparse, high-dimensional, stationary matrix-variate

Gaussian time series. All past work on matrix graphical mod-

els assume that i.i.d. observations of matrix-variate are available.

Here we allow dependent observations. We consider a sparse-

group lasso based frequency-domain formulation of the problem

with a Kronecker-decomposable power spectral density (PSD), and

solve it via an alternating direction method of multipliers (ADMM)

approach. The problem is bi-convex which is solved via flip-flop op-

timization. We provide sufficient conditions for local convergence

in the Frobenius norm of the inverse PSD estimators to the true

value. This results also yields a rate of convergence. We illustrate

our approach using numerical examples.

Keywords: Sparse graph learning; matrix graph estimation; matrix

time series; undirected graph; inverse spectral density estimation.

1. INTRODUCTION

In graphical models, graphs display the conditional independence

structure of the variables, and learning the graph structure is equiv-

alent to learning a factorization of the joint probability distribution

of these random variables [1]. In a vector graphical model, the con-

ditional statistical dependency structure among p random variables

x1, x1, · · · , xp, is represented using an undirected graph G = (V, E)
with a set of p vertices (nodes) V = {1, 2, · · · , p} = [p], and a cor-

responding set of (undirected) edges E ⊆ [p]× [p]. There is no edge

between nodes i and j iff xi and xj are conditionally independent

given the remaining p-2 variables. Suppose x has positive-definite

covariance matrix Σ with precision matrix Ω = Σ
−1. Then Ωij , the

(i, j)-th element of Ω, is zero iff xi and xj are conditionally inde-

pendent [1]. Such models for x have been extensively studied [2–4].

These models are vector graphical models. Time series (de-

pendent data) graphical models are much less studied. Consider a

stationary p−dimensional multivariate Gaussian time series x(t),
t = 0,±1,±2, · · · , with ith component xi(t). In the correspond-

ing time series graph G = (V, E), there is no edge between nodes

i and j iff {xi(t)} and {xj(t)} are conditionally independent given

the remaining p-2 scalar series {xℓ(t), ℓ ∈ [p], ℓ 6= i, ℓ 6= j} [5].

Vector graphical models (based only on the precision matrix Ω) do

not necessarily capture the “true” series graphical model if the data

originates from a time-dependent series. Denote the power spec-

tral density (PSD) matrix of {x(t)} by Sx(f), where Sx(f) =
∑∞

τ=−∞ Rxx(τ)e
−j2πfτ , Rxx(τ) = E{x(t + τ)x⊤(t)}. In [5]

it was shown that conditional independence of two time series com-

ponents given all other components of the time series, is encoded by
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zeros in the inverse PSD, that is, {i, j} 6∈ E iff the (i, j)-th element

of Sx(f), [S
−1
x (f)]ij = 0 for every f .

The need for matrix-valued graphical models arises in several

applications [6–15]. Here we observe matrix-valued time series

{Z(t)} where Z(t) ∈ R
p×q . If one vectorizes using vec(Z), then

use of vec(Z) will result in a pq-node graph with (pq)× (pq) preci-

sion matrix, which could be ultra-high-dimensional and moreover, it

ignores any structural information among rows and columns of the

matrix observations [6]. Prior work [6–15] all assume that i.i.d. ob-

servations of Z are available for graphical modeling. Our objective

in this paper is to learn the graph associated with time-dependent

matrix-valued p× q Gaussian sequence Z(t), given observations of

Z(t) for t = 0, 1, · · · , n− 1.

Notation: |A| and tr(A) denote the determinant and the trace

of the square matrix A, respectively, and etr(A) = exp(tr(A)).
[B]ij denotes the (i, j)-th element of B, and so does Bij . Im is

the m × m identity matrix. The superscripts ∗ and H denote the

complex conjugate and conjugate transpose operations, respectively,

x ∼ Nc(m,Σ) denotes a random vector x that is circularly sym-

metric (proper) complex Gaussian with mean m and covariance Σ,

and ⊗ denotes the Kronecker product.

2. SYSTEM MODEL

Random matrix Z ∈ R
p×q is said to have a matrix normal (Gaus-

sian) distribution if its pdf f(Z|M ,Σ,Ψ), characterized by M ∈
R

p×q , Σ ∈ R
p×p, Ψ ∈ R

q×q , is given by [16, Chap. 2]

f(Z|M ,Σ,Ψ) =
etr

(

− 1
2
(Z −M)Ψ−1(Z −M)⊤Σ−1

)

(2π)pq/2|Σ|q/2|Ψ|p/2 .

(1)

Equivalently,

vec(Z) ∼ N
(
vec(M),Ψ⊗Σ

)
. (2)

Here Ψ is the row covariance matrix and Σ is the column covariance

matrix [16] since the kth column Z·k ∼ N (0, [Ψ]kkΣ) and the ith
row Z⊤

i· ∼ N (0, [Σ]iiΨ).
Graphical modeling of random vectors to characterize condi-

tional dependence of its components [1,3] has been extended to ma-

trix data with structured information [6–9, 13]. With Z ∈ R
p×q

modeled as a zero-mean matrix normal vector and z = vec(Z), [6]

assumes

E{zz⊤} =Ψ⊗Σ , (3)

which could be interpreted as follows. Let x ∈ R
p, y ∈ R

q , x ∼
N (0,Σ) and y ∼ N (0,Ψ). Express Z as

Z = x⊗ y
⊤ , or z = vec(Z) = vec(xy⊤) = y ⊗ x (4)



such that

E{zz⊤} =E{(y ⊗ x)(y ⊗ x)⊤} = E{(yy⊤)⊗ (xx)⊤)}
=E{yy⊤} ⊗ E{xx⊤} = Ψ⊗Σ , (5)

implying a separable covariance structure [17]. Let Ω = Σ
−1 and

Γ = Ψ
−1 denote the respective precision matrices. Then Zij and

Zkℓ are conditionally independent given remaining entries in Z iff

(i) at least one of Ωij and Γkℓ is zero when i 6= k, j 6= ℓ, (ii)

Ωij = 0 when i 6= k, j = ℓ, and (iii) Γkℓ = 0 when i = k,

j 6= ℓ [6]. Prior work [6–9, 13] all assume that i.i.d. observations of

Z are available for graphical modeling.

In this paper we will model our time-dependent zero-mean

matrix-valued, stationary, p × q Gaussian sequence Z(t), z(t) =
vec(Z(t)), as having the separable covariance structure given by

E{z(t+ τ)z⊤(t)} =Ψ(τ)⊗Σ (6)

where Ψ(τ), τ = 0,±1, · · · models time-dependence while Σ ≻ 0

is fixed. With {e(t)} i.i.d., e(t) ∼ N (0, I), a generative model for

z(t) is given by

z(t) =

L∑

i=0

(Bi ⊗ F )e(t− i) , Bi ∈ R
q , F ∈ R

p
(7)

⇒ E{z(t+ τ)z⊤(t)} =
(

L∑

i=0

BiB
⊤
i−τ

︸ ︷︷ ︸

=Ψ(τ)

)
⊗ (FF

⊤)
︸ ︷︷ ︸

=Σ

. (8)

An example considered in [6] is that of a United States Department

of Agriculture (USDA) dataset reporting itemized annual export to

major trading partners. The dataset with 40 years U.S. export is col-

lected for 13 trading partners and 36 items. Each observation in the

dataset can be denoted by a 13 × 36 matrix where the trading part-

ners and items, as the rows and columns, respectively, of this matrix,

are used as structural information for the observations. The basic

idea in matrix-valued graphs is to model the covariance of vec(Z)
as Ψ ⊗ Σ reducing the number of unknowns from O(p2q2) in the

precision matrix for the “full” vectorized model to O(p2 + q2) for

the matrix model, while also preserving the structural information.

Given data, one estimates two precision matrices Ω = Σ
−1 and

Γ = Ψ
−1. In the matrix graph, conditional independence between

Zij and Zkℓ is determined by zeros in Ω and Γ [6]. While [6] and

others ( [8–11]) all consider only i.i.d. observations, we allow possi-

ble temporal dependence in matrix observations via Ψ(τ).
The PSD of {z(t)} is Sz(f) = S̄(f) ⊗ Σ where S̄(f) =

∑

τ Ψ(τ)e−j2πfτ . Then S−1
z (f) = S̄−1(f) ⊗ Σ

−1, and by [5],

in the pq−node graph G = (V, E), |V | = pq, associated with

{z(t)}, edge {i, j} ∈ E iff [S−1
z (f)]ij = 0 for every f . This

does not account for the separable structure of our model. Noting

that S̄−1(f), f ∈ [0, 0.5], plays the role of Γ = Ψ
−1, using [5, 6],

we deduce that {Zij(t)} and {Zkℓ(t)} are conditionally indepen-

dent given remaining entries in {Z(t)} iff (i) at least one of Ωij and

[S̄−1(f)]kℓ, f ∈ [0, 0.5] is zero when i 6= k, j 6= ℓ, (ii) Ωij = 0
when i 6= k, j = ℓ, and (iii) [S̄−1(f)]kℓ = 0 for f ∈ [0, 0.5] when

i = k, j 6= ℓ.
As an example, consider x(t) =

∑L
i=0 Biǫ(t − i), L ≥ 1,

where {ǫ(t)} is zero-mean, i.i.d. Gaussian, with covariance= I ,

B0 =





1 0 0

0
√
1− b2 0

a 0
√
1− a2



 , BL =





0 0 0
b 0 0
0 0 0



 ,

Bi =0 ∀i 6= 0, i 6= L, |a| < 1, |b| < 1. (9)

Straightforward calculations yield

Γx =R
−1
xx (0) =

1

1− a2





1 0 −a
0 1− a2 0
−a 0 1



 , (10)

cS−1
x (f) =





1− (ab)2 d1 −a(1− b2)
d∗1 1− a2 0

−a(1− b2) 0 1− b2



 (11)

where c = (1−a2)(1−b2) and d1 = −b(1−a2)ej2πfL. Notice that

in Γx, edges {1, 2} and {2, 1} are missing whereas they are present

in S−1
x (f), that is, Γx does not capture the true dependencies among

various components of the dependent series.

Our objective is to learn the graph associated with time-

dependent sequence {Z(t)}, given observations t = 0, 1, · · · , n−1,

under some sparsity constraints on Ω and S̄−1(f), f ∈ [0, 0.5].
Since αS̄−1(f) ⊗ (α−1

Ω) = S̄−1(f) ⊗ Ω, to resolve scaling

ambiguity, we will take Ω11 = 1.

3. PENALIZED NEGATIVE LOG-LIKELIHOOD

Given z(t) for t = 0, 1, 2, · · · , n− 1. Define the (normalized) DFT

dz(fm) of z(t), (j =
√
−1, fm = m/n), over m = 0, 1, · · · , n−1

as dz(fm) = 1√
n

∑n−1
t=0 z(t) exp (−j2πfmt). Let Dz(fm) =

1√
n

∑n−1
t=0 Z(t) exp (−j2πfmt), then dz(fm) = vec(Dz(fm)).

It is established in [18] (see also [19]) that the set of random vec-

tors {dz(fm)}n/2
m=0 is a sufficient statistic for any inference problem

based on dataset {z(t)}n−1
t=0 . Suppose Sz(fk) is locally smooth, so

that Sz(fk) is (approximately) constant over K = 2mt +1 consec-

utive frequency points fm’s; in our case, this assumption applies to

S̄(fk). Pick M =
⌊
(n
2
−mt − 1)/K

⌋
and

f̃k =
(k − 1)K +mt + 1

n
, k = 1, 2, · · · ,M, (12)

yielding M equally spaced frequencies f̃k in the interval (0, 0.5).
By local smoothness

Sz(f̃k,ℓ) =Sz(f̃k) for ℓ = −mt,−mt + 1, · · · ,mt, (13)

where f̃k,ℓ =
(k − 1)K +mt + 1 + ℓ

n
. (14)

It is known ( [20, Theorem 4.4.1]) that asymptotically (as n →
∞), dz(fm), m = 1, 2, · · · , (n/2) − 1, (n even), are indepen-

dent proper, complex Gaussian Nc(0,Sz(fm)) random vectors, re-

spectively, provided all elements of Rzz(τ) = E{z(t + τ)z⊤(t)}
are absolutely summable. Denote the joint probability density func-

tion of dz(fm), m = 1, 2, · · · , (n/2) − 1, as fD(D). Then we

have [18, 19]

fD(D) =

M∏

k=1

[
mt∏

ℓ=−mt

exp (−g − g∗)

πpq |S̄(f̃k)⊗Σ|1/2|S̄∗(f̃k)⊗Σ|1/2

]

(15)

where g =
1

2
d
H
z (f̃k,ℓ)

(
S̄

−1(f̃k)⊗Σ
−1)

dz(f̃k,ℓ) . (16)

Using tr
(
A⊤BCD⊤) = (vec(A))⊤(D ⊗ B)vec(C) and

|S̄(f̃k) ⊗ Σ| = |S̄(f̃k)|p |Σ|q , and parametrizing in terms of

Φk := S̄−1(f̃k) and Ω = Σ
−1, up to some constants the nega-

tive log-likelihood follows from (15) as ({Φ} denotes {Φk, k =



1, · · · ,M})

− 1

KMpq
ln fD(D) ∝ G(Ω, {Φ}, {Φ∗}) := −1

p
ln(|Ω|)

− 1

2Mq

M∑

k=1

(
ln |Φk|+ ln |Φ∗

k| − tr(Ak +A
∗
k)
)

(17)

where Ak =
1

Kp

mt∑

ℓ=−mt

D
H
z (f̃k,ℓ)ΩDz(f̃k,ℓ)Φ

∗
k . (18)

In the high-dimension case, one needs to use penalty terms to

enforce sparsity and to make the problem well-conditioned. Impos-

ing a sparse-group lasso sparsity constraint on {Φ} (cf. [2, 21, 22])

and a lasso constraint on Ω, we propose to minimize a penalized

version of negative log-likelihood w.r.t. Ω and {Φ},

L(Ω, {Φ}) = G(Ω, {Φ}, {Φ∗}) + Pp(Ω) + Pq({Φ}), (19)

Pp(Ω) = λp

p∑

i6=j

|Ωij | (20)

Pq({Φ}) = αλq

M∑

k=1

p∑

i 6=j

∣
∣[Φk]ij

∣
∣+ (1− α)

√
Mλq

p∑

i6=j

‖Φ(ij)‖

(21)

where Φ
(ij) := [[Φ1]ij [Φ2]ij · · · [ΦM ]ij ]

⊤ ∈ C
M , (22)

and α ∈ [0, 1] and λp, λq > 0 are tuning parameters.

4. OPTIMIZATION

The objective function L(Ω, {Φ}) in (19) is biconvex: (strictly)

convex in {Φ}, Φk ≻ 0, for fixed Ω, and (strictly) convex in Ω,

Ω ≻ 0, for fixed {Φ}. As in [6, 7] (and others) pertaining to the

i.i.d. observations case, and as is a general approach for biconvex

function optimization [23], we will use an iterative and alternating

minimization approach where we optimize w.r.t. Ω with {Φ} fixed,

and then optimize w.r.t. {Φ} with Ω fixed at the last optimized value,

and repeat the two optimizations (flip-flop). There is no guarantee

that the algorithm converges to the global minimum, however, the

algorithm converges to a local stationary point of L(Ω, {Φ}) [23].

With {Φ̂} denoting the estimate of {Φ}, fix {Φ} = {Φ̂} and

let L1(Ω) denote L(Ω, {Φ̂}) up to some irrelevant constants. We

minimize L1(Ω) w.r.t. Ω to obtain estimate Ω̂, where

L1(Ω) = −1

p
ln(|Ω|) + 1

p
tr
(
ΩS̄

)
+ Pp(Ω) , (23)

S̄ =
1

MKq

M∑

k=1

mt∑

ℓ=−mt

Re
{
Dz(f̃k,ℓ)Φ̂

∗
kD

H
z (f̃k,ℓ)

}
. (24)

Fix Ω = Ω̂ and and let L2({Φ}) denote L(Ω̂, {Φ}) up to some

irrelevant constants. We minimize L2({Φ}) w.r.t. {Φ} to obtain

estimate {Φ̂}, where

L2({Φ}) = − 1

2Mq

M∑

k=1

(ln |Φk|+ ln |Φ∗
k|)

+
1

2Mq

M∑

k=1

tr
(

S̃kΦk + S̃
∗
kΦ

∗
k

)

+ Pq({Φ}) , (25)

S̃k =
1

Kp

mt∑

ℓ=−mt

D
⊤
z (f̃k,ℓ)Ω̂D

∗
z(f̃k,ℓ) . (26)

Our optimization algorithm (used in our simulations) is as follows.

1. Initialize m = 1, Ω(0) = Ip, Φ
(0)
k = Iq , k = 1, 2, · · · ,M .

2. Set Ω̂ = Ω
(m−1) in (26). Use the iterative alternating direc-

tion method of multipliers (ADMM) algorithm [24], as out-

lined in [19, Sec. 4], to minimize L2({Φ}) (given by (25))

w.r.t. {Φ} to obtain estimates Φ
(m)
k , k = 1, 2, · · · ,M . Cost

(40) in [19] corresponds to (25) of this paper.

3. Set {Φ̂} = {Φ̂(m)} in (24). Use the ADMM algorithm of

[25, Sec. III] (with α = 1 therein, no group-lasso penalty) to

minimize L1(Ω) w.r.t. Ω, to obtain estimate Ω
(m). Cost (7)

in [25] (after setting α = 1) corresponds to (23) of this paper.

Normalize Ω̂
(m)
11 = 1 to resolve the scaling ambiguity. Let

m ← m+ 1.

4. Repeat steps 2 and 3 until convergence.

4.1. BIC for selection of λp, λq (and α)

Given n, K and M , the Bayesian information criterion (BIC) is

given by (see also [19]) BIC(λp, λq, α) = −2KMq ln |Ω̂| +
2Kp

∑M
k=1

(
− ln |Φ̂k| + p−1 tr

(
Âk

))
+ ln(2KM)

(
|Ω̂|0/2 +

∑M
k=1 |Φ̂k|0

)
where Âk is given by (18) with Ω and Φk therein re-

placed with Ω̂ and Φ̂k, respectively, |J |0 denotes number of nonzero

elements in J , 2KM is total number of real-valued measurements

in frequency-domain and 2K is the number of real-valued mea-

surements per frequency point, with total M frequencies in (0, π).
Pick α, λq and λp to minimize BIC. In our simulations we fixed

α = 0.05 and then picked λq and λp over a grid of values, as fol-

lows. We search over λq ∈ [λqℓ, λqu] and λp ∈ [λpℓ, λpu] selected

via a heuristic as in [25]. Find the smallest λq and λp, labeled

λqsm and λpsm, for which we get a no-edge model; then we set

λqu = λqsm/2 and λqℓ = λqu/10; similarly for λpu and λpℓ.

5. CONSISTENCY

Now we provide sufficient conditions for local convergence in the

Frobenius norm of the Kronecker-decomposable inverse PSD esti-

mators to the true value. Define q × (qM) matrix Ω̃ as

Ω̃ = [Φ1 Φ2 · · · ΦM ] . (27)

We now allow p, q, M , K (see (12)), λp and λq to be functions of

sample size n, denoted as pn, qn, Mn, Kn, λpn and λqn, respec-

tively. Assume

(A1) The matrix time series {Z(t)}∞t=−∞ is zero-mean station-

ary, Gaussian, satisfying
∑∞

τ=−∞ |[Ψ(τ)]kℓ| < ∞ for every

k, ℓ ∈ [q].

(A2) Define the true edgesets Sq = {{i, j} : [S̄−1
0 (f)]ij 6≡

0, i 6= j, 0 ≤ f ≤ 0.5, i, j ∈ [q]} and Sp = {{i, j} : Ωij 6
0, i 6= j, i, j ∈ [p]}, where S̄0(f) denotes DTFT of Ψ(τ)
and Ω0 = Σ

−1
0 denotes the true value of Ω. Assume that

|Sq| ≤ sqn and |Sp| ≤ spn.

(A3) The minimum and maximum eigenvalues of qn × qn PSD

S̄0(f) ≻ 0 satisfy 0 < βq,min ≤ minf∈[0,0.5] φmin(S̄0(f))
and maxf∈[0,0.5] φmax(S̄0(f)) ≤ βq,max < ∞. Similarly,

0 < βp,min ≤ φmin(Σ0) ≤ φmin(Σ0) ≤ βp,max < ∞.

Here βmin and βmax are not functions of n (or pn, qn).

Theorem 1 whose proof is omitted for lack of space, establishes con-

sistency of a local minimizer (Ω̂, ˆ̃Ω) of L(Ω, {Φ}) = L(Ω, Ω̃)



under assumptions (A1)-(A3). First we define some variables. For

τ > 2, define

C0q =80 max
ℓ,f

([S̄0(f)]ℓℓ)
√

2 ln(16qτnMn)/ ln(qn) , (28)

C0p =40 max
k

([Σ0]ℓℓ)
√

2 ln(4pτn)/ ln(pn) , (29)

rqn =
√

Mn(qn + sqn) ln(qn)/(Knpn) = o(1) , (30)

rpn =
√

(pn + spn) ln(pn)/(MnKnqn) = o(1) . (31)

Recall that for random vectors yn and xn, the notation yn =
OP (xn) means that for any ε > 0, there exist real R and integer N ,

0 < R < ∞ and 0 < N < ∞, such that P (‖yn‖ ≤ R‖xn‖) ≥
1− ε ∀n ≥ N .

Theorem 1 (Consistency). For α ∈ [0, 1], any C1 ≥ 1, and C0p

and C0q as defined in (28) and (29), respectively, suppose λpn and

λqn satisfy

C0p

pn

√

ln(pn)

MnKnqn
≤ λpn ≤ C1C0p

pn

√
(

1 +
pn
spn

)
ln(pn)

MnKnqn
,

C0q

Mnqn

√

ln(qn)

Knpn
≤ λqn ≤ C1C0q

Mnqn

√
(

1 +
qn
sqn

)
ln(qn)

Knpn
.

Then under assumptions (A1)-(A3), there exists a local minimizer

(Ω̂, ˆ̃Ω) of L(Ω, Ω̃) such that

‖Ω̂−Ω0‖F = OP (rpn) , ‖ ˆ̃Ω− Ω̃0‖F = OP (rqn) (32)

where rpn and rqn are as in (30) and (31), respectively. •
Remark 1. Proof of Theorem 1 is patterned after [11] pertaining

to matrix graphs, exploiting the results in [19] for dependent vector

time series and in [25] for multi-attribute graphical models with i.i.d.

data; in turn, all these results are based on the proof technique of

[26]. Theorem 1 helps determine how to choose Mn and Kn so that

for given n, qn and pn, limn→∞ rpn = 0 and limn→∞ rqn = 0.

See also [19, Remark 2]. �

6. NUMERICAL RESULTS

We use model (7)-(8) to generate synthetic data where Ψ(τ) is con-

trolled via Bi’s as in (9) and Σ is determined via an Erdös-Rènyi

graph. We take p = q = 15 and for Ψ(τ), Bi’s in (7) have a

block-diagonal structure with 5 blocks, each block as in (9), where

in each 3× 3 block, a, b are uniform over [−0.3, 0.7], L is uniform

over {1, 2, 3, 4, 5}. In the Erdös-Rènyi graph with p = 15 nodes,

the nodes are connected with probability per = 0.05. In the upper

triangular Ω̄, Ω̄ij = 0 if {i, j} 6∈ Sp, Ω̄ij is uniformly distributed

over [−0.4,−0.1] ∪ [0.1, 0.4] if {i, j} ∈ Sp, and Ω̄ii = 0.5. With

Ω̄ = Ω̄
⊤, add κI to Ω̄ with κ picked to make minimum eigenvalue

of Ω = Ω̄ + κI equal to 0.5. Let Ω = F̃ F̃ (matrix square-root),

then F = F̃−1 in (7).

We applied our proposed approach with n = 256, M = 2,

K = 63 and compared with the approach of [6] (which is also the

approach of [7, 14], all of whom assume i.i.d. observations and have

two lasso penalties one each on Ω and Γ, counterpart to our Φk).

By changing the penalty parameters and determining the resulting

edges, we calculated the true positive rate (TPR) and false positive

rate 1-TNR (where TNR is the true negative rate) over 100 runs,

separately for Ω and {Φk}/Γ. The receiver operating characteristic

(ROC) is shown in Fig. 1 based on 100 runs. Fig. 1 shows that the

i.i.d. modeling of [6,7,14] is unable to capture the “dependent” edges

(cf. (7)) via Γ whereas it has no issues with Ω. Our approach works

well for both components of the graph Kronecker product.
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Fig. 1: ROC curves: plots labeled “IID” are from the approach of [6,

7, 14], and the plots labeled “dep.” are from our proposed approach.

TPR=true positive rate, TNR=true negative rate

In Fig. 2 we show the results based on 50 runs for our approach

when BIC parameter selection method (Sec. 4.1) is applied. We take

n = 64, 128, 256, 512, 1024 with corresponding mt values as ei-

ther mt = 7, 15, 31, 63, 127 (M = 2), or mt = 3, 7, 14, 31, 63
(M = 4); note K = 2mt + 1. Here we show the TPR, 1-TNR and

F1score values for the overall graph (not the two Kronecker product

components separately) along with the ±σ error bars. The proposed

approach works well both in terms of F1 score and TPR vs 1-TNR.
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Fig. 2: BIC based results of the proposed approach: F1-scores, TPR

and 1-TNR

7. CONCLUSIONS

Sparse-group lasso penalized log-likelihood approach in frequency-

domain with a Kronecker-decomposable PSD was presented for ma-

trix graph learning for dependent time series. An ADMM-based flip-

flop approach for iterative optimization of the bi-convex problem

was presented. We provided sufficient conditions for consistency of

a local estimator of inverse PSD. We illustrated our approach using

a numerical example where our approach significantly outperformed

an existing i.i.d. modeling-based approach [6, 7, 14] in correctly de-

tecting the graph edges with ROC as the performance metric.
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