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A construction of Maximally Recoverable LRCs for small number of

local groups

Manik Dhar∗ Sivakanth Gopi†

Abstract

Maximally Recoverable Local Reconstruction Codes (LRCs) are codes designed for dis-
tributed storage to provide maximum resilience to failures for a given amount of storage re-
dundancy and locality. An (n, r, h, a, g)-MR LRC has n coordinates divided into g local groups
of size r = n/g, where each local group has ‘a’ local parity checks and there are an additional
‘h’ global parity checks. Such a code can correct ‘a’ erasures in each local group and any h
additional erasures. Constructions of MR LRCs over small fields is desirable since field size
determines the encoding and decoding efficiency in practice. In this work, we give a new con-
struction of (n, r, h, a, g)-MR-LRCs over fields of size q = O(n)h+(g−1)a−⌈h/g⌉ which generalizes
a construction of Hu and Yekhanin (ISIT 2016). This improves upon state of the art when there
are a small number of local groups, which is true in practical deployments of MR LRCs.

1 Introduction

In modern distributed storage systems, data is split and stored in individual servers. A server
crash can potentially lead to the loss of all data in a server. Even if a server becomes temporarily
unavailable, for instance due to serving too many requests, that could lead to very slow access
to data on that server. Replication of data is a potential solution but that is very inefficient in
terms of storage. Error correcting codes offer a more efficient solution. For example, distributed
storage systems such as RAID use Reed-Solomon codes. An (n, k)-Reed Solomon code will add
n−k redundant servers (parity checks) to k data servers and allows us to recover from an arbitrary
n − k erasures by reading the remaining k servers. But for large k, which is needed to get good
storage efficiency, this would require us to read a lot of servers to recover lost data.

Local reconstruction codes (LRCs) were invented to deal with this problem. Locality means that
when a small number of servers fail, any failed server can be recovered quickly by reading data from
a small number of healthy servers. At the same time they can recover from catastrophic failures
where a large number of servers fail (although recovery will necessarily be less efficient). Locality in
distributed storage was first introduced in [HSX+12, CHL07], but LRCs were first formally defined
and studied in [GHSY12] and [PD12].

Definition 1.1. An (n, r, h, a, g)-LRC is a linear code C over Fq of length n (in other words a
subspace C ⊆ F

n
q ), whose codeword symbols are partitioned into g local groups each of size r = n/g.
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The coordinates in each local group satisfy ‘a’ local parity checks (in other if the codewords are
column matrices then the co-ordinates in a group lie in the kernel of an a× r matrix) and there are
further h global parity checks that all the n coordinates satisfy (in other words the codewords lie in
the kernel of an h× n matrix).

The local parity checks are used to recover from up to a erasures in a local group by reading at
most r− a symbols in that local group. The h global parities are used to correct more global erasure
patterns which involve more than a erasures in each local group.

The above definition implies that the parity check matrix H of an (n, r, h, a, g)-LRC has the
structure shown in Equation 1.

H =




A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ag

B1 B2 · · · Bg




(1)

Recall that g is the number of local groups and each local group has size r = n/g. A1, A2, . . . , Ag

are a×r matrices over Fq which correspond to the local parity checks that each local group satisfies.
B1, B2, . . . , Bg are h × r matrices over Fq and together they represent the h global parity checks
that the codewords should satisfy.

We are interested in LRCs which can correct as many erasures as possible. The best one
could hope for is a set of values for entries in H (as shown in (1)) which can correct any set of
erasures a generic matrix of that form can (one way to define a generic H is to assume every entry is
algebraically independent of each other). We know that a set of erasures E can be recovered from if
and only if the subset of columns of H corresponding to E have full rank. Using this it can be shown
that a genericH can correct an additional h erasures distributed across local groups on top of the ‘a’
erasures in each local group. LRCs which can correct all such erasure patterns are called Maximally
Recoverable (MR) LRCs. Maximal recoverability was first introduced by [CHL07, HSX+12] and
extended to more general settings in [GHJY14]. MR-LRCs were also studied earlier in [BHH12]
where they are called Partial-MDS (Maximum Distance Separable) codes.

For clarity, we formally define MR-LRCs.

Definition 1.2. Let C be an arbitrary (n, r, h, a, g)-LRC where r = n/g. We say that C is maxi-
mally recoverable if:

1. Any set of ‘a’ erasures in a local group can be corrected by reading the rest of the r−a symbols
in that local group.

2. Any erasure pattern E ⊆ [n], |E| = ga + h, where E is obtained by selecting a symbols from
each of g local groups and h additional symbols arbitrarily, is correctable by the code C.

Again, our discussion gives us the following characterization for the parity check matrices of
MR-LRCs.

Proposition 1.3. An (n, r, h, a, g)-LRC with parity check matrix given by H from Equation 1 is
maximally recoverable iff:
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1. Each of the local parity check matrices Ai are the parity check matrices of an MDS code, i.e.,
any a columns of Ai are linearly independent.

2. Any submatrix of H which can be formed by selecting a columns in each local group and
additional h columns has full column rank.

Practical deployments of MR LRCs typically have a small number of local groups (say g = 2, 3, 4)
and a small number of local parities per local group (say a = 1, 2) [HSX+12]. Moreover, field size
is the most important determinant of encoding and decoding efficiency of MR LRCs [HSX+12],
since encoding and decoding requires several finite field operations. Therefore constructions of MR
LRCs over small fields in this regime are important in practice.

In this work, we give a new construction of MR LRC tailored for this regime.

Theorem 1.4. There exists an explicit (n, r, h, a, g)-MR-LRC over a field of size O(n)h+(g−1)a−⌈h/g⌉.

For the a > 1 and small g parameter regime, the general construction of [GG22] shown in
(2) is the only one we need to compare to. Here we see that for small constant g, which means
r = Ω(n), as long as h − ⌈h/g⌉ + a(g − 1) < min{h, r − a} our construction gives us a better
MR-LRC construction. In particular, when g = 2, h is even, and a is a constant our construction
is over fields of size O(n)h/2+a as opposed to O(n)h from [GG22].

Our construction generalizes a construction from [HY16] which is specialized for a = 1 and
requires a field size of nh−⌈h/g⌉+1. While the proof in [HY16] can also be generalized, this paper
analyses the generalization with a new and direct proof using simple linear algebra and basic
properties of Vandermonde matrices and Gabidulin codes. This also gives a new proof for the
original result of [HY16]. Our construction and its proof is inspired by the constructions of MR
LRCs in [GG22, CMST21].

1.1 Prior Work

Upper Bounds: There are a several construction of MR LRCs since their introduction [BPSY16,
BCT22, GHJY14, MPK19, GJX20, GYBS18, MP22, LX22, GGY20, CSYS15]. The current best
constructions of MR-LRCs over most range of parameters is due to [GG22, CMST21] which require
a field size of (

O
(
max{n/r, r}

))min{h,r−a}
. (2)

These codes are constructed using the theory of skew-symmetric polynomials. As mentioned earlier
our construction provides better field sizes in the case of constant g. For g constant, constant a, and
h divisible by g we have r = Ω(n) which means our construction gives a field size of O(n)h(1−1/g)+a

and 2 gives O(n)h. Our construction does better as long as a < h/g. For more constrained settings
much better bounds are known as shown in Table 1.

When g and r are powers of a prime p and h (mod p) 6= 1 and ⌈h/g⌉ (mod p) 6= p−1 then [HY16]
can shave off a factor of n to give (n, r, h, a = 1, g)-MR LRCs over fields of size O(n)h−⌈h/g⌉+g−2

(when p = g = 2 this gives the third row of our table).

Lower bounds: The best known lower bounds on the field size required for (n, r, h, a, g)-MR
LRCs (with gr = n) is from [GGY20] who show that for h ≥ 2,

q ≥ Ωh,a (n · rα) where α =
min {a, h− 2⌈h/g⌉}

⌈h/g⌉
. (3)
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Table 1: Table showing the best known upper bounds on the field size of (n, r, h, a, g)-MR LRCs
over several constrained settings.

O(r) when h = 0 or h = 1 [BHH12]

O(n)h−⌈h/g⌉+g−1 when a = 1 [HY16]

O(n)h/2 when a = 1, g = 2 and h (mod 4) = 0 [HY16]

O(n) when h = 2 [GGY20]

O(n3) when h = 3 [GGY20]

Õ(n) when h = 3, a = 1, r = 3 [GGY20]
(
O(n)

)⌈min{h,r−1}(1−1/q0)⌉ when a = 1 and q0 ≥ g + 1 is a prime power [GG22]

When g ≥ h, this simplifies to q ≥ Ωh,an · rmin{a,h−2}. If g < h, in particular when g divides h,
then the lower bound simplifies to,

q ≥ Ωh,a

(
nrmin{ag/h,g−2}

)
(4)

If in particular we look at g = 2, we see that the current lower bound is linear while the current
best constructions for a = 1 and h divisible by 4 is nh/2 [HY16]. This shows that there is a large
scope of improvement in either direction. Any progress in this question is very interesting because
as mentioned earlier the regime of small number of groups is important in practice for distributed
storage [HSX+12].

2 Proof of Theorem 1.4

We are going to use a simple property of Moore matrices which are used to construct Gabidulin
codes [KG05, GS21].

Lemma 2.1. Let β1, . . . ,βn ∈ Fqm be linearly independent over Fq (this requires n ≤ m). Then
the following Moore matrix M has full column rank.

M =




β1 β2 . . . βn

β
q
1 β

q
2 · · · β

q
n

β
q2

1 β
q2

2 · · · β
q2
n

...
...

...

β
qm−1

1 β
qm−1

2 · · · β
qm−1

n




We will also need the concept of Schur complement.

Lemma 2.2. Consider the square matrix

M =

[
A B

C D

]
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where A,D are square matrices and A is invertible. Then doing column operations to remove the
columns of B using the columns of A will result in the following matrix∗

M ′ =

[
A 0

C D − CA−1B

]
.

In the remainder of this section, we present the proof of Theorem 1.4 using simple linear
algebra and the above lemma. Let t = a + ⌈h/g⌉ and m = h + ga − t. Let q ≥ n be a prime
power. We will construct a parity check matrix over the field Fqm . This means our field size will be
qm = qh+ga−t = qh+(g−1)a−⌈h/g⌉ as desired.

We partition Fq into g sets {xi,1, . . . , xi,r} of size r and some left over elements which we ignore.
Recall that we want to construct a parity check matrix of the form

H =




A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ag

B1 B2 · · · Bg




(5)

where each Ai is an a× r matrix and each Bi is an h× r matrix. Define Ai as

Ai =




1 1 . . . 1
xi,1 xi,2 . . . xi,r
x2i,1 x2i,2 . . . x2i,r
...

...
...

xa−1
i,1 xa−1

i,2 . . . xa−1
i,r



.

Define βi,j ∈ Fqm for i ∈ [g], j ∈ [r] as

βi,j =




xti,1
xt+1
i,1
...

xt+m−1
i,1


 ,

where we are expressing βi,j in some basis for Fqm (which is a Fq-vector space of dimension m).
We now define Bi as

Bi =




xai,1 xai,2 . . . xai,r
xa+1
i,1 xa+1

i,2 . . . xa+1
i,r

...
...

...

xt−1
i,1 xt−1

i,2 . . . xt−1
i,r

βi,1 βi,2 . . . βi,r

β
q
i,1 β

q
i,2 . . . β

q
i,r

...
...

...

β
qh+a−t−1

i,1 β
qh+a−t−1

i,2 . . . β
qh+a−t−1

i,r




.

∗The matrix D − CA
−1

B is called Schur complement.
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For convenience we collect the first t− a rows of Bi into Vi and the remaining rows into Gi so
that

Bi =

[
Vi

Gi

]
. (6)

We see that Vi contains the ‘Vandermonde’-like rows and Gi contains the ‘Gabidulin’-like rows.
Also note that the powers of xi,j are increasing steadily from 0 to t + m − 1 (which is equal to
ag + h− 1); first along Ai, then Vi and then the first row of Gi (when expressed in Fq basis). This
is the most crucial part of the construction as we will shortly see. The MR LRC constructions
from [GG22, CMST21] also use a similar trick.

Given a matrix M and a subset I of its columns, we let M(I) refer to the sub-matrix of M
corresponding to the columns I. We also use βi to denote the m×r matrix formed by βi,1, . . . ,βi,r,

βi =
[
βi,1 βi,2 . . . βi,r

]
.

Let E be an erasure pattern of size ag + h formed by selecting a columns in each of the local
groups and additional h columns from anywhere in H as shown in (5). We want to show that H(E)
(which is an (ag+h)×(ag+h) matrix) is full rank. Showing H(E) is full rank for every correctable
erasure pattern E will prove our theorem.

One of the local groups will contain at least t = a + ⌈h/g⌉ many columns. Without loss of
generality let us say that is group g. We arbitrarily split the columns in group g into X which is of
size t and Y which contains the remaining columns. For groups 1, . . . , g− 1 we arbitrarily split the
columns selected in each group to a set Si of size a and Ti which contains the remaining elements
chosen. So we can write H(E) as

H(E) =




A1(S1 ∪ T1) · · · 0 0
...

. . .
...

...

0 · · · Ag−1(Sg−1 ∪ Tg−1) 0

0 · · · 0 Ag(X ∪ Y )

V1(S1 ∪ T1) · · · Vg−1(Sg−1 ∪ Tg−1) Vg(X ∪ Y )

G1(S1 ∪ T1) · · · Gg−1(Sg−1 ∪ Tg−1) Gg(X ∪ Y )




.

Now we note that A1(S1), A2(S2), · · · , Ag−1(Sg−1) are a × a matrices of full rank. We now do
column operations on H(E), where in the first g − 1 local groups we use the columns of Ai(Si) for

i ≤ g − 1 to remove the columns of Ai(Ti). This results in the lower block
[
Vi(Ti)
Gi(Ti)

]
to change into

a Schur complement as follows:




Ai(Si) Ai(Ti)

Vi(Si) Vi(Ti)

Gi(Si) Gi(Ti)


 →




Ai(Si) 0

Vi(Si) Vi(Ti)− Vi(Si)Ai(Si)
−1Ai(Ti)

Gi(Si) Gi(Ti)−Gi(Si)Ai(Si)
−1Ai(Ti)


 ,

for all i ≤ g − 1. For convenience we let G′
i(Ti) = Gi(Ti) − Gi(Si)Ai(Si)

−1Ai(Ti) and V ′
i (Ti) =

Vi(Ti)− Vi(Si)Ai(Si)
−1Ai(Ti) for i ≤ g − 1.

At the end of this H(E) transforms into the following:
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M1 =




A1(S1) 0 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · Ag−1(Sg−1) 0 0

0 0 · · · 0 0 Ag(X ∪ Y )

V1(S1) V ′
1(T1) · · · Vg−1(Sg−1) V ′

g−1(Tg−1) Vg(X ∪ Y )

G1(S1) G′
1(T1) · · · Gg−1(Sg−1) G′

g−1(Tg−1) Gg(X ∪ Y )




.

It is clear that it suffices to show the following (h+ a)× (h+ a) sub-matrix of M1 is full rank.

M2 =




0 · · · 0 Ag(Y ) Ag(X)

V ′
1(T1) · · · V ′

g−1(Tg−1) Vg(Y ) Vg(X)

G′
1(T1) · · · G′

g−1(Tg−1) Gg(Y ) Gg(X)


 .

In M2 we look at the sub-matrix W (X) =
[
Ag(X)
Vg(X)

]
(we also let W (Y ) =

[
Ag(Y )
Vg(Y )

]
). By construc-

tion W (X) is a t× t Vandermonde matrix of full rank. We use W (X) to remove all the remaining
columns in M3 corresponding to the rows of W (X) by doing column column operations giving us
the following matrix:

M3 =




0 · · · 0 0 Ag(X)

0 · · · 0 0 Vg(X)

G′′
1(T1) · · · G′′

g−1(Tg−1) Gg(Y )−Gg(X)W (X)−1W (Y ) Gg(X)


 ,

where G′′
i (Ti) = G′

i(Ti) − Gg(X)W (X)−1
[

0
V ′

i (Ti)

]
for i ≤ g − 1. For convenience, we also let

V ′′
i (Ti) =

[
0

V ′

i (Ti)

]
.

It is now clear that it suffices to show the following (h+ a− t)× (h+ a− t) sub-matrix of M3

is full rank.

M4 =
[
G′′

1(T1) · · · G′′
g−1(Tg−1) Gg(Y )−Gg(X)W (X)−1W (Y )

]
,

Note that all the entries in W (X),W (Y ), V ′(Ti), Ai(Si), and Ai(Ti) are in the base field Fq.
Column operations on Gi with Fq coefficients retain its structure with β’s replaced by their corre-
sponding Fq-linear combinations. Therefore by Lemma 2.1, it is enough to show that the following
m× (h+ a− t) matrix has full column rank†

M5 =
[
β′′
1 (T1) · · · β′′

g−1(Tg−1) βg(Y )− βg(X)W (X)−1W (Y )
]
,

where β′′
i (Ti) = β1(Ti)−β1(Si)Ai(Si)

−1Ai(Ti)−βg(X)W (X)−1V ′′
i (Ti) for i ≤ g− 1. Now consider

the following (h+ ga)× (h+ ga) matrix F ,

F =




A1(S1) A1(T1) · · · Ag−1(Sg−1) Ag−1(Tg−1) Ag(Y ) Ag(X)

V1(S1) V1(T1) · · · Vg−1(Sg−1) Vg−1(Tg−1) Vg(Y ) Vg(X)

β1(S1) β1(T1) · · · βg−1(Sg−1) βg−1(Tg−1) βg(Y ) βg(X)


 .

†Note that
∑g−1

i=1
|Ti|+ |Y | = h+ a− t.
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By construction, F is a Vandermonde matrix over Fq and therefore is of full rank. We now repeat
column operations on F analogous to the ones we did on H(E). Concretely, we first use the a× a
invertible matrix Ai(Si) to clear out the columns Ai(Ti) for i ≤ g − 1. This gives us the matrix,

F1 =




A1(S1) 0 · · · Ag−1(Sg−1) 0 Ag(Y ) Ag(X)

V1(S1) V ′
1(T1) · · · Vg−1(Sg−1) V ′

g−1(Tg−1) Vg(Y ) Vg(X)

β1(S1) β′
1(T1) · · · βg−1(Sg−1) β′

g−1(Tg−1) βg(Y ) βg(X)




where β′
i(Ti) = β1(Ti)− β1(Si)Ai(Si)

−1Ai(Ti) for i ≤ g − 1. Next we use the sub-matrix W (X) =[
Ag(X)
Vg(X)

]
to clear out the columns W (Y ) =

[
Ag(Y )
Vg(Y )

]
and V ′′

i (Ti) =
[

0
V ′

i (Ti)

]
. This gives us the matrix,

F2 =




A1(S1) 0 · · · Ag−1(Sg−1) 0 0 Ag(X)

V1(S1) 0 · · · Vg−1(Sg−1) 0 0 Vg(X)

β1(S1) β′′
1(T1) · · · βg−1(Sg−1) β′′

g−1(Tg−1) βg(Y )− βg(X)W (X)−1W (Y ) βg(X)


 .

As F2 is a full rank square matrix, M5 should have full column rank which implies H(E) has full
rank completing the proof.
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