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Improved Field Size Bounds for Higher Order MDS Codes

Joshua Brakensiek∗ Manik Dhar† Sivakanth Gopi‡

Abstract

Higher order MDS codes are an interesting generalization of MDS codes recently introduced by
Brakensiek, Gopi and Makam (IEEE Trans. Inf. Theory 2022). In later works, they were shown
to be intimately connected to optimally list-decodable codes and maximally recoverable tensor codes.
Therefore (explicit) constructions of higher order MDS codes over small fields is an important open
problem. Higher order MDS codes are denoted by MDS(ℓ) where ℓ denotes the order of generality,
MDS(2) codes are equivalent to the usual MDS codes. The best prior lower bound on the field size of
an (n, k)-MDS(ℓ) codes is Ωℓ(n

ℓ−1), whereas the best known (non-explicit) upper bound is Oℓ(n
k(ℓ−1))

which is exponential in the dimension.
In this work, we nearly close this exponential gap between upper and lower bounds. We show that an

(n, k)-MDS(3) codes requires a field of size Ωk(n
k−1), which is close to the known upper bound. Using

the connection between higher order MDS codes and optimally list-decodable codes, we show that even
for a list size of 2, a code which meets the optimal list-decoding Singleton bound requires exponential
field size; this resolves an open question from Shangguan and Tamo (STOC 2020).

We also give explicit constructions of (n, k)-MDS(ℓ) code over fields of size n(ℓk)O(ℓk)

. The smallest
non-trivial case where we still do not have optimal constructions is (n, 3)-MDS(3). In this case, the known
lower bound on the field size is Ω(n2) and the best known upper bounds are O(n5) for a non-explicit
construction and O(n32) for an explicit construction. In this paper, we give an explicit construction over
fields of size O(n3) which comes very close to being optimal.
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1 Introduction

The Singleton bounds states that the minimum distance of an (n, k)-code is at most n− k + 1 [Sin64].1

Codes which achieve this bound are called Maximum Distance Separable (MDS) codes. Reed-Solomon
codes are a beautiful construction of MDS codes over fields of size just O(n). Field size plays an important
role in several applications of MDS codes. In distributed storage where MDS codes are extensively used,
field size is the main determinant in the efficiency of encoding the data and recovering from failures
[HSX+12, PGM13]. Because of their distance optimality (MDS) and the small field size, Reed-Solomon
codes are one of the most widely used codes both in practice and in theory.

In a recent paper,2 [BGM22b] introduced a generalization of MDS codes called higher order MDS
codes.

Definition 1.1 (Higher order MDS codes [BGM22b]). For a matrix V ∈ F
k×n and subset A ⊆ [n], we

let VA be the span of the columns of V indexed by A. Let C be an (n, k)-code with generator matrix G.
Let ℓ be a positive integer. We say that C is MDS(ℓ) if for any ℓ subsets A1, . . . , Aℓ ⊆ [n] of size of at
most k, we have that

dim(GA1 ∩ · · · ∩GAℓ
) = dim(WA1 ∩ · · · ∩WAℓ

), (1)

where Wk×n is a generic matrix over the same field characteristic.3

For example, the columns of a generator matrix of an (n, 3)-MDS(3) code form n points in the
projective plane PF

2 such that no three points are collinear and additionally, no three lines obtained by
joining disjoint pairs of points are concurrent. This is in contrast to an ordinary (n, 3)-MDS code where
we only require that no three points are collinear.

In [BGM22b], it was shown that higher order MDS codes are equivalent to MR tensor codes which
were first introduced in [GHK+17]. A subsequent work [BGM22a] showed that higher order MDS codes
are equivalent to optimally list-decodable codes. We look at these two equivalences in turn.

A code C is a (m,n, a, b)-tensor code if it can be expressed as Ccol⊗Crow, where Ccol is a (m,m−a)-
code and Crow is a (n, n− b)-code. In other words, the codewords of C are m× n matrices where each
row belongs to Crow and each column belongs to Ccol. There are ‘a’ parity checks per column and ‘b’
parity checks per row. Such a code C is maximally recoverable (abbreviated as MR) if it can recover
from every erasure pattern E ⊆ [m] × [n] which can be recovered from by choosing a generic Ccol and
Crow. Thus MR tensor codes are optimal codes since they can recover from any erasure pattern that is
information theoretically possible to recover from. [BGM22b] defined MDS(ℓ) codes motivated by the
following proposition.

Proposition 1.2 (Higher order MDS codes are equivalent to MR tensor codes [BGM22b]). Let C =
Ccol ⊗ Crow be an (m,n, a = 1, b)-tensor code. Here a = 1 and thus Ccol is a parity check code. Then C
is maximally recoverable if and only if Crow is MDS(m).

A generalization of the Singleton bound was recently proved for list-decoding in [ST20, Rot22, GST21].
If an (n, k)-code is (L, ρ)-list-decodable4, then

ρ ≤
L

L+ 1

(
1−

k

n

)
. (2)

Note that when L = 1, this reduces to the usual Singleton bound. Roth [Rot22] defined a higher order
generalization of MDS codes as codes achieving this generalized Singleton bound for average-radius list-
decoding.

Definition 1.3 (List-decodable-MDS codes [Rot22]). Let C be a (n, k)-code. We say that C is list
decodable-MDS(L), denoted as LD-MDS(ℓ), if C is (L, ρ)-average-radius list-decodable for ρ = L

L+1

(
1− k

n

)
.

1This bound holds for non-linear codes as well, but in this paper we will only focus on linear codes defined over some finite
field F. A (linear) (n, k)-code over F is a k-dimensional subspace of Fn.

2The timeline presented in this paper is based on the initial arXiv posting dates of each paper. In particular, such chrono-
logical order is [BGM22b, Rot22, BGM22a].

3Note that MDS(ℓ) is a property of the code C and not a particular generator matrix G used to generate C. This is because
if G satisfies (1) then MG also satisfies (1) for any k × k invertible matrix M .

4I.e., there are at most L codewords in any Hamming ball of radius ρn.
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In other words, for any y ∈ F
n, there does not exist L+1 distinct codewords c0, c1, . . . , cL ∈ C such that

L∑

i=0

wt(ci − y) ≤ (L+ 1)ρn = L(n− k).

We say that C is list LD-MDS(≤ L) if it is LD-MDS(ℓ) for all 1 ≤ ℓ ≤ L.

An equivalent way to define LD-MDS(L) codes is using the parity check matrix H(n−k)×n matrix of
C [Rot22]. C is LD-MDS(L) if there doesn’t exist L+ 1 distinct vectors e0, e1, . . . , eL ∈ F

n such that

L∑

i=0

wt(ei) ≤ L(n− k) and He0 = He1 = · · · = HeL.

The list-decoding guarantees of LD-MDS(L) are very strong. In particular, LD-MDS(L) codes of rate
R get ǫ-close to list-decoding capacity when L ≥ 1−R−ǫ

ǫ
. Note that the usual MDS codes are LD-MDS(1).

[BGM22a] shows the equivalence between LD-MDS codes and the dual of higher order MDS codes.

Proposition 1.4 (LD-MDS codes are the dual of higher order MDS codes [BGM22a]). If C is a linear
code then for all ℓ ≥ 1, C is MDS(ℓ+ 1) if and only if C⊥ is LD-MDS(≤ ℓ).

Besides the connection to MR tensor codes and optimally list-decodable codes, higher order MDS
codes are also shown to be intimately related to MDS codes whose generator matrices are constrained to
have a specific support and the GM-MDS conjecture [BGM22a]. Such matrices have many applications
in coding theory, see [DSY14].

1.1 Our Results

Our main result exponentially improves the lower bound for higher order MDS codes.

Theorem 1.5. Let C be an (n, k)-code over the field F which is MDS(3). Then, |F| ≥
(
n−2
k−1

)
− 1.

By Proposition 1.2, we have the following corollary for MR tensor codes.

Corollary 1.6. Let C be an (m,n, 1, b)-tensor code over the field F then |F| ≥
(
n−2
b−1

)
− 1.

Proposition 1.4, implies the following corollary for LD-MDS codes.

Corollary 1.7. Let C be an (n, k)-code over the field F which is LD-MDS(≤ 2) then F ≥
(
n−2
k−1

)
− 1

In particular, we see that if C is of constant rate and LD-MDS(≤ 2) then we would need exponential in
n field size. For applications to list decoding, this is only talking about information-theoretically-optimal5

average-radius list decoding.
To remedy this situation, starting from Theorem 1.5 we prove lower bounds for the worst-case list

decoding setting.

Theorem 1.8. Let n ≥ k ≥ 0 be such that n − k is divisible by 3. Let C be an (n, k)-MDS code which

is (2, 2(n−k)
3n

)-worst-case list decodable, i.e., it matches the list-decoding Singleton bound (2) for L = 2.

Then, C requires field size
(
(n+2k)/3

k−1

)
− 1.

In particular, this answers an open question from [ST20], where they asked what is the minimum
field size necessary to achieve the list-decoding Singleton bound (2) for L = 2; we show that exponential
field size is necessary and sufficient.

Remark 1.9. This lower bound does not say that error-correcting codes achieving list decoding capac-
ity require exponential field size (which contradicts the known list decoding capacity of random linear
codes [GHK10]). Instead is just says that codes over subexponential fields cannot achieve capacity with
the exactly optimal list size.

Remark 1.10. Also note that this lower bound only applies to MDS codes, as non-MDS codes already
have a suboptimal tradeoff for list-size 1.

5Here we mean that the tradeoff between list decoding radius and list size is exactly as specified by the generalized Singleton
bound.
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1.1.1 Explicit constructions

Our first explicit construction is a general construction for (n, k)−MDS(ℓ) codes field size construction.
Prior to this work no constructions for general values of n, k, and l were known.

Theorem 1.11. There is an explicit (n, k)-MDS(ℓ)-code over field size n(ℓk)O(ℓk)

.

We now give a high level overview of our construction. We first convert the generic intersection
condition (1) into a determinant condition using Lemma 2.3. Let p ≥ n+ k − 1 be a prime power and
consider the field extension Fp[α1, . . . , αkℓ] over the base field Fp where each αi has an extension degree
D = ℓk2 over Fp[α1, . . . , αi−1]. In particular, this means that any non-zero polynomial p(x1, x2, . . . , xℓk)
with Fp coefficients and individual degree at most D−1, cannot vanish at (α1, α2, . . . , αℓk). Similar ideas
were also used in the doubly exponential MDS(3) construction of [Rot22, ST20].

But here, we depart from previous constructions. Our (n, k)-MDS(ℓ) code C is the Reed-Solomon code
generated by n Fp-linear combinations of α1, . . . , αkℓ such that any ℓk generators are linearly independent
over Fp, this can be achieved using a Reed-Solomon code over Fp. The key step is then to show that
the determinant obtained from Lemma 2.3 is a non-zero polynomial in α1, α2, . . . , αℓk (it is easy to see
that its individual degree is at most D− 1). Here we crucially use the GM-MDS theorem [Lov18, YH19]
(which requires p ≥ n + k − 1) and the Fp linear independence of our evaluation points to show that
there is an Fp substitution to α1, . . . , αℓk which makes the determinant non-zero. This shows that the
determinant polynomial is indeed non-zero.

Our next construction is in the specific case of (n, 3)-MDS(3) codes which is the smallest non-trivial
case of a higher-order MDS code.

Theorem 1.12. There exists an explicit (n, 3)-MDS(3) code with field size O(n3).

This improves on the earlier explicit construction of size O(n32) [Rot22] and is only a factor n away
from the current best lower bound of Ω(n2) [BGM22b]. We also construct some explicit codes for k = 4
and k = 5.

Theorem 1.13. There exists an explicit (n, 4)-MDS(3) code with field size O(n7).

Theorem 1.14. There exists an explicit (n, 5)-MDS(3) code with field size O(n50).

As the dual of MDS(3) is also MDS(3) [Rot22, BGM22b], the three constructions above also give us
constructions for (n, n− k)-MDS(3) for k = 3, 4, 5. The above constructions involve carefully analyzing
the algebraic conditions Reed-Solomon codes need to satisfy to have the higher order MDS property and
carefully selecting the evaluation points so that we can argue for their correctness directly or in some
cases reduce to a simple check which can be performed by a computer program.

1.2 Comparison with prior work

Tables 1 and 2 show known upper and lower bounds on the field size of MDS(ℓ) codes and compare it
our work. Since the dual of MDS(3) is also MDS(3) [Rot22, BGM22b] any (n, k)-MDS(3) construction
in the Table 1 also gives a (n, n− k)-MDS(3) construction as well. As can be seen from Table 1, prior to
our work no general explicit constructions were known. We also see that even after our work there is an
exponential gap in the exponent of the field size between the explicit and non-explicit constructions.

Noting, that any (n, k)-MDS(ℓ) code is also MDS(ℓ′), ℓ′ ≤ ℓ we see that our lower bound is an
exponential improvement over the earlier best known lower bounds (say when code rate is constant and
ℓ is constant).

1.3 Open Questions

We conclude the introduction with the following intriguing open questions. First, we would like to close
the gap between the existential upper and lower bounds for MDS(ℓ) codes.

Question 1.15. Can we match the existential upper and lower bounds for (n, k)-MDS(ℓ) for ℓ ≥ 3? In
particular, can we improve the current lower bound from Ωk(n

k) to Ωℓ,k(n
Ω(ℓk))?

Second, we would like to close the gap between the existential upper bounds and explicit constructions.

Question 1.16. Can we construct explicit (n, k)-MDS(ℓ) codes with field size Oℓ,k(n
(ℓ−1)k)?

Finally, we would like to get a truly optimal construction in the (n, 3)-MDS(3) case.
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(n, k)-MDS(3) 2k
n

explicit [ST20]

(n, k)-MDS(4) 2(3k)
n

explicit [ST20]

(n, k)-MDS(3) nk2k

explicit [Rot22]

(n, k)-MDS(ℓ) nO(min{k,n−k}(ℓ−1)) non-explicit [BGM22b, KMG21, BGM22a]

(n, k)-MDS(ℓ) n(lk)O(lk)

explicit Theorem 1.11

(n, 3)-MDS(3) n32 explicit [Rot22]

(n, 3)-MDS(3) n5 non-explicit [Rot22]

(n, 3)-MDS(3) n3 explicit Theorem 1.12

(n, 4)-MDS(3) n7 explicit Theorem 1.13

(n, 5)-MDS(3) n50 explicit Theorem 1.13

Table 1: Table showing the best known upper bounds for the field size of (n, k)-MDS(ℓ) codes.

(n, n− 2)-MDS(4) Ω(n2) [KMG21]

(n, k)-MDS(ℓ) Ωℓ,k(n
min{ℓ,k,n−k}−1) [BGM22b]

(n, k)-MDS(3)
(

n−2
k−1

)

− 1 Theorem 1.5

Table 2: Table showing the best known lower bounds for the field size of (n, k)-MDS(ℓ) codes.

Question 1.17. Do there exist (n, 3)-MDS(3) codes over fields of size O(n2)?

Because of the rich connections of higher order MDS codes, progress on any of these questions,
particularly the constructions of explicit codes, will lead to new insights and applications for distributed
storage and list decoding.

2 Preliminaries

In this section, we state a couple of definitions and known theorems about higher order MDS codes which
will be useful for us.

An (n, k)-Reed-Solomon code with generators α1, . . . , αn ∈ F is the code with the following generating
matrix: 



1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
n




.

We now discuss properties of general higher order MDS codes.

Theorem 2.1 ([BGM22b]). Let V be a k × n matrix. Then, V is (n, k)-MDS(ℓ) if and only if for all
A1, . . . , Aℓ ⊆ [n] with |Ai| ≤ k and |A1|+ · · ·+ |Aℓ| = (ℓ−1)k, we have that VA1 ∩· · ·∩VAℓ

= 0 whenever
it generically should; that is, for all partitions P1 ∪ · · · ∪ Ps = [ℓ] we have that

s∑

i=1

∣∣∣∣∣∣

⋂

j∈Pi

Aj

∣∣∣∣∣∣
≤ (s− 1)k.

We shall need the following simple corollary for MDS(3).
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Corollary 2.2. Let V be a k × n MDS matrix. Then, V is (n, k)-MDS(3) if and only if for all
A1, A2, A3 ⊆ [n] with |Ai| ≤ k − 1 and |A1| + |A2| + |A3| = 2k, we have that VA1 ∩ VA2 ∩ VA3 = 0
whenever it generically should; that is, the following conditions hold:

• |A1 ∩A2 ∩ A3| = 0.

• |Aπ(1) ∩Aπ(2)|+ |Aπ(3)| ≤ k for all permutations π : [3] → [3].

Proof. Note that the combinatorial conditions on the sets A1, A2, A3 follow by considering suitable par-
titions of [3]. By Theorem 2.1, it suffices to check the intersection VA1 ∩ VA2 ∩ VA3 when one of the Ai’s
has size exactly k. Assume without loss of generality that |A3| = k. Then VA3 = F

k, so the intersection
is equal to VA1 ∩VA2 . Since V is MDS, V is also MDS(2) (see [BGM22b]), so this intersection is 0 if and
only if it generically should.

We shall also use the following matrix identity for checking MDS(ℓ) conditions.

Lemma 2.3 ([Tia19, BGM22b]). Let V be a k×n matrix. Consider A1, . . . , Aℓ ⊆ [n] with |Ai| ≤ k and
|A1|+ · · ·+ |Aℓ| = (ℓ− 1)k, we have that VA1 ∩ · · · ∩ VAℓ

= 0 if and only if

det




Ik VA1

Ik VA2

...
. . .

Ik VAk


 6= 0,

where VAi
denotes the submatrix of V with columns indexed by Ai.

The following is useful for constructing Reed-Solomon codes over (n, 3)-MDS(3).

Lemma 2.4 ([BGM22b, Rot22]). Let V be an (n, 3)-Reed-Solomon code with evaluation points β1, . . . , βn ∈
F. Then, V is MDS(3) if and only if for all injective maps α : [6] → [n] we have that

det




1 βα(1) + βα(2) βα(1)βα(2)

1 βα(3) + βα(4) βα(3)βα(4)

1 βα(5) + βα(6) βα(5)βα(6)



 6= 0.

We shall also use a variant of the GM-MDS theorem.

Theorem 2.5 (GM-MDS theorem,[DSY14, Lov18, YH19], see [BGM22a]). Let A1, . . . , Aℓ of total size
(ℓ − 1)k such that WA1 ∩ · · · ∩ WAℓ

= 0 for a generic (n, k)-matrix. Let F be a field of size at least
n + k − 1. Then, there exists γ1, γ2, . . . , γn ∈ F such that the (n, k) Reed-Solomon code U generated by
γ1, . . . , γn has that UA1 ∩ · · · ∩ UAℓ

= 0.

Remark 2.6. Note the order of the quantifiers. The code U is only guaranteed to meet the MDS(ℓ)
criteria for one tuple of sets (A1, . . . , Aℓ).

3 (n, k)-MDS(3) codes require field size
(

n−2
k−1

)

− 1

In this section, we show the exponential (in dimension) lower bound for the field size of MDS(3) codes.

Theorem 1.5. Let V ∈ F
k×n be an MDS(3)-code. Then, |F| ≥

(
n−2
k−1

)
− 1.

We prove this by in fact showing a slightly stronger lower bound.

Lemma 3.1. Let V ∈ F
k×n be an MDS code such that VA1 ∩VA2 ∩VA3 = 0 for all A1, A2, A3 ⊆ [n] with

distinct A2, A3, |A1| = 2, |A2| = |A3| = k − 1 and A1 ∩ (A2 ∪A3) = ∅. Then, |F| ≥
(
n−2
k−1

)
− 1.

Proof of Theorem 1.5. By Corollary 2.2, if A2 6= A3, |A1| = 2, |A2| = |A3| = k−1 and A1∩(A2∪A3) = ∅
then VA1 ∩ VA2 ∩ VA3 = 0 when V is MDS(3). The rest follows from Lemma 3.1.
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Proof of Lemma 3.1. Let e1, e2, . . . , ek be the coordinate vectors in F
k. Via row operations, we may

assume that V1 = e1 and V2 = e2. Now consider the MDS(3) test on A1 = {1, 2} and two distinct subsets
A2, A3 of size k − 1 which are disjoint from A1 (but not necessarily from each other). By Corollary 2.2,
we have that VA1 ∩ VA2 ∩ VA3 = 0.

Note that for any subset A ⊆ [n] of size k − 1, V ⊥
A is a 1-dimensional space with coordinates

(wA
1 , . . . , w

A
k ), where wA

i = (−1)i det(V |A×([k]\i)). Also V ⊥
A1

= span{e3, e4, . . . , ek}. Finally VA1 ∩ VA2 ∩
VA3 = 0 iff V ⊥

A1
+ V ⊥

A2
+ V ⊥

A3
= F

k. Therefore, we have that the MDS(3) condition on A1, A2, A3 is
equivalent to

det




0 0 · · · 0 0 wA2
1 wA3

1

0 0 · · · 0 0 wA2
2 wA3

2

1 0 · · · 0 0 wA2
3 wA3

3

0 1 · · · 0 0 wA2
4 wA3

4

...
...

. . .
...

...
...

...

0 0 · · · 1 0 wA2
k−1 wA3

k−1

0 0 · · · 0 1 wA2
k wA3

k .




= det

(
wA2

1 wA3
1

wA2
2 wA3

2

)
6= 0.

In other words, (wA2
1 : wA2

2 ) 6= (wA3
1 : wA3

2 ) in PF
1 whenever A2, A3 ⊆ {3, . . . , n} are distinct subsets

of size k − 2. Thus, q ≥
(
n−2
k−1

)
− 1.

This result greatly improves on the previous lower bounds for MR tensor codes.

Corollary 3.2. Let U ⊗ V be an (m,n, a, b) MR tensor code with a ≥ 1 and m− a ≥ 2. Then the field
size must be at least

(
n−2
b−1

)
− 1.

Proof. Let U ′ be a (m − a + 1,m − a) code formed by puncturing U . Note that U ′ ⊗ V must be an
(m − a + 1, n, 1, b) MR tensor code. Thus, V must be an MDS(m − a + 1) code [BGM22b]. Since
m− a + 1 ≥ 3, we have that V is an MDS(3) code. Thus, the field size lower bound of

(
n−2

(n−b)−1

)
− 1 =(

n−2
b−1

)
− 1 applies.

3.1 Application to list decoding

As mentioned previously the lower bound of Theorem 1.5 is only about average-radius list decoding.
Furthermore, the “hard” case identified is a rather extreme example, where one of the codewords has
Hamming distance n − k − 2 from the received codeword, which is only three less than the minimum
distance.

In this section we prove a lower bound for the worst-case list decoding setting by proving Theorem 1.8.

Theorem 1.8. Let n ≥ k ≥ 0 be such that n − k is divisible by 3. Let C be an (n, k)-MDS code which

is (2, 2(n−k)
3n

) worst-case list decodable. Then, C requires field size
(
n−2(n−k)/3

k−1

)
− 1.

To start, we show that the MDS(3) lower bound extends to the case the sets A1, A2, A3 are all the
same size.

Lemma 3.3 (Extension to the (2k/3, 2k/3, 2k/3) split.). Let k be divisible by 3. Let V be an (n, k)-MDS
code such that for all A1, A2, A3 ⊆ [n] of size 2k/3 we have that VA1 ∩VA2 ∩VA3 = 0 whenever this holds
generically. Then, the field size of the code is at least

(
n−2k/3
k/3+1

)
− 1.

Proof. Let V be an MDS(3) code such that VA1 ∩ VA2 ∩ VA3 = 0 whenever |A1| = |A2| = |A3| = 2k/3
and generically the intersection should be 0. By Corollary 2.2, this is equivalent to |A1 ∩ A2 ∩ A3| = 0
and |Ai ∩Aj | ≤ k/3 for all i 6= j.

Pick 2k/3 − 2 columns I ⊆ [n] of V . Let k′ = k − |I | = k/3 + 2 Pick an arbitrary projection

Π : Fk → F
k′

of rank k′ such that ker(Π) = VI . Let V
′ be the code with columns Π(vi) for i ∈ [n] \ I .

Claim 3.4. V ′ is MDS.
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Proof. Pick any set of indices J of size k′ disjoint from I , it suffices to prove that V ′
I = F

k′

. Note that

V ′
I = span{Π(vi) : i ∈ J}

= span{Π(vi) : i ∈ I ∪ J}

= Π(span{vi : i ∈ I ∪ J})

= Π(Fk) (V MDS)

= F
k′

(Π max rank),

as desired.

To complete the field size lower bound, consider distinct A′
1, A

′
2, A

′
3 ⊆ [n] \ I such that |A′

1| = 2,
|A′

2| = |A′
3| = k′ − 1 = k/3 + 1, and A′

1 ∩ (A′
2 ∪ A′

3) = 0. By Lemma 3.1, it suffices to show that
V ′
A′

1
∩ V ′

A′

2
∩ V ′

A′

3
= 0. Assume for sake of contradiction that there exists nonzero v0 ∈ V ′

A′

1
∩ V ′

A′

2
∩ V ′

A′

3
.

Pick an arbitrary partition I2 ∪ I3 = I such that |I2| = |I3| = k/3− 1. Now let

A1 = I ∪ A′
1

A2 = I2 ∪A′
2

A3 = I3 ∪A′
3.

Note that |A1| = |A2| = |A3| = 2k/3 and |A1 ∩ A2 ∩A3| = 0. Further, we can check that

|A1 ∩A2|+ |A3| = |I2|+ |A3| = k/3− 1 + 2k/3 ≤ k,

|A1 ∩A3|+ |A2| = |I3|+ |A2| = k/3− 1 + 2k/3 ≤ k,

|A2 ∩A3|+ |A1| = |A′
2 ∩A′

3|+ |A1| ≤ k/3 + 2k/3 ≤ k.

Thus, by Corollary 2.2, we know that VA1 ∩ VA2 ∩ VA3 = 0.
Let W = Π−1(span(v0)) (recall that v0 ∈ V ′

A′

1
∩V ′

A′

2
∩V ′

A′

3
). Note that dim(W ) = k−k′+1 = 2k/3−1.

Since span(v0) ∈ V ′
A′

1
, we have that

W = Π−1(span(v0)) ⊆ Π−1(V ′
A′

1
) = VI + VA′

1
= VA1 .

Also observe that since v0 ∈ V ′
A′

2
= Π(VA2), there exists w0 ∈ VA2 such that Π(w0) = v0. Thus, w0 ∈ W ,

too, so v0 ∈ Π(W ∩ VA2). Further, let Π2 be the map Π but restricted to the domain W ∩ VA2 . Observe
that by the rank-nullity theorem

dim(W ∩ VA2) = dimkerΠ2 + dim(Π(W ∩ VA2))

≥ dimVI2 + dimspan(v0)

= |I2|+ 1.

Likewise, dim(W ∩ VA3) ≥ |I3|+ 1. Thus,

dim(VA1 ∩ VA2 ∩ VA3) ≥ dim(W ∩ VA2 ∩ VA3)

= dim((W ∩ VA2) ∩ (W ∩ VA3))

≥ dim(W ∩ VA2) + dim(W ∩ VA3)− dim(W )

≥ |I2|+ 1 + |I3|+ 1− |W |

= 1,

a contradiction. Therefore, by Lemma 3.1 we get a lower bound of

q ≥

(
n− 2k/3

k/3 + 1

)
− 1.

We are now ready to prove Theorem 1.8.
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Proof of Theorem 1.8. We adapt the proof of Proposition 4.1 in [BGM22a]. Let H be the parity check
matrix of C (i.e., the generator matrix of C⊥). If H has the property that for all A1, A2, A3 ⊆ [n] of size
2
3
(n− k) we have that HA1 ∩HA2 ∩HA3 = 0 when it generically should, then the desired field size lower

bound holds by Lemma 3.3.
Otherwise, there exists A1, A2, A3 of size 2

3
(n− k) such that HA1 ∩HA2 ∩HA3 6= 0 even though the

generic intersection is 0. Let v0 be a nonzero vector in this common intersection. By definition, for each
i ∈ [3] there exists a nonzero ei ∈ F

n such that v0 = Hei and supp(ei) ⊆ Ai.

If e1, e2, e3 are all distinct, then we have violated that C is (2, 2(n−k)
3n

) worst-case list decodable (see
equation 17 of [BGM22a]). If e1 = e2 = e3, then A1 ∩ A2 ∩ A3 6= 0 which contradicts Corollary 2.2.
Otherwise, if say WLOG e1 = e2 6= e3, then supp(e1), supp(e2) ⊂ A1 ∩A2. So, by Corollary 2.2,

|supp(e1 − e3)| ≤ |A1 ∩A2|+ |A3| ≤ k.

However H(e1 − e3) = 0, so C cannot be MDS.

4 Doubly-exponential construction of higher-order MDS

codes

In [ST20] (c.f., Theorem 1.7), the authors give a doubly-exponential explicit construction of higher order
MDS codes. In particular, they construct MDS(3) codes which have field size 2k

n

and MDS(4) codes
which have field size 2(3k)

n

, although their method can adapted to MDS(ℓ) codes (see their remark after

Theorem 1.9). In [Rot22], Roth improves this construction to nkO(k)

for MDS(3) codes.

Remark 4.1. We also note that a straightforward construction can be obtained by using ideas from
[BGM22a] and [ST20]. For a k × n matrix V , using the equivalence of VA1 ∩ . . . ∩ VAℓ

= 0 with
V ⊥
A1

+ . . .+V ⊥
Aℓ

= F
k
q , we can write down a determinantal matrix identity which for Reed-Solomon codes

only has individual degree at most k − 1 in the evaluation points [BGM22a]. This will give us a general
(n, k)-MDS(ℓ) construction over fields of size 2k

n

by working over the field F2(x1, . . . , xn) where xi has
degree k over F2(x1, . . . , xi−1), similar to what was done in [ST20].

In the remainder of this section, we construct MDS(ℓ) codes for all ℓ ≥ 4 with field sizes comparable
to Roth’s.

Theorem 1.11. There is an explicit (n, k)-MDS(ℓ)-code over field size n(ℓk)O(ℓk)

.

The proof incorporates ideas from both Shangguan-Tamo [ST20] and Roth [Rot22].

Proof. Pick F0 to be a finite field of size at least n+ k− 1. For i ∈ [ℓk], let Fi be a degree ℓk2 extension

of Fi−1 via generator αi. Let F = Fℓk. Note that |F| = n(ℓk)O(ℓk)

. Pick distinct β1, . . . , βn ∈ F0. For all
i ∈ [n], define the multivariate polynomial

pi(x1, . . . , xℓk) =

ℓk∑

j=1

βj−1
i xj .

Let V be the (n, k)-Reed-Solomon code with generators pi(α1, . . . , αℓk) for i ∈ [n]. We claim that V

is MDS(ℓ). Let Ṽ be an (n, k)-Reed-Solomon code with generators pi(x1, . . . , xℓk), where the base field

is F̃ := F0(x1, . . . , xℓk) (i.e., F0 extended by ℓk free generators).
The desired result follows by the following two claims.

Claim 4.2. V is MDS(ℓ) if and only if Ṽ is MDS(ℓ).

Proof. To verify, consider A1, . . . , Aℓ of total size (ℓ− 1)k such that WA1 ∩ · · · ∩ WAℓ
= 0 for a generic

(n, k)-matrix. It suffices to check by Lemma 2.3 that

det




Ik VA1

Ik VA2

...
. . .

Ik VAk


 6= 0 ⇐⇒ det




Ik ṼA1

Ik ṼA2

...
. . .

Ik ṼAk




6= 0 (3)
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Note that each term in the determinant is the product of at most ℓk expressions of the form pji for
j ≤ k − 1. Since each αi is from a degree ℓk2 extension, we have that the LHS determinant is nonzero
in F0[α1, . . . , αℓk] iff RHS determinant is nonzero in F0(x1, . . . , xℓk).

Claim 4.3. Ṽ is MDS(ℓ).

Proof. Again, consider A1, . . . , Aℓ of total size (ℓ − 1)k such that WA1 ∩ · · · ∩ WAℓ
= 0 for a generic

(n, k)-matrix. Since |F0| ≥ n + k − 1, Theorem 2.5, there exists γ1, γ2, . . . , γk ∈ F0 such that the (n, k)
Reed-Solomon code U generated by γ1, . . . , γn has that UA1 ∩ · · · ∩ UAℓ

= 0. Thus, it suffices to prove
that there exists an assignment π : {x1, . . . , xℓk} → F0 such that

γi = pi(π(x1), . . . , π(xℓk)).

This shows that the RHS of (3) holds. Finding such a π is equivalent to solving the following linear
system: 



1 β1 · · · βℓk−1
1

1 β2 · · · βℓk−1
2

...
...

. . .
...

1 βℓk · · · βℓk−1
ℓk







π(x1)
π(x2)

...
π(xℓk)


 =




γ1
γ2
...

γℓk




Since the square matrix on the LHS is a Vandermonde matrix, it is invertible, so such a π does indeed
exist.

Thus, V is indeed MDS(ℓ).

Remark 4.4. Using techniques, we can also get an explicit construction of (n, n− b)-MDS(ℓ) codes over

fields of size nℓbO(ℓb)

by adapting the non-constructive upper bound in [BGM22b] (see their Appendix
A). In particular, the MDS(ℓ) conditions are equivalent to the maximal recoverability of a suitable tensor
code. By looking at the parity check matrix of the tensor code, these recoverability conditions can be
expressed as ensuring nonzero determinants of matrices of size at most (ℓ− 1)b. Likewise, one can show
the degree of each variables in the determinant is poly(ℓ, b), yielding the stated bound.

5 New explicit constructions for (n, 3)-MDS(3)

First, we present a hand-verifiable O(n4) construction for (n, 3)-MDS(3). After that we present an O(n3)
construction, where a portion of the proof involves computation of a Groebner basis (for more details,
refer to [CLO13]). We compute the Groebner bases in Julia [BEKS17] using the OSCAR library [OSC22,
DEF+24]. We provide the code we used to perform these computations.6

5.1 A simple O(n4) construction

Theorem 5.1. There exists an explicit (n, 3)-MDS(3) code with field size O(n4).

Proof. Assume q is an odd prime power of size at least n. Let Fq[γ] be a degree four extension. Let
α : [n] → Fq be some injective map. We claim that

βi = α(i) + γα(i)2, i ∈ [n]

form the generators of a (n, 3)−MDS(3) code. In particular, by Lemma 2.4, we must check that

det



1 β1 + β2 β1β2

1 β3 + β4 β3β4

1 β5 + β6 β5β6


 6= 0

for all injective α : [6] → Fq. When expanded, LHS is a degree three polynomial in γ; that is, the
symbolic determinant can be written as

P (γ) = p0(α)γ
0 + p1(α)γ

1 + p2(α)γ
2 + p3(α)γ

3,

6https://github.com/jbrakensiek/MDS3-Groebner
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where pi is some polynomial in Fq[x1, . . . , x6] evaluated at α(1), . . . , α(6). A notable observation that
will be useful later is that

p1(α) = p0(α)(α1 + · · ·+ α6).

Since γ is a degree four field extension, we have that P (γ) = 0 if and only if pi(α) = 0 for all i ∈ {0, 1, 2, 3}.
Let J ⊆ Fq[x1, . . . , x6] be the ideal generated by p0, p1, p2, p3. It suffices to prove that there exists h ∈ J
such that h(α) 6= 0. We show this as follows.

Claim 5.2. Let S = {(3, 6), (2, 4), (2, 6), (3, 5), (4, 5), (4, 6), (2, 5), (2, 3)}. Let h =
∏

(i,j)∈S(xi − xj).
Then, h ∈ J.

Proof. It suffices to find Q0, Q1, Q2, Q3 ∈ Fq[x1, . . . , x6] such that h = Q0p0+Q1p1+Q2p2+Q3p3. Note
since p0 divides p1, we may assume Q1 = 0.

Now, let g(x) = x2x3 + x2x4 − x2x5 − x2x6 − x3x4 + x5x6. We have that

Q2 = x2 · g

Q3 = −
1

2
g

Finally,

Q0 =
1

2
(−2x1x

3
2x3 − 2x1x

3
2x4 + 2x1x

3
2x5 + 2x1x

3
2x6 − x1x

2
2x

2
3 − x1x

2
2x

2
4 + x1x

2
2x

2
5

+ x1x
2
2x

2
6 + 2x1x2x

2
3x4 + 2x1x2x3x

2
4 − 2x1x2x

2
5x6 − 2x1x2x5x

2
6 − x1x

2
3x

2
4

+ x1x
2
5x

2
6 − 2x3

2x
2
3 − 2x3

2x3x4 − 2x3
2x

2
4 + 2x3

2x
2
5 + 2x3

2x5x6

+ 2x3
2x

2
6 − x2

2x
2
3x4 − x2

2x3x
2
4 + x2

2x3x4x5 + x2
2x3x4x6 − x2

2x3x5x6

− x2
2x4x5x6 + x2

2x
2
5x6 + x2

2x5x
2
6 + 3x2x

2
3x

2
4 + x2x

2
3x4x5 + x2x

2
3x4x6

− x2x
2
3x5x6 + x2x3x

2
4x5 + x2x3x

2
4x6 + x2x3x4x

2
5 + x2x3x4x

2
6

− x2x3x
2
5x6 − x2x3x5x

2
6 − x2x

2
4x5x6 − x2x4x

2
5x6 − x2x4x5x

2
6

− 3x2x
2
5x

2
6 − x2

3x
2
4x5 − x2

3x
2
4x6 + x2

3x4x5x6 + x3x
2
4x5x6

− x3x4x
2
5x6 − x3x4x5x

2
6 + x3x

2
5x

2
6 + x4x

2
5x

2
6)

We leave checking the claimed identity for h to the reader (or a CAS).
For a simpler perspective, we can make the following substitutions:

s2 = α3 + α4, p2 = α3α4,

s3 = α5 + α6, p3 = α5α6.

Then, we have that

g = x2(s2 − s3)− p2 + p3

2Q0 = −2x1x
3
2(s2 − s3)− x1x

2
2(s

2
2 − 2p2 − s23 + 2p3)

+ 2x1x2(s2p2 − s3p3)− x1(p2 − p3)(p2 + p3)

− 2x3
2(s

2
2 − p2 − s23 + p3)− x2

2(s2 − s3)(p2 + p3)

+ x2(3p
2
2 − 3p23 + (s2 + s3)(p2s3 − s2p3))− (p2s3 − s2p3)(p2 + p3).

Note that h(α) is nonzero, as α is injective. Thus, we have proved our construction is MDS(3).

Remark 5.3. One can adapt this construction for characteristic 2. Let F = F2[x]/(p(x)) be a suitable
extension field, with p(x) an irreducible of degree ⌈log2 n⌉+ 1. For all i ∈ [n], pick distinct αi ∈ F such
that each αi has 1 as its x0 coefficient. Pick γ from a degree four extension of F , and let βi = αi + γα3

i .
We can define p0, p1, p2, p3 as in the proof of Theorem 5.1, and show that the ideal they generate includes

∏

i<j∈[6]

(xi + xj)
∏

i<j<k∈[6]

(xi + xj + xk) 6= 0,

proving the code is MDS(3).
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5.2 An O(n3) construction.

With another trick, we can shave the field size by another factor of n.

Theorem 1.12. There exists an explicit (n, 3)-MDS(3) code with field size O(n3).

Proof. Assume q is a power of 7 and let Fq[γ] be the degree three extension such that γ3 = 2. (Observe
that x3 − 2 is irreducible over F7 as it has no roots over F7.) Let S ⊆ Fq of size n such that no six sum
to 0. It is clear that we can have |S| ≥ q/7, so we can do this as long as q ≥ 7n.

We claim that
βα = α+ γα2, α ∈ S.

form the generators of a (n, 3)−MDS(3) code. To check this, consider an injective map α : [6] → S. Let
βi be shorthand for βα(i). By Lemma 2.4, we must check that

det



1 β1 + β2 β1β2

1 β3 + β4 β3β4

1 β5 + β6 β5β6


 6= 0

When we expand, without using the identity that γ3 = 2, the LHS is a degree three polynomial in γ;
that is, the symbolic determinant can be written as

P (γ) = p0(α)γ
0 + p1(α)γ

1 + p2(α)γ
2 + p3(α)γ

3,

where pi is some polynomial in Fq[x1, . . . , x6] evaluated at α(1), . . . , α(6). Once we apply that γ3 = 2,
we get instead that

P (γ) = (p0(α) + 2p3(α))γ
0 + p1(α)γ

1 + p2(α)γ
2,

Thus, it suffices to check that the ideal

J := (p0 + 2p3, p1, p2)

contains a polynomial which is nonzero when evaluated at α(1), . . . , α(6).

Claim 5.4. (x1 + · · ·+ x6)
∏

1≤i<j≤6(xj − xi) ∈ J.

Proof. We verify this by computing a Groebner basis of J and that the remainder upon dividing the
LHS by the Groebner basis is 0. We verify this in OSCAR.

By Claim 5.4, it suffices to prove that

(α(1) + · · ·α(6))
∏

1≤i<j≤6

(α(j) − α(i)) 6= 0

for all injective maps α : [6] → S. Note that the first term in the product is nonzero by the definition
of S, and the remaining terms are nonzero since α is injective. Thus, P (γ) 6= 0, so our code is indeed
MDS(3).

6 Constructions of (n, 4)-MDS(3) and (n, 5)-MDS(3) codes

In this section, we give some structural observations about MDS(3) codes which shall lead to explicit
constructions of (n, 4)-MDS(3) and (n, 5)-MDS(3) codes.
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6.1 MDS(ℓ) equivalent conditions for Reed-Solomon codes

First, we give an alternative characterization of the higher-order MDS conditions when considering a
Reed-Solomon code.

Assume we have a (n, k)-RS code V with evaluation points β1, . . . , βn ∈ F. For A ⊆ [n] define

ΠA(x) =
∏

i∈A

(x− βi).

Define Πd
A(x) to be the following (row) vector of polynomials:

Πd
A(x) := (ΠA(x), xΠA(x), · · · , x

d−1ΠA(x)).

Lemma 6.1. Assume that A1, . . . , Aℓ ⊆ [n] such that |Ai| ≤ k for all i ∈ [ℓ]. Let |A1| + · · · + |Aℓ| =
(ℓ− 1)k. Let δi = k− |Ai|. Assume without loss of generality that A1 = {1, 2, . . . , k− δ1}. We have that
VA1 ∩ · · · ∩ VAℓ

= 0 if and only if

det




Πδ2
A2

(β1) Πδ3
A3

(β1) · · · Πδℓ
Aℓ

(β1)

Πδ2
A2

(β2) Πδ3
A3

(β2) · · · Π
δℓ
Aℓ

(β2)
...

...
. . .

...

Πδ2
A2

(βk−δ1) Πδ3
A3

(βk−δ1) · · · Π
δℓ
Aℓ

(βk−δ1)




6= 0. (4)

Proof. Starting with the equality VA1 ∩ · · · ∩ VAℓ
= 0, take the dual to get

V ⊥
A1

+ · · ·+ V ⊥
Aℓ

= F
k. (5)

Identify each vector (c0, . . . , ck−1)
T ∈ F

k with the polynomial c0 + c1x+ · · ·+ ck−1x
k−1. Observe that a

degree ≤ k − 1 polynomial p is in V ⊥
Ai

if and only if p(βi) = 0 for all i ∈ Ai which is true if and only if

ΠAi
|p. Thus, the polynomials (ΠAi

(x), xΠAi
(x), . . . , xδi−1ΠAi

(x)) = Πδi
Ai

(x) form a basis of V ⊥
Ai

.

Consider the linear transformation Λ : F
k → F

k which sends a polynomial p to the evaluations
(p(β1), . . . , p(βk)). Since the βi’s are distinct, this map is invertible because the Vandermonde matrix is
nonsingular. Applying Λ to the basis Πδi

Ai
(x), we have that V ⊥

Ai
also has the following columns as a basis:




Πδi
Ai

(β1)

Πδi
Ai

(β2)
...

Πδi
Ai

(βk)




.

Thus, (5) is equivalent to

det




Πδ1
A1

(β1) Πδ2
A2

(β1) · · · Π
δℓ
Aℓ

(β1)

Πδ1
A1

(β2) Πδ2
A2

(β2) · · · Πδℓ
Aℓ

(β2)
...

...
. . .

...

Πδ1
A1

(βk) Πδ2
A2

(βk) · · · Πδℓ
Aℓ

(βk)




6= 0. (6)

The upper-left (k − δi)× δi submatrix in (6) is all 0’s since A1 = {β1, β2, . . . , βk−δ1}. The lower-left
δi × δi submatrix in (6) has full rank since after removing common factors ΠA1(βi) in each row, we are
left with a Vandermonde matrix. Thus, by elementary column operations, (6) holds if and only if (4)
holds.

We also have the following corollary when ℓ = 3 that we can WLOG assume the sets are disjoint.

Corollary 6.2. Let A1, A2, A3 ⊆ [n] be such that |A1| + |A2| + |A3| = 2k, |A1|, |A2|, |A3| ≤ k and
|A1∩A2 ∩A3| = 0. Let A′

1 = A1 \ (A2∪A3), A
′
2 = A2 \ (A1∪A3), A

′
3 = A3 \ (A1∪A2) with k′ = 1

2
(|A′

1|+
|A′

2|+ |A′
3|). Let V ′ be the (n, k′)-RS code with the same generators as V . Then, VA1 ∩ VA2 ∩ VA3 = 0 if

and only if V ′
A1

∩ V ′
A2

∩ V ′
A3

= 0. Furthermore, k′ − |A′
i| ≤ k − |Ai| for all i ∈ [3].
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Remark 6.3. This effectively reduces checking only the MDS conditions in which the sets are disjoint,
see similar ideas in [BGM22b] and [Rot22] (i.e., Theorem 18).

Proof. We prove this result by induction on k. The base case of k = 0 is trivial. For positive k, note
that if A1, A2 and A3 are disjoint, the result immediately follows. Otherwise, assume WLOG that there
is some i ∈ A2 ∩ A3. Let δi = k − |Ai| and assume WLOG that that A1 = {1, 2, . . . , k − δ1}. Note
that i 6∈ A1 by assumption. We will use Lemma 6.1 to reduce intersection condition to a determinant
condition. Now, x− βi is a factor of both ΠA2 and ΠA3 . Thus,

det




Πδ2
A2

(β1) Πδ3
A3

(β1)

Πδ2
A2

(β2) Πδ3
A3

(β2)
...

...

Πδ2
A2

(βk−δ1) Πδ3
A3

(βk−δ1)




=

k−δ1∏

j=1

(βj − βi) det




Πδ2
A2\{i}

(β1) Πδ3
A3\{i}

(β1)

Πδ2
A2\{i}

(β2) Πδ3
A3\{i}

(β2)

...
...

Πδ2
A2\{i}

(βk−δ1) Πδ3
A3\{i}

(βk−δ1)




.

Since βi 6= βj for all j ∈ A1. We have that one of the two determinants is nonzero if and only if the other
is nonzero. Let V ′ be the (n, k−1)-RS code with the generators β1, . . . , βn. The determinant on the RHS
being nonzero is equivalent to whether V ′

A1
∩ V ′

A2\{i}
∩ V ′

A3\{i}
= 0. Note that (k− 1)− |A1| ≤ k− |A1|,

(k− 1)− |A2 \ {i}| ≤ k− |A2| and (k− 1)− |A3 \ {i}| ≤ k− |A3|. Thus, by induction, we may iterate on
(A1, A2 \ {i}, A3 \ {i}) until the three sets are pairwise disjoint.

6.2 (n, 4)-MDS(3)

The goal of this section is the following theorem.

Theorem 6.4. There exists an explicit (n, k)-MDS code V over field size O(n)2k−1 such that for any
A1, A2, A3 ⊆ [n] such that |A1| = 2 and |A2| = |A3| = k − 1 we have that VA1 ∩ VA2 ∩ VA3 = 0 whenever
it generically should.

This result immediately implies a (n, 4)-MDS(3) construction..

Corollary 6.5. There exists an explicit (n, 4)-MDS(3) code over field size O(n7).

Proof. By Corollary 2.2, the only nontrivial condition for (n, 4)-MDS(3) is |A1| = 2 and |A2| = |A3| = 3,
so the construction applies.

Remark 6.6. By similar logic, Theorem 6.4 allows one to construct a (n, 3)-MDS(3) code over field size
O(n5), although the constructions in Section 5 are superior.

Proof of Theorem 6.4. Let q ≥ n be a prime power with characteristic at least k. Let K be the a
degree-2k − 1 extension of Fq. We let γ be a generator of this extension.

Pick an arbitrary injective map α : [n] → Fq . We shall let our RS field evaluations be

βi = γαi − α2
i .

We let V (α, γ) be the dimension k RS code with β1, . . . , βn (as defined above) as evaluation points.
Let A1, A2, A3 be such that |A1| = 2 and |A2| = |A3| = k − 1, and WA1 ∩ WA2 ∩ WA3 = 0 for

a generic matrix W . By Corollary 6.2, to check that VA1 ∩ VA2 ∩ VA3 = 0, it suffices to check our
construction works for A′

i ⊆ Ai in the code V ′ (i.e., the (n, k′)-RS code with generators β1, . . . , βn)
where k′ = 1

2
(|A′

1|+ |A′
2|+ |A′

3|) which are pairwise disjoint.
If |A′

2| or |A′
3| is at least k′, then VA′

1
∩ VA′

2
∩ VA′

3
would be what it generically should be based on

V being MDS. Otherwise, |A′
2|+ |A′

3| ≤ 2k′ − 2, so |A′
1| ≥ 2 = |A1|. Thus, we may assume without loss

of generality that A′
1 = A1 = {1, 2} and that |A′

2| = |A′
3| = k′ − 1. We may also assume k′ > |A1| = 2

by the same reasoning.
We seek to show that (4) has full row rank (i.e., nonzero determinant). That is, it suffices to consider

the determinant.
ΠA′

2
(β1)ΠA′

3
(β2)− ΠA′

2
(β2)ΠA′

3
(β1).
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Now, observe that for some nonzero a ∈ Fq, we have that

ΠA′

2
(β1)ΠA′

3
(β2) = a

∏

i∈A′

2

(γ − (α1 + αi))
∏

j∈A′

3

(γ − (α2 + αj)).

Likewise for some nonzero b ∈ Fq,

ΠA′

2
(β2)ΠA′

3
(β1) = b

∏

i∈A′

2

(γ − (α2 + αi))
∏

j∈A′

3

(γ − (α1 + αj)).

Assume for sake of contradiction that ΠA′

2
(β1)ΠA′

3
(β2) = ΠA′

2
(β2)ΠA′

3
(β1). Since γ is a degree n2k−1

extension, by comparing the lead coefficients, we know that a = b, and the polynomials in γ must have
the same roots. Thus, there exists a permutation π : ({1} ×A′

2)∪ ({2} ×A′
3) → ({2} ×A′

2)∪ ({1} ×A′
3)

such that whenever π(i1, i2) = (j1, j2) we have that αi1 + αi2 = αj1 + αj2 . Since we are assuming that
A′

2 and A′
3 are disjoint, we can never map {1}×A′

2 to {1}×A′
3 nor {2}×A′

3 to {2}×A′
2. Thus, we can

decompose π into a pair of permutations τ2 : A′
2 → A′

2 and τ3 : A′
3 → A′

3 such that for all i ∈ A′
2 we have

that α1 + αi = α2 + ατ2(i) with a similar definition for τ3. Now observe that since Fq has characteristic
at least k we have that

0 6= |A′
2|(α2 − α1) =

∑

i∈A′

2

(αi − ατ2(i)) =
∑

i∈A′

2

αi −
∑

i∈A′

2

αi = 0,

a contradiction.

6.3 (n, 5)-MDS(3)

We generalize the construction a bit in the weak-MDS case; that is, where the sets considered are disjoint
(c.f., [BGM22b, Rot22]).

Theorem 6.7. There exists an explicit (n, k)-MDS code V over field size O(n)2k
2

such that for any
A1, A2, A3 ⊆ [n] such that |A1| + |A2| = k + 1 and |A3| = k − 1 we have that VA1 ∩ VA2 ∩ VA3 = 0
whenever it generically should.

Note that for any k ≤ 5, if |A1|+ |A2|+ |A3| = 2k and each has size at most k − 1, then at least one
|Ai| = k − 1. Thus, we have the following immediately corollary.

Corollary 6.8. There exists an explicit (n, 5)-MDS(3) code over field size O(n50)

Proof of Theorem 6.7. Pick distinct α1, . . . , αn ∈ Fq such that αi1 +αi2 = αj1 +αj2 iff {i1, i2} = {j1, j2}.
It is clear that this works for q ≈ n2. For example, over characteristic 2, we can take α1, . . . , αn to be the
columns of a parity check matrix of a BCH code with distance 5. Let Fq[x] be the univariate polynomial
ring over Fq. We define our Reed-Solomon evaluation polynomials to be βi(x) = αix− α2

i for all i ∈ [n].
A key observation is that due to our choice of αi’s, whenever i1 6= i2, j1 6= j2, and {i1, i2} 6= {j1, j2} we
have that7

gcd(βi1 − βi2 , βj1 − βj2 ) = 1. (7)

Let V (x) be the (n, k)-RS code generated by these evaluation points. We claim that for any
A1, A2, A3 ⊆ [n] with |A1|+ |A2| = k + 1 and |A3| = k − 1 and WA1 ∩WA2 ∩WA3 , we have that

VA1(x) ∩ VA2(x) ∩ VA3(x) = 0. (8)

Since this condition can be written as a degree ≤ k2 polynomial in x, by evaluating V at some degree

k2 irreducible of Fq , we then immediately get an n2k2

construction.8

By Corollary 6.2, it suffices to prove V ′
A′

1
(x) ∩ V ′

A′

2
(x) ∩ V ′

A′

3
(x) = 0, where V ′ is the (n, k′)-RS code

with the same generators where k′ = (|A′
1| + |A′

2| + |A′
3|)/2, A

′
i ⊆ Ai, and A′

1, A
′
2, A

′
3 are disjoint. If

|A′
i| ≥ k′ for some i, then the condition on V ′ follows from V ′ being MDS. Since |A′

3| ≥ k′ − 1 by
Corollary 6.2, we may assume that |A′

1| = a′, |A′
2| = k′ + 1− a′ and |A′

3| = k′ − 1.

7Here we assume that gcd always returns a monic polynomial.
8We suspect this construction works over a smaller field extension.
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Assume without loss of generality that A′
1 = {1, 2, . . . , a′}. By Lemma 6.1, we have that (8) holds iff

det




Πa′−1
A′

2
(β1) ΠA′

3
(β1)

Πa′−1
A′

2
(β2) ΠA′

3
(β2)

...
...

Πa′−1
A′

2
(βa′) ΠA′

3
(βa′)




6= 0.

We now use an infinite descent argument. Assume for sake of contradiction that the determinant equals
zero. Then, there exists g1, . . . , ga′ ∈ Fq[x] with gcd(g1, . . . , ga′) = 1 such that for all i ∈ [a′],




a′−1∑

j=1

βj−1
i gj



ΠA′

2
(βi) + ga′ΠA′

3
(βi) = 0.

Note that by (7), we have that gcd(ΠA′

2
(βi),ΠA′

3
(βi)) = 1 for all i ∈ [a]. Thus, ΠA′

2
(βi) divides ga′ for

all i ∈ [a′]. Further, by (7), we have further that
∏a′

i=1 ΠA′

2
(βi) divides ga′ . Thus, for some ha′ ∈ Fq[x]

(possibly zero), we have that for all i ∈ [a′],

a′−1∑

j=1

βj−1
i gj + ha′ΠA′

3
(βi)

a′∏

j=1
j 6=i

ΠA′

2
(βj) = 0.

In particular, we have that for all i ∈ [a′ − 1],

a′−1∑

j=1

βj−1
i gj ≡ 0 mod ΠA′

2
(βa′).

By standard properties of the Vandermonde determinant, we have that for each i ∈ [a′ − 1] there
exists a polynomial hi ∈ Fq[x] such that gi can be written as hiΠA′

2
(βa′)/

∏
1≤i<j≤a′−1(βj − βi).

Using (7) one last time, we have that
∏

1≤i<j≤a′−1(βj − βi) is relatively prime to ΠA′

2
(βa′). Thus,

each gi is divisible by ΠA′

2
(βa′). This violates the assumption that gcd(g1, . . . , ga′) = 1. Therefore, (8)

holds and our construction is valid.
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