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ABSTRACT

We consider the problem of estimating differences in two Gaussian
graphical models (GGMs) which are known to have similar struc-
ture. The GGM structure is encoded in its precision (inverse covari-
ance) matrix. In many applications one is interested in estimating
the difference in two precision matrices to characterize underlying
changes in conditional dependencies of two sets of data. Most ex-
isting methods for differential graph estimation are based on a lasso
penalized loss function. In this paper, we analyze a log-sum penal-
ized D-trace loss function approach for differential graph learning.
An alternating direction method of multipliers (ADMM) algorithm
is presented to optimize the objective function. Theoretical analysis
establishing consistency in estimation in high-dimensional settings
is provided. We illustrate our approach using a numerical exam-
ple where log-sum penalized D-trace loss significantly outperforms
lasso-penalized D-trace loss as well as smoothly clipped absolute
deviation (SCAD) penalized D-trace loss.

Keywords: Sparse graph learning; differential graph estimation;
Gaussian graphical models; lasso; log-sum penalty.

1. INTRODUCTION

Graphical models provide a powerful tool for analyzing multivariate
data [1,2]. In a statistical graphical model, the conditional statistical
dependency structure among p random variables x1,x1, -+, xp, is
represented using an undirected graph G = (V, £). The graph G then
is a conditional independence graph (CIG) where there is no edge be-
tween nodes ¢ and j (i.e., {4, j} & &) iff z; and x; are conditionally
independent given the remaining p-2 variables z¢, £ € [p], £ # i,
£ # j. In particular, Gaussian graphical models (GGMs) are CIGs
where @ is multivariate Gaussian. Suppose « has positive-definite
covariance matrix X with inverse covariance matrix = 327!
Then €, the (4, j)-th element of €2, is zero iff z;; and x; are con-
ditionally independent. Such models for  have been extensively
studied. Given n samples of @, in high-dimensional settings where
p > 1 and/or n is of the order of p, one estimates €2 under some
sparsity constraints; see [3—6].

More recently there has been increasing interest in differential
network analysis where one is interested in estimating the differ-
ence in two inverse covariance matrices [7-9]. Given observations
x and y from two groups of subjects, one is interested in the dif-
ference A = Q, — Q,, where Q, = (EF{zz'}) ! and Q, =
(E{yy"})~". The associated differential graph is Ga = (V,Ea)
where {7, j} € Eaiff Aj; # 0. It characterizes differences between
the GGMs of the two sets of data. We use the term differential graph
as in [10, 11] ( [7-9] use the term differential network). As noted
in [9], in biostatistics, the differential network/graph describes the
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changes in conditional dependencies between components under dif-
ferent environmental or genetic conditions. For instance, one may be
interested in the differences in the graphical models of healthy and
impaired subjects, or models under different disease states, given
gene expression data or functional MRI signals [3,12,13].

All existing methods for differential graph estimation except for
[21], are based on a lasso penalized loss function. In this paper we
consider a log-sum penalty (LSP) instead of lasso penalty to regu-
larize the problem, motivated by [14]. For sparse solutions, ideal
penalty is £y which is non-convex and the problem is usually impos-
sible to solve. So one relaxes the problem using ¢; (lasso) penalty
which is convex. Ref. [14] notes that a key difference between the
¢y and ¢y norms is the dependence on magnitude. Their solution
to rectify this imbalance, is iterative reweighted ¢; minimization,
and to construct an analytical framework, [14] suggests the log-sum
penalty. As in [8, 15] (and others) we use a D-trace loss function for
differential graph estimation where D-trace refers to difference-in-
trace loss function, a term coined in [16] in the context of graphical
model estimation.

Unlike lasso, log-sum penalty is non-convex. Although, non-
convex penalties have been extensively used for graph estimation
(see [17-20] and references therein), only [21] has investigated use
of non-convex penalties SCAD (smoothly clipped absolute devia-
tion) and MCP (minimax concave penalty) for differential graph
estimation. Ref. [21] does not consider LSP, and in our numeri-
cal results, we show that our LSP-based differential graph estimator
significantly outperforms both lasso and SCAD penalized methods
of [8,15] and [21], respectively.

Notation: For a set V, |V or card(V') denotes its cardinality.
Given A € RP*P| we use ¢min(A), dmax(A), |A] and tr(A) to
denote the minimum eigenvalue, maximum eigenvalue, determinant
and trace of A, respectively. For B € RP*?, we define ||B|| =
Vomax(B'B), ||Blr = u(B'B), [Bl. = >, ;|Bi
where Bj;; is the (i, 7)-th element of B (also denoted by [B];;),
||B||oo = maxj,; |B”| and HB”LOO = max; Zj |B7]| The Sym-
bol ® denote the Kronecker product. Let S = Ea = {{k, ¢} :
|Akey| # 0} where A = [Ay] € RP*P. Then As denotes
the submatrix of A with rows and columns indexed by S, i.e.,
As = [A],nes. Suppose I' = A @ B for some matrices
A = [A;] and B = [By;]. For any two subsets 77 and 1% of
[p] % [p], T'ry, 1, denotes the submatrix of I" with rows and columns
indexed by T1 and TQ, i.e., FTl,Tz = [AjZqu](j,k)eTl J(£,q)ETS -

)

2. LOG-SUM PENALIZED PENALIZED D-TRACE LOSS

Let ¢, y € R? be zero-mean, Gaussian, and independent of each
other. Given i.i.d. samples @(t), t = 1,2, ,ng, of x, and sim-
ilarly given i.i.d. samples y(t), t = 1,2,---,ny, of y, form the



sample covariance estimates

~ 1 N R 1 Ny
B.= dat)z (1), B, = —~ Syty' ). M
T ot=1 Yot=1

and denote their true values as X5 = Q, (= (Q5) ") and &} =
Q.. We wish to estimate A = € —€; and graph Ga = (V,€a),
based on 3, and ﬁ]y As in [8] (see also [15, Sec. 2.1]), we will use
a convex D-trace loss function given by

LA S, 5,) = %tr(ﬁxAﬁyAT) S AGL -5) @
where D-trace refers to difference-in-trace loss function, a term
coined in [16] in the context of graphical model estimation. The
function L(A, 33}, 37) is strictly convex in A and has a unique
minimum at A* = Qp — Q7 [8,15]. When sample covariances
are used, [15] proposed to estimate A by minimizing the lasso

penalized loss function

P
LA, 3, 3,) = L(A, 3., 5,) A ) |Ay] 3

i,j=1

where A > 0 is a tuning parameter. In [8] a symmetrized version
of L(A,3,,3,) is used with lasso penalty. In this paper we will
replace the lasso penalty with a log-sum penalty, motivated by [14].

With 0 < 6 < 1, following [14], define the log penalty for
0 € R,

pa(0) = AIn (1 +16]/6) . 4)
Replace the lasso penalty in (3) with py(6), to yield

p
LLSP(Afzxvzy) :L(szfvzy)'i' Z pA(Ai]')v (5

ij=1

the log-sum penalized D-trace loss. Unlike Ly (A, 3,,3,), we
now have a non-convex function of A in Lrsp(A,3,,3,).

Similar to the SCAD (smoothly clipped absolute deviation)
penalty in [17, 18], we solve the problem mina Lrsp(A, 3., 3,)
iteratively, where in each iteration, the problem is convex. Using
Apx(10])/0160] = A/(|6] + 6), a local linear approximation (LLA)
to px(|0]) around 6y yields

A

0]) =~ Px(|6 —_—
pal6l) = (o)) + (5o

(161 = 160]) = 01, (6

A
|6o| + 0
therefore, with 6y fixed, we consider only the last term above for
optimization w.r.t. . Suppose we have a “good” initial solution A
to the problem (from e.g., using Lx (A, 3., 3,)). Then, given A,
a local linear approximation (LLA) to px(A;;) yields the convex
function to be minimized

p
_ S I A A
Lisp(A,3:,3,) = LA, S, 5,) + Y =9 ()
v ! ”Z:I [Alij| + 6
A A P A
= L(A, 30, 3y) + > AiglAul, Ay = A, +s ®
ij

1,j=1

This is then quite similar to adaptive lasso [22] with adaptive lasso-
like penalty \;;, except that [22] has § = 0. By [17, Theorem 1],
the LLA of LSP provides a majorization of LSP, therby yielding a

majorization-minimization approach. In fact, by [17, Theorem 2],
the LLA is the best convex majorization of the LSP (which is con-
cave since 0°px (]0]) /010> = —\/(]0] + 8)?).

Suppose

A = argmin Lrsp(A,3,,3,). )

Even though A is symmetric, A is not. We can symmetrize it by
setting Agym = 3(A + AT), after obtaining A.

3. OPTIMIZATION

Instead of minimizing Lpsp (A, f]w, ﬁy) in (5), we will iteratively
minimize its LLA ZLSP(A, f]m, ﬁy) In each minimization of
Lisp(A,3,,3,), we we use an alternating direction method of
multipliers (ADMM) approach [23] with variable splitting. We can
use the solution of [15] (see also [8]) modified for adaptive penalty
Aij ([15] uses \;; = A forall edges {i, j}). Using variable splitting,
consider

P
E%{L(A, $..5,) + _Zl Aij|wz-j\} subject to A = W .
i,j=

(10)

The scaled augmented Lagrangian for this problem is [23]

P
Ly =L(A, 3, 3,) + > Ay |Wiy| + §\|A -W+U|%
i=1

an

where U is the dual variable, and p > 0 is the penalty parame-
ter. Given the results A<k), W U® of the kth iteration, in the
(k+1)st iteration, an ADMM algorithm executes the following three
updates:
(@) AFY argmina La(A), L.(A):= L(A,2,,3,)+
sla-w U
(b) WD argmingw Ly(W), Ly(W) :=
S X[ Wi+ SIATHY — W UW 3

© URD  u® 4 (A<k+1) - W(’“'”) . (12)

Update (a): The solution is as given in [8, 15]. Carry out eigen-
decomposition of 33, and 3, as 3, = Q. D.Q. . Q.Q. =TI
and fly = QyDyQ;, QyQ;r = I, where D, and D, are diagonal
matrices. Then A that minimizes L, (A) is given by

A=Q.[BoIQI(S.~ 5, + oW -1))Q,)]]Q) (13

where the symbol o denotes the Hadamard product and B € RP*?
organizes the diagonal of (D, ® D, +pI)~" in a matrix with B;; =
1/([D.)ii[Dy];;4p). Note that the eigen-decomposition of 3, and
ﬁ]y has to be done only once. Thus

A —g, [B o[Q1 (B -2y + pW® —UM)Q,)]Q,
(14)

Update (b): With A = AFETD L U®) | we have the lasso solution

(Xij/p) .
[[A]i;] )_JA}” (15)

(W) = (1



where (a)+ = max(0, a).
Our optimization algorithm is as follows.

1. Calculate sample estimates 3, and ﬁly. Compute B as in
ADMM update (a). Initialize m = 1, A©® =0, A = A©®
in (8) resulting in \;; = A\/0.

2. Setk =1, A% = Am=D and W = U® = 0 10 start
the ADMM algorithm.

(i) Inthe ADMM step (a), calculate A1) via (14).
(ii) In ADMM step (b), calculate W #F1) via (15).
(iii) Execute ADMM step (c), via (12).

(iv) Let k < k + 1 and repeat steps (i)-(iii) until conver-
gence. Denote the converged value as A.

3. Set A = A, A = AU in (8), hence,
Aij = /\/(|[A(m)] i| 4+ 6). Letm < m + 1.

4. Repeat steps 2 and 3 until convergence. The converged A is
the final estimate A. (For simulation results shown in Sec.
5, we terminated after two iterations of steps 2 and 3, similar
to [17-20].)

Convergence. For the ADMM algorithm, a stopping (conver-
gence) criterion following [23, Sec. 3.3.1] can be devised. The stop-
ping criterion is based on primal and dual residuals being small
where, in our case, at (k + 1)st iteration, the primal residual is given
by A*+D _ W+ and the dual residual by p(W 1 — w (0,
Convergence criterion is met when the norms of these residuals are
below some threshold. The objective function Lis r(A, ﬂm, ﬁy),
given by (8), is strictly convex. It is also closed, proper and lower
semi-continuous. Hence, for any fixed p > 0, the ADMM algo-
rithm is guaranteed to converge [23, Sec. 3.2], in the sense that we
have primal residual convergence to 0, dual residual convergence to
0, and objective function convergence to the optimal value. Since
the LLA of LSP provides a majorization of LSP, therby yielding a
majorization-minimization approach, the overall iterative minimiza-
tion approach yileds a local minimum of Lrsp (A, S, fly)

Model Selection. Following the lasso penalty work of [8] (who
invokes [12]), we will use the following criterion for selection of A
in the LSP for a given 6:

BIC(Y) =(n: +n,) |8.A%, — (8, — )|l

+ In(na 4 ny) |Alo (16)

where | A|o denotes number of nonzero elements in A and A obeys
(9). Choose A to minimize BIC'()). Following [8] we term it BIC
(Bayesian information criterion) even though the cost function used
is not negative log-likelihood although In(n,, + n,) |Alo penalizes
over-parametrization as in BIC. It is based on the fact that true A*
satisfies 27 A 37 — (37 — X;) = 0. In our simulations we search
over A € [Ag, A ] where A, and Ay are selected via a heuristic as
in [24]. Find the smallest A, labeled A, for which we get a no-edge
model; then we set Ay, = Asim /2 and A¢ = Ay, /10.

4. THEORETICAL ANALYSIS

Here we analyze the properties of A the minimizer of the LLA
Lisp(A,3.,3,) atiteration m, m > 1, by following the general
framework of [25]. In the lasso-penalized approaches of [8, 15, 16],
the general method of [26] is used which requires an irrepresentabil-
ity condition which we do not impose.

Define the true differential edgeset

S =Enx = {{k,l} : |Ake| >0}, s=|5]. (17)

In rest of this section we allow p, s and A to be a functions of sample
size n, denoted as p,, s, and \,, respectively. Lemma 1 follows
from [26, Lemma 1] (specific form is based on [24, Lemma 2]).

Lemma 1: Let 3, and 21, be as in (1). Define n = min(ng, ny),

Gry = max{max; ¥} ;;, max; Xy ;;} and
A=max {[|Z: - ]|oo, [Zy — Tyl }
Co =402y1/2(r + In(4)/ In(p)) . (18)
Then for any 7 > 2 and n > 2(In(4) + 7 1In(pn)),
P(A> Covnpa)/n) <2/pi o (19)
Define
My = max{||2]lco , [|35lloc} (20)
Grmin = Pmin(B2)Pmin(2y) - (21)

Let A = argmina Lzsp(A, 3., 3,) for some choice of finite A
in (7)-(8).

Theorem 1 : For the system model of Sec. 2, assume that initializa-
tion satisfies || Allco < Minic and let Mipie = Minic + 9. I

\ ] * 1 n
A 2 2 (3May | A7 1 +2)Coy | 22 22)
960 n 1 n
n = min(ng,n,) > == ¢;’7‘ sn V)

then with probability > 1 — 2/p7, 2, for any 7 > 2, we have

- . 12X\ +/Sn
N P S 4
The proof of Theorem 1 is omitted for lack of space. It uses the re-
stricted strong convexity framework of [25] together with a weighted
{1-norm penalty.
Remark 1: Convergence Rate. For any positive-definite matrix
A, we have || Al|oc < maxy |Ae| < Pmax(A). Assume that
<max{Pmaz(y); Pmaz(E2)} < Bmaz <00 (25)

where [3,,in and Bmaee do not depend upon on n (or p, and s;).
Hence Mzy < max{¢maz(Z3), Pmaz(Ey)} < Bmaw and

min

A" <snll A loo < sn [[[(Z5) oo + 1(Z2) 7 loo]
<5" (¢m1n( ) + ¢mzn( )) < 25”//877“’" . (26)
Then
An = Cisp In (pn) > right side of (22) 27

for some C'; that does not depend upon n, p, or S,. Then we have

In(pn)/n (28)

for some Cs that does not depend upon 7, p,, or s,,. Thus, ||A —
A*||p = Op(sp® ln(pn)/n) Therefore, for |A — A™||[p — 0
as n — 0o, we must have s5°\/In(p,)/n — 0. The results in [8]

need s2°+/In(p,)/n — 0. Recall that s, = |S| = [Eax],
of edges in the differential graph. [

|A - A*||r < Cos,°




5. SIMULATION EXAMPLE

We consider an Erdos-Reényi graph where p nodes are connected
to each other with probability p.,, = 0.5. In the upper triangu-
lar Q, we set [Q.];x = 057 F forj = k = 1,--- ,p. For
j # k, if the two nodes are not connected, we have €2, = 0, and
if nodes j and k are connected, then 2 is uniformly distributed
over [—0.4, —0.1] U [0.1, 0.4]. Then add lower triangular elements
to make €2, a symmetric matrix. To generate (2,, we follow [8]
and first generate a differential graph with A € RP*” as an Erdos-
Reényi graph with connection probability p., = 0.05 (sparse): if
nodes j and k are connected, then Aj, is set to £0.9 with equal
probabilities. Then €2, = €, + A. Finally add vI to 2, and to
2, and pick v so that €2, and €2, are both positive definite. With
®,®] = Q' we generate ¢ = dw with w € RP as Gaus-
sian w ~ N(0,I), and similarly for independent y. We gener-
ate n = n, = ny ii.d. observations for  and y, with p = 100,
n € {100, 300, 800, 1600, 3200}.

1 g\y ™ =Sl
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[ o |
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Fig. 1: ROC curves for LSP and Lasso penalties. TPR=true positive
rate, TNR=true negative rate
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Fig. 2: ROC curves for LSP and SCAD penalties. TPR=true positive
rate, TNR=true negative rate

Simulation results based on 100 runs are shown in Figs. 1-4.
By changing the penalty parameter A and determining the resulting
edges, we calculated the true positive rate (TPR) and false positive
rate 1-TNR (where TNR is the true negative rate) over 100 runs. The
receiver operating characteristic (ROC) is shown in Fig. 1 for our
LSP-based approach (labeled “LSP”) as well as for a lasso-based
approach (labeled “lasso”), based on [15]. Fig. 2 shows the ROC for
our LSP-based approach (labeled “LSP”) as well as for the SCAD-
based approach (labeled “SCAD”), based on [21]. It is seen from

Figs. 1-2 that our approach outperforms both the convex lasso-based
approach and the non-convex SCAD-based approach.

For the results shown in Fig. 3, we picked the A value (from a
grid of A values) that leads to the highest F; score averaged over 100
Monte Carlo runs, for a given method. The resulting F scores are
shown in Fig. 3 for varying n, for penalty functions Lasso, LSP and
SCAD. It is seen that the LSP-based approach outperforms the other
two approaches, lasso (convex penalty) and SCAD (non-convex
penalty), and SCAD outperforms lasso, when the Fi score is the
performance measure.

In practice we do not know the ground truth, hence, we cannot
pick A to maximize the F score. In Fig. 4 we show the results based
on 100 runs for our approach when BIC parameter selection method
(Sec. 3) is applied. Here we show the TPR, 1-TNR and Fscore
values along with the +¢ error bars, for varying n. The proposed
approach works well both in terms of F score and TPR vs 1-TNR.

Best Fl-score Results
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Fig. 3: Optimized F' -scores for LSP, lasso and SCAD penalty based
differential graph estimation methods.
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Fig. 4: BIC based results: Fi-scores, TPR and 1-TNR
6. CONCLUSIONS

A log-sum penalized D-trace loss function approach for differential
graph learning was presented. An ADMM algorithm was presented
to optimize the non-convex objective function. Theoretical analysis
establishing consistency of the estimator in high-dimensional set-
tings was performed. We illustrated our approach via a simulation
example where the log-sum penalized D-trace loss significantly out-
performed the lasso-penalized D-trace loss as well as the smoothly
clipped absolute deviation (SCAD) penalized D-trace loss with ROC
and/r the F' score as the performance metric.
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