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ABSTRACT

We consider the problem of estimating differences in two Gaussian

graphical models (GGMs) which are known to have similar struc-

ture. The GGM structure is encoded in its precision (inverse covari-

ance) matrix. In many applications one is interested in estimating

the difference in two precision matrices to characterize underlying

changes in conditional dependencies of two sets of data. Most ex-

isting methods for differential graph estimation are based on a lasso

penalized loss function. In this paper, we analyze a log-sum penal-

ized D-trace loss function approach for differential graph learning.

An alternating direction method of multipliers (ADMM) algorithm

is presented to optimize the objective function. Theoretical analysis

establishing consistency in estimation in high-dimensional settings

is provided. We illustrate our approach using a numerical exam-

ple where log-sum penalized D-trace loss significantly outperforms

lasso-penalized D-trace loss as well as smoothly clipped absolute

deviation (SCAD) penalized D-trace loss.

Keywords: Sparse graph learning; differential graph estimation;

Gaussian graphical models; lasso; log-sum penalty.

1. INTRODUCTION

Graphical models provide a powerful tool for analyzing multivariate

data [1,2]. In a statistical graphical model, the conditional statistical

dependency structure among p random variables x1, x1, · · · , xp, is

represented using an undirected graph G = (V, E). The graph G then

is a conditional independence graph (CIG) where there is no edge be-

tween nodes i and j (i.e., {i, j} 6∈ E) iff xi and xj are conditionally

independent given the remaining p-2 variables xℓ, ℓ ∈ [p], ℓ 6= i,
ℓ 6= j. In particular, Gaussian graphical models (GGMs) are CIGs

where x is multivariate Gaussian. Suppose x has positive-definite

covariance matrix Σ with inverse covariance matrix Ω = Σ
−1.

Then Ωij , the (i, j)-th element of Ω, is zero iff xi and xj are con-

ditionally independent. Such models for x have been extensively

studied. Given n samples of x, in high-dimensional settings where

p ≫ 1 and/or n is of the order of p, one estimates Ω under some

sparsity constraints; see [3–6].

More recently there has been increasing interest in differential

network analysis where one is interested in estimating the differ-

ence in two inverse covariance matrices [7–9]. Given observations

x and y from two groups of subjects, one is interested in the dif-

ference ∆ = Ωy − Ωx, where Ωx = (E{xx⊤})−1 and Ωy =
(E{yy⊤})−1. The associated differential graph is G∆ = (V, E∆)
where {i, j} ∈ E∆ iff ∆ij 6= 0. It characterizes differences between

the GGMs of the two sets of data. We use the term differential graph

as in [10, 11] ( [7–9] use the term differential network). As noted

in [9], in biostatistics, the differential network/graph describes the
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changes in conditional dependencies between components under dif-

ferent environmental or genetic conditions. For instance, one may be

interested in the differences in the graphical models of healthy and

impaired subjects, or models under different disease states, given

gene expression data or functional MRI signals [3, 12, 13].

All existing methods for differential graph estimation except for

[21], are based on a lasso penalized loss function. In this paper we

consider a log-sum penalty (LSP) instead of lasso penalty to regu-

larize the problem, motivated by [14]. For sparse solutions, ideal

penalty is ℓ0 which is non-convex and the problem is usually impos-

sible to solve. So one relaxes the problem using ℓ1 (lasso) penalty

which is convex. Ref. [14] notes that a key difference between the

ℓ1 and ℓ0 norms is the dependence on magnitude. Their solution

to rectify this imbalance, is iterative reweighted ℓ1 minimization,

and to construct an analytical framework, [14] suggests the log-sum

penalty. As in [8, 15] (and others) we use a D-trace loss function for

differential graph estimation where D-trace refers to difference-in-

trace loss function, a term coined in [16] in the context of graphical

model estimation.

Unlike lasso, log-sum penalty is non-convex. Although, non-

convex penalties have been extensively used for graph estimation

(see [17–20] and references therein), only [21] has investigated use

of non-convex penalties SCAD (smoothly clipped absolute devia-

tion) and MCP (minimax concave penalty) for differential graph

estimation. Ref. [21] does not consider LSP, and in our numeri-

cal results, we show that our LSP-based differential graph estimator

significantly outperforms both lasso and SCAD penalized methods

of [8, 15] and [21], respectively.

Notation: For a set V , |V | or card(V ) denotes its cardinality.

Given A ∈ R
p×p, we use φmin(A), φmax(A), |A| and tr(A) to

denote the minimum eigenvalue, maximum eigenvalue, determinant

and trace of A, respectively. For B ∈ R
p×q , we define ‖B‖ =

√

φmax(B⊤B), ‖B‖F =
√

tr(B⊤B), ‖B‖1 =
∑

i,j |Bij |,
where Bij is the (i, j)-th element of B (also denoted by [B]ij),

‖B‖∞ = maxi,j |Bij | and ‖B‖1,∞ = maxi

∑

j |Bij |. The sym-

bol ⊗ denote the Kronecker product. Let S = E∆ = {{k, ℓ} :
|∆(kℓ)| 6= 0} where ∆ = [∆(kℓ)] ∈ R

p×p. Then ∆S denotes

the submatrix of ∆ with rows and columns indexed by S, i.e.,

∆S = [∆](k,ℓ)∈S . Suppose Γ = A ⊗ B for some matrices

A = [Aij ] and B = [Bij ]. For any two subsets T1 and T2 of

[p]× [p], ΓT1,T2
denotes the submatrix of Γ with rows and columns

indexed by T1 and T2, i.e., ΓT1,T2
= [AjℓBkq](j,k)∈T1,(ℓ,q)∈T2

.

2. LOG-SUM PENALIZED PENALIZED D-TRACE LOSS

Let x, y ∈ R
p be zero-mean, Gaussian, and independent of each

other. Given i.i.d. samples x(t), t = 1, 2, · · · , nx, of x, and sim-

ilarly given i.i.d. samples y(t), t = 1, 2, · · · , ny , of y, form the



sample covariance estimates

Σ̂x =
1

nx

nx
∑

t=1

x(t)x⊤(t) , Σ̂y =
1

ny

ny
∑

t=1

y(t)y⊤(t) . (1)

and denote their true values as Σ∗
x = Ω

−∗
x (= (Ω∗

x)
−1) and Σ

∗
y =

Ω
−∗
y . We wish to estimate ∆ = Ω

∗
y−Ω

∗
x and graph G∆ = (V, E∆),

based on Σ̂x and Σ̂y . As in [8] (see also [15, Sec. 2.1]), we will use

a convex D-trace loss function given by

L(∆, Σ̂x, Σ̂y) =
1

2
tr(Σ̂x∆Σ̂y∆

⊤)− tr(∆(Σ̂x − Σ̂y)) (2)

where D-trace refers to difference-in-trace loss function, a term

coined in [16] in the context of graphical model estimation. The

function L(∆,Σ∗
x,Σ

∗
y) is strictly convex in ∆ and has a unique

minimum at ∆∗ = Ω
∗
y − Ω

∗
x [8, 15]. When sample covariances

are used, [15] proposed to estimate ∆ by minimizing the lasso

penalized loss function

Lλ(∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) + λ

p
∑

i,j=1

|∆ij | (3)

where λ > 0 is a tuning parameter. In [8] a symmetrized version

of L(∆, Σ̂x, Σ̂y) is used with lasso penalty. In this paper we will

replace the lasso penalty with a log-sum penalty, motivated by [14].

With 0 < δ ≪ 1, following [14], define the log penalty for

θ ∈ R,

pλ(θ) = λ ln (1 + |θ|/δ) . (4)

Replace the lasso penalty in (3) with pλ(θ), to yield

LLSP (∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) +

p
∑

i,j=1

pλ(∆ij), (5)

the log-sum penalized D-trace loss. Unlike Lλ(∆, Σ̂x, Σ̂y), we

now have a non-convex function of ∆ in LLSP (∆, Σ̂x, Σ̂y).
Similar to the SCAD (smoothly clipped absolute deviation)

penalty in [17,18], we solve the problem min∆ LLSP (∆, Σ̂x, Σ̂y)
iteratively, where in each iteration, the problem is convex. Using

∂pλ(|θ|)/∂|θ| = λ/(|θ| + δ), a local linear approximation (LLA)

to pλ(|θ|) around θ0 yields

pλ(|θ|) ≈ Pλ(|θ0|) + λ

|θ0|+ δ
(|θ| − |θ0|) ⇒ λ

|θ0|+ δ
|θ| , (6)

therefore, with θ0 fixed, we consider only the last term above for

optimization w.r.t. θ. Suppose we have a “good” initial solution ∆̄

to the problem (from e.g., using Lλ(∆, Σ̂x, Σ̂y)). Then, given ∆̄,

a local linear approximation (LLA) to pλ(∆ij) yields the convex

function to be minimized

L̃LSP (∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) +

p
∑

i,j=1

λ |∆ij |
|[∆̄]ij |+ δ

, (7)

= L(∆, Σ̂x, Σ̂y) +

p
∑

i,j=1

λij |∆ij | , λij =
λ

|[∆̄]ij |+ δ
. (8)

This is then quite similar to adaptive lasso [22] with adaptive lasso-

like penalty λij , except that [22] has δ = 0. By [17, Theorem 1],

the LLA of LSP provides a majorization of LSP, therby yielding a

majorization-minimization approach. In fact, by [17, Theorem 2],

the LLA is the best convex majorization of the LSP (which is con-

cave since ∂2pλ(|θ|)/∂|θ|2 = −λ/(|θ|+ δ)2).

Suppose

∆̂ = argmin
∆

L̃LSP (∆, Σ̂x, Σ̂y) . (9)

Even though ∆ is symmetric, ∆̂ is not. We can symmetrize it by

setting ∆̂sym = 1
2
(∆̂+ ∆̂

⊤), after obtaining ∆̂.

3. OPTIMIZATION

Instead of minimizing LLSP (∆, Σ̂x, Σ̂y) in (5), we will iteratively

minimize its LLA L̃LSP (∆, Σ̂x, Σ̂y). In each minimization of

L̃LSP (∆, Σ̂x, Σ̂y), we we use an alternating direction method of

multipliers (ADMM) approach [23] with variable splitting. We can

use the solution of [15] (see also [8]) modified for adaptive penalty

λij ( [15] uses λij = λ for all edges {i, j}). Using variable splitting,

consider

min
∆,W

{

L(∆, Σ̂x, Σ̂y) +

p
∑

i,j=1

λij |Wij |
}

subject to ∆ = W .

(10)

The scaled augmented Lagrangian for this problem is [23]

Lρ = L(∆, Σ̂x, Σ̂y) +

p
∑

i,j=1

λij |Wij |+ ρ

2
‖∆−W +U‖2F

(11)

where U is the dual variable, and ρ > 0 is the penalty parame-

ter. Given the results ∆(k),W (k),U (k) of the kth iteration, in the

(k+1)st iteration, an ADMM algorithm executes the following three

updates:

(a) ∆
(k+1) ← argmin∆ La(∆), La(∆) := L(∆, Σ̂x, Σ̂y)+

ρ

2
‖∆−W (k) +U (k)‖2F

(b) W (k+1) ← argminW Lb(W ), Lb(W ) :=
∑p

i,j=1 λij |Wij |+ ρ

2
‖∆(k+1) −W +U (k)‖2F

(c) U (k+1) ← U (k) +
(

∆
(k+1) −W (k+1)

)

. (12)

Update (a): The solution is as given in [8, 15]. Carry out eigen-

decomposition of Σ̂x and Σ̂y as Σ̂x = QxDxQ
⊤
x , QxQ

⊤
x = I

and Σ̂y = QyDyQ
⊤
y , QyQ

⊤
y = I , where Dx and Dy are diagonal

matrices. Then ∆̂ that minimizes La(∆) is given by

∆̂ =Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W −U)
)

Qy]
]

Q
⊤
y (13)

where the symbol ◦ denotes the Hadamard product and B ∈ R
p×p

organizes the diagonal of (Dy⊗Dx+ρI)−1 in a matrix with Bij =

1/([Dx]ii[Dy]jj+ρ). Note that the eigen-decomposition of Σ̂x and

Σ̂y has to be done only once. Thus

∆
(k+1) =Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W (k) −U
(k))

)

Qy]
]

Q
⊤
y

(14)

Update (b): With A = ∆
(k+1) +U (k), we have the lasso solution

(Wij)
(k+1) =

(

1− (λij/ρ)

|[A]ij |
)

+
[A]ij (15)



where (a)+ = max(0, a).
Our optimization algorithm is as follows.

1. Calculate sample estimates Σ̂x and Σ̂y . Compute B as in

ADMM update (a). Initialize m = 1, ∆̌(0) = 0, ∆̄ = ∆̌
(0)

in (8) resulting in λij = λ/δ.

2. Set k = 1, ∆(k) = ∆̌
(m−1) and W (k) = U (k) = 0 to start

the ADMM algorithm.

(i) In the ADMM step (a), calculate ∆
(k+1) via (14).

(ii) In ADMM step (b), calculate W (k+1) via (15).

(iii) Execute ADMM step (c), via (12).

(iv) Let k ← k + 1 and repeat steps (i)-(iii) until conver-

gence. Denote the converged value as ∆̂.

3. Set ∆̌(m) = ∆̂, ∆̄ = ∆̌
(m) in (8), hence,

λij = λ/(|[∆̌(m)]ij |+ δ). Let m ← m+ 1.

4. Repeat steps 2 and 3 until convergence. The converged ∆̌ is

the final estimate ∆̂. (For simulation results shown in Sec.

5, we terminated after two iterations of steps 2 and 3, similar

to [17–20].)

Convergence. For the ADMM algorithm, a stopping (conver-

gence) criterion following [23, Sec. 3.3.1] can be devised. The stop-

ping criterion is based on primal and dual residuals being small

where, in our case, at (k+1)st iteration, the primal residual is given

by ∆
(k+1)−W (k+1) and the dual residual by ρ(W (k+1)−W (k)).

Convergence criterion is met when the norms of these residuals are

below some threshold. The objective function L̃LSP (∆, Σ̂x, Σ̂y),
given by (8), is strictly convex. It is also closed, proper and lower

semi-continuous. Hence, for any fixed ρ > 0, the ADMM algo-

rithm is guaranteed to converge [23, Sec. 3.2], in the sense that we

have primal residual convergence to 0, dual residual convergence to

0, and objective function convergence to the optimal value. Since

the LLA of LSP provides a majorization of LSP, therby yielding a

majorization-minimization approach, the overall iterative minimiza-

tion approach yileds a local minimum of LLSP (∆, Σ̂x, Σ̂y).
Model Selection. Following the lasso penalty work of [8] (who

invokes [12]), we will use the following criterion for selection of λ
in the LSP for a given δ:

BIC(λ) =(nx + ny) ‖Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y)‖F
+ ln(nx + ny) |∆̂|0 (16)

where |A|0 denotes number of nonzero elements in A and ∆̂ obeys

(9). Choose λ to minimize BIC(λ). Following [8] we term it BIC

(Bayesian information criterion) even though the cost function used

is not negative log-likelihood although ln(nx + ny) |∆̂|0 penalizes

over-parametrization as in BIC. It is based on the fact that true ∆
∗

satisfies Σ∗
x∆

∗
Σ

∗
y − (Σ∗

x−Σ
∗
y) = 0. In our simulations we search

over λ ∈ [λℓ, λu], where λℓ and λu are selected via a heuristic as

in [24]. Find the smallest λ, labeled λsm for which we get a no-edge

model; then we set λu = λsm/2 and λℓ = λu/10.

4. THEORETICAL ANALYSIS

Here we analyze the properties of ∆̌(m), the minimizer of the LLA

L̃LSP (∆, Σ̂x, Σ̂y) at iteration m, m ≥ 1, by following the general

framework of [25]. In the lasso-penalized approaches of [8, 15, 16],

the general method of [26] is used which requires an irrepresentabil-

ity condition which we do not impose.

Define the true differential edgeset

S =E∆∗ = {{k, ℓ} : |∆∗
kℓ| > 0} , s = |S| . (17)

In rest of this section we allow p, s and λ to be a functions of sample

size n, denoted as pn, sn and λn, respectively. Lemma 1 follows

from [26, Lemma 1] (specific form is based on [24, Lemma 2]).

Lemma 1: Let Σ̂x and Σ̂y be as in (1). Define n = min(nx, ny),
σ̄xy = max{maxi Σ

∗
x,ii, maxi Σ

∗
y,ii} and

A =max
{

‖Σ̂x −Σ
∗
x‖∞ , ‖Σ̂y −Σ

∗
y‖∞

}

C0 =40 σ̄xy

√

2
(

τ + ln(4)/ ln(pn)
)

. (18)

Then for any τ > 2 and n > 2(ln(4) + τ ln(pn)),

P
(

A > C0

√

ln(pn)/n
)

≤ 2/pτ−2
n • (19)

Define

Mxy = max{‖Σ∗
x‖∞ , ‖Σ∗

y‖∞} , (20)

φ∗
min = φmin(Σ

∗
x)φmin(Σ

∗
y) . (21)

Let ∆̂ = argmin∆ L̃LSP (∆, Σ̂x, Σ̂y) for some choice of finite ∆̄

in (7)-(8).

Theorem 1 : For the system model of Sec. 2, assume that initializa-

tion satisfies ‖∆̄‖∞ ≤ Minit and let M̄init = Minit + δ. If

λn ≥ 2M̄init

(

3Mxy ‖∆∗‖1 + 2
)

C0

√

ln(pn)

n
(22)

n = min(nx, ny) >
96C0MxyM̄

2
init sn

√

ln(pn)

φ∗
min δ2

, (23)

then with probability > 1− 2/pτ−2
n , for any τ > 2, we have

‖∆̂−∆
∗‖F ≤ 12λn

√
sn

φ∗
min δ

• (24)

The proof of Theorem 1 is omitted for lack of space. It uses the re-

stricted strong convexity framework of [25] together with a weighted

ℓ1-norm penalty.

Remark 1: Convergence Rate. For any positive-definite matrix

A, we have ‖A‖∞ ≤ maxℓ |Aℓℓ| ≤ φmax(A). Assume that

0 <βmin ≤ min{φmin(Σ
∗
y), φmin(Σ

∗
x)}

≤max{φmax(Σ
∗
y), φmax(Σ

∗
x)} ≤ βmax < ∞ (25)

where βmin and βmax do not depend upon on n (or pn and sn).

Hence Mxy ≤ max{φmax(Σ
∗
x), φmax(Σ

∗
y)} ≤ βmax and

‖∆∗‖1 ≤sn‖∆∗‖∞ ≤ sn
[

‖(Σ∗
y)

−1‖∞ + ‖(Σ∗
x)

−1‖∞
]

≤sn
(

φ−1
min(Σ

∗
y) + φ−1

min(Σ
∗
x)
)

≤ 2sn/βmin . (26)

Then

λn = C1sn

√

ln(pn)

n
≥ right side of (22) (27)

for some C1 that does not depend upon n, pn or sn. Then we have

‖∆̂−∆
∗‖F ≤ C2 s

1.5
n

√

ln(pn)/n (28)

for some C2 that does not depend upon n, pn or sn. Thus, ‖∆̂ −
∆

∗‖F = OP (s
1.5
n

√

ln(pn)/n). Therefore, for ‖∆̂ − ∆
∗‖F → 0

as n → ∞, we must have s1.5n

√

ln(pn)/n → 0. The results in [8]

need s2.5n

√

ln(pn)/n → 0. Recall that sn = |S| = |E∆∗ |, number

of edges in the differential graph. �



5. SIMULATION EXAMPLE

We consider an Erdös-Rènyi graph where p nodes are connected

to each other with probability per = 0.5. In the upper triangu-

lar Ωx, we set [Ωx]jk = 0.5|j−k| for j = k = 1, · · · , p. For

j 6= k, if the two nodes are not connected, we have Ωjk = 0, and

if nodes j and k are connected, then Ωjk is uniformly distributed

over [−0.4,−0.1] ∪ [0.1, 0.4]. Then add lower triangular elements

to make Ωx a symmetric matrix. To generate Ωy , we follow [8]

and first generate a differential graph with ∆ ∈ R
p×p as an Erdös-

Rènyi graph with connection probability per = 0.05 (sparse): if

nodes j and k are connected, then ∆jk is set to ±0.9 with equal

probabilities. Then Ωy = Ωx + ∆. Finally add γI to Ωy and to

Ωx and pick γ so that Ωy and Ωx are both positive definite. With

ΦxΦ
⊤
x = Ω

−1
x , we generate x = Φw with w ∈ R

p as Gaus-

sian w ∼ N (0, I), and similarly for independent y. We gener-

ate n = nx = ny i.i.d. observations for x and y, with p = 100,

n ∈ {100, 300, 800, 1600, 3200}.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1-TNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P

R
 

LSP: n=100

LSP: n=300

LSP: n=800

LSP: n=1600

LSP: n=3200

lasso: n=100

lasso: n=300

lasso: n=800

lasso: n=1600

lasso: n=3200

Fig. 1: ROC curves for LSP and Lasso penalties. TPR=true positive

rate, TNR=true negative rate
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Fig. 2: ROC curves for LSP and SCAD penalties. TPR=true positive

rate, TNR=true negative rate

Simulation results based on 100 runs are shown in Figs. 1-4.

By changing the penalty parameter λ and determining the resulting

edges, we calculated the true positive rate (TPR) and false positive

rate 1-TNR (where TNR is the true negative rate) over 100 runs. The

receiver operating characteristic (ROC) is shown in Fig. 1 for our

LSP-based approach (labeled “LSP”) as well as for a lasso-based

approach (labeled “lasso”), based on [15]. Fig. 2 shows the ROC for

our LSP-based approach (labeled “LSP”) as well as for the SCAD-

based approach (labeled “SCAD”), based on [21]. It is seen from

Figs. 1-2 that our approach outperforms both the convex lasso-based

approach and the non-convex SCAD-based approach.

For the results shown in Fig. 3, we picked the λ value (from a

grid of λ values) that leads to the highest F1 score averaged over 100

Monte Carlo runs, for a given method. The resulting F1 scores are

shown in Fig. 3 for varying n, for penalty functions Lasso, LSP and

SCAD. It is seen that the LSP-based approach outperforms the other

two approaches, lasso (convex penalty) and SCAD (non-convex

penalty), and SCAD outperforms lasso, when the F1 score is the

performance measure.

In practice we do not know the ground truth, hence, we cannot

pick λ to maximize the F1 score. In Fig. 4 we show the results based

on 100 runs for our approach when BIC parameter selection method

(Sec. 3) is applied. Here we show the TPR, 1-TNR and F1score

values along with the ±σ error bars, for varying n. The proposed

approach works well both in terms of F1 score and TPR vs 1-TNR.
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Fig. 3: Optimized F1-scores for LSP, lasso and SCAD penalty based

differential graph estimation methods.
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Fig. 4: BIC based results: F1-scores, TPR and 1-TNR

6. CONCLUSIONS

A log-sum penalized D-trace loss function approach for differential

graph learning was presented. An ADMM algorithm was presented

to optimize the non-convex objective function. Theoretical analysis

establishing consistency of the estimator in high-dimensional set-

tings was performed. We illustrated our approach via a simulation

example where the log-sum penalized D-trace loss significantly out-

performed the lasso-penalized D-trace loss as well as the smoothly

clipped absolute deviation (SCAD) penalized D-trace loss with ROC

and/r the F1 score as the performance metric.
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