
Using Programming to Express Mathematical Ideas  

As computer-science-for-all initiatives continue to grow (Bers, 2018; Code.org, n.d.; 

CSforAll, n.d.), many schools are looking for ways to introduce computer science skills and 

thinking to elementary-age children (ECEP, n.d.; NYCDOE, n.d.). Some initiatives have focused 

on coding as its own endeavor, not integrated with other subjects like mathematics, science or 

literacy (Angeli et al., 2016). Increasingly, developers and researchers are exploring ways that 

programming can be integrated into core subjects (Bers, Govind, & Relkin 2022), though 

challenges remain to ensure they are mutually supportive of both subjects (Fofang et al., 2020; 

Sherwood et al., 2021). Our team of teachers and researchers is investigating one such approach 

that integrates programming and elementary mathematics, developing microworlds for grades 2–

5 that treat programming as a language to help children express and investigate mathematical 

ideas.   

In this article, we describe one of the programming environments we have developed, 

Number Line (see Figures 1 and 2) and our observations of second graders’ experiences and 

mathematical thinking while using this tool. We’ll discuss our approach to integrating 

programming into elementary mathematics. Through programming activities in the blocks-based 

language Snap!, children can build their identities as doers of mathematics by constructing their 

own mathematical ideas, testing them as the computer enacts them, and sharing and discussing 

those ideas with others. In this microworld, that approach supports second-graders in developing 

their skills in the domain of whole number concepts and operations, specifically building their 

fluency adding and subtracting within 20 by creating, testing, and revising programming scripts 

to solve mathematical puzzles (see supplementary file).  



 
Figure 1. View of the 2nd grade number line microworld in Snap! 

 
 

     
 

Figure 2: Sample puzzles 
 

Integrating programming into elementary mathematics. A programming language is 

a formal language for expressing certain kinds of ideas—algorithm and abstraction in 

particular—in a precise way. Learning to program can augment children’s expressive power in 

mathematics and make key ideas accessible. Programming gives children a language with which 

to express their thinking precisely and have that thinking enacted by the computer, making it 

easier for them to assess, refine, discuss, and extend that thinking (Cuoco & Goldenberg, 1996; 

Goldenberg & Carter, 2021). 

Further, embedding programming into core mathematics instruction ensures that all 

children gain experience with programming in developmentally appropriate ways, and increases 



access to mathematical ideas by offering different affordances than pencil-and-paper activities. 

Jottings on paper must be reinterpreted by the child and reenacted in the child’s mind; jottings in 

the form of computer code can be reenacted by the machine. When a child writes “to make an 

even number you times by 2” on paper, the notation just sits there. It records your idea but 

doesn’t help you perform the next calculation, and doesn’t help you make your expression more 

precise. A program does that and more: expressing our thinking in a program lets us examine it, 

discuss it with others, revise/debug it, and refine it (Goldenberg et al., 2021). In effect, as 

explained in Cullen, Hertel, and Nickels’ framework (2020) for the roles of technology for 

mathematics education, this use of technology can be characterized as the computer “serving as a 

tutee”, in which children use programming to teach the computer what to do, talking to it in a 

language it understands (Taylor, 1980).  

What is a microworld? A microworld provides only the programming tools needed for a 

specific context. The number line microworld limits the programming blocks that children can 

access within Snap!; children have all, but only, the blocks they need. This limits cognitive 

distraction and provides a low threshold for entry into programming, while still giving children 

an authentic programming experience. The microworld also provides three sets of highly 

mathematical puzzles, increasing in sophistication, for children to solve. Children build scripts in 

order to solve these puzzles, which when run, show the mathematical action on a stage, allowing 

the child to evaluate the results of their choices. In this way, the microworld acts as a “math 

action technology” (Dick and Hollenbrands 2011; McCulloch et al. 2021), enabling children to 

explore mathematical concepts and relationships through action on mathematical objects. 

The microworld is designed to be easily accessible for teachers, as well as children – 

teachers need not be expert in programming to use these resources. Because the microworld 



limits the blocks children have access to, the interface is easy to learn. The accompanying 

teacher guide offers guidance on a multi-day sequence of instruction to be integrated with the 

core mathematics curriculum.  

  Our microworlds build on decades of exploration of the role programming can play in 

children’s learning. Seymour Papert, the mathematician who co-founded the MIT Artificial 

Intelligence Laboratory, co-created the Logo programming language in 1967. Logo was designed 

as a tool for learning – learning mathematics, language, music, art, robotics, science, computer 

science – and allowed learners to develop projects of all kinds. It was designed to be low 

threshold and no ceiling and accessible to novices (Logo Foundation, n.d.). As technology 

evolved, the idea of programming by assembling blocks led to the development of Scratch, an 

interpretation of Logo. Scratch – and later ScratchJr and Snap! – make programming even more 

accessible to young children (Resnick et al., 2009). Our microworlds use Snap!; those familiar 

with Scratch will find many similarities between the languages, which bear a family 

resemblance.  

Supporting the development of mathematical identity and agency. This microworld 

and others we are developing aim to build children’s interest and curiosity in both mathematics 

and computer science – we want all children to see themselves as capable and competent 

mathematicians, to experience the beauty and joy of creating scripts, to persist in solving 

challenging problems, and to develop confidence and interest in both domains.  

 A key design principle for Number Line has been to center the locus of control and 

authority in the child, supporting all children in seeing themselves as capable doers of 

mathematics – contributing to their development of positive identities as young mathematicians 

(NCTM, 2020). Learning mathematics involves acquiring knowledge, but also developing 



effective ways of thinking, including the ability and inclination to judge whether one’s methods 

and results make sense. Learning to program is similar; even young programmers must be able to 

judge for themselves whether code does what it is meant to do. Number Line is not “gamified” – 

there are no levels, points or stars; the computer does not evaluate children’s solutions. Children 

experiment, see results, evaluate for themselves whether their scripts have the desired outcome, 

and debug to get results they want. Authority resides in the child.  

We believe the microworlds are tools teachers can use to support children to develop 

positive mathematical identities and build their sense of mathematical agency (NCTM, 2018). 

The microwords provide carefully sequenced problem sets that are centered on critical 

mathematical content for each grade, promote reasoning and problem solving, and provide 

opportunities for productive struggle with mathematical ideas. These curricular tools – and the 

engaging programming context they are embedded in – support a child-centered approach, 

freeing teachers to act as facilitators who circulate among children to observe mathematical 

thinking in action, provide scaffolding and support for challenge, plan classroom discussions, 

and consider how to sequence future instruction. Teachers who have used the microworlds report 

that the experience allows them to see some children engaging differently than they do in paper-

and pencil activities, and that they learn more about what their students know as a result. The 

scripts that children build in Snap! make their mathematical thinking visible to others, and enable 

children to easily share problem-solving strategies and compare the results of different 

approaches, potentially contributing to their sense of agency in mathematical discussions with 

peers, with teachers, and in whole-group settings.  

The microworlds also promote children’s positive mathematics identities by including 

children’s home language in the mathematics classroom. Our development work was in 



partnership with linguistically diverse classrooms, with over half the children having a first 

language other than English. This allowed us to develop and test supports for multilingual 

learners so that they could engage fully in exploration of the mathematical ideas. All 

microworlds are available in English and Spanish (some are also available in Portuguese, 

Ukrainian, and German, with additional languages still in development). Children can program 

in any available language, and even switch between languages. Children can also have the 

puzzles read aloud, further facilitating access.  

Number Line microworld. This microworld—focused on addition and subtraction on the 

number line within 20—presents puzzles that require children to navigate the number line. It 

displays a palette of blocks, a scripting area, and a stage showing a number line with a creature 

who suggests puzzles (see Figure 1). The ticks on the number line mark consecutive integers; 

only 0 is labeled to begin.  

Four blocks of +5, +3, –3, and –5 let children move the circle on the number line. Each 

move draws the proper arc and labels the new number. A start at block lets children specify a 

starting place. Puzzle blocks offer new explorations, puzzles, and challenges (see Figure 2 for 

some examples). Each puzzle set corresponds to one or two class periods of instruction.  

Why ±3 and ±5 blocks? Many of the puzzles ask children to start at one number and 

move to another—for example, moving from 2 to 9. If we provided a +7 block, the problem 

would be trivial. Instead, we limit the blocks to ±3 and ±5, requiring children to find 

combinations that work. Even if they start out “just jumping around” – as some do – they remain 

attentive to where their experiments land them, and then look for opportunities to make more 

deliberate moves. The numbers studied in second grade are often much larger than 3 and 5, but 

the cognitive challenge of seeking combinations is greater—with many additions and 



subtractions playing out in the child’s mind in a single puzzle—making it pedagogically sensible 

to keep the numbers small. And when children run their scripts, small jumps on the number line 

are easy to see and comprehend quickly. 

The choice of 3 and 5 works well in this microworld because they are two small, non-

consecutive integers, with no common factor other than 1. Offering ±1 would make the solutions 

trivial. Offering two consecutive numbers makes it too easy to “get” a 1. Using two numbers that 

have any factor (other than 1) in common – for example, ±6 and ±9 – makes it impossible to land 

on all integers. The choice of adding and subtracting the same number (instead of just offering 

+3 and –5, which would be sufficient to get all integers) lets children learn to recognize and see 

power in inverses.  

Using Number Line in the classroom. We worked closely with four classroom teachers 

to develop and implement Number Line with second graders over three days. In each class, the 

introduction on the first day was quick – less than 10 minutes. The microworld was projected on 

to the whiteboard, and each teacher had children read the first exploration (see Figure 1), and 

then illustrated this first instruction by dragging the +3 block into the scripting area. “Nothing 

happens! But if I click on it…” The teacher clicked, and children described what they saw. 

Clicking a block performs the indicated arithmetic, shows the corresponding movement on the 

number line, and labels the result. Then a child was called up to continue the exploration. “Show 

the class how to drag out another block and make it do something.” In one class, a child pulled 

out the +5 block, clicked on it, and the children then saw this (Figure 3). In all classes, teachers 

also demonstrated how to link blocks together to make a simple script. 

 
Figure 3: Introducing how blocks move the circle on the number line 

830



After this minimal introduction, children returned to their desks to work on this first 

exploration, exploring the blocks and getting familiar with movements on the number line. 

Children then moved on to puzzles posing specific problem-solving challenges; below we share 

some of their approaches. 

Lucia. Lucia was working on the puzzle Make a script that starts at 0 and ends at 4. The 

circle was at zero; she dragged out a +3 block, clicked on it, saw that she landed on 3 and 

realized, “I need to jump one more space to get to 4.” Instead of starting over, she pulled out 

another +3 and landed on 6. This was too far—she still wasn’t where she wanted to be—so she 

added the –5 block to land on 1. Then she knew what she needed to do. She added +3 and 

jumped to 4. Aha! Puzzles like these gave children experience relating jumps along the number 

line to small calculations such as, 3+3, 6-5, 1+3. As they worked on the puzzles, they monitored 

their own progress and experimented with different strategies.   

Estela. Estela was new to her class and new to the United States, her family having 

arrived recently from Guatemala. She used the Spanish text and audio, clicking on the puzzle to 

have it read aloud: “Haga un script que comience en 0 y termina en 6” (Make a script that starts 

at 0 and ends at 6). She started by pulling out +5, then adding +3. She ran her script, and realized 

it went too far. She looked for a –2 block, but did not have one. She abandoned that script and 

pulled out two +3 blocks to make a new script, perhaps remembering that 3 and 3 make 6.  

Estela moved to the next puzzle, Make a script that starts at 0 and ends at 2. Like many 

children, she pulled out +3 because she knew that 3 was close to 2. That jump went too far! She 

tried subtracting with a -3. That got her back to 0. She used another -3. She was on the other side 

of zero, but she saw exactly where the circle was on the numbert line and didn’t get deterred by 

the negative sign. She used her finger on the screen to count from -3 to 2. 5! She added +5 to her 



script. She got it! She did a quiet dance in her chair and got the attention of Ivonne next to her. 

Ivonne was excited to see Estela’s solution and showed Estela hers. Ivonne’s script had taken the 

circle off the screen to the right and then back to 2 (see Figure 5). The girls excitedly explained 

their solutions to each other and tried to figure out how different scripts could have the same 

result. This example illustrates how solving puzzles through programming can support children’s 

agency by easily making their mathematical thinking visible, enabling them to compare and 

discuss solutions.  

 

 

 

Figure 5: Ivonne’s solution 

No puzzle in the microworld refers to negative numbers, but children often arrived there 

by accident, as Estela did. Children generally knew how to get back to “ordinary numbers,” and 

many could predict which number they would arrive at. No further instruction was needed at this 

point—children were building informal experience with these numbers in ways that would 

support formalization in later grades.  

Jay. Puzzles such as Make a script that labels 1, 4, 7, and 10 gave children practice with 

the idea of repeated addition, foreshadowing multiplication: I’m adding 3, four times. Jay solved 

this puzzle with a simple script, built step by step: first, using the start at 1 block, then 

recognizing quickly that a +3 would move his circle to 4, and so on: +3, +3, +3, +3. Seeing this 

pattern motivated his interest in the repeat block. He rebuilt his script using repeat, with some 

trial and error (“How many times should it repeat?”) (see Figure 4). But he was curious – what if 

he repeated more? He modified his script, choosing the maximum number of repeats (10). He 



was thrilled to discover that the circle kept jumping by 3, off the screen where he could not see it 

– but he could monitor where it landed (31) using the current number indicator. He wondered, 

“Could I go to 1000?” He modified his script to start at 500 (the maximum number allowed) and 

ran it. He landed on 530. He took out the +3 in the repeat, put in +5 and re-ran the script – and 

landed at 550. He added another +5 inside the repeat: 600. He was getting closer! He kept 

adding +5 to repeat until he landed on 1000, with great satisfaction. 

 
 

Figure 4: Using repeat 
 

Many children embraced repeat and used it to explore number patterns beyond what the 

puzzles required. Number Line does not directly pose problems like “Start at 0 and jump to 

1000”, but it does allow for easy and rapid experimentation in a way that pencil and paper 

cannot. We frequently saw children create and solve puzzles that were mathematically 

meaningful to them – developing their identities as doers of mathematics.    

Kesha. Over the course of the lessons, children encountered more challenging puzzles. 

Kesha was working on Make a script that lands on all the numbers from 0 to 10. Like many 

children, she had already experimented with combining 3s and 5s, and she first thought about 

which numbers she knew how to make. She started by using +3 three times to move from 0 to 3 

to 6 to 9. She then added -5 to jump back to 4. She recognized that adding +5 would just take her 

back to 9, but +3 would jump to 7, a number she hadn’t yet landed on.  

After some experimenting, Kesha commented, “What I really need is a 1.” She was 

determined to approach it in a systematic way: starting from 0, then jumping to 1, 2, and so on. 

She built the script +3, +3, –5 and tried it. She was delighted to see that the circle just one mark 



on the number line, just as she had predicted. She clicked on her script again, and watched the 

circle jump to 2. “It’s at 2. Now I can just click it again.” She kept clicking as her circle jumped 

to 10 and beyond, with her jumps creating an intriguing and regular pattern. This is a wonderful 

informal example of reasoning by mathematical induction…from a 7-year-old! (See Figure 6.) 

During the class discussion, she enthusiastically shared her strategy and explained her reasoning. 

Kesha’s confidence in developing, using, and discussing her own strategy illustrates how she is 

building her mathematical competence and agency (NCTM, 2020).  

 
 

Figure 6: Kesha’s +1 script 

Conclusion. Across classrooms, the microworlds supported robust child-to-child and 

child-to-teacher interaction. Children worked largely independently to solve puzzles; each child 

had direct experience running scripts and seeing their results. But the puzzles could be solved 

multiple ways, and children were curious about each other’s solutions. For each puzzle, children 

tracked: “I solved it” and “I showed someone” on a checklist. This simple device supported a 

lively dynamic of discussing solutions with tablemates and teachers. Teachers also used the end 

of each lesson for whole-class discussion of different approaches to solving a selected puzzle.  

We were encouraged by children’s high level of engagement and persistence in problem 

solving in the microworld. Critical to the success of these lessons was how the microworld 

supported core mathematics content. Using Number Line, children were building fluency in 

adding and subtracting within 20 and predicting results mentally. They were gaining plentiful 

experience exploring number magnitude when they saw that the distance from 1 to 4 is the same 

as 4 to 7, and 7 to 10, and 5 to 8, and 8 to 5. Children experimented with the “any order” 

principle (the commutative and associative properties) of addition, noting that sequencing the 



blocks in varying orders did not change the numerical result. They were also learning about how 

number lines themselves work, developing an understanding of the representation through 

repeated use.  

Children were learning to express their mathematical thinking by communicating with 

the computer in a precise way, building scripts and running them. The computer “served as the 

tutee” (Taylor; 1980; Cullen et al., 2020) – the children were teaching the computer what to do, 

talking to it in a language it understands (in this case, Snap!). While their results were not always 

what they intended or expected, the microworld was responsive to children’s actions and 

behaved with precision, allowing them to test and revise their conjectures.  

Our experiences suggest there is potential for children to gain from curricular tools that 

embed programming into core mathematics instruction, supporting access to critical content. The 

examples in this article demonstrate how programming, when integrated into mathematics, can 

promote high levels of engagement in mathematical ideas, support problem solving and 

reasoning, and facilitate mathematical discourse. Additional research is needed to determine how 

use of these tools would affect children’s learning over time.  

More details about Number Line and related microworlds, including teacher guides and 

instructional videos, can be found at https://elementarymath.edc.org/. Number Line is freely 

available for use online at https://go.edc.org/MW-number-line. 
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CCSSM 2.MD.B.6. Represent whole numbers as lengths from 0 on a number line diagram with 
equally spaced points corresponding to the numbers 0, 1, 2, ..., and represent whole-number 
sums and differences within 100 on a number line diagram.   

CCSSM 2.OA.B.2. Fluently add and subtract within 20 using mental strategies. By end of 
Grade 2, know from memory all sums of two one-digit numbers.  

CSTA K12 CS Standards 1A-AP-10. Develop programs with sequences and simple loops, to 
express ideas or address a problem.  

CSTA K12 CS Standards 1A-AP-14. Debug (identify and fix) errors in an algorithm or 
program that includes sequences and simple loops.  

  

Role(s) of Technology    
Conveyance Technology Uses  
• Encouraging Collaboration: Encouraging 
collaboration around mathematical problems.  
• Monitoring and Assessing: Monitoring and 
assessing mathematical learning.  

Mathematical Action Technology Uses  
• Serving as Tutee: Decomposing, 
abstracting, and encoding mathematical procedures 
and processes.  
• Promoting Cycles of Proof: Creating, 
testing, revising, and proving mathematical 
conjectures.  

 

Teaching Practices    
• Implement tasks that promote reasoning and problem solving.   
• Use and connect mathematical representations  
• Pose purposeful questions  
• Support productive struggle in learning mathematics  
• Elicit and use evidence of student thinking  
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