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Linear Hashing with /., guarantees and two-sided Kakeya bounds

Manik Dhar* Zeev Dvirf

Abstract

We show that a randomly chosen linear map over a finite field gives a good hash function
in the £ sense. More concretely, consider a set S C Fy and a randomly chosen linear map
L :F} — F, with ¢* taken to be sufficiently smaller than [S|. Let Us denote a random variable
distributed uniformly on S. Our main theorem shows that, with high probability over the
choice of L, the random variable L(Ug) is close to uniform in the o, norm. In other words,
every element in the range IE‘Z has about the same number of elements in S mapped to it. This
complements the widely-used Leftover Hash Lemma (LHL) which proves the analog statement
under the statistical, or ¢1, distance (for a richer class of functions) as well as prior work on the
expected largest 'bucket size’ in linear hash functions [ADM'99]. By known bounds from the
load balancing literature [RS98], our results are tight and show that linear functions hash as
well as truly random function up to a constant factor in the entropy loss. Our proof leverages a
connection between linear hashing and the finite field Kakeya problem and extends some of the
tools developed in this area, in particular the polynomial method.

1 Introduction

Let S C {0,1}"™ be a set. In many scenarios, one is interested in ‘hashing’ the space {0,1}" into
a smaller space so that the set S (on which we may have little or no information) is mapped in a
way that is close to uniform. Specifically, we may need to find a function H : {0,1}" — {0,1} so
that the random variable H(Ug) is close to the uniform distribution, where Ug denotes a random
variable distributed uniformly on the set S. An important parameter here is the ‘entropy-loss’
given by log, |S| — t. Clearly, this quantity has to be non negative, and, in practice, we would like
it to be as small as possible.

An important result in this area is the celebrated Leftover Hash Lemma (LHL) of Impagliazzo,
Levin and Luby [ILL89] which asserts that, the above scenario can be handled by choosing H at
random from a family of universal hash functions (one in which for every z # y the probability
that H(x) = H(y) is at most 27 over the choice of H).

Lemma 1.1 (Leftover Hash Lemma [[LL89]). Let S C {0,1}" and suppose H : {0,1}" — {0,1} is
chosen from a family of universal hash functions with t < logy |S| — 2logy(1/€). Then the random
variable! (H, H(Usg)) is e-close to uniform in the £1-norm.?
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n the notation (H, H(Us) we assume that the function H is represented by a string of bits of some fixed length.

2Typically, the conclusion of the lemma is stated with respect to the statistical distance (or total variation distance)
which is defined to be 1/2 of the ¢; distance
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A few comments about the LHL are in order. The first is that, using a standard averaging
argument, the LHL implies that, for any given set, most choices of H will be good, in the sense
that H(Ug) will be close to uniform in the ¢; distance. It is also known that the entropy loss of
the LHL, namely 2log(1/¢), is the smallest possible for any family of functions [RTS00]. Lastly, it
is possible to generalize the LHL to handle arbitrary distributions of high min-entropy® (not just
those uniform on a set). This follows from the fact that any distribution with min-entropy & is a
convex combination of ‘flat’ distributions (those uniform on a set of size 2¥).

A convenient choice of a universal family of hash functions is that given by all linear maps over
the finite field of two elements Fy. That is, the LHL says that, if one picks a linear map L : F} — F}
uniformly at random, then, w.h.p over the choice of L, the random variable L(Ug) will be close
to uniform in the f;-distance. Our main theorem shows that, with slightly larger entropy loss,
one can give a stronger guarantee on the output, stated in £, distance to uniform. A reason to
consider linear maps is their simplicity and ease of implementation (only requiring very basic bit
operations) for applications. Since the full statement of the theorem is quite technical (stemming
from our attempts to optimize the various constants) we start by giving an informal statement.
The full statements of our results (also for other larger finite fields) are given in Section 2.

Theorem 1.2 (Main theorem (informal)). Let S C Fy and let t = logy |S| — O(logy(log, |S]/79)).
Then, a 1 — 4 fraction of all linear maps L : Ty — F% are such that L(Ug) is 727 -close to uniform
in the Lo norm. That is, for all y € Fy we have

|Pr[L(Us) =y] — 27" < 727"

An equivalent way to state this theorem comes from the observation that the set of elements
in F} mapping to a particular y € F} is always of the form a, + U, where U is the kernel of the
mapping L and a, € F} is some shift. In this view, the theorem says that most (n — t)-dimensional
subspaces U C 4 are such that all of their shifts intersect S in about the same number of points
(up to a multiplicative factor of 1+ 7). We devote Section 3 to a more detailed treatment of this
view, which will be the one used in the proof. The question of bounding the maximal ‘bucket size’
(all elements mapping to a single y € F}) in a random linear hash function was previously studied
and we compare our results to the state-of-the-art in this area ([ADM™99]) in Section 2 after the
formal statement of our results.

Our choice of the letter 7 instead of € as in the LHL is not accidental and is meant to highlight
the fact that, in the £, setting, we can take 7 to be greater than 1. When 7 < 1 the conclusion of
our theorem, namely that L(Ug) is 7/27'-close to uniform in £, implies that L(Ug) is also 7-close
to uniform in ¢;. However, our theorem is still meaningful when 7 > 1, even though it says nothing
about ¢; distance. The advantage of taking 7 to be large comes from the fact that it can reduce
our entropy loss (this can be done up to a point, as is stated in the formal theorem statement
below). To give an example of a scenario in which we can take large 7 consider the case where the
linear map L is used to derive a key for a digital signature scheme. We would like the key L(Ug)
to be close to uniform since we know that a uniform key prevents the adversary from producing
a forgery with more than negligible probability. However, if we apply our theorem with large 7
(say polynomial in n) we get that the probability of producing a forgery may increase by at most
a factor of 1 + 7 which still results in negligible probability of forgery. More generally, the case of
large 7 is relevant whenever we only care about events of small probability staying small. Another

3A distribution has min-entropy at least k if any output has probability at most 27%.



paper which focuses on these aspects of the LHL (that is, when we only care about low probability
events) is [BDK'11].

The need for £, guarantees for hashing appears in many places in the literature. For example,
in Cryptography, in the context of key generation for local data storage [CHS06] and batch verifying
zero-knowledge proofs [KRV21] and in Computational in the context of uniformly generating a so-
lution to NP-search problems (see Section 6.2.4.2 in [Gol08]). It is possible to guarantee £+, hashing
by using a larger and more complex classes of functions, for example high degree polynomials over
a large finite field [ABI86]. For the applications in [CHS06] and [Gol08] our results allows one to
use linear maps instead of polynomials, hence simplifying the proofs.

Our proofs leverage a connection between linear hashing and finite field Furstenberg sets (which
generalize Kakeya sets). A k-dimensional Furstenberg set S C Fy is a set which has a large
intersection with a k-flat (k-dimensional affine subspaces) in each direction. That is, for any k-
dimensional subspace U C Fy there is a shift s(U) such that the affine subspace s(U) + U has a
large intersection with the set S. The goal in this area is to prove lower bounds on the size of
such sets. Surprisingly, such lower bounds play a role in explicit constructions of seeded extractors
[DW08, DKSS13] which are randomness efficient variants of the LHL. However, the connection
between Furstenberg sets and linear hashing we leverage in this paper is unrelated to the work
on extractors mentioned above and is of a completely different nature. This connection was first
observed in [DDL21b] and was used there to improve the best lower bounds on Furstenberg sets.
Our work relies heavily on the methods developed in [DDL21b] (as well as other papers) and extends
them in several respects. We devote Section 3 to a more complete discussion of this connection
and, in particular, to explaining the phrase ‘two-sided Kakeya bounds’ from the title of the paper.

Acknowledgments: We are grateful to Or Ordentlich, Oded Regev and Barak Weiss for com-
ments that led us to pursue this line of work. Their interest in theorems of this kind arose from
trying to strengthen their breakthrough [ORW22] on lattice coverings, which uses the two dimen-
sional Kakeya bounds of [KLSS11]. (A new paper by the same group of authors, using the results
of the current paper, is in preparation).

Paper organization: The rest of the paper is organized as follows. In Section 2 we state our
main theorems formally. In Section 2.1 we discuss the tightness of our results, compare them to
prior work, and discuss possible generalizations. In Section 3 we discuss the connection to the
theory of Furstenberg/Kakeya sets and introduce notations and definitions that will be used in the
proofs. In Section 4 we give a high level overview of the proof. Section 5 contains the proofs of our
main theorems with a lemma,giving an improved bound on Furstenberg sets, proved in Section 6.

2 Formal statement of our results

This section contains four variants of our main result. The four cases correspond to the distinction
between large finite fields and Fy and between arbitrary 7 and the special case 7 > 1 (in which we
can get slightly better constants). We begin with the statement for large finite field and arbitrary
T.



Theorem 2.1. Letn > 5 and let S C Fy be a set. Let 7 > 0 be a real number and 6 € (0,1) s.t

¢ > 32max <%n> .

Suppose q" < |S| < ¢"t! for some 4 <r <n—1andlett=r—3. Then a1l—§ fraction of all
surjective linear maps L : Fy — IF'Z are such that L(Ug) is T/q'-close to the uniform distribution in
the {5 norm.

Notice that, in the setting above, the entropy loss, when measured in F,-dimension is at most
4. The restriction to the case of surjective linear maps is natural as these are maps that do not
‘lose’ entropy unnecessarily (one can consider all linear maps by increasing 4§ slightly).

The above theorem can be used to derive similar results for small fields, by treating blocks of
coordinates as representing elements in an extensions field. We do this for every possible choice of
basis to ensure that our theorem works for all surjective Fo-linear maps. We only treat the case of
[Fy as this is the field most commonly used in applications (the same proof strategy will work for
any finite field).

Theorem 2.2. Let S C FY be such that |S| > 220 max(n*(1 + 7)*/(76)%,n*) and let n, 7,8 satisfy
n > 5[logy(max(n(1 4+ 7)/(78)2,n))] + 25. Then there exists a natural number

n(l+7)
>
t > log, |S| — 4log, <max< (73)2 ,n>> 20,

such that a 1—46 fraction of all surjective linear maps L : F§ — Fh are such that L(Ug) is 727 -close
to uniform in the fo norm.

When |S| is small we can improve the previous theorem by replacing the n in the entropy loss
by log, |:S|. This is achieved using the following simple lemma, which allows us to first hash S into
a universe of size roughly |S|? without any collisions.

Lemma 2.3. Let S C Fy and
t > logo(|S|(]S] —1)/20).

Then, at least a 1 — & fraction of all surjective linear maps L : Fy — FY map S injectively into F.
Proof. As surjective linear maps are a universal family of hash functions we have,

2

PrlL(z) = L(y)] < 1/2" < brgrmer—y

for a random surjective linear map L : F} — F, and z,y € S,z # y. By applying the union bound
we see the probability that L is not injective is upper bounded by 9. O

Applying the above lemma followed by Theorem 2.2 immediately leads to a concrete instance
of Theorem 1.2.

Theorem 2.4. Let S C FY, 7,6 € (0,1) and m = logy(|S|(|S| —1)/0) be such that

1S| > 20mmax(28(1 + 7)1/(76)%, 1) (1)
m > 5logy(mmax(4(1 +7)/(76)%,1)) + 25, (2)



then there exists a natural number
4(1
t > logy | S| — 4log, <mmax <%, 1)) — 20,

such that a 1—46 fraction of all surjective linear maps L : Ty — Fh are such that L(Ug) is 727 -close
to uniform in the fo norm.

Proof. We apply Lemma 2.3 for §/2 and linear maps from F§ — FI* followed by applying Theo-
rem 2.2 for §/2 and linear maps from FJ* — F%. O

The conditions (1) and (2) are not very restrictive. In the setting 7 = § = 1/n¢ for some
constant C' conditions (1) and (2) are satisfied for |S| > n®" where C’ only depends on C.

An interesting setting of parameters for Theorem 2.4 is that of 7 = 1/§2. In this case (when &
is sufficiently small), the two terms in the ‘max’ function above are about the same and we get an
entropy loss of 4logy(41logy(|S](|S| —1)/d)). With this entropy loss, we get that the output L(Ug)
is (1/8)%-27 close to uniform in the £, norm. Or, in other words, for 1 — ¢ fraction of linear maps
L, the probability of any event under L(Ug) is at most a multiplicative factor of 1/6% larger than
its probability under the uniform distribution. In this setting (1) and (2) are satisfied by ensuring
|S] is larger than some fixed universal constant.

When 7 > 1 we can improve the constant in the above two theorems slightly. We start with
the case of large finite field. In the following theorem, the bound on the size of ¢ does not contain

the constant 32 appearing in Theorem 2.1. The dependence of ¢ on 7 changes from 1:'—{ to (Ti'/;)g

which are asymptotically the same when 7 grows. Hence, when 7 is sufficiently large, the saving in
q is roughly a factor of 32. The price we pay for this improvement is the need for n to be at least
20 (as opposed to 5) and an upper bound § < 1/10.

Theorem 2.5. Let n > 20 and let S C Fyy be a set. Let 7 > 1 be a real number and § € (0,1/10)

8.t
1+
quaX nm,n .

Suppose q" < |S| < ¢"*! for some 4 <r <n—1andlett=r—3. Then a1l—§ fraction of all
surjective linear maps L : Fy — Ffl are such that L(Ug) is 7/q'-close to the uniform distribution in
the £ norm.

As before, this can be used to prove a version over Fy for large 7 with improved constants.

Theorem 2.6. Let S C F} and let 6 < 1/10, 7 > 1 be such that |S| > max(n*(1 + 7)*/(( —
V7)0)8,nt) and n,T,8 satisfy n > 20[logy(max(n(1 + 7)/((t — /7)0)%,n))]. Then there exists a

natural number .
+7
t 2 10g2 |S| — 410g2 (max <nm,n>> s
such that a 1 — 6 fraction of all surjective linear maps L : Ty — FY have the property that L(Usg) is
727t close to uniform in the lo norm.

We can again use Lemma 2.3 to improve the entropy loss in the previous theorem.



Theorem 2.7. Let S C FY and let 6 < 1/10, 7 > 1 and m = logy(|S|(|S]| — 1)/0) be such that

1S| > m*max(28(1 + 1)t/ ((r — V7)0)%,1)
m > 20[logy (mmax(4(1 +7)/((t — /7)8)2,1))]

. Then there exists a natural number

t > —

such that a 1 — 6 fraction of all surjective linear maps L : Ty — FY have the property that L(Ug) is
727t -close to uniform in the {s norm.

2.1 Some comments

Tightness of our results: It is natural to ask whether our results are tight. Fixing the parameter
0 to be constant for the sake of simplicity, can we possibly improve on the entropy loss stated in
Theorem 2.47 The answer is a resounding No! Even for a truly random function, the results of
[RS98] show that we need an entropy loss of at least log,(log, |S|/72) (up to a additive constant) to
acheive the conclusion of Theorem 2.4. Hence, up to a reasonably small constant factor (of about
32), linear functions hash as well as random functions.

Prior results on linear hash functions: Properties of random linear hashes w.r.t. the {4
norm have been studied in earlier works [CW79, MV84, ADM™'99] with [ADM™99] being the state-
of-the-art. The results in this area are typically stated as upper bounds on the expected 'maximal
bucket size’ (that is, the maximum size of L™ (y) over all y € F.). We will see that earlier results
only give bounds for 7 > 1 (as far as we know, our paper is the first to give {, guarantees for
small 7).

Theorem 5 of [ADM™T99] is the most relevant to this work and shows that, when log, |S| — ¢ =
log,(t) the expected maximal bucket size is O(tlogy(t)). A Markov argument shows then, that,
with probability at least 1 — §, the maximal bucket size is at most O(tlog,(t)/d) which is a factor
of logy(t)/d larger than the trivial bound of |S|/2! = t. Note that logy(t)/d > 1.

Theorem 2.4 for small 7 shows that when log, |S|—t ~ O(logs (logy(|S]?/8)(76)~2)), the maximal
bucket size will be at most a factor of 1+ 7 larger than the trivial bound of |S|/2¢ with probability
1 — & over the choice of the linear function. Hence, the results of [ADM™99] deal with the case
of smaller entropy loss (log,(t) & log,(log,(|S])) instead of O(log,(log,(|S|?/0)(7d)7?)) ) but are
a multiplicative factor of log,(t)/0 > 1 away from uniform instead of 7 + 1 which can be made
arbitrarily close to 1 (by reducing 7 and increasing the entropy loss).

We can also make comparisons in the regime of large 7. As stated earlier for 7 = 1/6? Theo-
rem 2.4 shows that the maximal bucket size will be at most a factor of 1 + 1/62 larger than the
trivial bound of |S]/2" with probability 1 — ¢ over the choice of the linear function. In this set-
ting for d > 1/log,(t), we lose a constant factor in the entropy loss (log, log, |S| in [ADM™99] and
O(logy log, |S|) for our result) and gain in the bucket size bound (logy(¢)d times |S|/2! in [ADMT99]
and 1+ 1/62 times |S|/2¢ for our result). Although it should be noted that the results in [ADM™*99]
are incomparable in the sense that they compute the expected value of the bucket size while our
results only give bounds on the bucket size with high probability.



Other families of universal hash functions: In this section we look at whether our results
can hold for other universal families of hash functions.

We first show that our results can not hold for all families of universal hash functions by means
of an example. The family we will consider is linear maps from Fzz to Fy2 which do form a universal
family. We will show that that known results from [ADM™99] prove that this family needs at least
an entropy loss of Q(log, |S|) to get the distance guarantees of Theorem 2.4. This also shows that
we need high dimensionality to get good linear hash function over large fields.

Theorem 8 of [ADM™T99] proves that for any finite field F,2 where ¢ is a prime power if we
consider the set of linear maps from F?]Q to Fy2 then there exists a set Sy of size ¢ such that for
every linear map the maximal bucket size is at least q.

This implies that for any S} of size ¢>™7,n < 1 which contains Sy, every linear map L :
F22 — Fg2 will have a maximal bucket size of at least q. In other words L(U S(/)) will be at least
1/¢**" > C/q¢? away from uniform in /., distance. Equivalently, even for an entropy loss of
nlogy(q) = Q(logy |Sy|) > O(log, logy |S|), linear maps from L : Fgg — F,2 do not guarantee that
the image L(Ug;) will be C /q* close to uniform for any fixed constant C. This also means that we
need at least an entropy loss of 2(log, |S]) to get the distance guarantees of Theorem 2.4.

Other families of universal hash function could still achieve the guarantees of Theorem 2.4. In
particular, for a prime p consider the family of hash functions hqp : {0,1,...,p—1} = {0,...,m—1}
fora e {1,...,p—1},b€{0,...,p—1} defined as h, p(x) = (az+b mod p) mod m. From [CW79],
we know that this family is universal. By following the framework in Section 3, it can be checked
that proving £..-guarantees for this family is a generalization of the notoriously difficult Arithmetic
Kakeya problem [GR19].

The case of high min-entropy: As was mentioned before, The LHL holds not just for ‘flat’
distributions of the form Ug, but for any distribution with high min-entropy. This more general
version can be derived easily from the LHL for sets using a convex combination argument. As
far as we can tell, this argument fails in the case of /. and so we cannot automatically derive a
min-entropy analog of our results. While we do believe that our proof techniques could be made
to handle this more general case (e.g., as is the case in [DDL21b]), we leave it for future work.

3 Connection to prior work on Kakeya and Furstenberg sets

In this section we will explain the connection between Theorem 2.1 and the finite field Kakeya/Furstenberg
problem. Along the way we will introduce notations and definitions that will be used later on in
the proofs.

We will now describe an equivalent formulation of Theorem 2.1 in terms of the kernel of the
linear map L : Fy — IF‘Z appearing in the theorem. This will allow us to highlight its connection to
the finite field Kakeya problem. To do so, we introduce some notations. For 1 < k& < n we denote
by Ly (IFy) the set of k-dimensional flats in F; and by L} (Fy) the set of k-dimensional subspaces
(flats passing through the origin). Let S C I} be a set. For k € [n], we denote by

Ey(S) =|5|/q" "

the expectation of [R N S| with R chosen uniformly in £ (Fy). When S is clear from the context
we omit it and simply write E}.



Definition 3.1. We say that R € Ly,(Fy) is -balanced w.r.t a set S C Fy if we have:
IRNS| = ER(S)] < 7+ Ex(S5).
Otherwise, we say that R is T-unbalanced w.r.t S.

Definition 3.2. We say that A € Lj(F}) is 7-shift-balanced w.r.t S if, for all a € Fy, the flat
R = A+ a is 7-balanced w.r.t S.

Notice that if A € L;(F7) is 7-shift-balanced w.r.t S and A" € L}, (F}) contains A (with k' > k)
then A’ is also 7-shift-balanced w.r.t S.

We will now express Theorem 2.1 using this new notation. Suppose L : Fy — Ffl is an onto
linear map and let A = ker(L) be its k = n — ¢ dimensional kernel. Notice that, for each y € Fz,

[(A+a)N S|

Pr[L(Us) =y| = 5| 7

for some a € Fy for which L(a) = y. Therefore,

Pr[L(Us) =yl —q | <7q7",
if and only if A+a is 7-balanced w.r.t S. Hence, Theorem 2.1 is equivalent to the following theorem.

Theorem 3.3. Let n > 5 and let S C F}! be a set such that |S| > ¢*. Let 7> 0,6 € (0,1) be a real
number s.t ¢ > 32max(n(1+7)/(70)?,n). Let 4 <r <n —1 be an integer s.t ¢" < |S| < ¢"*! and
let k=mn—r+3. Then a1l -9 fraction of all subspaces in Li(Fy) are T-shift-balanced w.r.t S.

We now take a moment to explain the expression ‘two-sided Kakeya bounds’ from the title and
the connection to prior work on Kakeya sets. A Kakeya set in Fy is a set containing a line in each
direction. The main question, asked by Wolff in [Wol99], is to lower bound the size of such sets. This
question has now been completely resolved in the series of papers [Dvi09, DKSS13, BB21]. We will
be mostly interested in the high dimensional variants of this problem, asking about sets containing
k-dimensional flats in all directions, or more generally, sets that have large intersection with a flat
in each direction (these are called Furstenberg sets). These type of questions have been also studied
extensively, with tight bounds obtained in some cases [EOT10, KLSS11, EE16, DDL21a, DDL21b].

We start by recalling some definitions from that domain.

Definition 3.4 (m-rich flats). We call a flat R € Li(F}) m-rich w.r.t a set S C Fy if [RNS| > m.

Definition 3.5 ((k,m, 8)-Furstenberg sets). We call a set K C Fy a (k,m, 3)-Furstenberg set if
K has an m-rich k-flat for at least a B fraction of directions. That is, for at least a B-fraction of
all A € Li(Fy) there exists a € Fy so that a + A is m-rich w.r.t K.

Prior works on Kakeya/Furstenberg sets were focused on giving lower bounds on the size of
(k,m,1)-Furstenberg sets. For example, in [DDL21b], it was shown that, if S is a (k,m,1)-
Furstenberg set then |S| > (1 — €)mq"~*, assuming ¢ is sufficiently large as a function of n and e
(in particular, ¢ has to be exponential in n). Notice that this is the best possible since any set of
size mq™F is (k,m,1)-Furstenberg. Stated in the counter-positive direction, this theorem shows
that: If

|5 < (1~ €e)mg" " 3)



then there exists a k-dimensional subspace R such that all shifts of R have less than m-points in
common with S. Notice that (3) gives us that

Er(S) < (1—¢e)m.

So, what we discover is that, the results in [DDL21b] simply say that, for every S, there is a subspace
R such that all shifts of R have intersection with .S that is not much larger from the expectation
E}.. Hence, Theorem 3.3 can be viewed as a two-sided generalization of this statement by showing
that, in fact, there exists R such that all shifts of R have roughly the expected intersection with S.

4 Proof Overview

We now give a short sketch of the proof of Theorem 2.1. The proof of Theorem 2.5 (the case
of 7 > 1) is essentially the same as the proof of Theorem 2.1 with a different setting of a single
parameter and so we will not discuss it here. We will also not discuss the two theorems dealing
with the case of Fy as they will follow from the large field case by a simple encoding argument.

As discussed in Section 3, Theorem 2.1 is equivalent to Theorem 3.3 which is stated in the
language of shift-balanced sub-spaces. Given a set S C Iy, the theorem claims that there are many
sub-spaces A € L}(Fy) that are 7-shift-balanced. Let us instead try and prove the easier claim
that there exists at least one such subspace. We will prove this by contradiction. Suppose there
are no 7-shift balanced sub-spaces A. Then, for each A € L (Fy) we can find a shift f(A) € Fy so
that the flat Ty = f(A) + A is 7-unbalanced.

At a very high level, the contradiction will follow by combining the following three statements:

e (Concentration Statement) A random k — 2 flat is 7/2-balanced with high probability.

e (Anti concentration statement) If 7" is a 7-unbalanced k-flat and R is a randomly chosen
k — 2-flat in T then R is 7/2-unbalanced with high probability.

e (Kakeya statement) Given a collection of k-flats, T4, one in each direction A € L} (Fy). A
randomly chosen k& — 2-flat in a randomly chosen T4 ‘behaves like’ a truly random k — 2-flat.

Before we discuss the proofs of these statements, let us see how they can be combined to derive a
contradiction. Consider the distribution on k — 2-flats obtained by sampling A € £ (F}) uniformly
at random and then choosing a random k — 2-flat R inside f(A) + A, where f(A) is defined above
so that f(A)+ A is T-unbalanced. By the anti-concentration statement, this distribution outputs a
7/2-unbalanced R with high probability. Now, from the Kakeya statement we get that this should
(in some way) also be the behaviour of a truly random k — 2-flat, contradicting the concentration
statement. This is essentially the structure of the proof, with the ‘behaves like’ portion of the
Kakeya statement replaced by a quantitative bound on the probability of landing in a given small
set (the set of unbalanced k — 2 flats).

Let us now discuss the proofs of the three statements. The first two (concentration and anti-
concentration), follow easily from Chebyshev’s inequality and pair-wise independence and so we
will only be concerned with the proof of the third one. We can generalize the Kekeya statement
as follows, given a collection of k-flats T4, one in each direction A, what can be said about the
distribution of a random r-flat R in a random 7'y where we allow 7 to be in the range {0, 1,...,k}.
To recover the original (one dimensional) Kakeya problem all we have to do is set k = 1 and r = 0.



Now, we are asking about the distribution of a random point R on a line T4 chosen so that its
direction is uniformly random and its shift is arbitrary. The finite field Kakeya conjecture (proved
in [Dvi09]) says that the distribution of R has large support. In [DW08, DKSS13], motivated by
applications to extractors, it was shown that, in fact, the distribution of R has high min-entropy.
These results can be easily ‘lifted up’ to the case where k£ > 1 and r = k£ — 1 but, alas, the known
(and tight) quantitative bounds on the min entropy are not sufficient for our purposes. Specifically,
it is possible for the distribution of R in this case to be contained in a set of density 27" inside
[/, which is much too small for our purposes. This motivates us to take r = k — 2, which reduces
to understanding the case of Kk = 2 and » = 0. That is, given a family of 2-flats T4, one in each
direction, what can be say about the behaviour of a random point R on a random 74?7 Luckily,
in this case, the results of [KLSS11, DDL21b] can be used to show that the distribution of R has
support with density approaching one.

To prove our theorem we need to extend the results of [KLSS11, DDL21b] in several ways, includ-
ing going from support size to min entropy, reducing the field size from exponential to polynomial
and handling the case of ‘many’ directions in stead of ‘all’ (which corresponds to the parameter §
being less than one). The required lemma is stated below and proved in Section 6.

Lemma 4.1 (Furstenberg lemma). For any v, 8 € [0,1],n € N, ¢ a prime power every (2,v¢>, B)-
Furstenberg set K C ¥y has size at least,

1 —n
|K| > B~y"q" <1 + g) .

Note, this lemma has been proven in [ORW22] with a slightly worse lower bound of 5y"¢" (1 + %) !
which is enough to prove Theorem 2.1 leading to slightly worse constants in the field size require-
ment and hence the entropy loss of the theorem. The proof in [ORW22] uses a combinatorial
reduction to reduce the case of arbitrary 8 to constant 8. We give a new argument to prove this
lemma directly.

Our proof of this lemma follows along the lines of prior works in this area and uses the polynomial
method. One important ingredient is a new variant of the celebrated Schwartz-Zippel lemma which
allows us to improve the dependence on 8 above from 8" to just 5 (See Corollary 6.12). We believe
this lemma could have applications in other situations where the polynomial method is used. For
instance in an upcoming work [Dha] extensions of these arguments will be used to prove maximal
Kakeya bounds in the general setting of the integers modulo a composite number.

5 Proof of Theorems 2.1 and 2.5

We prove Theorems 2.1 and 2.5 by contradiction. We will prove the equivalent versions of the
theorems stated using 7-shift-balanced subspaces (Theorem 3.3 and similarly for Theorem 2.5 even
though it was not stated separately). Suppose the Theorems are not true. Then there exists a
function with parameters as in the Theorems:

[ Lp(Fy) — Ty
such that, for a § fraction of A € L} (Fy), the flat f(A) + A is 7-unbalanced w.r.t. S. Notice that
f(A) can be taken to be any point on the flat f(A)+ A (the choice doesn’t matter for this proof).
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For a real number o > 0, let
By 5 C Ly—2(Fy)

denote the set of k — 2-flats that are o-unbalanced w.r.t. S. We will eventually set ¢ to one of two
values: To prove Theorem 2.1 we will set 0 = 7/2 and, to prove Theorem 2.5 (when 7 > 1) we will
set 0 = /7. Notice that, in both cases, we have 7 — o > 0.

For a k-flat T' € Li(Fy) we let Ly_o(T') be the set of k — 2-flats contained in 7" and let

By _5(T) = By_o N Ly 2(T)

denote the set of o-unbalanced k — 2-flats w.r.t. S that are contained in 7.
Notice first that, by our assumption on r, we have

4<k<n-—1 (4)

Our first claim shows that a random k — 2 flat is balanced w.h.p. This gives the ‘concentration’
part of the argument laid out in the proof overview.

Claim 5.1. If R is chosen uniformly in Ly_o(Fy) then

- 1
PP[R € Bk—2] S 0_—2q

Proof. Since k > 3 we can use pairwise independence and Chebyshev. The probability that |[RN S|
deviates from its expectation Ey_o by at least o F_o is at most
V(RN S|) 1 1
<

< —
(0Er—2)? ~ 0%2Epn ~ 0o%¢’

where we use the fact that Ej,_o = |S|/¢" "2 > g for k=n —r+ 3. O

The next claim gives the ‘anti concentration’ part of the proof overview, showing that a random
k — 2-flat in an unbalanced k-flat is unbalanced w.h.p.

Claim 5.2. Let T € £k(F;‘) be T-unbalanced w.r.t S. Suppose R is chosen uniformly at random
from Ly_o(T). Then
1+7

5

(T —0)%q

Pr[Re B (1) >1—
Proof. As before, the size of RN.S is a sum of p.w independent indicator variables with expectation:

SNT| ,_
SR = lsn Tl (5)

E[lRN S]] =

Since T is T-unbalanced, we have that
||SﬂT|—Ek| > TE}. (6)
Therefore, dividing by ¢ and using (5) we have that

IE[[RNS[] = Eg—2| > TEg—2. (7)
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We will separate into two cases: case 1 is when
E[|[RNS|| < (1 —71)Ek_o. (8)

In this case (which can only happen if 7 < 1), using Chebyshev, the probability that R is o-balanced
is bounded from above by,

PI‘HRﬂ S’ — Ep_o > —O’Ek_g]

Pr[|[RNS|—E[RNS| > (1 — 0)Ex_s]
V(RNS) _ E(RNS)) i

(r—0)2E2 , ~ (1—0)*E}, (1 —0)%q

IN A

IN

In the second case we have,
E[|[RNS|] > (14 7)Ek_s.

In this case the probability that R is o-balanced is bounded above by,

Pr[|[RNS|—Ey 9 <0oEj 5] <
Pr(|RN S| —E[RNS|)| > B[R S| — (1+0) By _s] <
Pr|||RNS|—E[RN S| = E[RNS|]- | <
147
V(RNS]) - (1+7)2 _ l+7 147

(t1—0)2/(1+7)E[|[RNS|]2 ~ (r—=0)2E[|RNS|] — (1 —0)2FEr_2 ~ (T—0)%q

Hence, the probability that R is ¢ balanced is bounded by (1 + 7)/((t — 0)?q) and so we are
done. O

We next define three important sets:

o (L;_o(T)): For T € Ly(F}), we define L} _,(T') to be the set of subspaces in £}_,(Fy) which
on translation can lie in 7' (or equivalently are parallel to T').

o (LT, || W)): For T € Ly(Fy) and W € L;_,(T) we let Li_o(T,|| W) be the set of k — 2
flats in 7" which are parallel to W (notice that there are exactly ¢ such flats and that their
disjoint union is 7).

o (CU5(T)) : For T € L(Fy) we let C%(T) be the set of flats W in Lj_,(T') such that at
least a 1 — <UL fraction of the flats in Li—o(T,|| W) are in Bf_,(T) (we will set ¢ > 1 to

(1—0)%q
two different values for Theorem 2.1 and Theorem 2.5).

The previous lemma can now be used to prove that, if 7" is unbalanced, then many W’s are in
fact in the set C}°(T') defined above (this is essentially a Markov style averaging argument).

Claim 5.3. Let T € Ly (Fy) be T-unbalanced w.r.t S. Suppose W is chosen uniformly at random
from L _o(T). Then
Pr[W € C7%(T)] > 1 —1/e.
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Proof. Let us say the claim is false then with probability less than 1 —1/¢, W € C7%(T) for a
uniformly random W € £;_,(T). Equivalently, with probability greater than 1/c, W & C;%(T).
We can sample a uniformly random chosen R € Lj_o(T) by first picking a direction W € L;_,(T')
at random and then taking R to be a random shift of W inside T". The above assumption will then
give us that:

o g,C & 1 + T o,C
Prl € B (1) < Prl ¢ ()] (1= AEEEL) 4 el € opsy(r)
o.c c(l+71 147
This contradicts Claim 5.2. O

Given W € L;_,(Fy), let Ly (|| W) be the set of k — 2 flats parallel to W and Lj (|| W) be
the set of k-dimensional subspaces containing W. Let

Bi_o(I| W) = Bi_o 0 Ly—o(|| W)

denote the set of g-unbalanced flats parallel to W.

The next claim shows that there is a ‘good’ choice of W € L} _,(Fy) to which we should restrict
our attention (that is, we will consider only k — 2 flats parallel to VV)Z This W should preserve the
typical behavior of a random W in two respects: one is that Bj_, should still have low density when
restricted to flats parallel to W. The other is that W hits C}%(f(A) + A) for many A € Li (|| W).

Claim 5.4. There exists W € L _,(Fy) such that

1
02q(1—4/1-5(1-1/c
o,c c—1)5 6(c—1
2. PrANLZZ(HW)[W S Ck—2(f(A) + A)] >1—+/1-— 5(1 — 1/0) > C+i\/1)_5/2 > (20 )

Proof. Notice, that By_, is a disjoint union of Bf_,(|| W) over all W € L} _,(Fy). Suppose W is
chosen uniformly at random from £j_,(IFy'). Then, by Claim 5.1 and Markov, we have that the

probability that W does not satisfy 1. above is less than 1 — /1 —46(1 — 1/¢).

Consider the bi-partite graph G between L (Fy) and L} _,(Fy) where the edges correspond to
pairs (A, W) € Li(Fy) x L} _,(Fy) such that W C A. Let p be the distribution over the pairs
(A, W) € Li(Fy) x Ly _,(Fy) which is uniform over the edges of G. As the graph G is regular on
both sides sampling from p is equivalent to sampling A uniformly from L} (F7) and W uniformly
from £} _,(A). It also is equivalent to uniformly sampling W € £j_,(Fy) and sampling A from
Li(|l W). By Claim 5.3 and the fact that at least for a ¢ fraction of A € Li(Fy), f(A) + A is
T-unbalanced we have,

Proaw)~ W € CT5(f(A) + A)] 2 6(1 —1/c).
By averaging, again, we get that the probability that W fails to satisfy
Praceqw)[W & CL5%(f(A) + A)] < /1 -6(1 - 1/c)

is at most /1 — (1 — 1/c). By a union bound we now see that there exists a W € L} _,(Fy) which
satisfies the two properties in the claim. O

4This part of the proof corresponds to the statement in the proof overview arguing that the case of general k and
r can be reduced to the case of r =0 and k +— k — r.
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Fix W = W satisfying the two numbered items of Claim 5.4. Let G;, be the random variable

which outputs the random 2-flat
f(span{U, W) +U

for uniformly random U € L3(F7). Notice that there is a small probability that span{U, W} is not
k dimensional. In this case we set f(span{U, W}) = 0.

We will now show that G;, has large intersections with a small set with high probability.
The particular structure of the random variable G';, allows us to state this using the notion of a
Furstenberg set.

Claim 5.5. There exists a set K C IF‘Z such that

—1
L |K] < =m0

2. K is ( (1 _ e+ >q2,5%(1 —1/q— 1/q2)) -Furstenberg.

(1—0)%q
K= |J R
ReB7_,(|W)

Proof. We take

to be the union of all o-unbalanced k — 2-flats parallel to W. To show that 1. holds, we use the
first item of Claim 5.4 and the fact that each R has ¢*~2 points.

For a uniformly random U € L3(Fy), F' = f(span(U, W)) + U gives us a sample from G- Let
T = f(span(U, W)) + span(U, W). If W € C7,(T

(1 - (i(l—t)?q> !

many flats in L_o(T, || W) are in By _,(T) and hence contained in K. F will intersect with each
of these flats (and hence K) in distinct points. This is because T' is a f(span(U, W))-shift of
the span of U and W and UNW = {0} so T is a disjoint union of shifts of W by elements in
F = f(span(U,W)) + U. This implies that F is (1 — ¢(1 +7)/(7 — 0)2q)¢?-rich w.r.t. K. Finally,
note that conditioned on the event that span(U, W) is k-dimensional T has the same distribution
as f(A) + A where A is uniformly distributed over £ (]| W). This means

Pr |Gy is (1- A0

PrANE;Q(HW) W e O7,(f(A) + A)} - Pryecsen) {dimspan{U, W)= k} .

) then that means at least

5 > ¢?-rich w.r.t K] >
T—0)%q

We note Prye s en)[dimspan{U, W} = k] is at least 1 —1/¢q—1/¢>. If we generate U by picking
two random vectors then the first one being in U has probability at most 1 /q”_’l‘H'2 < 1/¢? and
the second being in the space spanned by the first and U has probability at most 1/¢"*+1 < 1/q.
Now using Claim 5.3 and the equation above we have,

The above equation implies 2. as G;, by definition takes a uniformly chosen U € L3(F}) and
outputs a flat parallel to U. ]

14



To finish the proof of the theorem we need a bound for (2,~¢?, 3)-Furstenberg Sets. We will
use Lemma 4.1 which we prove in the next section. We restate the Lemma here for convenience.

Lemma 4.1. For any v, € [0,1],n € N, q a prime power every (2,7¢?, B)-Furstenberg set K C Fy
has size at least,

1 —n
K| > By"q" <1 + 5) .
Given this lemma, we substitute the values
c(1+71) d(c—1) 1 1
=(1—-— — 1— - — —
! ( (7_0)2(]),5 2¢ q ¢

and the bound on |K| given by Claim 5.5 into the lemma above. We get the bound,

e (B () 24 d). o

To prove Theorem 2.1 use ¢ > 32max(n(1 +7)/(76)%,n), c=4, 0 =7/2 and § < 1 in (9) and

re-arrange to get,
8 1\" 1\ " 1 1
—>|1—-— 14+ — l—-— .
9n — ( 2n> < * 32n> < 32n 322n2>

Using (1 —z/n)" > e *(1 — 2%/n) for z < n, (1 +x/n)" < e* and n > 5 then implies,
% > e Y5(1—1/20)e7 /32 (1 — 1/160 — 1/(160)?)

which leads to a contradiction proving Theorem 2.1.
To prove Theorem 2.5 use ¢ > max(n(1+ 7)/(1 — /7)%6%,n),0 = \/7, 6 < 1/10 and set ¢ = 10

in (9) to get,
. 2 n —n
400 100G VR () LN YL 1Y
8ln — 8l7(r+ 1)n 10n n n  n?

Using (1 —z/n)" > e *(1 — 2%/n) for z < n, (1 +x/n)" < e* and n > 20 gives us,

400 —~1/10 -1
1—-1/(100 -2 1—-/20—-1/4
s > ¢ (1—1/(100-20))e™ (1 — /20 — 1/400)
which leads to a contradiction proving Theorem 2.5. O

5.1 The case of F,

In this section we prove Theorem 2.2 using Theorem 2.1. The same argument can be used to derive
Theorem 2.6 from Theorem 2.5.

Theorem 2.2. Let S C FY be such that |S| > 220 max(n*(1 + 7)*/(76)%,n*) and let n, 7,8 satisfy
n > 5[logy(max(n(1 + 7)/(78)%,n))] + 25. Then there exists a natural number

t > logy | S| — 4logy(max(n(1 + 7')/(7'5)2,71)) — 20,

such that a 1 — ¢ fraction of all surjective linear maps L : F — FL have the property that L(Ug) is
727t -close to uniform in the {s norm.
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Proof. Take
¢ = [logy(32max(n(1+ 7)/(76)2,n))].

and set
q= 2t

Let

n' = [n/(]
so that we have

2" < q"l.
We now identify F5 with an Fo-linear subspace of F;‘/, e.g., by identifying Fy with IE‘Q‘Z as Fo-
vector spaces and then identifying F% with the first n < n’¢ coordinates. The above embedding
of Fy in IE‘ZI allows us to think of the set S as sitting in IE‘ZI and so we can apply Theorem 2.1
if we check that all the conditions are met. We first see that, by our choice of ¢, the bound on
q > 32max(n’(1 + 7)/(76)%,n’) is met (notice that n’ < n). We also need to check that |S| > ¢*
which holds from our assumption |S| > 220 max(n*(1 + 7)*/(70)%,n*). n’ > 5 is also satisfied.

Hence we can apply Theorem 2.1 in our setting. Let r be such that

qr < |S| S qr—l—l
and set
t'=r—3.

We get that for a 1 — ¢ fraction of all surjective linear maps L’ : IE‘Z‘/ — Fg satisfy the property
that L'(Ug) is Tq_t’—close to uniform in the £, distance. Since an F,-linear map is also an Fo-linear
map, we can think of L’ as an Fy-linear map from FEM to Fgé. Setting

t=1t'¢

and let L be the restriction of L’ to the subspace we previously identified with F} (which contains
S) we get that for any such L : F% — F4, L(Ug) is 72 '-close to uniform in the £, distance (clearly
L(Ug) and L'(Ug) have the same distribution).

We now bound the ‘entropy loss’ or log, |S| — ¢. Notice that

logy |S] < (r+ 1)¢

and that
t=t0=(r—3).

Combining the last two inequalities we get that
logy |S| —t < 4 < 4logy(max(n(1l +71)/(76)%,n) — 20.

We are not done yet as not all surjective linear maps from F} to F4 will be restrictions of
surjective linear maps from F;‘/ to Fg. We now overcome this obstacle using a random rotation
argument. We started out with embedding S C [F} in a bigger space IE‘QM . If we can show a (1 —§)-
fraction of surjective linear maps from FEM to [} satisfy the desired property we are also done. We
also let ¢ : Fg% — F;‘/ be the Fa-linear isomorphism between IE‘QM and F;‘/ we had implicitly chosen
in the beginning.
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Let H be the set of surjective linear maps from 4 to F which are also surjective linear maps
from IE‘ZI to Ffll. We just showed that a 1 — 4 fraction of the maps in H satisfy the desired property.
Let M be a random invertible linear map in GL,¢(F2). We note ¢ o M is also a valid Fo-linear
isomorphism between Fin'¢ and F;‘/. If we repeated our earlier argument with this isomorphism
we will have proven that a 1 —§ fraction of the maps in M- H = {Lo M|L € H} satisfy the desired
property. But under a random rotation we see that each surjective linear map from FQ,Z to Fh will
be included in an equal number of M - H. This proves that there is at least a 1 — ¢ fraction of
surjective linear maps from Féﬁ to FL which satisfy the desired property. O

6 Proof of Lemma 4.1 using the polynomial method

We will be using the polynomial method to lower bound the sizes of (2, v¢?, 3)-Furstenberg sets in
[Fy which are needed to prove our hashing guarantees. As stated earlier, these bounds have been
proven in [ORW22] using a combinatorial reduction. The bounds from [ORW22] can be directly
used to prove our hashing theorems with slightly worse constants.

We will give a new proof to lower bound these set sizes by extending ideas developed in [Dha21]
to prove bounds for Kakeya sets over rings of integers modulo a composite number. The advantages
are three fold: we get slightly better constants, the argument here gives significantly better bounds
for (1,~q, B)-Furstenberg sets (although not important for our application) and as mentioned earlier
these ideas will also be used to resolve the maximal Kakeya conjecture over rings of integers modulo
a composite number in an upcoming work [Dhal.

In this section we develop improvements to the polynomial method argument to get the desired
dependence on (3. In a nutshell, our improvement comes from picking a carefully chosen set of
monomials, instead of just taking all monomials up to a specified degree. This section will be divided
into three sub-sections. First, we review basic definitions and results on the polynomial method
(with multiplicities) as developed in [DKSS13]. Then, we devote a section to understanding ranks
of sub-matrices of a special matrix which maps a polynomial to its evaluations (with derivatives)
on a given set of points. Finally, we put everything together to prove Lemma 4.1.

6.1 Multiplicities and Hasse derivative

We first review the definitions of multiplicities and Hasse derivatives that will be needed in the
proof (see [DKSS13] for a more detailed discussion). We will allow the definitions to be over an
arbitrary field F since we will need to apply them both for F = F, (which is the usual case) and also
for F = IF,(t1,t2) (the field of rational function in ¢;,t with coefficients in F,;). Working over this
extension field is natural when handling two-dimensional flats and already appears in [KLSS11].

Definition 6.1 (Hasse Derivatives). Let F be a field. Given a polynomial f € Flxq,...,x,] and an
i€ Z%, the ith Hasse derivative of f is the polynomial f () in the expansion

etz = Y 9@

JEZL,
where © = (T1, ..., Tp), 2 = (21, .., 2n) and 23 = [[1_, zi"

Hasse derivatives satisfy the following useful property (see [DKSS13] for a proof). We will only
need this property to show that, if fU) vanishes at a point then so does (f (i))(j).
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Lemma 6.2. Given a polynomial f € Flx1,...,2,] and i,j € Z%,, we have

(N0 = 69 T <Zk fjk>

1
k=1 k

We make precise what it means for a polynomial to vanish on a point a € F" with multiplicity.
First we recall for a point j in the non-negative lattice Z%,, its weight is defined as wt(j) = D iy Ji-

Definition 6.3 (Multiplicity). For a polynomial f € F[xq,...,2,] and a point a € F" we say f
vanishes on a with multiplicity m € Zx>q, if m is the largest integer such that all Hasse derivatives
of f of weight strictly less than m vanish on a. We use mult(f,a) to refer to the multiplicity of f
at a.

Note that the number of Hasse derivatives over F|x1, ..., z,] with weight strictly less than m is
("”:_1). Hence, requiring that a polynomial vanishes to order m at a single point a enforces the
same number of homogeneous linear equations on the coefficients of the polynomial. We will use
the following simple property concerning multiplicities of composition of polynomials (see [DKSS13]

for a proof).

Lemma 6.4. Given a polynomial f € Flx1,...,x,] and a tuple H = (hq,..., hy,) of polynomials in
Fly1,...,Yml, and a € F™ we have,

mult(f o H,a) > mult(f, H(a)).

We will now state the multiplicity version of the Schwartz-Zippel bound [Sch79, Zip79] (see
[DKSS13] for a proof). We denote by Flxy,..,z,]<4 the space of polynomials of total degree at
most d with coefficients in F.

Lemma 6.5 (Schwartz-Zippel with multiplicities). LetF be a field, d € Z>q and let f € Flz1,..,zp]<d
be a non-zero polynomial. Then, for any finite subset U C F

Z mult(f,a) < d|U|" "

acU™

6.2 The EVAL matrix, its submatrices and their ranks

If M is a matrix over an extension field of Fy, we define the [F,-rank of M, denoted by rankg, M,
to be the size of the largest subset of columns of M which are F,-linearly independent (in other
words, no non-zero [Fy-linear combination of those columns is 0). For convenience, we define the
coefficient matrix of a matrix with entries in Fy[t;, t2]. This will help us argue about the F-rank
of a matrix over an extension, by connecting it with the rank of a matrix with entries in F,.

Definition 6.6 (Coefficient matrix of E). Let E be an ny x ny matriz with entries in Fy[t, t2]<4.
The coefficient matrix of E, denoted by Coeff(E), is a (d'f)nl X ny matriz with entries in F, whose
rows are labelled by elements in ((i,7),k) € Z2, x [n1] and whose entry in row ((i,j), k) and column

{ is given by the coefficient of tilt% of the polynomial in the (k,)’th entry of E.
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In other words, to construct Coeff(E) we replace each entry with a (column) vector of its
coefficients. For example:

t1 to +1

E=lo i uty t 4 3t,| CocfE) =

O kRN O~ O
W= O = O =

By construction we have,
rankr, £ = rankp, Coeff(E).

Our main object of interest is the matrix encoding the evaluation of a subset of monomials
(with their derivatives) on a subset of points.

Definition 6.7 (EVAL™ (S, W) matrix). Let F be a field, and let n,m € N. Given a set S C F" and
a set of monomials W C Flxq,...,z,], we let EVAL™(S, W) denote an |S|(m_i+") x |[W| matrix
whose columns are indezed by W and rows are indezxed by tuples (z,j) € S x Z%, s.t. wi(j) < m.
The ((z,]), f)th entry of this matrix is, B
f(j)(a:).

In other words, the (z,j)th row of the matriz consists of the evaluation of the j’th Hasse derivative
of all f € W at x. Equivalently, the f’th column of the matriz consists of the evaluations of weight
strictly less than m Hasse derivatives of f at all points in S.

We let,
V= {u'ty + v'to|u’ v € Fo}" = {uty + vta|u,v € F} C (Fylt1, t2])"

denote the set of n-tuples of homogeneous linear forms in t1,s and
Vial = {ut1 + vty € V| dimg, span{u,v} =2} CV

denote the subset of V in which the coefficient vectors of ¢; and of ¢o are linearly independent.

Let Wy, denote the set of monomials in n-variables x1,...,x, of degree at most d. Our first
lemma shows that the Fg-rank of EVAL™(V, W, ,,) is maximal whenever d is not too large. This is
essentially the Schwartz-Zippel lemma since it means that a polynomial of bounded degree could
be recovered from its evaluations (up to high enough order) on a product set.

Lemma 6.8 (Rank of EVAL™(V,W,,,)). Let m € N then for all d < mg* we have,

ranky, EVAL™(V, My,.) = (W] = <d ; "> .
Proof. Recall V = {u/t] + v'ty € Fy(t1,t2)|u,v € Fg}". Any F,-linear combination of columns in
EVAL™ (S, Wq,,,) for some subset S C V corresponds to looking at the evaluation of the weight < m
Hasse derivatives on S of a degree at most d polynomial in Fy[z1,...,z,]. To be precise if we take
the linear combination of columns corresponding to the monomials f1, fo, ..., f with coefficients
ai, ...,y € Fy the column vector we get will be the evaluation of the weight < m Hasse derivatives
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of Zle a;fi € Fglz1,...,x,] over S. Note that the polynomial we are considering has coefficients
only in F, while the evaluations are being done over the field Fy(t;,t2).

For any d < mgq® any F,linear combination of columns in EVAL"(V, Wy,,) being 0 will be
equivalent to a degree at most mg® — 1 polynomial vanishing on V with multiplicity m. By Lemma
6.5 we see that a non-zero polynomial of degree at most d vanishing on V (which is a product set
of size ¢®*) with multiplicity at least m satisfies

dq2(n—1) > mq2n

which leads to a contradiction (as d < mg?). This means EVAL™(V, W,,,) has Frank |W,,,| for
d < mg®. Note this proof would also show that the Fy(t,t2)-rank of EVAL™(V, W) is |Wa.n| for
d < mg>. O

We next show that the same rank bound holds even if we restrict the rows to only come from
the smaller set V.

Lemma 6.9. EVAL™ Vg, Wa,,) has Fyrank |Wy,| for d < mg?.

Proof. This lemma will need the fact that we are only computing the F, (and not F,(t1,%2)) rank.
Consider any [Fy-linear combination f of monomials in Wy,,. It suffices to show that if f vanishes
with multiplicity at least m over Vg then it vanishes with multiplicity at least m over V. V' \ Vu
contains elements of the form ut; or u(ct; + t3) where u € IF‘Z and ¢ € F,. First we consider
u € Fy\ {0}. We can pick a v € Fj such that v and u are linearly independent. ut; + vtz now is an
element in Vp,1. This means f vanishes on uty + vto with multiplicity at least m. f is a polynomial
in Fylx1,...,2z,] which means all its Hasse derivatives are also Fg-polynomials. Therefore, for any
ieZ%, we get fO(uty) by setting to = 0 in fW(ut; + vty). This implies that f vanishes on ut;
with multiplicity at least m. Setting t; = 0 then shows that f vanishes on 0 with multiplicity at
least m. Again as t; is a formal variable and f € Fy[z1,...,z,] we can replace ¢, with ct; + t2 to
get f vanishes on u(ct; + t2) with multiplicity at least m. O

Our final lemma, which is the heart of this section, shows that any d-fraction of the rows in
EVAL™ (Veun, Wa,,) have rank at least ¢ times the rank of the full matrix. This is not true for
an arbitrary matrix and uses the fact that the general linear group acts on the set of rows in a
transitive way.

Lemma 6.10 (Rank of EVAL™(S,Wy,)). Let m € N and S C Vyy with |S| > 6|Vyul,0 € [0,1]
then for all d < mq?® we have,

rankp, EVAL™(S, Wan) 2 0 - [Wan| = 5<d Z n)

Proof. Consider S C Vg such that |S| = §[Vp|. For any M € GL,(F,) we let M act on ut + vty
where u,v € Fy as M - (ut1 + vta) = Muty + Muvty. Let M - S ={M -yl|y € S}.

Claim 6.11.
rankg, EVAL™ (S, Wy ,) = rankg, EVAL™ (M - S, W ).
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Proof. We will prove this statement by constructing an isomorphism between the column-space
of the two matrices. An element in the column space of EVAL™(S, W, ,,) is the evaluation of the
weight strictly less than m Hasse derivatives on S of a polynomial f(z) € Fy[z1, ..., xy] of degree at
most d. We map such a vector to the evaluation of the weight strictly less than m Hasse derivatives
on M - S of the polynomial f(M~'x) which will also be of degree at most d. The choice of f
in the beginning can be ambiguous but if there are two polynomials f(z) and g(z) having the
same evaluation of weight strictly less than m Hasse derivatives over S then f(x) — g(z) vanishes
on S with multiplicity at least m. By Lemma 6.2, f(M~'x) — g(M~'z) vanishes on M - S with
multiplicity m which implies f(M ~'z) and g(M ') evaluate to the same weight strictly less than
m Hasse derivatives over M -S. The inverse map can be similarly constructed. O

The above claim shows it suffices to show the rank bound for any M - S where M € GL,(F,).
We do this by a probabilistic method argument.

The previous Lemma implies that Coeff(EVAL™ Ve, Wy )) has Fg-rank |[Wy,|. As this is
a matrix with F, entries this means that there exists a |Wy,| = (dzn) subset of rows R of
Coeff(EVAL™ (Vpui, Wy ,)) which are linearly independent. These rows are indexed by tuples

(:Ev i7 (]7 k)) € Vrun X ZT>_LO X Z220

with wt(i) < m and j + k < d. The (z,1i, (4, k))th row is the coefficient of t{t’; in the evaluation of
the ith Hasse Derivative at x of the monomials in Wy,,.

We pick an M € GL,,(F,) uniformly at random. We now calculate the expected fraction of the
rows from R which appear in Coeff(EVAL™ (M - S, My ,,)).

A row in R indexed by (z,14, (j, k)) € Vi X Z2% x Z%, will appear in Coeff(EVAL™ (M - S, Wy.,,))
if and only if z € M - S. As the action of GLn(quon Vral We see that this happens with probability
at least 0. This means the expected fraction of rows in R appearing in Coeff(EVAL™ (M - S, Wg.,,))
is at least §. This ensures that there is some matrix M such that Coeff(EVAL™(M - S, Wy,,)) and
hence EVAL™(M - S, Wy ,,) has F,-rank at least 6|Wg,,|. O

We note the above lemma could be proven in a more general setting where we wanted to compare
the F, rank of EVAL™ (G, W,,,) for G =S CF" and G = S’ C S a large subset of S as long as the
general linear group acts transitively on S. For instance, this style of argument was also used in
[Dha21] to obtain a better dependence on 3 for (1,m, 3)-Furstenberg sets® over Z/p*Z.

We will use a simple corollary of this lemma.

Corollary 6.12. Let 7 € N and S C Vyy with |S| > §|Vpul,d € [0,1] then for any d < rq* there
exists a set Ps(d,r),|Ps(d,r)| = 5(%”) of monomials of degree at most d such that no non-zero

[F,-linear combination of monomials in Ps(d,r) vanishes with multiplicity at least r over all points
m S.

6.3 Proving the bound on Furstenberg sets

We first give a brief description of the polynomial method argument as was used for example in
[KLSS11]. Given a (k,vq?, B)-Furstenberg set K we take a polynomial @ of degree at most d
(where d depends on (3,7 and ¢) which vanishes with high multiplicity on K. If |K| small, such a
polynomial can be found by solving a system of linear constraints. For at least a S fraction of the

"Denoted as (m, 3)-Kakeya sets in [Dha21]
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flats A € L3(Fy) there is a shift a + A, a € F} such that a + A is vq?-rich w.r.t. K. By restricting
Q to a+ A and using Lemma 6.5 we then show that () vanishes identically on a + A which implies
that the highest degree homogeneous part of ) vanishes identically on A. This will imply that the
highest degree homogenous part of @ vanishes on a 3 fraction of A € L5(FFy). Another application
of the Lemma 6.5 then gives us a size bound for |K| by arguing that deg(Q)) cannot be too small
(here, the dependency between 8 and d comes into play). The size of K is lower bounded by the
number of at most degree d monomials (d:”). The dependence of 3 on d leads to a loss of 8™ in
the final bound.

In [ORW22] they overcome this problem by using random rotations to reduce to the case of
constant 8. We overcome this loss by instead using Corollary 6.12 to start out with a subset of
monomials of degree at most d’ (here d’ will not depend on 3) of size (d/;r") such that any IF,-linear
combination of those will not vanish on the 3 fraction of flats in £} (IFy) which have yq*-rich shifts
w.r.t. K. Now the standard polynomial method argument will let us prove Lemma 4.1.

Lemma 4.1 (Size of (2,7¢?, B)-Furstenberg sets). For any v € [0,1],3 € [0,1],n € N, q a prime
power every (2,7q?, B)-Furstenberg set K C Fy has size at least,

1 —n
K| > py"q" <1 + 5) -

Proof. Let
t=Tvq"1/q > vq.

As K is a (2,742, B)-Furstenberg set then there exists a subset F C L3 (Fy) of size at least B[L5(Fy)|
such that for every A € F there exists a tq = [y¢?]-rich shift a + A for some a € Fy. To F we can
also associate a set of elements

F' = {ut1 + vto|u,v € Fy,span{u, v} € F} C Fy(t1,t2)" C Vi

Note, in general for each flat A € L3(IF7') there are (¢*—1)(¢* —q¢) elements in Vg, corresponding
to it (because there are (¢? — 1)(¢?> — ¢) ordered pairs of vectors which span A) and each element
uty + vty € Ve corresponds to a unique choise of basis. Thus, we have

\F'| > BVal-
Let ¢ be an integer parameter (we will later send ¢ to infinity) and take
m=(¢*+t—1)¢

and
d=q¢*l—1

for £ € N. As d < ¢*t/, using Corollary 6.12 we can find a set Pz (d,tf) of monomials of degree at

most d so that J
+n
|Pr:(d, tl)] > ﬁ( . )

and such that no Fy-linear combination of monomials in Pz (d, ¢¢) vanishes over all points in F’
with multiplicity at least tf. If

d+n
6% > |K],
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then we can find (by solving a system of homogeneous linear equations) a non-zero polynomial Q) €
Fylx1,...,xy,] of degree at most d spanned by monomials in Pz (d, t¢) vanishing with multiplicity
at least m on every point in K. Let Q¥ be the highest degree homogenous part of Q.

Claim 6.13. For any x € F' we have mult(QH ) > t¢.

Proof. Let j € Z%, be such that wt(j) < ¢/. By Lemma 6.2, QWY vanishes on K with multiplicity

at least m — wt(j). QU is also of degree at most d — wt(j)

By construction for every element ut; + vty € F' there exists an element Cup € IF';L such that
Cupt+{uti+vtalty, ty € Fy}is gt-rich w.r.t. K. By Lemma 6.4 we have that the bivariate polynomial
Q(j)(cu,v + utq 4 vt9) vanishes on ¢t many points in Fg with multiplicity at least m — wt(j).

By Lemma 6.5, we have that, if Q(j)(cuvv + uty + vte) is non-zero then,

(d —wt(§))g > (m — wt(j))qt.

Rearranging gives us,
d+wt(j)(t —1) > mt.

Substituting d = ¢?tf — 1, m = (¢*> +t — 1)¢ and using the fact that wt(j) < ¢/ gives us,

Pl — 14 (t — 1)t > ¢*tl + (t — 1)td.
This leads to a contradiction. This means that Q(j)(cu,v + uty] + vty) is identically 0. We note,
QW (cyy + uty + vty) € Fylty,to] and its highest degree homogeneous part is (Q)W (uty + vty).
This means (Q)W (ut; + vty) = 0 for all j such that wt(j) < t£. This proves the claim. O

As Qf is a non-zero polynomial with coefficients in [F, spanned by monomials in Pz (d,t{) and
it vanishes with multiplicity at least t¢ on every point in F’, we get a contradiction to Corollary
6.12. Therefore, we can conclude that

d+n
ﬁ(mﬁ—)l) <K

Substituting d = ¢*t¢ — 1, m = (¢> +t — 1){ gives us,
(@®tl — 1 +n)(¢*th —2+n)... (%)
(@+t—)l+n—D(R+t—Dl+n—-2)...((2+t—1)0)

Letting ¢ — oo gives us,
" t—1\""
|K| > Bt" [ 1+ — .
q

As g >t > ~q the proof of the lemma is complete. O

K| =5

We note the arguments in this section easily generalizes for (k,vq¢*, 8)-Furstenberg sets for all
k > 1 to prove the following theorem.

Theorem 6.14 (Size of (k,v¢*, 3)-Furstenberg Sets). For any v € [0,1],8 € [0,1],n € N, ¢q a
PTIME POWET every (k,’qu,ﬁ)—Furstenberg set K C Iy has size at least,

n_.n 1 -
|K| > By"q <1+F> .

The [ORW22] reduction gives a quantitatively worse bound of 8y™¢"(2" log,(2en)e)™" compared
to B4"q"™27" for k = 1. Note that for k£ > 5, Theorem 3.3 gives us much better bounds for ¢ >> n.

1
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