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ABSTRACT Human gait analysis and detection are critical for many applications, including wearable
and rehabilitation robotic devices, reducing or tracking injury risk. The proposed work allows researchers
to study the gait phase of human subjects in an unsupervised outdoor environment without the need for
fixed thresholds and sensor-embedded insoles. We present an experimental protocol to label gait events
based on patterns in human subjects from two body-worn inertial measurement units (IMUs). Gait patterns
are developed using a force plate and a motion capture system. Upon defining the gait pattern, human
subjects walk outdoors for forty minutes to train and test a principal component analysis (PCA)-based linear
regression model. Next, gait phase estimation is performed using the defined patterns from other human
subjects to accommodate cases where motion capture and force plate data are unavailable. Results showed
a minimum normalized gait phase estimation error of 1.81 %, a maximum of 2.48 %, and an average of
2.21± 0.258 % for all subjects involved. Results are particularly significant because the proposed work can
be expanded to precise control of human-assistive devices, rehabilitation devices, and clinical gait analysis.

INDEX TERMS Biomechanics, gait analysis, heel strike, PCA, machine learning, prosthesis, IMUs, motion
capture, linear regression.

I. INTRODUCTION
Walking is an essential part of humans’ activities of daily
living. As a result, there has been increasing clinical and
research interest in gait monitoring and analysis. Gait cycles
begin when the heel of one foot strikes the ground (0% of gait
phase) and ends with the next strike of the same foot. Each
cycle includes two major phases, a stance, and a swing phase.
The stance phase is when the studied foot is on the ground;
the stance starts at heel strike (HS) and ends at toe-off
(TO). The swing phase is when the studied foot is off the
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ground; the swing starts at TO and goes to the next HS of
the studied foot (100% of the gait cycle) [1]. Gait analysis
systems are used to evaluate patients’ health and study human
gait [2], [3] and are an essential clinical tool for a wide range
of applications, such as assessing neurological and sports
injuries [4], risk of falls [5], prostheses design [6], [7], reha-
bilitation devices [8], [9] and gait emulators [10], [11]. For
optimal performance of such applications, accurate detection
of the gait phase is required. For example, Cherell et al.
designed the Ankle Mimicking Prosthetic Foot (AMP-Foot)
that utilizes torque control of DC motors [12]. Distinct gait
events are used to provide the required parameters for control-
ling the torque of the motors. Yang et al. used two hall effect
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sensors to detect two phases of the gait cycle and command a
fuzzy controller for a passive prosthesis [13].

Gait analysis and estimation are typically conducted in
a proctored lab environment equipped with motion-capture
systems [14] and force plates [15]. These approaches can pro-
vide an accurate measure of the human gait phase; however,
they are expensive and require large laboratory spaces [16].
Alternatively, InertialMeasurement Units (IMUs) are utilized
in many gait studies due to their low cost and portability.
In more recent work, IMUs are attached to human subjects’
feet, shanks, or waists to detect HS and TO events [17].
The placement of IMUs on foot is most common since it
provides a clear distinction between the swing and stance
phases [16], [18], [19]. Different gait phase estimation
approaches use online and offline detection methods. Lee
and Parkused a single-foot IMU to detect heel-strike (HS)
(using spikes in linear acceleration) and toe-off (TO) in an
offline process [20]. Bae and Tomizukaused Smart shoes
embedded with four force sensors (FSR) and predicted the
gait phase through an offline Hidden Markov Model [21].
Arvind et al. utilized a hybrid feed-forward neural network
and hidden Markov model to estimate the gait phase online
from measurements of seven IMUs attached to the subjects’
lower extremities. They reported 88.7% detection accuracy
of phases of the gait cycle [22]. Zhen et al. used a deep
neural network and data from foot, thigh, and calf IMUs
to detect 2 phases of the gait cycle offline, reporting an
F-score accuracy of 92% [23]. Kim et al. utilized a single-
foot IMU and time-frequency analysis to detect HS and TO
events offline [16]. Mannini et al. utilized a custom-made
wireless foot IMU for online decoding of Hidden Markov
Models for Gait Event Detection [24]. Yan et al. used three
IMUs (thigh, calf, and foot), principal component analysis
(PCA), and a Voting-Weighted Integrated Neural Network
to detect HS and TO offline [25]. Quintero et al. proposed
using a single thigh IMU to continuously measure gait phase
and speed estimation based on a single mechanical parameter
derived from human thigh motion [26]. Potter et al. used an
array of body-worn IMUs and an error-state Kalman filter
to estimate lower-limb kinematics, testing their work on a
simplified 3-body model of the human lower limbs [27].
Previous groups typically validated their work with human
subjects ranging from 3-20 recruited human subjects. The
authors previously used foot and shank magnetic, angular
rate, and gravity sensor modules (MARGs) and an error-
state Kalman filter to get a real-time estimate of foot and
shank orientations, to calculate the ankle angle on 1) a 2-DOF
prosthetic ankle, 2) a human ankle [28]. Similarly, Qiu et al.
estimated HS and TO usingwavelet analysis based on angular
data of the thigh and shank IMUs [29].

So far, available algorithms have depended on estimating
the gait phase in a proctored indoor lab environment. One
advantage of lab settings is that they provide tools to estimate
ground truths reliably. However, gait analysis in an indoor
lab environment considers multiple assumptions and does
not consider all the variability in natural gait that typically

occurs outdoors. Wearable devices with IMUs or combined
with other sensors have been implemented on more realis-
tic test conditions. Aminian et al. presented an algorithm
for detecting gait events and identifying terrain types based
on IMUs and electromyographs (EMGs) on the thigh and
shank [30]. Pham et al. used an IMU wearable device on
the waist to estimate the stride length of an outdoor walk
on a square trajectory [31]. Wearable technology can be
used to study numerous activities of daily living not lim-
ited to walking; however, PCA is still an effective param-
eter reduction technique when using machine learning or
deep learning models [32]. Other previous efforts to label
outdoor gait events used threshold values to detect HS and
TO [16], [18], [19]. Alternatively, a smart shoe insole with
force sensors is used to identify the stance phase [21], [33].
However, threshold labeling isn’t robust to changes in gait
cycles and can lead to false labels based on noisy IMU read-
ings. In addition, smart insoles can impede human subjects’
natural gait and be sensitive to sweat, causing difficulties in
the experimental protocol.

This paper proposes a novel approach to labeling out-
door kinematic data (HS and TO) based on ground-truth-
developed patterns of foot IMU data. Generated patterns are
driven in an indoor lab environment using a force plate.
A gait-based PCA model is developed per subject to reduce
feature selection and prevent overfitting and match computa-
tional power. Themodel estimates each subject’s gait phase of
an outdoor walking session. Furthermore, the models trained
on three subjects were tested on a fourth subject.

The rest of this paper is organized as follows. Section II
describes the 2-IMU setup on the human subject and the
experimental protocol. The experimental protocol includes
IMU calibrations, an indoor 8-minute walk, and a 40-minute
outdoor walk. Next, section III presents the results of using
the generated models to estimate the gait phase and further
implications of developed methodologies. Section VI con-
cludes the paper. Finally, Section V provides relevant details,
videos, and data required to implement the proposed work.
All the recorded human subjects’ data is available as open-
source data sets that can be used to replicate methodology or
other gait analysis methods.

II. METHODOLOGY
A. 2- IMU SET UP
Two IMUs (Precision NXP 9-DOF, Adafruit, USA) are
secured to the shank and foot of human subjects, as shown in
Fig. 1. The IMUs are attached to the subject using athletic and
skin-safe double-sided tape. Furthermore, wires are twisted
together and protected using wire sleeves to limit interference
with the subject’s natural gait. The IMUs are connected to a
microcontroller unit (MCU, Teensy 4.1, PJRC, USA) with a
built-in SD card placed in a fanny pack around the subject’s
waist. MCU is powered using a small 3.7V LiPo battery.
IMU1 is connected to the subject’s foot, IMU2 is attached
to the subject’s shank. The MCU stores data packets of raw
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FIGURE 1. 2-IMU setup for human subject gait analysis during (a) OMC IMUs calibration (b) outdoor walk. (c) The walkway
was used for experimental protocols 1 and 2.

TABLE 1. Biometrics of human subjects.

angular velocities (ω
IMU1,2
t ) and linear accelerations (a

IMU1,2
t ).

The IMUs signals are sampled at 400 Hz. Teensy 4.1 was
selected since 1) it comes with a built-in SD Card reader
that can write (Arduino SDFat library) to a text file at a
high rate (400 Hz), and 2) it can be powered using a small
3.7 V battery. The placement of IMU on the human shank was
placed midway between the knee and ankle joints and away
from a dominant muscle group (tibialis anterior) to reduce the
vibration effect. Foot IMU was centered around the subject’s
laces. The exact placement of the shank and foot IMU isn’t
critical, as raw IMU readings are corrected using calibration
with a motion capture system that accurately defines a shank
and foot frame.

B. EXPERIMENTAL PROTOCOL
The experimental protocol aimed to quantify the gait phase
estimation accuracy of human subjects during natural gait in
an outdoor environment. To this end, four unimpaired partic-
ipants (22.5± 1.5 years old, 1.71± 0.06 m, 77.5± 14.81 kg)
were enrolled in this study (Table 1), giving written content to
participate in the experiment, as approved by the Institutional
Review Board (application number 1902021698).

Three experiments were designed with the purpose of
1) calibrating IMUs to correct raw IMU readings, 2) identify-
ing gait patterns through an Indoor walk in a lab environment,
and 3) training and testing gait phase estimation models
through an outdoor walk. All human subjects participated in
all three experiments. Based on the statistical power analysis,
1068 steps are needed for a 95% confidence interval estima-
tion, with a margin of error of±3%. Each subject had at least

FIGURE 2. Labelled HS and TO events of indoor gait walk of a
representative subject (D), using a force plate. (a) shows complete indoor
gait data (b) shows a time segment to highlight the force plate labeling.

1100 steps (20 minutes of walking time) on the studied foot
to validate the model and computed error.

1) IMU CALIBRATION
The two IMUs are calibrated to account for 1) the coordinate
frame rotation between the IMU frames (IMU1 and IMU2)
and the body frames (foot and shank), 2) scaling errors,
and 3) axis misalignment errors of the IMUs [34]. Calibra-
tion parameters are used to transform raw IMU measure-
ments (ω

IMU1,2
t , a

IMU1,2
t ) to foot (ωF

t , a
F
t ) and shank (ωS

t , a
S
t )

gyroscope and accelerometer measurements as shown in
equations 1-4.

Ten optical marker cameras (OMC) (Miqus M5, Qualisys,
Sweden) calibrate the IMUs using an extrinsic calibration
scheme [28]. Moreover, eight optical markers are placed on
the subjects’ feet and shank (four each) to define the shank
and foot frames. The IMUs are calibrated by exciting the
gyroscope and the accelerometer axes in two steps: 1) the
human subject raises the foot off the ground and moves their
foot and shank linearly in all axes of motion (x, y, z) to
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excite the IMUs’ accelerometers, then 2) with the foot still
in the air, subject rotates foot and shank about all axes of
rotation to excite the IMUs’ gyroscopes. Each of the IMUs’
axes is excited for 15 seconds in each calibration step. The
OMC records the shank’s and foot’s orientations, translations,
and body rates. Synchronized measurements from IMUs’
(ω

IMU1,2
t , a

IMU1,2
t ) are fitted against OMC measurements

based on continuous-time batch estimation to provide the
transformation matrices (TSw,TSa,TFw,TFa) between IMU
frames andOMC shank and foot frames [35]. The bias param-
eters

(
b
ω
IMU1,2 , baIMU1,2

)
of the IMUs are estimated using

Allan Variance analysis [36].

ωF
t = TFwω

IMU1
t − bωIMU1 (1)

aFt = TFaω
IMU1
t − baIMU1 (2)

ωS
t = TSwω

IMU2
t − bωIMU2 (3)

aSt = TSaω
IMU2
t − baIMU2 (4)

where TFw, TFa, TSw, TSa R3×3, a
IMU1,2
t , baIMU1,2 , ω

IMU1,2
t ,

b
ω
IMU1,2 , ω

F
t , a

F
t , ω

S
t , a

S
t ∈ R3

2) GAIT PATTERN GENERATION
Agait pattern representative of each subject’s gait is produced
using an indoor walk. The pattern focuses on relating how the
foot IMU (ωF

t , a
F
t ) behaves during heel strike (HS) and toe-off

(TO). A walkway equipped with a
force plate sensor (9260AA3, Kistler, Switzerland) is uti-

lized to accurately detect and label HSs and TOs during the
human subject’s gait. The force plate measures force (FN)
on the 3-axis of motion. Subjects wearing the 2-IMU setup
walked repetitively on the walkway, ensuring they stepped
on the force plate in each run (Fig 1.c). Subjects walked
for eight minutes, during which they performed straight and
turning gait cycles, replicating their natural gait as much as
possible. Heel strike is identified whenever the vertical force
measurement on the force plate exceeds a threshold (2 N), and
Toe-off is identified whenever the vertical force drops again
below the threshold. The threshold is set based on empirically
examining the data to find the instant of time the heel contacts
the force plate.

An average gait length was assumed to be 1 second [37],
and it takes 4 steps to go from one side of the walkway
(embeddedwith the force plate) to the other, meaning subjects
averaged approximately 125 steps on the force plate [38].
Taking more steps (longer time) would increase the strength
of the gait pattern however can fatigue the subjects. HSs
and TOs identified using the force plate are used to label
(HS and TO) adjacent foot IMU (ωF

t , a
F
t ) measurements as

shown in Fig. 2. HS and TO patterns are saved for all steps
on the force plate. Note that the gait pattern included HS
or TO gait event, occurring at time zero and half a second
before and after the gait event, respectively. The half a second
before and after each gait event are selected to collect data

from approximately half a gait cycle (assuming an average
gait cycle of approximately 1 second [37]).

The mean of the generated patterns of the human subjects
are shown in Fig 3; the standard deviation is also shown,
representing the variance of ωF

t , a
F
t during different gait

phases performed in the eight-minute indoor walk. Increased
variance is encouraged as it shows that the human subject
replicated the various step trajectories in their natural gait.

3) OUTDOOR WALK
Upon completing the indoor walk, subjects walked outdoors
while wearing the 2-IMU setup (Fig. 1.b). Subjects were
instructed to walk for forty minutes in any direction, stopping
whenever needed. Fig 4. shows the shank and foot IMU
measurements during the outdoor walking trial of one of the
subjects.

C. GAIT MODEL
A gait model of each subject is used to predict their current
gait phase. Note that the aim is to predict the gait phase using
measurements from the shank IMU (ωS

t , a
S
t ). On the other

hand, the foot IMU (ωF
t , a

F
t ) is only used to label HS and TO

on data sets to find the gait phase of an outdoor walk.

1) LABELING OUTDOOR DATA SETS
To produce and train the gait model, previously generated gait
patterns are used to identify the HSs and TOs of the outdoor
walk on the foot IMU. HS and TO are labeled based on cross-
correlation (underMATLAB’s xcorr2 function) between gen-
erated HS and TO patterns (Fig. 3) and measured foot IMU
data (ωF

t , a
F
t ), as shown in Fig. 5. To distinctively label HS

and TO, the IMU data points that have the highest correlation
to the pattern (peak) were selected. Note that HS and TO
data points are labeled to ensure that peak points are at least
0.8 seconds apart (assuming 0.8 seconds is the minimum gait
length [36]). Peak magnitude is at least in the 75th percentile
of correlation between pattern and outdoor walk data point
(under MATLAB’s findpeaks function).

The labeled data set (Fig.5) is used to find the outdoor walk
gait phase (θ). Linear interpolation between two adjacent heel
strike points defines the gait phase. θ equals 0 to represent the
1st heel strike and 2π as the next heel strike (end of the gait
cycle). Furthermore, θ is split into two phasors (γ ) as shown
in equation 5 and Fig 6.a.

γ = [sin (θ) cos (θ)] (5)

where γ ∈ R2.

2) TRAINING MODEL USING PCA AND LINEAR REGRESSION
Twenty minutes of the subject’s outdoor data is used to create
a regression fit model of the gait phase phasors (γ ). The
independent variables (X ) are the Z-score (Z ) of shank IMU
accelerations and angular velocities (ωS

t , a
S
t ) from one second

before heel strike (400 samples) as shown in Fig. 6.b, c and
equation 6.

X = Z ([ aSt ωS
t ]) (6)

where X ∈ Rn×6, n = number of data points.
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FIGURE 3. HS and TO patterns of 4 human subjects. Subject D had the highest variability in the original gait phase pattern, meaning that the
subject’s pattern included a wide variety of all the steps the subject takes in their natural gait.

PCA is used to select the principal components of X ; prin-
cipal components remove noise by reducing many features to
a smaller set of principal components. PCA is used because
it compresses large amounts of information that speeds up
the real-time implementation of models and prevents the
overfitting of predictive algorithms [39]. PCA is used since
it maximizes the variance of data, meaning we can reduce
the number of features in the model while having a varied
representation of the subject’s gait cycle. Note since IMUs
are sampled at 400 Hz, to avoid repetitive data samples, X
is down-sampled to 10 Hz. 100 PCA coefficients (PC) are
used to select principal features. Down-sampling to 10Hz and
selecting 100 PCA coefficients were empirically tuned under
the constraints of the computer’s processing power. 100 PCA
coefficients are selected to reduce feature size to meet the

constraints of the processing power computer. A high num-
ber of PCA coefficients increases the chance of overfitting;
reducing the number of coefficients can eliminate important
gait features. 100 PCA coefficients were selected experimen-
tally by examining pre and post-PCA feature reduction fig-
ures. Down sampled features, Xd are used to fit the model (β)
as shown in equations 7-9.

Xd =
(
X − X

)
PC (7)

β =
γ

Xd
(8)

γ̂ = Xdβ (9)

where Xd ∈ Rn×6, PC ∈ R6×100.
The gait phase error (eγ ) of the model (β) is calcu-

lated using equation 10 (shown for a representative subject
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FIGURE 4. Segment of Shank and Foot IMU measurements during the outdoor walking trial of subject D.

FIGURE 5. Labelling outdoor gait (subject D) with HS and TO events
based on previously generated gait patterns. Correlation peaks represent
HS and TO gait events.

in Fig 7.a). β is then used to predict the gait phase of the
remaining twenty minutes of the outdoor walk, representing
the validation data set. The gait phase error (eγ ) for the
validation data set of subject D is shown in Fig 7.b.

eγ =
acos

(∑2
j=1 γ (:, j)γ̂ (:, j)

)
2π

(10)

FIGURE 6. Subject D’s (a) gait phasors represented by γ , (b, c) linear
regression model predictor variables (ωS

t ,aS
t ).

III. RESULTS
A. GAIT PHASE ESTIMATION
The average gait phase estimation error (eγ ) for the validation
data sets of the human subjects is shown in Table 2. The gait

VOLUME 10, 2022 128095



A. Soliman et al.: Gait Phase Estimation of Unsupervised Outdoors Walking Using IMUs

FIGURE 7. Gait phase error for the (a) training dataset (b) validation dataset of subject D represented through a normalized
histogram of residuals.

TABLE 2. Average gait phase estimation error (eγ ) of the four human
subjects.

TABLE 3. Average gait phase estimation error (eγ ) of the four human
subjects trained with varied patterns.

phase estimation error (eγ ) for each subject’s validation data
set was calculated based on a trained model from their gait
pattern (Fig 3).

Subject D had the highest gait phase estimation accu-
racy due to the varied gait pattern observed in the subject’s
recorded indoor walk. Fig 3.d shows that subject D had the
highest standard deviation in HS and TO patterns, meaning
the subject tried to replicate all the various steps she typically
takes during an outdoor walk. This allows the generation of
a fully representative model of the subject’s outdoor walk.
Conversely, the lowest tracking accuracy is subject C, the
subject with the lowest deviation in their gait pattern (Fig 3.c);
meaning their indoor gait wasn’t fully representative of their
gait characteristics.

B. GAIT PHASE ESTIMATION WITHOUT MOTION CAPTURE
AND FORCE PLATE PATTERN
Due to similarities in HS and TO patterns between humans
(based on foot IMU data) [19], [21], [22], large models of
gait patterns can be used to estimate the gait phase of a human

FIGURE 8. (a) IMU setup on 2-DOF prosthesis (b) operator walking with a
2-DOF prosthesis over an instrumented walkway.

subject. This is useful for outdoor studies that are performed
without a motion capture system and a force place, where
it is unable to create a gait pattern for each human subject.
Table 3 shows the gait phase estimation error (eγ ) for the
subjects’ outdoor walks when trained with other subjects’
concatenated gait patterns. While the accuracy of gait phase
estimation is reduced, it’s still comparable to other gait phase
estimation methods [17]. Increasing the number of concate-
nated gait patterns decreases the gait phase estimation error
of the studied subject, as it’s more likely that one of the con-
catenated patterns is representative of the studied subject’s
gait. To expand on this work, more gait patterns of multiple
subjects can be concatenated and used to estimate the gait
phase of subjects without a uniquely defined gait pattern.
In addition, IMU calibrations can be done without a motion
capture system through repetitive static calibration to correct
IMU readings [40].
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FIGURE 9. (a) HS pattern of 2-DOF prosthesis (b, c) gait phase estimation error of the training and validation data sets.

IV. DISCUSSION
The presented work was designed to help analyze the gait
kinematics of healthy and impaired humans in a natural out-
door environment. The 2-IMU setup, besides the ability to
accurately detect distinct gait events, provides a robust algo-
rithm that does not require set subject-independent thresholds
and labels outdoor gait events based on statistical correlation
to ground truth data. Another advantage of the proposed work
is that it offers an experimental setup that does not require
special shoes/insoles or excessive sensors that can interfere
with the subject’s natural gait.

The outdoor gait events (HS and TO) are successfully
identified based on a ground-truth pattern of each subject.
A gait pattern for each subject is accurately defined based
on a force plate precisely detecting heel strikes and toe-
offs. Outdoor walk data was labeled with HS and TO gait
events based on defined patterns. The proposed methodology
is advantageous to researchers 1) as it allows them to label
gait events harmoniously and with a known correlation to a
ground truth measurement without the need for any external
validation instrumentation, and 2) as it allows researchers to
conduct gait tests outside of a proctored lab space, eliminating
any bias related to the lab environment. Another implication
of the proposed work is the continuous control of a lower limb
prosthesis.

A. PROSTHESIS IMPLEMENTATION
The team previously designed a 2-DOF prosthesis [6] that
was operated to detect heel strike upon the impact of the
prosthetic ankle with the ground, creating a delay in launch-
ing the prosthesis’s controller. This approach generally does
not consider the users’ change of speed or varying their
gait length. The PCA-Based can be expanded to control the
prosthesis by installing a foot and shank, IMU. In futurework,
the amputee users will wear a 2-DOF prosthesis and walk
indoors to generate a gait pattern for their walk. Furthermore,
amputee subjects will wear the prosthesis for a long duration
to provide training and validation data sets for the linear
regression model. This work can be expanded for real-time

estimation of the gait phase, allowing control of powered
prosthesis to have gait trajectories as a function of a time-
varying gait phase.

In a limited study, an unimpaired operator carries the pros-
thesis and walks with it, as shown in Fig 8. The operator
walks with the prosthesis for 10 minutes; 4 minutes is used to
produce a pattern, 3minutes to train themodel., and 3minutes
to test the model (validation dataset).

Longer times weren’t used, as it’s difficult for the operator
to carry the prosthesis for an extensive period. TheHS and TO
patterns of ωFt The gait phase estimation error of the training
and validation data sets are shown in Fig. 9. Note that PCA
estimation and down-sampling weren’t used for this estimate
due to the small data set size.

Nevertheless, estimation results were promising and
needed to be expanded using amputated human subjects,
as further deviation is expected. In future work, impaired sub-
jects will use the 2-DOF prosthesis and walk around with it to
generate a gait pattern similar to Fig 3. Impaired subjects will
then walk outdoors at their natural gait speed. A gait model
will be generated for each impaired subject. This is advan-
tageous to amputees as it allows for improved autonomous
interaction between amputee and prosthesis. To estimate the
gait phase real time, shank data (ωS

t , a
S
t ) from half a second

before the gait event (200 samples) can be used to predict
when the upcoming gait event. The linear regression model
can predict the point of gait based on previous shank IMU
data (ωS

t , a
S
t ).

A limitation and an ongoing study of this work is the lack
of ability to identify gait activities. Gait activities include
turning and incline (stairs) maneuvers. When subjects vary
their indoor gait pattern to include several turning maneuvers
representing outdoor turns, the gait model can still accurately
detect HSs and TOs. For optimal results, subjects should try to
replicate as many maneuvers typically done in outdoor walks
during the indoor gait trial. Further studies are needed to
identify and predict inclination activities; the team conducted
a preliminary study using a previously designed ESKF to
estimate stair activities [28].
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V. CONCLUSION
This paper presents two IMU-based methods that can accu-
rately estimate the gait phase of human subjects based on
a one-second time history. The estimation method is based
on initially producing a gait pattern representative of each
human subject. To produce the pattern, human subjects carry
out two experimental protocols: 1) IMU calibration to correct
raw IMU readings, transforming readings to be representa-
tive of the body frame to the IMU is attached, and 2) an
indoor walking experiment where subjects carry out contin-
uous and varying gait cycles while being monitored by a
motion capture system and a force plate. The motion capture
and force plate readings are used to form the ground truth
and are synchronized to foot IMU readings. They produce
a gait pattern for heel strike (HS) and toe-off (TO) events.
The pattern embodies the gait event and half a second of
data before and after the event. Upon completing the indoor
walk, subjects walk for 40 minutes in an unsupervised out-
door environment. Subjects walked for 40 minutes because
1) it’s long enough to have adequate data sets for training
and testing the gait model, 2) subjects didn’t walk longer
due to risks of battery draining, and 3) adhesives on human
shank weakening due to sweat. An outdoor walk experiment
is used as it is more representative of a human’s natural gait
than a lab environment or a treadmill. Data from twenty
minutes of the outdoor walk generates a linear regression
model representative of the subject’s natural gait. The model
is built on shank IMU readings; outdoor walk data is labeled
with gait events (HS and TO) based on the pre-defined gait
pattern of the subject. The model uses PCA estimation to
narrow down the large data sets into a 100 representative
features, remove any unnecessary noise, and limit its over-
training. The model estimates the gait phase of the remaining
twenty minutes of the subject’s outdoor walk.

Gait phase estimation error for each of the subjects
is calculated. The average error for the subjects was
2.21 ± 0.258 %. Subject D reported the lowest error due
to having the highest variability in the original gait phase
pattern, meaning that the subject’s pattern included a wide
variety of all the steps the subject took in the outdoor envi-
ronment. The lowest estimation accuracy was reported in
subject C, the subject with the lowest variability in their
indoor pattern walk (Fig 3). Our team also proposed a method
that allows groups without a force plate and a motion capture
system to replicate the described work with high accuracy.
Concatenated patterns from other human subjects can be used
to label outdoor data from a subject that does not have a
representative pattern. The more subjects represented in the
concatenated pattern, the higher the correlation confidence
between the pattern and unlabeled outdoor data. Further
application of the proposed work is the autonomous control
of an active lower limb 2-DOF prosthesis.

The proposed work allows researchers to study the gait
phase of human subjects in an unsupervised outdoor envi-
ronment. This is advantageous over lab and treadmill testing

as it’s a closer representation of a human’s natural gait and
allows subjects to varying speeds as needed. Furthermore,
in terms of labeling gait events (HS and TO), the proposed
work offers a unique methodology that does not require fixed
thresholds, external sensors (force sensors), or special shoes
(sensor-embedded insoles). The labels for HS and TO are
based on statistical correlation confidence that is robust to
any human subject and does not require embedded sensors
that can impose the subject’s natural gait. Additionally, the
proposed methodology may offer opportunities for extended
gait experiments without requiring fully equipped labora-
tory settings to replicate work. Finally, the methodology
can be expanded to aid patients in gait training as pro-
posed regression models can be run offline and in real-time.
Presented work can also control wearable assistive devices
to offer seamless interaction between humans and robotic
devices.

VI. AVAILABILITY
The MATLAB and C deployment of the gait model training
and experimental raw data described in the Methods section
is available through (https://github.com/hirolab/gaitphase-
estimation ).

REFERENCES
[1] M. P. Murray, ‘‘Gait as a total pattern of movement: Including a bibliog-

raphy on gait,’’ Amer. J. Phys. Med. Rehabil., vol. 46, no. 1, pp. 290–333,
Feb. 1967.

[2] M. Bellmann, T. Schmalz, and S. Blumentritt, ‘‘Comparative biomechan-
ical analysis of current microprocessor-controlled prosthetic knee joints,’’
Arch. Phys. Med. Rehabil., vol. 91, no. 4, pp. 644–652, Apr. 2010, doi:
10.1016/j.apmr.2009.12.014.

[3] J. J. Kavanagh and H. B. Menz, ‘‘Accelerometry: A technique for quan-
tifying movement patterns during walking,’’ Gait Posture, vol. 28, no. 1,
pp. 1–15, Jul. 2008, doi: 10.1016/j.gaitpost.2007.10.010.

[4] R. Ferber and S.Macdonald,RunningMechanics andGait Analysis, 1st ed.
Champaign, IL, USA: Human Kinetics, 2014.

[5] J. M. Hausdorff, D. A. Rios, and H. K. Edelberg, ‘‘Gait variability and
fall risk in community-living older adults: A 1-year prospective study,’’
Arch. Phys. Med. Rehabil., vol. 82, no. 8, pp. 1050–1056, Aug. 2001, doi:
10.1053/apmr.2001.24893.

[6] H. Dallali, E. Ficanha, and M. R. Aagaah, ‘‘Dynamic modeling of a
2-DOF cable driven powered ankle-foot prosthesis,’’ in Proc. ASME
Dyn. Syst. Control Conf. (DSCC), Minneapolis, MN, USA, Oct. 2016,
Art. no. V001T06A003.

[7] D. Quintero, D. J. Villarreal, D. J. Lambert, S. Kapp, and R. D. Gregg,
‘‘Continuous-phase control of a powered knee–ankle prosthesis:
Amputee experiments across speeds and inclines,’’ IEEE Trans.
Robot., vol. 34, no. 3, pp. 686–701, Jun. 2018, doi: 10.1109/TRO.2018.
2794536.

[8] S. Yul Shin, A. D. Deshpande, and J. Sulzer, ‘‘Design of a single degree-of-
freedom, adaptable electromechanical gait trainer for people with neuro-
logical injury,’’ J. Mech. Robot., vol. 10, no. 4, Aug. 2018, Art. no. 044503,
doi: 10.1115/1.4039973.

[9] A. Alamdari and V. Krovi, ‘‘Design and analysis of a cable-driven articu-
lated rehabilitation system for gait training,’’ J. Mech. Robot., vol. 8, no. 5,
May 2016, Art. no. 051018, doi: 10.1115/1.4032274.

[10] A. Soliman, G. A. Ribeiro, D. Gan, and M. Rastgaar, ‘‘Feasibility design
and control of a lower leg gait emulator utilizing a mobile 3-revolute,
prismatic, revolute parallel manipulator,’’ J. Mech. Robot., vol. 15, no. 1,
pp. 1–24, Feb. 2023, doi: 10.1115/1.4053825.

[11] E. Ficanha, H. Dallali, and M. Rastgaar, ‘‘Gait emulator for evaluation
of a powered ankle-foot prosthesis,’’ in Proc. Dyn. Syst. Control Conf.,
Oct. 2017.

128098 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.apmr.2009.12.014
http://dx.doi.org/10.1016/j.gaitpost.2007.10.010
http://dx.doi.org/10.1053/apmr.2001.24893
http://dx.doi.org/10.1109/TRO.2018.2794536
http://dx.doi.org/10.1109/TRO.2018.2794536
http://dx.doi.org/10.1115/1.4039973
http://dx.doi.org/10.1115/1.4032274
http://dx.doi.org/10.1115/1.4053825


A. Soliman et al.: Gait Phase Estimation of Unsupervised Outdoors Walking Using IMUs

[12] P. Cherelle, V. Grosu, L. Flynn, K. Junius, M. Moltedo, B. Vanderborght,
and D. Lefeber, ‘‘The ankle mimicking prosthetic foot 3—Locking
mechanisms, actuator design, control and experiments with an
amputee,’’ Robot. Auto. Syst., vol. 91, pp. 327–336, May 2017, doi:
10.1016/j.robot.2017.02.004.

[13] P. Yang, H. Yue, L. Chen, and Y. Geng, ‘‘Intelligent lower limb pros-
thesis following healthy leg gait based on fuzzy control,’’ in Proc. 24th
Chin. Control Decis. Conf. (CCDC), May 2012, pp. 3729–3731, doi:
10.1109/CCDC.2012.6244597.

[14] T. B. Moeslund, A. Hilton, and V. Krüger, ‘‘A survey of advances
in vision-based human motion capture and analysis,’’ Comput.
Vis. Image Understand., vol. 104, nos. 2–3, pp. 90–126, 2006, doi:
10.1016/j.cviu.2006.08.002.

[15] B. D. Hendershot, C. E. Mahon, and A. L. Pruziner, ‘‘A comparison of
kinematic-based gait event detection methods in a self-paced treadmill
application,’’ J. Biomechanics, vol. 49, no. 16, pp. 4146–4149, Dec. 2016,
doi: 10.1016/j.jbiomech.2016.10.046.

[16] J. Kim,M. Bae, K. B. Lee, and S. G. Hong, ‘‘Gait event detection algorithm
based on smart insoles,’’ ETRI J., vol. 42, no. 1, pp. 46–53, Feb. 2020, doi:
10.4218/etrij.2018-0639.

[17] H. T. T. Vu, D. Dong, H.-L. Cao, T. Verstraten, D. Lefeber,
B. Vanderborght, and J. Geeroms, ‘‘A review of gait phase detection
algorithms for lower limb prostheses,’’ Sensors, vol. 20, no. 14, p. 3972,
Jul. 2020, doi: 10.3390/s20143972.

[18] S. Khandelwal andN.Wickström, ‘‘Gait event detection in real-world envi-
ronment for long-term applications: Incorporating domain knowledge into
time-frequency analysis,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24,
no. 12, pp. 1363–1372, Dec. 2016, doi: 10.1109/TNSRE.2016.2536278.

[19] S. Misu, T. Asai, R. Ono, R. Sawa, K. Tsutsumimoto, H. Ando, and
T. Doi, ‘‘Development and validity of methods for the estimation of
temporal gait parameters from heel-attached inertial sensors in younger
and older adults,’’ Gait Posture, vol. 57, pp. 295–298, Sep. 2017, doi:
10.1016/j.gaitpost.2017.06.022.

[20] J. K. Lee and E. J. Park, ‘‘Quasi real-time gait event detection using
shank-attached gyroscopes,’’ Med. Biol. Eng. Comput., vol. 49, no. 6,
pp. 707–712, 2011, doi: 10.1007/s11517-011-0736-0.

[21] J. Bae and M. Tomizuka, ‘‘Gait phase analysis based on a hidden Markov
model,’’ Mechatronics, vol. 21, no. 6, pp. 961–970, Sep. 2011, doi:
10.1016/j.mechatronics.2011.03.003.

[22] R. L. Evans and D. K. Arvind, ‘‘Detection of gait phases using ori-
ent specks for mobile clinical gait analysis,’’ in Proc. 11th Int. Conf.
Wearable Implant. Body Sensor Netw., Jun. 2014, pp. 149–154, doi:
10.1109/BSN.2014.22.

[23] T. Zhen, L. Yan, and P. Yuan, ‘‘Walking gait phase detection based on
acceleration signals using LSTM-DNN algorithm,’’ Algorithms, vol. 12,
no. 12, p. 253, Nov. 2019, doi: 10.3390/a12120253.

[24] A. Mannini, V. Genovese, and A. M. Sabatini, ‘‘Online decoding of hidden
Markov models for gait event detection using foot-mounted gyroscopes,’’
IEEE J. Biomed. Heal. Informat., vol. 18, no. 4, pp. 1122–1130, Jul. 2014,
doi: 10.1109/JBHI.2013.2293887.

[25] L. Yan, T. Zhen, J.-L. Kong, L.-M. Wang, and X.-L. Zhou, ‘‘Walking
gait phase detection based on acceleration signals using voting-weighted
integrated neural network,’’ Complexity, vol. 2020, pp. 1–14, Jan. 2020,
doi: 10.1155/2020/4760297.

[26] D. Quintero, D. J. Lambert, D. J. Villarreal, and R. D. Gregg, ‘‘Real-time
continuous gait phase and speed estimation from a single sensor,’’ in Proc.
IEEE Conf. Control Technol. Appl. (CCTA), Aug. 2017, pp. 847–852, doi:
10.1109/CCTA.2017.8062565.

[27] M. V. Potter, S. M. Cain, L. V. Ojeda, R. D. Gurchiek, R. S. McGinnis,
and N. C. Perkins, ‘‘Error-state Kalman filter for lower-limb kinematic
estimation: Evaluation on a 3-body model,’’ PLoS ONE, vol. 16, no. 4,
Apr. 2021, Art. no. e0249577, doi: 10.1371/journal.pone.0249577.

[28] A. Soliman, G. A. Ribeiro, A. Torres, and M. Rastgaar, ‘‘Error-state
Kalman filter for online evaluation of ankle angle,’’ in Proc. IEEE/ASME
Int. Conf. Adv. Intell. Mechatronics (AIM), Jul. 2022, pp. 225–231, doi:
10.1109/AIM52237.2022.9863327.

[29] S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, H. Zhao, X. Miao,
R. Liu, andG. Fortino, ‘‘Multi-sensor information fusion based onmachine
learning for real applications in human activity recognition: State-of-the-
art and research challenges,’’ Inf. Fusion, vol. 80, no. C, pp. 241–265,
Apr. 2022, doi: 10.1016/j.inffus.2021.11.006.

[30] K. Aminian, B. Najafi, C. Büla, P. F. Leyvraz, and P. Robert, ‘‘Spatio-
temporal parameters of gait measured by an ambulatory system using
miniature gyroscopes,’’ J. Biomech., vol. 35, no. 5, pp. 689–699, 2002, doi:
10.1016/S0021-9290(02)00008-8.

[31] T. T. Pham and Y. S. Suh, ‘‘Conditional generative adversarial network-
based regression approach for walking distance estimation using waist-
mounted inertial sensors,’’ IEEE Trans. Instrum. Meas., vol. 71, pp. 1–13,
2022.

[32] A. Talitckii, E. Kovalenko, A. Shcherbak, A. Anikina, E. Bril,
O. Zimniakova, M. Semenov, D. V. Dylov, and A. Somov, ‘‘Compara-
tive study of wearable sensors, video, and handwriting to detect Parkin-
son’s disease,’’ IEEE Trans. Instrum. Meas., vol. 71, pp. 1–10, 2022, doi:
10.1109/TIM.2022.3176898.

[33] V. Agostini, G. Balestra, andM.Knaflitz, ‘‘Segmentation and classification
of gait cycles,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 5,
pp. 946–952, Sep. 2014, doi: 10.1109/TNSRE.2013.2291907.

[34] P. D. Groves, ‘‘Principles of GNSS, inertial, and multisensor integrated
navigation systems,’’ IEEE Aerosp. Electron. Syst. Mag., vol. 30, no. 2,
pp. 26–27, Feb. 2007.

[35] P. Furgale, J. Rehder, and R. Siegwart, ‘‘Unified temporal and spatial
calibration for multi-sensor systems,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Nov. 2013, pp. 1280–1286.

[36] IEEE Standard Specification Format Guide and Test Procedure for
Single-Axis Interferometric Fiber Optic Gyros, IEEE Standard 952-1997,
Feb. 1998, pp. 1–84, doi: 10.1109/IEEESTD.1998.86153.

[37] M. Pat, B. Drought, and R. Kory, ‘‘Walking patterns of normal men,’’ J.
Bone Joint Surg., vol. 46, no. 2, pp. 335–360, Mar. 1964.

[38] J. T. Cavanaugh and N. Stergiou, ‘‘Gait variability: A theoretical frame-
work for gait analysis and biomechanics,’’ in Biomechanics and Gait
Analysis, N. Stergiou, Ed. New York, NY, USA: Academic, 2020, ch. 8,
pp. 251–286, doi: 10.1016/B978-0-12-813372-9.00008-7.

[39] I. T. Jolliffe and J. Cadima, ‘‘Principal component analysis: A review
and recent developments,’’ Phil. Trans. R. Soc. A, vol. 374, Apr. 2016,
Art. no. 20150202, doi: 10.1098/rsta.2015.0202.

[40] D. Tedaldi, A. Pretto, and E. Menegatti, ‘‘A robust and easy to implement
method for IMU calibration without external equipments,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Hong Kong, May 2014, pp. 3042–3049,
doi: 10.1109/ICRA.2014.6907297.

AHMED SOLIMAN (Graduate Student Member,
IEEE) received the B.S. degree in mechatronics
and robotics engineering technology from Purdue
University, West Lafayette, IN, USA, in 2019,
where he is currently pursuing the Ph.D. degree in
robotics engineering technology.

Since 2019, he has been worked as a Research
Assistant at the Human Interactive Robotics Labo-
ratory (HIRoLab), Purdue University, and a Teach-
ing Assistant for undergraduate college classes on

embedded circuits and manufacturing techniques. His research interests
include applications of autonomous vehicles and parallel manipulators in the
testing of human assistive robots.

GUILHERME A. RIBEIRO received the B.S.
degree in mechatronics engineering from the
Federal University of Uberlândia, Minas Gerais,
Brazil, in 2013, and the M.S. and Ph.D. degrees
in mechanical engineering from Michigan Tech-
nological University (MTU), Houghton, MI, USA,
in 2019.

From 2014 to 2019, he was a Research Assistant
with the Human Interactive Robotics Laboratory
and a Teaching Assistant for college classes on

controls and robotics at the Mechanical Engineering Department, MTU.
Since 2019, he has been a Postdoctoral Researcher with the Polytechnic
Institute, Purdue University, West Lafayette, IN, USA. His research interests
include the control and automation of robots and system identification of
dynamical systems.

Dr. Ribeiro has received awards as the Outstanding Graduate Student
Teacher, the first place in Consumer Products Day Competition, the Tutoring
Assistantships for programming and math courses, and the Medalist of the
Brazilian Mathematics Olympics.

VOLUME 10, 2022 128099

http://dx.doi.org/10.1016/j.robot.2017.02.004
http://dx.doi.org/10.1109/CCDC.2012.6244597
http://dx.doi.org/10.1016/j.cviu.2006.08.002
http://dx.doi.org/10.1016/j.jbiomech.2016.10.046
http://dx.doi.org/10.4218/etrij.2018-0639
http://dx.doi.org/10.3390/s20143972
http://dx.doi.org/10.1109/TNSRE.2016.2536278
http://dx.doi.org/10.1016/j.gaitpost.2017.06.022
http://dx.doi.org/10.1007/s11517-011-0736-0
http://dx.doi.org/10.1016/j.mechatronics.2011.03.003
http://dx.doi.org/10.1109/BSN.2014.22
http://dx.doi.org/10.3390/a12120253
http://dx.doi.org/10.1109/JBHI.2013.2293887
http://dx.doi.org/10.1155/2020/4760297
http://dx.doi.org/10.1109/CCTA.2017.8062565
http://dx.doi.org/10.1371/journal.pone.0249577
http://dx.doi.org/10.1109/AIM52237.2022.9863327
http://dx.doi.org/10.1016/j.inffus.2021.11.006
http://dx.doi.org/10.1016/S0021-9290(02)00008-8
http://dx.doi.org/10.1109/TIM.2022.3176898
http://dx.doi.org/10.1109/TNSRE.2013.2291907
http://dx.doi.org/10.1109/IEEESTD.1998.86153
http://dx.doi.org/10.1016/B978-0-12-813372-9.00008-7
http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.1109/ICRA.2014.6907297


A. Soliman et al.: Gait Phase Estimation of Unsupervised Outdoors Walking Using IMUs

ANDRES TORRES received the B.S. degree from
the Department of Mechanical Engineering, Uni-
versity of Puerto Rico, Mayaguez, Puerto Rico,
in 2019. He is currently pursuing the Ph.D. degree
with Purdue University.

He has interned at P&G–Gillette, Boston,
MA, USA, in Summer 2017, and an Under-
grad Researcher at Boston University, Boston,
in Summer 2018. He was a PR-LSAMP Scholar,
from 2017 to 2019. His major research inter-

ests include soft-robotic joints, system identification, and human–robot
interactions.

LI-FAN WU received the B.S. degree from the
Department of Mechanical Engineering, National
Cheng Kung University, Tainan, Taiwan, in 2015,
and the M.S. degree from the Department of Elec-
trical Engineering, National Cheng Kung Univer-
sity, in 2017. He is currently pursuing the Ph.D.
degree with Purdue University.

He has completed the one-year M.S. Exchange
Program at the Department of Electrical and
Computer Engineering, Technical University of

Munich, Bavaria, Germany, in 2018. He was a Software Engineer at Wistron
Enterprise, in 2019. His major research interests include fuzzy control,
motion planning, machine learning, intelligent systems, a humanoid robot,
image processing, robotic application, and FIRA/Robo cup games.

MO RASTGAAR (Senior Member, IEEE)
received the B.S. degree from the Sharif University
of Technology, Tehran, Iran, in 1995, the M.S.
degree from Tehran Polytechnic, Iran, in 1998, and
the Ph.D. degree from the Virginia Polytechnic
Institute and State University, Blacksburg, VA,
USA, in 2008, all in mechanical engineering.

He was a Postdoctoral Associate at the Newman
Laboratory for Biomechanics and Human Reha-
bilitation, Massachusetts Institute of Technology,

Cambridge, MA, USA, from 2008 to 2010. From 2011 to 2018, he was an
Assistant Professor and an Associate Professor at Michigan Tech, Houghton,
MI, USA. In 2019, he joined Purdue University, West Lafayette, IN, USA,
where he is currently a Professor at the Polytechnic Institute and the Director
of theHuman–Interactive Robotics Laboratory. His research interests include
advancing maneuverability in lower extremity robotic prostheses and assis-
tive robots by characterizing the agility in the human gait. He was a recipient
of the 2014 National Science Foundation CAREER Award.

128100 VOLUME 10, 2022


