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1. INTRODUCTION

Tropical geometry is well-known for its applications to complex and real enu-
merative geometry, especially for plane curves. Here, we explore extensions of
tropical methods to arithmetic enumerative problems such as A!-enumeration
with values in the Grothendieck-Witt ring, and rationality over Henselian valued
fields, using bitangents to plane quartics as a test case.

If the tropicalization of a plane quartic is smooth (locally isomorphic to the
tropicalization of a linear space) then it has exactly 7 deformation classes of
tropical bitangents. These are in natural bijection with the odd tropical theta
characteristics and each contains the tropicalization of 4 algebraic bitangents
[5, 17, 25]. Cueto and the first author have given an exhaustive classification of
the combinatorial types of these bitangent classes [6]. As an application, when
the ground field K is real Puiseux series R{{¢}} and the tropicalization satisfies
the genericity constraints from [6, Remark 2.10], they showed that the number of
K-rational bitangents tropicalizing into a bitangent class is either 0 or 4. In other
words, roughly speaking, the obstruction to rationality over R{{¢}} is independent
of the choice of bitangent in a given bitangent class.

Throughout, let K be a Henselian valued field of residue characteristic not
equal to 2, with 2-divisible value group, and with a section of the valuation
o: val(K*) — K*. Let k be the residue field of K. Let Q € Klz,y, 2] be a
homogeneous polynomial of degree 4 such that the projective plane algebraic curve
C' = V(Q) is smooth and Trop(C') is tropically smooth. Assume furthermore that
Trop(C) satisfies the genericity constraints from [0, Remark 2.10], the details of
which we recall in Section 2.3

Note that K could be the Puiseux series field k{{t}} over any field & of characteris-
tic not equal to 2. Such fields are commonly considered in tropical geometry. Other
possibilities include mixed characteristic fields such as Q,(p*/?™) = U, Q,(p*/?"),
for p # 2. Our arguments are not sensitive to distinctions between pure and
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mixed characteristic; any reader who prefers to do so may safely assume that
K = k{{t}} is a field of Puiseux series.

Lifting of tropical bitangents to general ground fields. Our work begins
with the observation that the algebraic calculations used to prove the lifting result
from [6] over the reals are only mildly sensitive to the ground field.

Theorem 1.1 (Theorem B.3)). Let C' = V(Q) be a quartic curve defined over K
with Trop(C') a generic tropicalized quartic and suppose A is a liftable tropical
bitangent to C'. Then whether or not A lifts over K is determined by Trop(C')
and the equivalence classes of initials of the coefficients of Q in k™ /(k*).

When the residue field k£ = R, then R*/(R*)? = Z/2Z. Knowing the tropical-
ization of C' together with the equivalence classes of initials of the coefficients
of @ modulo squares is precisely the information required to carry out Viro’s
patchworking [14, B35]. Motivated by this connection, we express obstructions
to rationality in the case of arbitrary fields in terms of twisting of edges of the
tropicalization, thus extending to general fields the concept of twisting coming
from amoebas over the real numbers, see [3].

Theorem 1.2 (Theorem [3.14). The number of K-rational bitangents to C that
tropicalize into each bitangent class of tropical bitangents is either 0 or 4.

When K is R{{t}}, Cueto and the first author showed that the points of tangency
of a K-rational bitangent are K-rational [6, Theorem 7.1]. Again, we observe that
this is only mildly sensitive to the ground field.

Theorem 1.3 (Corollary [3.15). Assume that 2 and 3 are squares in k*. Then

the points of tangency of a K -rational bitangent to C' are K -rational.

Note that the hypotheses of Theorem imply that the residue characteristic of
K is also not equal to 3.

The proofs of Theorems and involve solving systems of equations over
the residue field to determine the initials of the coefficients of the defining equation
of the bitangents and points of tangency in suitable local coordinates, and then
lifting via Hensel’s lemma. This is carried out case-by-case, according to the
Cueto-Markwig classification from [6]. Details of the case analysis are provided in
the Appendix.

Using the lifting theorems discussed above, we also prove that the liftability of
tropical bitangents over different fields are related when the groups of the residue
fields modulo squares are isomorphic, see Theorem and Corollary [3.17]

The tropical approach to the Al'-enumeration of bitangents to a plane
quartic, and its foundations. Even when it is possible to count K-rational
solutions to a geometric problem, the naive enumeration may not be invariant under
deformations. Familiar examples include counts of real rational plane curves of
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given degree and genus, passing through an appropriate number of specified points
in general position. In such cases, there are often refined enumerative counts, such
as Welschinger invariants for real rational plane curves, where objects are counted
with multiplicities in such a way that the result is invariant under deformation.
More recently, techniques from arithmetic geometry and Al-homotopy theory have
produced more general Al-enumerative invariants taking values in Grothendieck-
Witt rings of quadratic forms that specialize to classical enumerative invariants
over C, to Welschinger invariants and related real enumerative invariants over
R, and produce new invariants of interest over other fields [13| I8} 26]. For the
Al-enumeration of the 27 lines on cubic surfaces and the 28 bitangents to plane
quartics, see [19] and [22], respectively. We recall the relevant definitions in
Section [l

We write t¥ := o(v) for v € val(K*), where ¢ denotes the section of the
valuation on our valued field K. For A € K, we let in(A) be the image of At~ val(4)
in the residue field and call it the initial of A. If K is the field of Puiseux series,
in(A) is the leading coefficient of the series A.

Theorem 1.4 (Theorem {4.23)). The Al-enumerative multiplicity of a bitangent L
to C' depends only on the tropicalization of C' and on the initials of its coefficients
modulo squares.

Moreover, we give an effective algorithm for computing the Al-enumerative count
of all bitangents to C' in each of the 7 deformation classes, and hence the Al-
enumerative count of all 28 bitangents, as elements of the Grothendieck-Witt ring
GW(K) (see Remark [4.16]).

Theorem relies on the following observation relating the Grothendieck-Witt
ring of K to that of its residue field. Recall our standing assumption that K is
a Henselian valued field of residue characteristic not equal to 2, with 2-divisible
value group, and with a section of the valuation o: val(K*) — K*.

Theorem 1.5 (Theorem . Let K be a Henselian valued field of residue
characteristic not equal to 2, with 2-divisible value group, and with a section of
the valuation. Then there is an isomorphism of Grothendieck-Witt rings

GW(K) = GW(k), (A) s (in(A)).
This isomorphism does not depend on the section o.

The above theorem is a variant of Springer’s theorem on the Witt group of a
Henselian discretely valued field, as generalized to arbitrary value groups, e.g.,
in [9], in the special case where the value group is 2-divisible. Theorems of
this form are a natural starting point for the application of tropical methods to
Al-enumerative geometry. In forthcoming work, Jaramillo Puentes and Pauli
define enriched tropical intersection multiplicities for O-dimensional intersections
of tropical hypersurfaces [34]. As a consequence they prove a tropical version of a
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quadratically enriched Bézout theorem from [27] and also introduce an enriched
Bernstein-Khovanskii-Kushnirenko theorem.

Remark 1.6. Our hypothesis that the value group val(K*) is 2-divisible is a
simplifying assumption that is necessary for Theorems and [L.5] as stated.
Nevertheless, this framework, and all of the computations that we carry out for
bitangents to plane quartics, can be extended to the case where K is Henselian
of residue characteristic not equal to 2 with arbitrary value group, but then one
must also keep track of the valuations of the coefficients, modulo valuations of
squares. The calculations needed for our case analysis of bitangents are already
sufficiently complicated when the value group is 2-divisible that we have chosen
to compromise generality in this way. This work, along with that of Jaramillo
Puentes and Pauli [34], demonstrates that tropical methods are relevant and
useful to Al-enumerative geometry.

If an Al-enumerative multiplicity equals the hyperbolic plane H = (1) & (—1),
then it contributes 2 to the corresponding complex count and 0 to the corresponding
signed count over the real numbers. We prove that for many types of tropical
bitangent classes in the classification, the Al-enumerative multiplicities of the four
algebraic bitangents that tropicalize into this class add up to 2H. The exceptional
cases for which this does not hold true are listed in Appendix [A.3] To give an
impression which tropical bitangent classes contribute 2H to the Al-enumerative
count, we list some sufficient conditions here. For the complete list in terms of
the classification of tropical bitangent classes, see Theorem [A.2]

Theorem 1.7 (Theorems and [A.2)). Let S be a tropical bitangent class that
is compact. Then the contribution of S to the A'-enumerative count of bitangents
to C' is 2H.

We also show that the contributions of tropical bitangents classes to the Al-
enumerative counts over different fields are related if the groups of the residue
fields modulo squares are isomorphic, see Theorem and Corollary |4.25]

The real signed count of bitangents to plane quartics. In [22], Larson and
Vogt investigated the A'-enumeration of bitangents to a plane quartic, relative to
a fixed line at infinity, and the resulting signed count over reals. Over the reals,
they show that the signed count is equal to 4 if the real locus of the quartic does
not meet the line at infinity. They also show that the signed count is nonnegative
and conjectured that it is bounded above by 8E| The field of real Puiseux series
R{{t}} also has its Grothendieck-Witt ring generated by the two elements (1) and
(—1). The A'-enumeration of bitangents can thus be expressed as a- (1) +b- (—1)
for some a, b, and the signed count is a — b.

'Kummer and McKean have now announced a proof of this conjecture [20].
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Theorem 1.8 (Theorem [5.2)). Let C' = V(Q) be a quartic over R{{t}} whose
tropicalization is smooth and generic. Then the signed count of bitangents of C' s
either 0, 2 or 4.

As many, but not all, of the tropical bitangent classes contribute 2H to the A!l-
enumeration of bitangents, we deduce that many tropical bitangents give a total
contribution of 0 to the signed count when working over the reals. The total signed
count of 2 and 4 can only be reached for those tropicalized quartics which admit
exceptional tropical bitangent classes as listed in Appendix[A.3] The strategy
to prove Theorem is to investigate how the dual motifs (see Definition
of such exceptional tropical bitangents can fit into the dual Newton subdivision
of a tropicalized quartic and show that, at most, there can be either one that
contributes 4, or one or two that contribute 2 to the signed count, with the rest
contributing 0.

Organization of this paper. This paper is organized as follows. In Section [2]
we discuss preliminaries. We fix our convention for the fields we study, intro-
duce tropicalizations of plane quartics and discuss tropical bitangents and their
bitangent classes.

In Section [3, we discuss obstructions to rationality. Section [3.1] reviews known
techniques to solve so-called local lifting equations which provide local obstructions
for a tropical bitangent to have a K-rational lift. In Section |3.2] we generalize the
concept of twisted edges from the reals to more general fields. We also generalize
to situations with so-called relative twisting, in which the relative behaviour of
a tropical bitangent line and the tropicalized quartic play a role. We express
obstructions to K-rationality in terms of twisting of edges. In Section |3.3, we
sum up our results on K-rationality of tropical bitangent classes, and compare
the behaviour over different fields.

Section [4] discusses aspects of Al-enumeration. Section [4.1] recalls the definition
of the Grothendieck-Witt ring. Section [4.2] contains our result (Theorem [L.5] (4.7))
relating the Grothendieck-Witt ring of K to the Grothendieck-Witt ring of its
residue field. This result lays the foundation for the infusion of tropical methods
into the study of Al-enumerative geometry, and we apply it in Section to inves-
tigate the Al-enumerative geometry of tropical bitangent classes to tropicalized
quartics. Our main result here is Theorem [4.23] which sums up the statements
of Theorems and in the introduction. Also in Section [4.4] we provide
the methods to prove that many tropical bitangent classes contribute 2H to the
Al-enumeration of bitangents to quartics, and spell out the details for one case of
the classification of tropical bitangent classes. The remaining cases are revisited
in Appendix . Before we turn to the Al-enumerative geometry of tropical
bitangents, in Section , we review the results of [22] on the A'-enumeration of
bitangents to quartics. Section [4.4] presents the results from the tropical approach
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to the Al-enumeration of bitangents to quartics and Section explores relations
of the A! types of lifts of tropical bitangents over different fields.

In Section , we consider tropical Al-enumeration of bitangents to quartics
over real closed fields. We prove Theorem providing evidence in support
of Larson and Vogt’s conjecture on the possible values for the signed count of
bitangents over the reals. We also point out that this result can be obtained
without referring to the techniques of Al-enumeration. The signed count of
bitangents to a real quartic has a geometric interpretation (see Section , and
one can thus also use the method of Viro’s patchworking to associate the correct
sign to a tropical bitangent.

The Appendix contains details of the classification of tropical bitangents. Part
spells out the details about all tropical bitangent classes and their dual motifs
(see Definition up to Sp-symmetry. The original classification in [6] is up to
S3-symmetry, but we have to break some of the symmetry to fix the line at infinity.
Part adds the details to Theorem m (see Theorem by going through
the classification and showing which bitangent classes precisely contribute 2H to
the Al-enumeration of bitangents to quartics. Part finally lists the exceptional
tropical bitangent classes and their A'-enumerative multiplicity, which is given in
terms of the initials of the coefficients of the defining equation of the quartic, as
claimed in Theorem [L4
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2. PRELIMINARIES

2.1. Field conventions. Throughout the paper, let K be a Henselian valued field
whose value group val(K*) is 2-divisible, and let o be a section of the valuation,
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i.e., a group homomorphism
o: val(K*) - K~
such that valoo is the identity. Let R C K denote the valuation ring m C R

the maximal ideal, and k = R/m the residue field. Throughout, we assume the
characteristic of k£ is not 2.

FExample 2.1. Such fields exist with any given residue field k; for instance, one could
take the Puiseux series field k{{t}}, the generalized power series field k((t*)), or
the completion of either. The hypotheses are also satisfied by mixed characteristic
fields such as Q,(p*/2, pt/4,pt/®,...), where p'/? is a square root of p, p*/* is a

square root of p'/2 v

, and so on; a section is given by o(v) = p*.
Definition 2.2. We write o(v) := t¥, for v € val(K*).
This notation intentionally emphasizes the analogy with generalized power series.

Definition 2.3 (Initials). Let A € K*. Then the initial of A, in(A), is the image
of At=val in kX,

In case K is a generalized power series field, in(A) is the “initial coefficient.”

2.2. Tropicalizations of plane quartics. Tropicalization can be viewed as
degeneration of algebraic varieties defined over K. Here, we introduce it only for
plane curves.

Definition 2.4 (Tropicalization). Let C' C P% be a plane curve and assume
that K is algebraically closed. The tropicalization is defined by taking — val
componentwise to the torus points:

Trop(C) := {(—valz, —valy) | (z,y) € C N (K*)?},

where the bar denotes the Euclidean closure in R
If K is not algebraically closed, we apply minus valuation coordinatewise to all
points of C' in the algebraic closure of K to obtain the tropicalization.

Since we require our field to be Henselian, the valuation extends uniquely
to the algebraic closure. Equivalently, Trop(C) is the image of the Berkovich
analytification of C'N (G?) under coordinatewise valuation [33].

Remark 2.5. One can also define a compactification of R? that is the tropicalization
of P%, including its toric boundary, as in Section 3 of [33]. The definition above
then extends naturally to take boundary points into account. A smooth quartic
is never contained in the toric boundary, and hence meets the torus non-trivially.
Consequently, this compact extended tropicalization equals the closure of the
tropicalization of its points in the torus as defined above (see Lemma 3.1.1 [31]).
We can therefore restrict attention to the tropicalization in the torus as described
above.
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=

-

FI1GURE 1. On the left, the set D for the polynomial ¢ in Exam-
ple 2.9, on the right is the Newton subdivision Ag.

Ezxample 2.6 (Tropical line). Let C' =V (z +y +t). We can parametrize C' as
{(x,—z—1t) | x# —t,x € K*}.

By considering the three cases val(z) > 1, val(z) < 1, and val(x) = 1, where in
the last case the situation in(z) = —1 plays an important role, we can see that the
tropicalization consists of three rays starting at the point (—1,—1), one diagonal,
one horizontal and one vertical.

Remark 2.7 (Tropical dual plane). By varying the coefficients in Example
one can see that the tropicalization of any line whose defining equation has three
nonzero coefficients (what we are calling a tropical line) consists of three rays
centered at a vertex whose coordinates are determined by the valuations of the
coefficients. Thus, we can and do identify the tropical dual plane parametrizing
tropical lines in R? with the tropical plane R? itself, where a tropical line is
identified with its vertex. (Note, however, that this does not extend to an
identification of the compact tropicalization of P? with that of (P?)Y.)

Definition 2.8 (Newton subdivision). Let @) € K|xz,y, 2] be a homogeneous
polynomial of degree d, and denote the coefficient of the monomial xiy’z4-1=7 by
A;;. Let D C R? x R be the convex hull of the set

{((,5), —val(Ay)) | Aij # 0}
Project the faces of D which can be seen from above down to R%. The images

of these faces form a convex subdivision Ag of the Newton polygon, called the
Newton subdivision.

Example 2.9. Let Q =t *a? +t 22y +t 9% +t 22+t 2y +t~ L. Figure[l| shows
the set D on the left and the projection of its upper faces, i.e. its Newton subvision,
on the right.

Theorem 2.10 (Duality theorem). For C = V(Q), the tropical curve Trop(C') is
the 1-skeleton of a subdivision of R? that is dual to the Newton subdivision Ag,
i.e., there is a natural inclusion reversing bijection of faces between these two
subdivisions.
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FIGURE 2. The tropicalization of the curve from Example [2.9| and
the Newton subdivision Ag.

A proof can be found, for example, in [28], Proposition 3.11. This duality is
illustrated in Figure [2|

The tropicalization of a plane curve is called a tropical plane curve. From
duality to a Newton subdivision, we conclude that tropical curves satisfy the
balancing condition: if we weight each edge by the lattice length of its dual edge,
then the weighted sum of the primitive edge generators around a vertex is 0.

A tropical plane curve is smooth of degree d if it is dual to a unimodular
triangulation of the triangle with vertices (0,0), (0,d), (d,0). Here, unimodular

means that it is subdivided into d? triangles each having area %

2.3. Bitangents to tropicalized quartics. Suppose that two tropical plane
curves ['y, I'y intersect transversally, i.e. the intersection is a finite set of points each
of which is contained in the interior of an edge of both I'y and I's. Let P € I'y NI,
Choose weighted direction vectors uy, uy for edges of I'y, 'y emanating from P.
Then the intersection multiplicity of the two curves at P is I'y-T's | p= | det(uq, us)|,
and 'y - 'y = ZPermm I’y - Ty |p. The balancing condition ensures that this
definition does not depend on the choice of direction vectors. If the curves do not
intersect transversally, we use the stable intersection: choose a direction v so that
I'y and T's 4 € - v intersect transversally whenever € is small enough. Then the
stable intersection is

ImTy - (T +€-v).

e—0

When the intersection is not transverse, the number of intersection points,
counted with multiplicity, in the preimage of a connected component of the
intersection of the tropicalizations is the sum of the multiplicities of the points of
the stable tropical intersection that lie in this component, see [32], Theorem 6.4.

Definition 2.11 (Bitangent). We say that a tropical line A is bitangent to a
tropicalized quartic Trop(C') in R? if A and Trop(C') intersect in either
e one connected component with total intersection multiplicity 4, or

e two connected components each with total intersection multiplicity 2.

In the first case, the intersection can be a point, or a segment of an edge of I'
containing a vertex, or three edges adjacent to the same vertex (in which case
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FIGURE 3. A local picture of a tropicalized quartic Trop(C') to-
gether with the tropicalization of the two tangency points of a
bitangent ¢ to C'. Here the line ¢ is a lift of a tropical line A whose
vertex coincides with the center vertex of Trop(C'). The intersection
of A and Trop(C') is a single connected component with tropical
intersection multiplicity 4. The tropical line does not appear in the
figure.

— if liftable, see Definition [2.12] — the two tangency points tropicalize to the
midpoints of the two segments we obtain by subtracting the shortest edge length
from the others; see Figure .

In the second case of Definition 2.11], the intersection can be a point, or a
segment of an edge of I' (in which case — if liftable, see Definition m — the
tangency point tropicalizes to the midpoint of the segment).

For a bitangent A to Trop(C'), we call a connected component of the intersection
AN Trop(C) a tropical tangency component.

It is often the case that a tropicalized quartic Trop(C) in R? admits infinitely
many tropical bitangents. A natural question to ask is: which of the infinitely
many tropical bitangent lines are tropicalizations of bitangent lines of C?7

Definition 2.12 (Lift of a bitangent). Let C' be a quartic defined over K. Let A
be a tropical line which is tropically bitangent to Trop(C'). A bitangent line L of
C'is called a [lift of A if Trop(L) = A. If such a lift exists, we say that A is liftable.
If in addition the lift is defined over K, we say that A is liftable over K.

We declare that two tropical bitangent lines are equivalent if we can move one
tropical line to the other (connecting their corresponding points in the tropical
dual plane) while maintaining bitangency, i.e., the equivalence classes are the
connected components of the locus of tropical bitangents in the tropical dual
plane. For tropicalized quartics, this is equivalent to saying that the tropical
bitangent lines correspond to the same theta characteristic in the tropical Jacobian
[2, Definition 3.8].

When studying tropical bitangents and their lifts, we restrict to generic tropi-
calized quartics (see Remark and [25], 3.3). This ensures that the tropicalized
quartic is smooth, that the tropical tangency components are not contained on
the same ray, and that when the intersection Trop(C') N A consists of a vertex and
three ray segments for a liftable tropical bitangent A, then the tropicalization of
tangency points are not on the vertex.
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Definition 2.13 (Bitangent class). A connected component of the set of tropical
bitangents lines to a tropicalized quartic Trop(C') in the tropical dual plane (see

Remark is called a bitangent class of Trop(C).

By [2], a smooth tropicalized quartic has precisely 7 bitangent classes. The
statement can be generalized for non-smooth tropicalized quartics, in which case
bitangent classes must be counted with a suitable multiplicity [24].

By [6], a bitangent class is a polyhedral complex. First, we equip it with the
coarsest polyhedral complex structure that is needed (for all the shapes in the
classification, such a coarsest polyhedral complex structure exists). By duality
(see Theorem , R? obtains a polyhedral complex structure with cells the
vertices and edges of Trop(C), and the connected components of R? \ Trop(C).
We use this to refine the polyhedral complex structure of a bitangent class:

Definition 2.14 (Shape of a bitangent class). The shape of a bitangent class is
the polyhedral complex structure obtained by refining the bitangent class with
the polyhedral complex structure of R? given by Trop(C') (where the containment
of a polyhedral cell in Trop(C') is encoded using colors in Figure {4f). We identify
the tropical dual plane with the original R? to make this refinement.

Shapes of bitangent classes are classified up to S3-symmetry in [6]; see especially
Figure 6 in loc. cit. There are 41 such shapes, denoted with letters (A), (B), ...
or double letters (EE) etc. For convenience of the reader, we reproduce this figure
here; see Figure [4

Definition 2.15 (Dual motif, [12]). Let Trop(C') be a smooth tropicalized quartic
and B one of its seven bitangent classes. Let A be a tropical bitangent in B. The
dual motif of the bitangent class B is the set of all triangles and edges in the
Newton subdivision whose dual vertices resp. edges intersect a bitangent in B.

For an example, see Figure [6] All tropical bitangents in the bitangent class
considered there share the same tropical tangency component on the lower right,
the intersection of the vertical segment. Dual to this edge, with its two end
vertices, are the two triangles on the right in the dual Newton subdivision. The
other tropical tangency component varies for the tropical bitangents in B. It is
either on an edge, or an end vertex of the same edge. Accordingly, we obtain
another pair of triangles on the left in the dual Newton subdivision for the dual
motif. If, as in Figure [6] all tropical bitangents in a bitangent class have two
disjoint tropical tangency components, we can divide the dual motif into two
parts, one for each tropical tangency component.

Ezample 2.16. Figure |5/ shows a tropicalized quartic and a tropical bitangent
line. The tropical line intersects the tropicalized quartic in two tropical tangency
components. For the right tropical tangency component, we have to use stable
intersection to check that it is a tangency. The tropicalization of a tangency point
for any lift is the midpoint of the segment of intersection. We can see that we
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FIGURE 4. Taken from [6]: Orbit representatives of all 41 shapes of
bitangent classes to I, grouped by the dimension of its maximal cells.
The numbers above each vertex indicate lifting multiplicities over
the complex numbers, whereas the red ones above edges indicate
slopes. The black cells of each bitangent class miss I', whereas the
red ones lie on it. The unfilled dots are vertices of T'.

can move the vertex of the tropical bitangent upwards or downwards, until we hit
vertices of the tropicalized quartic, maintaining the bitangency. The bitangent
class is therefore a line segment as depicted in Figure [0 As it is disjoint from
Trop(C), its shape is also just a segment. This is a shape of type (E) in the
classification of [6]. In [25], it is shown that, if C' is any algebraic quartic with
this tropicalization, exactly 2 of the 28 bitangent lines to C' tropicalize to the
tropical line with vertex the upper red point, exactly 2 to the one with vertex
the lower red point, and none to a point in the interior of the red segment (see
Theorem . Figure |§| also depicts the dual motifs for the two tropical tangency
components. Circled in red is the vertex dual to the connected component of R?
in which the bitangent class is contained.
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FIGURE 5. A tropicalized quartic, with its dual Newton subdivision,
and a tropical bitangent line. We can move the vertex of the tropical
bitangent upwards or downwards maintaining the bitangency.

5N |
2y

F1GURE 6. The bitangent class and dual motif of the tropical
bitangent to the tropicalized quartic depicted in Figure [f

Remark 2.17 (Genericity of tropicalized quartics). Compared to [25], we require
an additional genericity assumption on our tropicalized quartics: we subdivide
the cone in the secondary fan corresponding to the unimodular triangulation
according to the types of tropical bitangent classes that can occur and require
our tropicalized quartic to correspond to a point in the interior of a cone in this
subdivision. This subdivision of the secondary fan is computed in [I1]. Put
differently, we require the edge lengths of Trop(C') to be generic in the sense that
no unexpected alignment of vertices happens, see Figure [7] This picture shows
a local piece of a tropicalized quartic on the left. For a generic element in the
corresponding cone of the secondary fan, we expect the two lengths [; and 5 to
be different. If these lengths are equal, as depicted on the right, the two lower
vertices align.

We call a bitangent shape that occurs for such a generic tropicalized quartic a
generic bitangent shape.

The following statements concern lifts of tropical bitangent classes over C{{t}}

and R{{t}}.

Theorem 2.18 ([5, 25]). Fach bitangent class of a generic tropicalized quartic
has 4 lifts over C{{t}}. More precisely, there are either 4 tropical lines in the
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h

L =1

FIGURE 7. Local pictures of tropicalized quartics. An unexpected
alignment of two vertices is depicted on the right. For a generic
quartic, as shown on the left, the two lengths [; and [y are different.

bitangent class which each lifts once, or 2 which each lift twice, or 3 of which one
lifts twice, or 1 which lifts four times.

Theorem 2.19 ([6]). Each bitangent class of a generic tropicalized quartic has
either 0 or 4 lifts over R{{t}}, i.e. the possible obstruction for real lifting is the
same for all representatives of a given tropical bitangent class that have a complex

lift.

These results are based on the classification of shapes of bitangent classes in [6]
up to Sz-symmetry. When considering GW-multiplicities as in Section [, we fix
the line {z = 0} and do not have S3-symmetry for that reason, only Se-symmetry
for exchanging the variables x and y.

In Appendix [A.1] we classify tuples of shapes of generic bitangent classes
together with their dual motifs up to S;-symmetry exchanging x and y. The
classification is built on the classification in [6]. It restricts the cases studied
there to generic shapes, considers S;/Ss-orbits, and pairs up with dual motifs.
In Appendix we depict all dual motifs together with local pictures of the
tropicalized tangency points of the liftable tropical bitangents in the bitangent
class are given.

Ezxample 2.20. Consider the plane quartic C' = V(Q) for
Oz, y) =t + 1823y + 2222 + 152y + 5% + 1223 1 1522y + 152y
F 208 120 oy 122+ P+ 2y + 1
over the field of Puiseux series C{{t}}.
Its tropicalization Trop(C') together with the seven bitangent classes (in red) is
depicted in Figure [§] The liftable tropical bitangents are depicted as red dots. If

a bitangent class has four red dots, each lifts once, if it has two red dots, each
lifts twice and a single dot lifts to four bitangents.

3. LIFTING TROPICAL BITANGENTS AND TROPICAL POINTS OF TANGENCIES

3.1. Local lifting equations and their solutions. We review the local lifting
techniques for tropical bitangent lines to tropicalized plane quartics from [6] 25].
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FIGURE 8. A tropicalized quartic with its seven bitangent classes.

As before, we let C' = V(Q) be a quartic and denote the coefficients of the
defining polynomial ) by A;;. For a point p € Trop(C), let in,(Q) denote the
sum of the (dehomogenized) terms in(A;;)z’y’ € k[x,y] for which the maximum
max{— val(A;;) +ip, + jp,} is attained. We call it the initial form of Q at p. The
initial form can be be read off from the dual Newton subdivision: if p is contained
in the interior of a region of R?\ C, then the initial form is given precisely by the
term of () corresponding to this region. If p is in the interior of an edge, we use
all terms that correspond to points of the dual edge. If p is a vertex, we use all
terms that correspond to points of the dual polygon.

Definition 3.1 (Local equations for tropicalized tangency points). Let T be a
connected component of the intersection of Trop(C') with a tropical bitangent
A, and assume a lift of A is given by an equation of the form ¢ =y + M + Nz,
where M and N are unknowns. Let A(T') = [J,crsupp{in, @} be the union of
the supports of the initial forms of () for all p € T'. We let ()7 be the restriction
of @ to the terms appearing in A(T'), and call it the local equation for C at T.

Analogously, we let B(T') be the union of the supports of the initial forms of ¢
for all p € T, and fr, the restriction of ¢ to B(T'), the local equation of ¢.

We let Wy = ag—f . agﬁ — ‘C’?—T . %ﬁ be the local version of the Wronskian.
Y y I

Notice that vanishing of the Wronskian W = 88—2 . 3—5 — %—3 . % implies that the

gradients of V(Q) and V' (¢) coincide, i.e. that the line V' (¢) is tangent to V(Q) at
(2,9).

If p € T is the tropicalization of a tangency point, we solve the local lifting
equations

Qr(z,y) =0, lr(z,y) =0, Wr(x,y)=0.

If the tropical tangency component is just a point, 7' = {p}, then this amounts to
solving the equations of the initial forms of @), £ and W at p. If T" is a segment of
intersection involving two vertices of an edge E of Trop(C), then Q7 contains not
only the terms of the edge EV dual to E, but also the terms corresponding to the
vertices which form triangles with £V in the dual subdivision. If T" is a segment
containing one vertex V of Trop(C') and the vertex of A, then {7 = ¢ and Qr
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contains the terms corresponding to EY and the vertex of the triangle dual to V.
If T' consists of three segments joined at a vertex V', Q)1 contains the terms of the
triangle dual to V' plus the terms of its neighbouring triangles, and ¢ = /.

If T is more than just a point, the equations above are hard to solve. One uses
a technical trick which is called a tropical modification or tropical refinement to
produce solutions up to the order which appears as biggest valuation of the terms
involved. For a discussion on how to treat the case of a segment 7' containing two
vertices of Trop(C'), see [25] Proposition 3.7 and 3.9. For the case of a segment
containing the vertex of A, see Lemma 5.2, Case (3a) [6] and Proposition 3.12 in
[25]. For the case of three segments joined at a vertex, see Proposition 3.12 in
[25]. For general background on the technique of tropical modification, see e.g.
[4, 14, 29]. Once we solved in such a way for z,y up to terms of higher valuation,
it follows from the Henselian property (see also [§], Exercises 7.25, 7.26 and [14],
Chapter 2) that these solutions can uniquely be completed to an element in K.
For more details, see Section 2.3 in [25]. If the initials are in the residue field £,
then the complete solutions are in K.

FExample 3.2. We compute the initials of the four lifts of the bitangent class from
Example [2.16] Consider first the upper vertex. There are two lifts over the
algebraic closure which tropicalize to it. We denote the equations of those two lifts
by My + Nixz+y = 0 resp. My + Nox+ 1y = 0. Let p; be the left tropical tangency
component. In Trop(C), it is at the vertex dual to Agiy + Apzy? + Agna?®y?. In
the tropical bitangent line, it is in the horizontal ray, i.e. dual to M; + y. We
denote the initials of the A;; by a;; and analogously for the coefficients of the
line equations. Then the initials (z;,y;) of the lift of the left tropical tangency

component satisfy
aoyi + a2ty + anthyh =0,
m; +ya =0,
2'6122'%1'%21"‘@12'%'21 =0,
for i = 1,2. Solving for m;, x;; and y;; (for example by computing a Grobner

basis of the ideal defined by the three equations using a computer algebra system
such as SINGULAR [7] or OSCAR [30]) we obtain, for i = 1, 2,

m — 4 - apy - as L — ai2 y _4'ao1'a22
i T 5 il = — y Yl = ——5 -

The second tropical tangency component is the same for all liftable tropical
bitangents in this bitangent class (i.e. for the tropical line with vertex the upper
vertex of the red edge, and for the tropical line with vertex the lower vertex of
the red edge in Figure |§[) Therefore, we now first study the two lifts tropicalizing
to the lower vertex and their tropical tangency component on the left. It is at the
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vertex dual to Aoy + Ajxy + Axwa?y?. The three equations to solve are thus:
a1 + a11Ta Y + antihyh =0,
m; +ya = 0,
2 ag - xi- yh +an - ya =0,
for i = 3,4, and the solutions are
a3, 2 - agy a?,

4—7 Tyl = — ) yi1=4—-
*ap1 - A22 a11 * Aol - A22

m; = —

Let ps be the tangency point in the right tropical tangency component. This
tropical tangency component appears not only for the two lifts of the upper
vertex of the bitangent class, but also for the lower ones. That is, we can use the
corresponding local lifting equations to solve for one tropical tangency component
for each of the four lifts. The point p, is contained in a connected component of
the intersection Trop(C') and a tropical bitangent which consists of a bounded
edge of Trop(C'). Dual to the vertices of this bounded edge are two triangles of
the dual subdivision which meet along the edge joining (2,1) and (3,1). Therefore,
we must take as local equation

A21I2y + A31I3y + A30I3 + A22$2y2.

In the tropical line, the tropical tangency component ps is contained in the vertical
ray, thus the local equation to consider is m; +n;x for i = 1,...,4. As we saw
earlier, m; is determined by the left (upper or lower) tropical tangency component.
In the local equations, we now solve for the ratio %, which is then sufficient
to compute all coefficients of the lifts. It turns out that there are two solutions
whose initials coincide. In order to be able to differentiate the two solutions whose
initials coincide, we also list some contributions of higher valuation.

The solutions we obtain are
% _ Ag i 2A5 /_A30A21 n
N, As Asy ApAzy
A 2455 | AgpA
Xy = — 21:F 2 [ Asofn
Asy Asy AgpAszy
AspAg
Yio = 4/ — + ...
2TV Apay

for i =1,...,4. Here, we write the solutions not in terms of the initial a;; but in
terms of the whole coefficients A;;, to keep track of the contributions of higher
valuation.

Combining the results of the local lifting equations, we can now list the initials
of the coefficient of the bitangent equation and the tangency point for all four
lifts:

R
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’ ¢ H m; n; \ i1 \ Yi1 \ Ti2 \ Yi2 ‘
1 __4-ap1-a22 | __4-ap1-a22-a31 | _ _ai2 4-ap1-a22 | _ a21 __a3pa21
a3, a?y-az1 2-az2 a?, as1 az2a31
9 _4-ao1ra22 | _ 4-ag1-a22-a31 | _ai2 d-agiraze | _a21 | _ /__a3soaz1
a?, a3y a21 2-a22 a?, asi G22a31
3 — a3, _ af;-as1 _ 2am ai, __ a1 __aspa21
4-ap1-a22 4-ap1-a22-a21 ail 4-ap1-a22 asi a22a31
2 2 2
4 a1y __ ana3 _ 2-ap1 aiq _ a2 | _  /_ aspa21
4-a01-a22 4-a01-a22-a21 a1l 4-ap1-a22 as1 a22a31

As in the example above, these local lifting equations can be solved for any case
appearing in the combinatorial classification in Appendix and the solutions
are always given by Laurent terms in the initials a;; of the coefficients of @), or by
square roots thereof.

The consequence for lifting can be summed up as follows:

Theorem 3.3. Let C = V(Q) be a quartic curve defined over K with Trop(C')
a generic tropicalized quartic and suppose A is a liftable tropical bitangent to C.
Then whether or not A lifts over K is determined by Trop(C) and the equivalence
classes of initials of the coefficients of Q in k™ /(k*)2.

The proof follows along the same lines as in the complex and real case. we go
through the classification in Appendix and solve the local lifting equations,
no over the ground field K.

3.2. Lifting conditions and twisted edges. It follows from the classification of
bitangent shapes in [6] and their lifting multiplicities that some bitangent shapes
lift over any field (this holds for tropical bitangent lines with lifting multiplicity
one, the rough argument being that a uniquely solvable system of linear equations
over a field & also has its solution over k). Obstructions to lifting arise due to higher
lifting multiplicities. In the following, we study tropical tangency components
which produce a factor leading to such higher lifting multiplicities. Roughly, such
factors arise whenever a tropical tangency component is locally fixed, i.e. we cannot
vary the local part of the tropical bitangent without destroying the tangency. This
is the case for segments of intersections, or for intersections involving the vertex
of the tropical bitangent line.

In the case of a tropical tangency component on a segment of intersection,
the potential obstruction for lifting can be phrased in terms of twisted edges or
relatively twisted edges. By going through the cases in Appendix [A 1] it turns
out that the cases for lifting we study here cover all bitangent shapes except (C),
for which lifting is more involved. For our purpose of understanding arithmetic
multiplicities in Section , precise lifting conditions for (C) are not needed and
we therefore do not consider these details here.

We start by stating the lifting solutions, which can be determined with the
methods described in Section [3.1] In the following, we denote the vertex of the
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dual subdivision corresponding to the term A;;z'y’ in (the dehomogenized version
of) @ by Vj;.

Lemma 3.4. Assume the tropical line A intersects the tropicalized quartic Trop(C')
in two connected components of which one is a segment of a horizontal edge dual
to an edge connecting Vi, and Vy.1. This edge forms triangles with two points Vi,
and Vjo. Then there are two lifts for the coefficient M of a line V(M + Nz + y)
and for the tangency points (x,y) tropicalizing to this segment.

If the vertex of A is not contained in the segment, we have

i+ (1) AL
A Ay :i:2\/(—1)i+jAOiA2j(All) (1) TSR

1+1 A Alu
Ay » Ay " (DALY
— 2 —1 7’+*7A ZA y et
Y Ara i \/( )T Aoy (A11+1 Ay i

A, ( Ay )
€T = :i: —1 =] — + ey
\/( ) Agj \ A1

where we assume that the lift of A has the equation y + M + Nx. Here, the dots
stand for terms of higher valuation.
If the vertex of A is contained in the segment, we have

Ay | < Ay >"+’<—1>’A3711
M = + 24 [ (=1) 1 Ag; Ay N u
All+1 \/( ) 0 et All+1 Alll
Ay | Ay (=D)AL
= T 24/ (—1)iFH+1 A, A N( +...,
Y All+1 \/( ) 0 e All+1 Alll

| Ao; ( Ay )l
T =44/ (=1)+1 4+ ...
\/( ) AN \ A

This follows from a computation using the local lifting equations, see also
Proposition 5.2 in [6].

In the following, for a vertex r in the dual Newton subdivision of ), we let a,
be the initial of the corresponding coefficient A, of Q.

Definition 3.5 (Twisted edge). Let C' be a curve defined over K with smooth
tropicalization Trop(C'). Let e be a bounded edge in Trop(C') so that the dual
subdivision corresponding to e is the segment joined by lattice points ¢, ¢’ € Z?
and the two triangles of the subdivision intersecting along this segment have
vertices 1,1’ € Z*. We say that the edge e is twisted over k if

\/(_ 1)6(6)(17“@1“’ (aqaq’)é(e) ¢k,
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AN

FIGURE 9. The dual subdivision to a bounded edge e and its
endpoints in a tropicalized curve, first in the case when d(e) = 0 on
the left, and then when d(e) = 1 on the right.

where d(e) =0 if r =7" mod 2 and d(e) =1 if r #r’ mod 2.

Ezample 3.6. To see the two possible cases for d(e) consider the lattice polytopes
in Figure[9] Notice that on the left hand side the coordinates of the vertices of the
two triangles opposite the overlapping edge e have vector difference (0,0) modulo
2. Therefore, the points r and r’ are equal modulo 2 and d(e) = 0. On the right
hand side the vector difference of the coordinates of the two vertices has difference
(1,1) modulo 2. Therefore we have d(e) = 1 in this case.

FExample 3.7. The motivation for the terminology of twisting comes from consid-
ering amoebas of curves defined over the real numbers. Throughout this example,
let £ = R and K = R{{t}}. Let C be a curve defined over K with smooth
tropicalization Trop(C') = T'. Suppose that the defining polynomial @ of C has
convergent coefficients for ¢ sufficiently small. Then we can consider the family
of real curves C} defined by the family of polynomials (); for ¢ sufficiently small.
The tropical curve I' is also obtained as the limit as s tends to infinity of amoebas
of the family of curves Cs defined by the family of polynomials Q)s, where s = t=1.
The amoeba of a curve Cj is defined to be A, := Log,(Cs), where Log, denotes the
coordinatewise base s logarithm of absolute values, see [3 Section 2]. Moreover, for
s sufficiently large, the real amoeba RA; := Log (RCj5) either crosses a bounded
edge e of I or it does not, see Figure . Following [3], Section 3], call the edge e
twisted about the edge e if the amoeba crosses it.

The twisting of the edges of I' are determined solely by the signs of the leading
terms of the coefficients of the defining polynomial of C' as described in [3| Remark
3.9]. Again let ¢,¢' and 7,7’ denote the lattice points dual to the edge e as in
Definition . Letting v4,74,7 and ~,» denote the signs of the leading terms of
the corresponding coefficients, then

(1) if r and " are distinct modulo 2 then e is twisted if and only if v, v,y >

0;

(2) if r and r" are equal modulo 2 then e is twisted if and only if 7,7, < 0.
This is equivalent to our notion of twist in Definition [3.5) when £ = R. See Figure
9] for two examples of dual subdivisions exhibiting both cases in terms of r and 7/
above.

Using our local lifting solutions, obstructions to lifting can be phrased in terms
of the twisting of an edge:
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N N
N

FiGURE 10. An illustration of the non-twisting and twisting of the
real amoeba (in red) from Example [3.7]

Proposition 3.8. Let C' be a curve defined over K such that Trop(C) is a smooth
tropicalized curve. Let A be a tropical line and suppose a bounded edge e of Trop(C')
is a tropical tangency component of A N Trop(C) strictly contained in a ray of A.
If L=V ({) is a lift of A which is tangent to C' at a point tropicalizing to e then
the local equation (. s defined over K if and only if e is not twisted over k.

Proof. The statement follows by applying Lemma (3.4} O

We now want to consider the situation when Trop(C) and A have a tropical
tangency component 7" which is a segment strictly contained in an edge e of
Trop(C), i.e. the vertex of A is contained in the segment of intersection, see Figure
, This happens e.g. for the shape (D) we discuss in the proof of Theorem m
Let s, s’ be the lattice points dual to the edge of A containing T" and ¢, ¢’ be the
lattice points dual to e in C'. Moreover we choose the labels such that s and ¢
correspond to the region of R? \ C resp. R?\ A on the same side of e, and s’ and
¢’ correspond to the region on the other side of e. As before, for a vertex r in
the dual Newton subdivision of (), we let a, be the initial of the corresponding
coefficient A, of ). Similarly, for a vertex s of the triangle dual to A, we let b,
denote the coefficient of the defining equation of a lift L of A. By Lemma
(where the coefficient M of the line can be expressed as Zf—, in the present notation,
as the y-coefficient there was 1), in order for a lift L of A'to have a tangency point
P with C' which tropicalizes to T" we must have

by aq

(1) by

Definition 3.9 (Relatively twisted edge). Let Trop(C') be smooth, and let A be
a tropical line which has a tropical tangency component 7" which is a segment
strictly contained in an edge e of Trop(C'). Assume e is dual to the edge g¢’ and
A meets the vertex of e which is dual to the triangle spanned by ¢¢’ and r. Let
aq, aq , ar denote the corresponding initials. We use the analogous indices for the
initials of the coefficients of the polynomial defining L, i.e. by and by are the

aq/



O J o U W

AN TTUIUTUITUTUTUTUTOTOTE BB DD B DDASEDNWWWWWWWWWWNNNNNNONNNONNNNR R RRR PR PP
O™ WNFROWOJdNT D WNRPOW®O-JIAAUTDRWNR,OW®OW-JdNTIBRWNRFROWO®OW-JNU ™ WNROWOW-10U & WN R O WO

BITANGENTS TO PLANE QUARTICS VIA TROPICAL GEOMETRY 23
€9
€1
€y
€9

F1GURE 11. The picture shows the real amoebas of the two curves,
the one of the line in red and (locally) of the quartic in blue.
The segment in the overlap of I' and A is relatively twisted if the
two branches of the two amoebas which are on the same side of
the tropicalized curve I' are the image under the coordinatewise
logarithm map of pieces of the real algebraic curves which live in
the same orthants of R2.

initials of the monomials of the endpoints of the edge in the dual subdivision to
the ray of A which contains e, and b,+ is the initial of the remaining coefficient of
the defining polynomial of L.

We say that the edge e is relatively twisted over k with respect to C' and L if

bs
= M and /(1D g, (g0, )0 Dbagb, € k.
s/ aq/

where d(e, L) = 0 if the edge in the dual subdivision with endpoints a,,a, is
parallel modulo 2 to the edge in the dual subdivision with endpoints b,/, bs, and
otherwise d(e, L) = 1.

Notice that the first condition é’—sl = S—q/ implies that the second condition is

equivalent to

\/(—1)5(&@“&,,(aqaq/)‘s(evL)br/aq/bs/ €k.

Also notice that by the balancing condition for tropical curves, the term
d(e, L) in the above definition can be equivalently be computed by comparing the
directions mod 2 of the edges with endpoints r, ¢ and »/, s'.

Example 3.10. Once again the above definition of relative twists is motivated
by the geometric picture over the real numbers, as was explained in the case of
twisted edges in Example [3.7 When considering real tropical intersections of
curves, Le Texier defines the notion of relative twists [23]. As in Example
consider the real amoebas of both the family of lines and the family of curves,
as drawn in Figure [II] The coordinatewise logarithm map is the composition of
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the absolute value map and the logarithm map log, R.o — R. Therefore, each
branch of the amoeba of a real curve can be labelled by the orthant of (R™)? from
which it came. In Figure [T} the branches of the amoebas of the family C along
the edge e are labelled £{,e§ € {+, —1}2, and the branches of the amoebas of the
family L along the edge e are labelled e¥ el € {+, —}2. The condition that

b _ag
bs/ aq/

amounts to the equality of the sets

{78} = {et a2}
In the real case, the edge e being relatively twisted with respect to C' and L
amounts to e = el and €5 = eI, where €{ and el are signs of the branches the
amoebas of C' and L respectively, which are on opposite sides of the bounded
edge e. See Figure [11] for the labelling and [23, Proposition 4.13] for a proof of
this statement.

In order for C' and L to have a real tangency point tropicalizing to the segment,
the edge e must be relatively twisted, see [23, Theorem 1.4]. Otherwise there
would be two real points in the intersection. Notice that this condition is opposite
to the case when the tropical tangency component is an entire edge. In that case,
in order to have a real tangency we required the edge to be non-twisted.

Proposition 3.11. Let C be a curve defined over K such that Trop(C) is a
smooth tropicalized curve. Let A be a tropical line and suppose the segment T is
a tropical tangency component of A N Trop(C) strictly contained in an edge of
A and of Trop(C). Then a lift L = V(£) of A which is tangent to C at a point
tropicalizing to T' has local equation {1 defined over K if and only if the edge T is
relatively twisted over k.

Proof. The statement once again follows from Lemma [3.4] O

A condition similar to twisting can be given also for another type of tangency,
as follows.

Proposition 3.12. Let C be a curve defined over K such that Trop(C) is a
smooth tropicalized curve. Let A be a tropical line and suppose p is an isolated
point of A N Trop(C) which is a vertex p of A with intersection multiplicity 2.
Then a lift L of A tangent to C' at a point tropicalizing to p is defined over K if

and only if b, by € k and
v/ —a,ab by € k’,

where r,s € Z* are the lattice endpoints of the edge dual to the edge E of Trop(C)
and 1',s'" € Z* are lattice endpoints dual to the unique edge of A which has
intersection multiplicity 2 with E.
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Proof. Let @), and ¢, denote the local equations for the curve C' and a lift of the
tropical line A at p, respectively. Then @, is the binomial A,z y™ + Az y*?
and ¢, = ( is a trinomial. We denote the coefficients of the linear form ¢ by
By, B,/, By.

If A and C have intersection multiplicity 2 at the vertex p and 1/, s’ € Z? are
lattice endpoints dual to the unique edge of A which has intersection multiplicity 2
with E, then the direction of F is determined. For example, if 7 = (0,0) and ¢’ =
(1,0) then the direction of F must be (2,1) and hence Q, = A,z y"2+ Az ym2—2
and set ¢ = B,y + Byx + B,s. Solving this system of two equations in the torus
reduces to the degree two equation in y given by

AsBy AsBy

By ' B,
In order to have a tangency tropicalizing to p we require the discriminant of this
equation to be equal to zero, so that A?B2 + 4A,A,B, By = 0. Passing to the

initials this implies that by = £ % Thus we have by € k if and only if

T

Ary2 - 0.

—ayash by € k and the statement is proven. The other two cases for 7’ and s
are solved analogously. 0J

By going through the cases in Appendix [A 1] one can see that Propositions [3.8]
[3.17] and [3.12] cover all necessary lifting conditions of generic bitangent shapes
except for shape (C). Shape (C) is more involved (see also Proposition 6.4 in [0]
for the case of real lifting), and we leave it out here.

3.3. Comparing lifting for different fields. In this subsection, we sum up the
results about lifting of tropical bitangents, and use our study of lifting to compare
lifting over different fields.

Proposition 3.13. Let C' = V(Q) be a quartic defined over K with generic
tropicalization Trop(C) and A a tropical bitangent, and assume that the residue
characteristic of K is not 2 or 3. Then the initials of the coefficients of the defining
equation £ of a lift L =V (£) of A, viewed in the algebraic closure of k, are Laurent
terms in the initials a;; of the coefficients of @ or square roots thereof.

If A is not contained in a bitangent class of shape (II) in the classification in
[6], the coefficients of these Laurent terms are of the form £2™ for some m € 7.

For some of the liftable tropical bitangents of a class of shape (II), the coefficients

involve /2 and /3.

Proof. This is a generalization of Theorem 1.2 in [6]. As the proof of this theorem,
the result follows from a case-by-case analysis involving the classification of shapes
of bitangent classes from [6], see also Appendix [A.1] Unlike in Theorem 1.2
[6], which focused on the case of lifting over R, we have to pay attention to
the coefficients of the solutions of our local lifting equations in order to decide
liftability over K. U
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If we check all 4 local lifting computations for a tropical bitangent class, we
observe that the obstruction for lifting to K is the same for all 4, i.e. the radicands
which appear are all equal up to square (see e.g. Example |3.2)). Thus we can
conclude:

Theorem 3.14. Assume the residue characteristic of K is not 2 or 3. Given
a generic tropicalization Trop(C') of a quartic C' =V (Q) defined over K, and a
bitangent class S of Trop(C'), then either all four lifts of S are defined over K or
none of them are.

As noted above, the obstructions for lifting are equal not only for the coefficients
of the equations of the bitangent lines, but also for the tangency points. Taking
the special behaviour of shape (II) into account (see Proposition [3.13]), we can
deduce:

Corollary 3.15. Assume /2,3 exist in k. Given a generic tropicalization
Trop(C) of a quartic C = V(Q) defined over K, and a bitangent class S of
Trop(C') such that the equations of all four lifts are defined over K. Then the
tangency points are also all defined over K.

To compare lifting over different fields K; and K, with residue fields k; and
ko respectively, we first suppose there exists an isomorphism ¢ : k;/(k;)? —
k> /(kx)?. For an element a € k*, let @ denote its class in k*/(k*)%. As a main
example, consider the case when k is the real numbers or any finite field. Then

k) (k) = Z)2,

and an isomorphism k* /(k*)? — Z/27Z is given by the Legendre symbol. For a
finite field k& we let (%) denote the Legendre symbol of a € k*. Concretely, we
have

_ (a) {—i—l if 22 = a has a solution in k
a = =
k

—1 if 2 = @ has no solution in k

If we take £ = R then the Legendre symbol is simply remembering whether a € £*
is positive or negative. For two fields ky, ks with isomorphisms & /(k))* — Z/2Z,
there is a unique isomorphism ¢ : &k /(k)? — k5 / (k)2

Using Theorem [3.3| we can relate the lifts over different fields when &k /(k;)?
and k) /(ky)? are isomorphic.

Theorem 3.16. Let K1 and K be fields with residue fields ki and ks, respectively.
Suppose there exists an isomorphism of groups ¢ : ki /(k{)? — kS /(k5)?* such
that p(—1) = —1.

Fori = 1,2, let C; = V(Q;) be a quartic curve defined over K; such that
Trop(C;) is generic. Let Q1 = Y Aja'y? 277 and Q2 = Y Bya'y’2* "7, We
assume val(By;) = val(A;j), in particular Trop(Cy) = Trop(Cs), and ¢(a;;) = bij
for all i, 7, where a;j,b;; are the initials of A;; and B,j, respectively.
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Then a tropical bitangent A to the tropicalized quartic Trop(Cy) lifts to a
bitangent of Cy over Ky if and only if A lifts to a bitangent of Cy defined over K.

This follows from Theorem [3.3

The following corollary deals with the special case of comparing lifting over
a finite field k with the real numbers. Here we can make use of the Legendre
symbols. This is particularly useful, because lifting over the real numbers can be

checked computationally using the POLYMAKE-extension of Geiger and Panizzut
[10], 111, 12].

Corollary 3.17. Let the residue field k be finite and of characteristic p with p = 3
mod 4 and order p*+!.

Let C = V(Q) be a quartic curve defined over K with Q = > Ajz'y’. Then
a tropical bitangent A to the tropicalized curve Trop(C') lifts to a bitangent over
K if and only if L lifts to a bitangent of C' =V (Q') defined over R{{t}}, where
Q' =" Bjx'y’ and By; € R{{t}} are such that val(B;;) = val(A;;) and

(1) (%)

This follows from Theorem by inserting Ky = R{{t}}.

4. THE GROTHENDIECK-WITT RING AND A!-ENUMERATIVE INVARIANTS

Inspired by and building upon a broader program using A!'-homotopy theory
to introduce arithmetic refinements to enumerative geometry via quadratic forms
[13), 18, 19, 26], Larson and Vogt considered an arithmetic count of bitangents for
smooth plane quartics with values in the Grothendieck-Witt ring of the ground
field [22]. One of our main goals is to demonstrate, using the arithmetic count
of bitangents as an illustrative test case, how tropical methods can be useful for
computing such arithmetic counts.

4.1. The Grothendieck-Witt ring. We now recall the definition and basic
properties of the Grothendieck-Witt rings in which these arithmetic counts take
their values. See [2I] for a beautiful and comprehensive expository treatment,
which includes the proofs that we omit. In this section, K denotes a field of
characteristic not equal to two.

A quadratic space is a finite-dimensional K-vector space V equipped with a
symmetric bilinear form ¢: V x V' — K. Two quadratic spaces (V,q) and (V’,¢)
are isomorphic if there is an isomorphism of k-vector spaces ¢: V' — V' such that
q(v,w) = ¢ ((v), p(w)) for all v, win V.

Definition 4.1. For a € K*, we write (a) for the 1-dimensional quadratic space
(k,q) with ¢(x,y) = axy. The hyperbolic plane is H = (1) & (—1).
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Lemma 4.2. For any a € K*, the quadratic space (a) & (—a) is isomorphic
to H, as is the quadratic space K? with quadratic form ((xl,xg), (yl,yg)) —
ari1yYs + arayy.

For a proof, see e.g. Corollary 16 in [21].

Isomorphism classes of quadratic spaces naturally form a semiring with addition
and multiplication given by orthogonal direct sum and tensor product, respectively.
A theorem of Witt shows that this addition is cancellative, i.e., if V., W, and
W' are quadratic spaces such that V' @ W is isomorphic to V @& W’ then W is
isomorphic to W’. As a consequence, this semiring injects into its associated ring
of formal differences.

Definition 4.3. The Grothendieck-Witt ring GW(K) is the ring of formal differ-
ences of isomorphism classes of quadratic spaces over K.

In other words, elements of GW(K) are formal differences V' — W, where V' and
W are isomorphism classes of quadratic spaces.

Definition 4.4. The degree map deg: GW (k) — Z takes a quadratic space V' to
its dimension as a K-vector space.

For instance, deg(a) = 1 and degH = 2. Note that deg is a map of rings. All of
the GW(K)-valued arithmetic counts that we consider specialize to the classical
integer valued enumerative invariants when composed with the degree map.

Lemma 4.5. As an additive group, GW(K) is generated by {(a) : a € K*}, with
relations generated by

(1) (a) = (ab®) for all a, b in K*, and

(2) (a) + (b) = (a+b) + (ab(a + b)), for all a, b in K* such that a + b # 0.

When no confusion seems possible, we write (a), H, and so on, not only for a
given quadratic space, but also for its class in GW(K).

We will frequently consider how Grothendieck-Witt rings behave with respect
to finite field extensions. Suppose K’/K is a finite extension. Then any finite
dimensional K’-vector space V' is also a finite-dimensional as a K-vector space,
and we write Vi to denote V', viewed as a K-vector space. If (V| q) is a quadratic
space over K', then (Vi, Trg/k oq) is a quadratic space over K. One writes

TI‘K/|KZ GW(K/) — GW(K)

for the induced map of Grothendieck-Witt rings. Note that Trg/x multiplies
degrees by a factor of [K': K], since dimg Vi = [K': K] dimg: V.

Example 4.6. Let K'/K be a field extension of degree 2, and let a € (K')*. We
now explain how to compute Trxx(a) € GW(K). Suppose K’ = K(f3), and
b= % Use {1,3} as a K-basis for K’, and write

a=r+sp.
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Then the bilinear form on Trx/x (a) may be expressed by the symmetric matrix
2r  2bs
2bs 2br )
If r = 0, then Trg/x(a) = H, by Lemma . If » # 0, then we can diagonalize
the symmetric matrix to get Trg/x(a) = (2r) @ (2br(r? — bs?)).
A case of particular interest is when K = R and b = —1. Then 7% — bs? is

positive and hence is a square, so the above quadratic space is isomorphic to
(2r) ® (—2r) =2 H. Thus, for any a € C*, we have Trer(a) = H.

4.2. Grothendieck-Witt rings over valued fields. We now return to the
case where K is a Henselian valued field with residue field k. We assume the
characteristic of k is not 2 and fix a section of the valuation o: val(K*) — K*.
The initial of an element a € K*, denoted in(a), is the image of o(—val(a)) - a

in £*. We also make the simplifying assumption that the value group of K is
2-divisible, cf. Remark [1.6]

Theorem 4.7. Let K be a Henselian valued field of residue characteristic not
equal to 2, with 2-diwvisible value group, and with a section of the valuation.
There is an isomorphism of Grothendieck-Witt rings

g: GW(K) = GW(k), (A) — (in(A)).
Moreover, this isomorphism is independent of the section o.

Proof. We first show that g is well-defined, i.e., that (A) — (in(A)) respects the
relations (1) and (2) from Lemma [4.5] Let a = in(A) and b = in(B). For (1),
we have (in(AB?)) = (ab?). For (2), we consider a few subcases. First, suppose
val(A) # val(B). Without loss of generality we may assume val(A) < val(B).
Then in({(A)+ (B)) = (a) + (b), while in(A+ B) = (a) and in{AB(A+ B)) = (a?b).
Using [4.5(1), we see that g((A + B) + (AB(A + B))) = (a) + (a®b) = {(a) + (b),
as required. If val(A) = val(B) but a + b # 0, then (2) is clear. It remains to
consider the case where val(A) = val(B) and a +b = 0. Let ¢ = in(A+ B). Then
g((A+ B)) = (c) and g((AB(A + B))) = {abc) = (—a*c), which is equal to (—c)
in GW(k), again by [1.5(1). Finally, g((A) + (B)) = (a) + (—a) = (¢) + (—¢), by
Lemma [£.2] This proves that ¢ is well-defined.

It is evident that g respects addition and multiplication, so it is a ring map.
We now construct its inverse. For each a € k*, choose some A € R with residue
a. We claim that (a) — (A) gives a well-defined map GW (k) — GW(K). Indeed,
if A and A" are two lifts of a, then A/A’ has valuation 0 and initial 1. Since the
characteristic of k is not 2 and K is Henselian, it follows that A/A’ is a square
and hence (A) = (A’). Moreover, since o is a section and val(K*) is 2-divisible, ¢"
has a square root for every v € val(K ™). Thus GW(K) is generated by quadratic
spaces (A) such that val(A) = 0, and hence the map so defined surjects onto
GW/(K) and gives an inverse to g, as required.
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Finally, again using the fact that val(K*) is 2-divisible, the image of the section
o is contained in the multiplicative subgroup of squares. Thus, if we choose a
different section, the resulting initials of any a € K* will differ by a square and
hence the isomorphism GW(K) — GW(k) is independent of this choice. O

4.3. The Qtype of a bitangent to a quartic. A line L in P2 is a closed point
of (P2)V. Let K, denote the field of definition of L. So K /K is a finite extension
and L corresponds to a Galois orbit of geometric lines defined over the finite
extension K /K. Suppose L is a bitangent to our plane quartic C'. We assume
furthermore that the intersection L N C' is disjoint from the line at infinity L
given in homogeneous coordinates by z = 0. The GW -multiplicity of the bitangent
L with respect to the fixed reference line L is an element of degree K}, : K] in
GW(K) that is defined as follows.

Let A? = P?\ L. Let Q(x,y) be a (non-homogeneous) quartic polynomial
that vanishes on the affine plane quartic C' N A2, and let 9;, denote the derivation
with respect to a linear form (defined over Kp) that vanishes on L. Note that
both Q(z,y) and J;, are defined only up to nonzero scalars (in K* and K[,
respectively).

Definition 4.8. Let P,, P, € C(K) be the points where L is tangent to C. Then
the Qtype of L with respect to L. is

(2) Qtyper, (L) := (00Q(P) - 0.Q(P,)) € GW(KL),
and the GW -multiplicity of L is

multgw (L) := Trg, |k (Qtype, (L)) € GW(K).

To see that Qtype,_ (L) is well-defined, first suppose P, and P, are rational over
K. Note that rescaling @ or d;, by a nonzero factor a multiplies 9, Q(P;)-0,Q(Fz)
by a*. Then since (a?b) = (b), the Qtype,_ of L is well-defined.

Otherwise, if P; and P, are not rational over K then they are rational over
some quadratic extension K /K. In this case 0, Q(P;) is conjugate to dQ(P),
and so 0,Q(Py) - 0LQ(P,) is in K. Once again, rescaling () or L changes
0LQ(Pr) - 0LQ(P2) by a square, and so Qtype; (L) is well-defined in GW (K7,).

Ezample 4.9. When K = R, the Qtype;_ has a natural topological interpretation,
as explained by Larson and Vogt, see page 3 in [22]. Suppose a bitangent is
defined over R. If each of the bitangency points of L is defined over R, then near
these two points in the affine plane A%(IR), the real locus of C' is either on the
same side of the bitangent line, in which case the Qtype;_ is (1), or on different
sides, in which case the Qtype;_ is (—1). See Figure When these points are
not defined over R, the Qtype;_ is (1). If the bitangent line is not defined over
R then the Qtype;_ of L is (1) € GW(C) and multqw(L) = (1) + (—=1) = H by
Example [4.6]
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(1) (1)
FIGURE 12. Geometric characterization of Qtype;_ for the reals.

Ezample 4.10. Suppose K = R (or R{{t}}). If L is a bitangent line that is not
rational over K, (i.e., if L is the point of (P%)Y corresponding to a pair of complex
conjugate lines) then, by Example , we have multqw (L) = H.

4.4. The GW-multiplicity of a tropical bitangent class. In the following,
we study GW-multiplicities for the four liftable members of a tropical bitangent
class.

We start, in the following Lemma, with picking a vector for the computation of
0L Q(P) for a bitangent line L. It turns out that our choice is particularly useful
for the tropical degeneration.

Lemma 4.11. Let L =V (y+ M + Nx) be a bitangent to a quartic curve defined

by Q, and let P be a point of tangency. Then O Q(P) = (a% + L 2)Q(P).

Proof. Up to rescaling, the direction vector of the line L is (—1, N). To compute 0y,
we can take any vector which is not parallel to the direction vector and multiply

it with the gradient. If (4,1) was parallel to (=1, N), then —x - (=1, N) =

(%,—1) = (%,1) and thus —1 = 1, which is not the case as we are not in
characteristic 2. O

Remark 4.12. In the following theorem, we make use of our choice of gradient
and express GW-multiplicity in terms of derivatives of initial forms, which can be
determined using the tropicalization of the quartic.

Using the classification in Appendix[A.T] one can show that any such derivative
of an initial form that can appear equals, after inserting initials of the tangency
point, a Laurent monomial in the initials of the coefficients of the quartic times
possibly a square root thereof.

Theorem 4.13. Assume the bitangent L is given by the equation M + NX +Y
with M, N € K, and let m,n denote their initials. If the tropicalization p of a
tangency point P is contained in the interior of the horizontal ray of Trop(L),
then

. 0 . .
in(3,Q(P) = 2. iny(@)(in(P).
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If it is contained in the interior of the vertical ray of Trop(L), then

n(@LQ(P)) = 2 in,(@)(n(P).

If it is contained in the interior of the diagonal ray or at the vertex, then

' g 1 0., :
n(9Q(P)) = (5 + - gz 1w (@Q)(in(P)).

In particular, the GW-multiplicity (OQ(Py) - OLQ(FP2)) can be expressed in
terms of derivatives of initial forms.

Proof. Without restriction, we can assume p = (0,0) and @ only contains terms
whose coefficients have valuation 0 or higher. The terms of valuation 0 are then
precisely the terms contributing to in,(Q).

By Lemma , ILQ(P) = <a% + & - 2)Q(P). The initial equals

3 w@(P) =in (5 + 5 50)@P) =in (AP + 1 -0(P)).

If the two summands above are of the same valuation, then cancellation could
happen, which would be an obstruction to expressing in(d,Q(P)) in terms of
derivatives of initial forms.

Assume cancellation happens, then

in <8%Q(P)> _ 1 'n( Q(P)).

i
n

But the Wronskian W = N - £2Q(P) — 2Q(P) = 0 vanishes, and thus also its
y z

initial vanishes, so n - in(a%Q(P)) = in(£Q(P)). We substitute n - in(a%Q(P)) for
in(ZQ(P)) in the above equation, obtaining in(a%Q(P)) = —in(a%Q(P)) from

which we deduce 1 = —1 which is a contradiction as we are not in characteristic 2.
Thus no cancellation happens.
There are three cases to distinguish:

9
ox
)

e Assume p is on the horizontal ray. Then the vertex of Trop(L) is at (a,0)
for some a > 0. The valuation of N is a, the valuation of M is zero.
Consider the Wronskian W = N - (%Q(P) 9 Q(P) = 0. Consequently,

oz

in(N - 8% (P) — 2Q(P)) = 0. But the summand N - a%Q(P) has terms
of valuation a or higher, and the summand -2 Q(P) has terms of valuation
0 or higher. Cancellation can thus only appear if %Q(P) vanishes up to
valuation a.

Thus both summands in the above equation for in(0,Q(P)) have
expected valuation 0.

From the computations for GW-multiplicities we perform in Appen-

dix |A.2| and |A.3| (see Remark [4.12)), we conclude that in(a%Q(P)) =




O J o U W

AN TTUIUTUITUTUTUTUTOTOTE BB DD B DDASEDNWWWWWWWWWWNNNNNNONNNONNNNR R RRR PR PP
O™ WNFROWOJdNT D WNRPOW®O-JIAAUTDRWNR,OW®OW-JdNTIBRWNRFROWO®OW-JNU ™ WNROWOW-10U & WN R O WO

BITANGENTS TO PLANE QUARTICS VIA TROPICAL GEOMETRY 33
8%(imp(Q)(in(P)) # 0 and thus this summand is of the expected valu-
ation. The equality in(a%Q(P)) = gy (in,(@)(in(P)) holds since for a
polynomial F(z,y) and a point P = (P,, P,) that we insert, we have
in(F'(P,, Py)) = ing, p,)(F)(in(P)), where (p,,p,) contains the valuations,
if no cancellation happens in the initial form when inserting in(P). Fur-

thermore we have inp(a%Q) By 9 (in,(Q)). This is true since the p-weight
of a term of @) equals the p + p,-weight of a term of (%Q.

Thus val(N - a%Q(P)) = a and since there is cancellation in the Wron-
skian, also val(:ZQ(P)) = a. Furthermore, since there is cancellation in
W, nin(£Q(P)) = in( 2Q(P)).

Inserting this into the above equation , we obtain

m(@Q(P) = in (-.Q(P) +in (5 (7))
—in 2Q(P) + 5 2Q(P)
dy n ox
=in 2Q(P) —l—l-nm QQ(P)
dy n y
—in (5-Q(P) +in (5Q(P)
= 2in (%Q(P)> = Qaay(lnp(Q»(ln(P))

Assume p is on the vertical ray. Then the vertex of Trop(L) is at (0, a)
for some @ > 0. The valuation of N and M is —a.
Consider the Wronskian W = N - %Q(P) — 2Q(P) = 0. Consequently,

in(N - 8%Q(P) —2Q(P)) = 0. But the summand N - (%Q(P) has terms of
valuation —a or higher, and the summand -2 Q(P) has terms of valuation
0 or higher. Cancellation can thus only appear if %Q(P) vanishes up to
valuation a.

Thus both summands in the above equation for in(9,Q(P . ) have
expected valuation 0.

From the computations for GW-multiplicities we perform in Appen-

dix [A.2 and [A.3 - (see Remark |4.12), we conclude that in(ZQ(P)) =

8‘1(111]3( )( n(P)) # 0 and thus this summand is of the expected valuation.

Thus val(Z ( )) = 0 and since there is cancellation in the Wronskian,
also val(V - 5 2.Q(P)) = 0. Furthermore, since there is cancellation in W,
nin(5Q(P)) = in(FQ(P)).
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Inserting this into the above equation for in(d,Q(P)), we obtain

in(0,Q(P)) = in (2-Q(P)) +in (% %Q(P))

dy
:m(%@@ﬁ+%m&%@@ﬁ

— 1 in (%Q(P)) + % -nin (%Q(P)>
10

=2 i (2Q(P)) = 2+ 2 (in,(@))(in(P).

e Assume p is on the vertical ray or the vertex. Then the vertex of Trop(L)
is at (—a, —a) for some a > 0. The valuation of M is a, the valuation of
N is zero. Then both summands in equation are of valuation zero and
we can directly express

m(@Q(P) = in (1) +in (57 -0(P))

:m(agwﬁ+lm(2Q@».

8_y n ox
a . . 10 . .
= (i@ () + 5 (in,(Q))in(P).

For the statement in particular, note that by Theorem [1.7} we have (9, Q(P;) -
0LQ(PR)) = (in(0LQ(Py) - 0LQ(F2))). The initial of the product in(9,Q(FP) -
01 Q(P2)) equals the product of initials in(0,Q(Py)) - in(9,Q(F2)). The factors
can be expressed in terms of derivatives of initial forms as described above. [

Remark 4.14. By Example [4.10] a tropical bitangent with lifting multiplicity 2
which does not lift to K contributes H to the arithmetic count of bitangents:
Such a lift is defined over a field extension of degree 2. The element whose class
in GW(K) we take equals a Laurent term in the initials of () times a square root

of such a term by Remark (see also Appendix and [A.3)). Thus, in the
notation of Example 4.10, » = 0 and we get a contribution of H.

In the following example, we consider tropical bitangents of lifting multiplicity
four whose lifts live in a field extension.

Ezxample 4.15. There are tropical bitangent classes for which we need to add
two roots to the ground field to lift to 4 bitangent lines. These are precisely the
zero-dimensional classes (A), (B) and (C) in the classification in [6]. Assume these
two roots are o and  and K (o, 8)/K is of degree 4.
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Let a € K(a,B3)*. We now compute Trx(a,g)x(a) € GW(K). A basis for
K(a, B) is given by 1, «, 8, - 5. We write a in this basis:

a=ci-l4+c-at+c3-fHcey-a-p.
We study the bilinear map
§: Ko, B) x K(a, 8) = K(a,f) = K,

where the first arrow is the map (z,y) — axy and the second is the trace. Let us
first compute the trace for an arbitrary element b = by -14+by-a+b3- 5+ by - - .
The matrix we obtain is

bl b2042 b362 b4042ﬂ2
by b1 B byB?
b3 b40&2 b1 bQOé2
by b3 by by

The trace is thus 4b;. Now we can insert basis vectors in the above bilinear map
to obtain the symmetric matrix

4cy e 4Acesf? desa®B?
deae®  Acio? 4esoB? 4esafP
desB2 0 deqo®B? 412 desa 5P
dego® B2 desa®B? Aepd®B? deia®B?

As we can see in our computations for lifts of tropical bitangents and their
Qtype,_ (see Remark and Appendix , the bilinear map we obtain for a
lift of a tropical bitangent class of type (A), (B) or (C) is of the form caav or cyaf5.
Thus, we can insert ¢; = c¢3 = ¢4 = 0 or ¢; = ¢ = ¢3 = 0 in the above matrix. In
both cases, we obtain a decomposition into two hyperbolic planes.

This computation shows that the GW-multiplicity of a tropical bitangent class
whose 4 lifts live in a field extension of degree 4 which we obtain by adjoining
two roots is 2H.

Remark 4.16 (Computation of GW-multiplicities). Theorem together with
the theory of tropical bitangents allows to compute GW-multiplicities of quartics
as follows:

e Compute the tropicalization Trop(C), e.g. using the software system
PorLyMAKE [10] or the libraby tropical.lib in the computer algebra system
SINGULAR [15] [7].

e Using the POLYMAKE-extension on tropical bitangents of quartics by
Geiger-Panizzut [I1], compute all its tropical bitangent classes.

e For each liftable tropical bitangent, use Theorem to compute its
Qtyper,__ .

e For each tropical bitangent class which does not lift, deduce from Remark

and that the GW-multiplicity of the four bitangents equals 2H.
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In the following, we prepare statements which will be used for the further
study of the Qtype;  of tropical bitangent lines which lift over K. Our goal
is to provide tools for the proof of Theorem [£.23] stating that many bitangent
shapes yield a contribution of 2H. Lemma is an observation that simplifies
computations in general. Lemmas [£.18] [£.19] [4.20] and [£.22] will be needed to
pair up contributions to arithmetic multiplicities for tropical bitangents in the
same bitangent class for various bitangent shapes in Theorem {4.23, spelled out in
more detail in the Appendix [A.2] see Theorem [A.2] Going through Appendix[A.2]
one can see that these four Lemmas are not sufficient to cover all cases. They
cover a large subset of the cases however, and each of them appears several times
(i.e. for many bitangent shapes), which is why we include these statements in the
main part of the paper. The remaining cases appear more individually, so we
discuss them only in the Appendix after going through the case-by-case analysis
of bitangent shapes.

Lemma 4.17. Assume the initial form of QQ at tropical tangency component p;
equals a monomial m times a form g, i.e. in,, (Q)) = m-q. Let 01, be as above. Let

Py be a lift of pr. Then Op(iny, (Q))(in(FPy)) = m - dr(q)(in(Py)).

Proof. This holds true since the second summand we obtain from the derivative
of the product disappears since ¢(in(P;)) = 0. The monomial cannot vanish by
inserting nonzero values. U

Lemma 4.18. Let Q) be a quartic polynomial over K and assume Trop(V(Q))
18 smooth and generic. Assume there is a tropical tangency component in the
interior of an untwisted horizonal bounded edge E of Trop(V(Q)). We denote the
liftable tangency point by p. Then the lifts of the tropical bitangents at p come
in pairs Ly, Ly such that the tangency points P € Ly NV (Q) and P € Ly NV (Q)
which tropicalize to p satisfy

in(dy, (Q(P)) = — in(dr,(Q(P)).

Proof. By Theorem , in(0r, (Q(P)) = 28% in,(Q)(in(P)), and anlogously for
Lo, as the tropical tangency component p is on the horizontal ray. The initial
form is in,(Q) = ayry® + argpy 12yt By Lemma |4.17] after inserting the initials
of the solutions (g, yo) of the tangency point we have

) 0
in(0r, (Q(F)) = nyka—y(alk + a1r1y) (2o, Yo) = 2a1k+1xoy§-

Plugging in the solutions for the tangency points P and P from Lemma we
obtain the result. U

The following is the analogue of Lemma [4.18 where the untwisted horizontal
bounded edge F is replaced by a diagonal bounded edge. As we broke symmetry
by declaring {z = 0} to be our infinite line, we cannot expect a similar statement.
It is interesting to note that while in Lemma [£.18] the contributions for the two
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different lifts were negatives of each other (equal up to sign), here we obtain the
same contribution.

Lemma 4.19. Let Q) be a quartic polynomial over K and assume Trop(V(Q)) is
smooth and generic.

Assume there is a tropical tangency component in the interior of an untwisted
diagonal bounded edge E of Trop(V(Q)). We denote the liftable tangency point in
it by p. As in Lemmal[4.18, the lifts of the tropical bitangents at p come in pairs
Ly, Ly but now the tangency points P € L1 NV (Q) and P € Ly NV (Q) which
tropicalize to p satisfy

in(9z, (Q(P)) = (9L, (Q(P)).
0

Proof. Using Theorem we have to derive with 8% + % * 5., and by Lemma

4.17] after inserting the initials of the solutions (zg, yo) of the tangency point we
have

' moomd 10
9. (inp(Q)) (20, yo) = =™y 3_y+ﬁ%

as n = “Lim by Lemma w Also, z—g = —n, SO we obtain

m,3—m
Amt12-m \ 2™ 9o
2am,3—m< - * Xy .

Qm,3—m

m, 2—m
(am,Bfmy—i_aerl,meaj) = 2@m,37mx[) Yo s

Up to squares, this equals

(_1)771 "2 am,_?)l—mam—‘rlﬂ—m’

no matter whether we insert the positive or the negative root which is the solution
for xg. O

Lemma 4.20. Assume the horizontal or vertical ray of a tropical bitangent line
can move along a bounded edge maintaining tangency, and the tropicalization of
the tangency points py and ps of the liftable members Ly, Ly of the corresponding
bitangent class are the two end vertices. Then

in(0r, (Q(FP1)) = —in(0r, (Q(F2)) up to squares.

Proof. By symmetry, we can without restriction assume that the ray is horizontal.
The only direction vectors of dual edges that fit into a the Newton polygon of a
quartic, i.e. the triangle with vertices (0,0), (0,4) and (4,0), and intersect with
multiplicity 2 a horizontal edge are (f), (_21) and (g) Because of smoothness, the
adjacent vertices correspond to triangles as depicted in Figure [13]

We perform the computation for the left picture in Figure [13] for the others, it
is completely analogous. Here, in,, (Q) = 2y’ - (a + bry + cz?y) and in,, (Q) =
2y’ - (a + dz + cx®y). As the horizontal ray cannot meet any other point of the
tropicalized quartic, we can conclude that ¢ = 0. Using local lifting equations, we
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FI1GURE 13. Possible duals of bounded edges intersecting a hori-
zontal ray with multiplicity 2.

obtain in(P;) = ( b dacy gnd in(Py) = (—2¢, £). Using Theorem we have

2¢? b2 d? 4ac
to derive w1th , and by Lemma [4.17, we obtain

mion @ = (5 (=g +eya) = (5 (- )

(0, (Q(Py)) = (d—z)j - <c4d—‘f>.

dac
Up to squares, this equals d=a’c’*1. 0

Remark 4.21. An analogous statement for intersections with the diagonal ray
does not hold. (See e.g. Appendix [A.3] shape (Ea), where one tropical tangency
component contributes as; and the other —aggagiasp).

Lemma 4.22. Assume a liftable tropical bitangent meets a tropicalized quartic at
a point p in the interior of an edge of direction (1,—1) dual to agy + ayzy with
its vertex. Assume the second tropical tangency component is on the diagonal ray.
The lifts come in pairs Ly, Lo with tangency points Py and Py tropicalizing to p,
and we have

in(9r, (Q(Fr)) = —in(01,(Q(F2))-
Proof. By a local lifting computation, we obtain for the initials of the two lifts P,

and P, the coordinates (o, yo) = (4[ L —dan 1 \/ dagon ) where n as usual

ail ail
denotes the coefficient of = in the normalized equation defining the bitangent lift.
Its initial is imposed by the second tropical tangency component which is on the
diagonal ray.

Using Theorem [4.13| we have to derive with 6% + 1.2 “and by Lemma [4.17, we

n oz’

obtain

ai - To + ﬁanyo = 2a11@o.

Inserting the two solutions for xg, which are negative of each other, the statement
follows. [

Theorem 4.23. A bitangent class S of a generic tropicalized quartic Trop(C)
contributes either 2H to the A'-enumerative count of bitangents to C, or a sum of
four monomials in the initials of the coefficients of the defining polynomaial of C.
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In particular, the total A'-enumerative count of bitangents to C' is determined by
its tropicalization Trop(C') and the square classes of the initials of its coefficients.

The exceptional cases (which do not give 2H) and their GW-multiplicities are
listed in the Appendix [A.2] details are spelled out in Theorem [A.2]

Proof. The strategy of the proof is to use Lemmas (.18, [£.20]| and [£.22] to argue
that the four lifts come in pairs contributing (+a) for some a, which sums up to
2H. This works if the lifts exist in the field, else we use Examples [4.6] and
to show that nevertheless, we obtain 2H as total contribution. The proof is a
case-by-case analysis relying on the classification of bitangent shapes in Appendix
[A.1] Here, we show one case and refer to the detailed version, Theorem in
Appendix [A.2] for the remaining ones.

We focus on a bitangent shape of type (D) as in Figure 6 of [6]. The bitangent
shape is a bounded segment which partly overlaps with an edge of the tropicalized
quartic. The liftable points are the two end vertices of the segment, each such
point has lifting multiplicity 2. Thus there are two tropical bitangent lines in the
shape which each have two algebraic lifts.

The S3/Sy-orbit of this shape consists of three cases (Da), (Db) and (Dc). In
(Da), the bounded segment is horizontal, in (Db) it is diagonal and in (Dc) vertical.
Figure [14] shows the dual motifs and local pictures of the tropicalized quartic and
the tropical tangency components. The pictures contain the two liftable tropical
bitangent lines in blue. In each case, the bitangent class is the segment connecting
the two vertices of the two blue tropical lines in each picture. Observe that the
segment partially overlaps with an edge of the tropicalized quartic, as mentioned
before.

For (Da) and (Dc), each of the two liftable tropical bitangents has a tropical
tangency component which is an overlap of a horizontal resp. vertical edge. Each
liftable tropical bitangent has lifting multiplicity 2, and the two lifts are given
by the two choices we obtain for the tangency point on the overlap. The second
tangency point is the same for both lifts, for each of the two liftable bitangents.
By Lemma [4.18] we can pair up the two lifts for each such tropical bitangent such
that their Qtypes are negative of each other. Altogether, we obtain 2H.

For (Db) this argument does not work, but a computation shows that the
contribution of the other tropical tangency component , which is not in the interior
of the diagonal edge, equals ag; for one resp. —as; for the second, up to squares:
for the upper tropical tangency component p;, we have in,, (Q) = ap2y® + a12y* +
an x?y. Solving for the initials of the coordinates of the tangency point and the
coefficient M of the line equation y + Mz + N, we obtain m = in(M) = —4%,

r=—202and y = 4%. Using Lemma and Theorem , we obtain

2

o0 . ) 02021 ao2 ago
2—in, (Q P)) =28 ( + ~<—2—)>———i- )
Y 1 pl( (Hl( 1)) a%Q ap2 19 1o a%2 921
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/A

/

A

(De)

FIGURE 14. Liftable tropical bitangents and motifs for shapes (Da),
(Db) and (Dc).

For the lower tropical tangency component ps, solving for the initials of the

coordinates of the tangency point and the ratio % of the coefficients of the line

o . m . M a%l a%l a?l
equation, we obtain P " 4apza30’ L= daop2a30 and ¥y= _8a32a30 . We have
inPQ(Q) = a02y2 +anzry + a30x3 and

10 1 mo
naiL‘ pQ(Q( ( 2)) m n ax p2(Q)

1 m a3 a? 2
S (o (- ) b ()
m.on 8agya3o dagoaso

_ 2 1 m ( aélll )
“mon \16aZ,as
(- ) () )
dag2a21 4agaazg/ \16aya30
1 G%QG%

— 521
162 a3, agya3, .

Using Lemma [4.19] we can now pair up a lift of one with a lift of the other
tropical bitangent and conclude that the total contribution is again 2H. U

4.5. Comparing the Qtype;_  for different fields. Building on our comparison
of lifting for different fields in Section [3.3] we can also discuss the comparison
of the Qtype;_ for different fields, as a consequence of Theorem Let K,
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and K5 be fields with residue fields k; and ks, respectively. Suppose there exists
an isomorphism of groups ¢ : k;*/(k)? — k5 /(k5)? such that ¢(—1) = —1 and
#(2) = 2. Then ¢ induces an isomorphism GW (k;) ~ GW(ky) by sending (a)
to (¢(a)), as the Grothendieck-Witt ring is generated by elements of the form
(a) for a € k] /(k})?. As GW(K;) ~ GW(k;) by Theorem 4.7, we also obtain

Theorem 4.24. Let Ky and K be fields with residue fields kv and ks, respectively.
Suppose there exists an isomorphism of groups ¢ : ki /(k{)? — ky /(kS)?* such
that ¢(—1) = —1 and $(2) = 2.

Fori = 1,2, let C; = V(Q;) be a quartic curve defined over K; such that
Trop(C;) is generic. Let Q1 = Y Aja'y? 279 and Q2 = Y Bya'y’2*~". We
assume val(By;) = val(A;j), in particular Trop(Cy) = Trop(Cs), and ¢(a;;) = bij
for all i, j, where a;;,b;; are the initials of A;; and B;;, respectively.

Suppose all lifts of A are defined over K; and Ky then

Y #(QType(L) = > QType(L)

L lift of A L' lift of A
where the lifts L are over Ky and the lifts L' are over K.

Proof. The formulas for the Qtype;_ of tropical bitangents lifting over k are
expressed in terms of a Laurent monomials in the {a;;} or the {b;;} with coefficients
of —1, 2, or squares in the residue fields. Moreover, the Qtypes are defined modulo
squares so the statement follows from the assumptions on the {a;;} and {b;;}. O

We present the special case comparing QTypes over finite fields and the real
numbers. Let K be a field with finite residue field k of size p**' for a prime
p satisfying p = 7 mod 8. Let ¢ : k*/(k*)?> — R*/(R*)? denote the unique
isomorphism between these two groups. As before, ¢ induces an isomorphism of
the Grothendieck-Witt rings.

Corollary 4.25. Let C = V(Q) be a quartic curve defined over K with ) =
S Ajxty?, and C' = V(Q') be defined over R{{t}}, where Q" = 3 Bjjz'y’ and
B;; € R{t}}. Assume that val(B;;) = val(A;;) and

(aij) B (bij)
k R/
Suppose all lifts of A are defined over K and R{{t}}, then
Y. d(QType(L)) = > QType(L)
L lift of A L lift of A
where the lifts L are over Ky, the lifts L' are over R{{t}}.

Proof. The statement follows immediately from Theorem |4.24] since in a field &

of characteristic p with p =7 mod 8 and with order p**! we have () = ()

and (2) = (2). 0

R
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5. THE REAL GW-MULTIPLICITY IN TROPICAL GEOMETRY

Let K = R{{t}} the field of Puiseux series with real coefficients. By the Tarski
principle (see e.g. Chapter 1 in [16]), i.e. elimination of quantifiers in the first
order theory of real closed fields, R{{¢}} is equivalent to the reals, so we can count
real bitangents by lifting tropical bitangents to R{{¢}}. This principle has been
applied to other problems in tropical geometry, see e.g. [1].

Recall from Example[4.9] that the Qtype;_ of a real bitangent is (1) or (—1),
and the two cases can be characterized geometrically (see [22]): Assume first that
the tangency points are real. In the affine chart of P? we obtain by taking out the
line at infinity, the quartic V(Q) can pass on the same side of the bitangent line
for the two tangency points, or on opposite sides (see Figure . If the tangency
points are not real, the Qtype;__ is (1).

Larson and Vogt obtained interesting results for counts of real bitangents
according to the sign of their Qtype; : If V(Q) does not meet the line at infinity,
then the number of real bitangents with Qtype; _ equal to (1) minus the number of
real bitangents with Qtype;_ equal to (—1) equals 4 [22]. Based on a randomized
search, they formulate the following conjecture:

Conjecture 5.1 ([22] Conjecture 2]). Let V(Q) be a real quartic such that for
each bitangent L, LNV (Q) N Lo = (0, where Lo, denotes the line at infinity. Then
the number of real bitangents with Qtypey_ equal to (1) minus the number of real
bitangents with Qtype;  equal to (—1) is in

{0,2,4,6,8}.

Larson and Vogt prove that the numbers are nonnegative.

In the following, we give a partial proof for the conjecture, for the cases of
quartics whose tropicalization is smooth and generic. In particular, the quartics
we consider all intersect the infinite line in four points. It is interesting to observe
that we do not obtain all the possible numbers with this restriction:

Theorem 5.2. Let C' = V(Q) be a real quartic whose tropicalization is smooth
and generic. Then the number of real bitangents with Qtype;_ equal to (1) minus
the number of real bitangents with Qtypey _ equal to (—1) is in

{0,2,4}.

Our approach to prove this theorem is via GW-multiplicities of bitangent classes
of the tropicalization. It builds on our classification of generic bitangent shapes
and their dual motifs in Appendix [A1] on our study of GW-multiplicities of
tropical bitangents in Theorem [4.23] and Appendix [A.3] In the following
lemma, we use the letters for the bitangent shapes which are introduced in the
classification in Appendix

Lemma 5.3. Let V(Q) be a real quartic whose tropicalization is smooth and
generic. Let S be a liftable tropical bitangent class of Trop(V(Q)). Let s denote
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the number of lifts of S with Qtypey__ equal to (1) minus the number of lifts of S
with Qtypey_ equal to (—1).
If S is of shape (Nb), (Ob), (Oc), (Pb), (Qb), (Rb), (Rc), (Sb), (Ub), (Vb),
(Yal), (YD), (CCb) or (Ilc), then s = 2. If S is of shape (BBb), then s = 4.
Otherwise s = 0.

Proof. This follows by going through the table in Appendix and only paying
attention to the signs. 0J

Proof of Theorem[5.9. By checking the dual motifs of a tropical bitangent class of
one of the shapes with non-zero contribution in Lemma (and their symmetric
cases w.r.t. x — y-symmetry), we can see that the only ones which are not mutually
exclusive are (Qb), (Rb), (Ub), (Vb), resp. (YbII), (BBb), (CCb). For each of
those, within a symmetry class, it is always the same edges which contain the
tropicalization of the tangency points, thus, it is only the lengths of the edges of
the tropical curve which decide which of (Qb), (Rb), (Ub) or (Vb) (resp. which of
(YbII), (BBb) or (CCb)) shows up, in particular, they do not show up together
either. The only possibility is to combine a shape from (Ub) or (Vb) with another
such shape after applying = — y-symmetry. Also, the three possibilities for (Nb)
do not exclude each other on the level of Newton subdivisions, but the vertex
dual to triangle can only align with one of the possible three edges, and so it is
precisely one of the types of (Nb) that can occur together. We can see that we
can combine at most two shapes that contribute 2, all other shapes with nonzero
contribution appear exclusively. As the maximal nonzero contribution from such
a shape is 4, we obtain the desired result. O

One does not need to rely on our results on GW-multiplicities of tropical
bitangent classes from Theorem and Appendix to show this result.
An alternative approach is to use Viro’s patchworking method, and read off the
signs of the GW-multiplicities using Figure [I2] We illustrate this approach in an
example:

Ezample 5.4. In Viro’s combinatorial patchworking [35] [14], we start from a regular
subdivision dual to a tropical plane curve C given by a tropical polynomial F'.
We associate signs to each term of the polynomial, resp. to each region of R?\ C'.
These signs represent the signs of the coefficients of a polynomial f over the real
Puiseux series tropicalizing to F'. Consider the tropical plane curve C' inside an
orthant (the tropicalization of affine space is (R U {—o00})?) and glue four such
orthants as usual, coming with the reflected versions of C'. For the reflected copies
of €', we add signs to the regions by inserting signs for the x and y-coordinates
into the corresponding term of f as given by the respective orthant. Then, we take
only those edges of the four copies of C' that disconnect a positive and a negative
region. Viro’s patchworking theorem states that the object we obtain in this way
(viewed in the real projective plane which we obtain from the four glued orthants
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by compactifying and identifying boundaries accordingly) is homeomorphic to a
real plane curve defined by f after inserting a small value for the parameter ¢.

Figure 15| shows the dual Newton subdivision of a tropicalized quartic, and the
four copies of the tropicalized quartic. We pick the signs of all coefficients except
apz to be positive, and so3 < 0. The signs in the four copies are disctributed
accordingly. With thick black lines, the patchworked quartic is depicted. By
Viro’s Theorem, real quartics close to the tropical limit are homeomorphic to this
picture. We consider the bitangent class of shape (E) which is also depicted in
Figure [0 It has two liftable members. Their patchworked versions are drawn
with thick red lines and denoted A; and A, in Figure[15] We can see altogether
4 tangency points, p1,...,ps, shown in green in Figure [I5] The two lifts of the
tropical bitangent line for A; are represented by the same thick red line, but they
are tangent at different points: one lift, call it Ly, is tangent at p; and ps, the
other, L9, at p; and ps. Analogously, one lift, Lo, of the tropical bitangent for
A5 is tangent at p, and ps, the other, Los, at p, and ps. If we move along the
thick red line for Ay, starting at the top right corner, we meet the first tangency
point, py, on the right, and the second, ps, also on the right. Thus, the Qtype;
of Ly is (1), see Figure . For Li,, we follow the same path, but now we meet
p1 on the right and p4 on the left, so the Qtype;_ of Lis is (—1). Analogously,
the Qtype;_ for Loy is (—1) and for Ly, (1). With this patchworked picture, we
thus confirm the result from Lemma |5.3| that the overall contribution of a tropical
bitangent class of shape (E) is zero.
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APPENDIX A. CLASSIFICATION, COMPUTATIONS AND TABLE

A.1. Classification of generic bitangent shapes. For the classification of
bitangent shapes up to Ss-symmetry, see Figure 6 in [6]. There are 41 shapes up
to Sz-symmetry, labeled with capital letters such as (A), double capital letters
such as (BB) or dashed capital letters such as (T”). For bitangent shapes, we
follow the color coding of Figure 6 in [6]: The black cells of each bitangent class
miss the tropicalized quartic, whereas the red ones lie on it. The unfilled dots are
vertices of the tropicalized quartic.

In our study, we fix the line {z = 0} and do not have Sz-symmetry for that
reason, only So-symmetry for exchanging the variables z and y. We label shapes
in an S3/Ss-orbit by adding lower case letters such as (Da). Sometimes, the
shapes allow different cases of dual motifs in the dual Newton subdivision. These
different cases play a role for the computation of Qtypes. We label such different
cases of dual motifs by adding Roman numbers such as (Tal).
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(A) . N .
() A
(®) )

FIGURE 16. Bitangent shapes, local pictures and motifs of type
(A), (B) and (C).

We consider only generic bitangent shapes, i.e. bitangent shapes which appear
in the open cones of the subdivided secondary fan, where the subdivision is chosen
such that the bitangent shapes are constant in each cell (see Remark . This
subdivision has been computed in [I1].

Lemma A.1. Let S be a tropical bitangent class of a generic tropicalized quartic.
Then, from the classification of possible shapes for S in [0], Figure 6, S can have
the shapes (A), (B), (C), (D), (E), (F), (G). (H), (N), (0), (P), (T), (S), (R),
(@), (U), (V). (W), (Y), (BB), (CC), (EE), or ().

Proof. This follows since the existence of a tropical bitangent class of one of the
remaining shapes (), (), (3), (K), (L'}, (L), (M), ('), (T"), (U'), (), (X), (Z),
(AA), (DD), (FF), (GG), (HH)) requires some equalities on the lengths of the edges
of the tropicalized quartic to hold, hence they appear only in lower-dimenional
cones of our subdivision of the secondary fan. OJ
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Figure |16 shows the three zero-dimensional bitangent shapes (A), (B) and (C).
Next to the shape, we sketch the tropical bitangent in blue and parts of the
tropicalized quartic which carry the tropicalization of the tangency points. Next,
we draw an exemplary dual motif. The red edges are dual to the edges that overlap
with the tropicalized quartic. The red edges could also be shifted for case (A)
and (B). In case (A) and (B), the vertices on the vertical and diagonal boundary
edge of the Newton triangle could also be shifted. In case (C), all vertices on
the boundary could be shifted. We refrain from drawing the S3/Ss-orbits of
these bitangent shapes, as the arguments for the computation for the Qtypes
do not change. Note that each such shape has a S3/S,-orbit of size two, as the
tropicalization of the tangency points can be on the horizontal and vertical edge,
or on the diagonal and horizontal edge.

Figure [14] shows bitangent shape (Da). Shape (Db) and (Dc) are diagonal
resp. vertical. Figure [14] depicts the liftable tropical bitangents together with the
local parts of the tropicalized quartic carrying the tropicalization of the tangency
points, and the dual motifs.

Bitangent shape (E) is a segment which does not meet the tropicalized quartic,
i.e. in Figure 6 [0] it is drawn completely in black. The two end points of the
segment are the liftable tropical bitangents. Figure [17] shows the behaviour of the
tropicalization of the tangency points (i.e. local parts of the tropicalized quartic)
together with the two liftable tropical bitangents in blue, and the partial dual
motifs for the shapes (Ea), (Eb) and (Ec) which we obtain as the S3/Ss-orbit of
(E). In the dual pictures, the red edge could also be shifted (upwards for (Ea)
and (Eb), antidiagonally for (Ec)), as could the vertex which forms the left resp.
upper triangle with the red edge.

Bitangent shape (F) is a segment which touches the tropicalized quartic, i.e.
in the color coding we draw one vertex red. Again, the two end points of the
segment are the liftable tropical bitangents. Figure |18 shows the behaviour of
the tropicalization of the tangency points together with the two liftable tropical
bitangents in blue, and the partial dual motifs for the shapes (Fa), (Fb) and (Fc)
which are the S3/Ss-orbit of (F). In the dual pictures, the red edge could also be
shifted (upwards for (Fa) and (Fb), antidiagonally for (Fc)), as could the vertex
which forms the left resp. upper triangle with the red edge.

Bitangent shape (G) is a segment which is completely contained in the tropical-
ized quartic. One tropical tangency is an overlap of an edge with the ray spanned
by the segment. The two liftable members are the two end points of the segment.
As we deform one liftable tropical bitangent to the other, the second tropical
tangency component wanders over an edge which can have three possible slopes.
We differentiate those three cases by using Roman letters (I), (II) and (III). Figure
combines the three possibilities (I), (II), (IIT) for the three S3/S,-orbits (Ga),
(Gb) and (Gc) in one picture each, both for the local pictures of the tropicalization
of the tangency points and for the partial dual motifs.



O J o U W

AN TTUIUTUITUTUTUTUTOTOTE BB DD B DDASEDNWWWWWWWWWWNNNNNNONNNONNNNR R RRR PR PP
O™ WNFROWOJdNT D WNRPOW®O-JIAAUTDRWNR,OW®OW-JdNTIBRWNRFROWO®OW-JNU ™ WNROWOW-10U & WN R O WO

BITANGENTS TO PLANE QUARTICS VIA TROPICAL GEOMETRY 49

(Ea) . .
(Eb) \I ’ 4 % . o\ o
(Eo) :

FI1GURE 17. Local pictures of tropicalizations of tangency points
and partial motifs for type (Ea), (Eb) and (Ec).

Bitangent shape (H) is a ray whose vertex corresponds to the only liftable tropi-
cal bitangent in the class. Figure 20| shows the local pictures of the tropicalization
of the tangency points and the partial dual motifs for the two cases (Ha) and
(Hb). The red edge could be shifted upwards resp. antidiagonally, as could the
vertex of its adjacent right resp. upper triangle.

Bitangent shape (N) looks like a reversed tropical line with two rays cut off.
The end points of the two cut rays are the two liftable members. As for shape
(G) (see Figure[19), one tropical tangency is an overlap with an edge (although
the two overlapping edges differ for the two liftable tropical bitangents, different
from the situation in (G)), and one tropical tangency component wanders over an
edge — which can have three different possible slopes (I), (II) and (III) — as we
deform one liftable tropical tangency component to the other. Figure 21| shows
local pictures of the tropicalization of the tangency points and partial dual motifs,
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FIGURE 18. Local pictures of tropicalization of the tangency points
and partial dual motifs for type (Fa), (Fb) and (Fc).

and combines the three options (I), (II) and (III) in one picture each for the two
S3/Ss-orbits (Na) and (Nb).

Shape (O) has two liftable tropical bitangents, the local pictures and dual
motifs for the three symmetric cases (Oa), (Ob) and (Oc) are depicted in

Shape (P) has two liftable tropical bitangents. Figure 23| shows local pictures
of the tropical tangency components and dual motifs for the two symmetric cases
(Pa) and (Pb).

Shape (Q) has two liftable tropical bitangents. Figure shows the local
pictures of the tropical tangency components and the dual motifs for the three
symmetric cases (Qa), (Qb) and (Qc).

Figure [25| shows the local tropical tangency components and dual motifs for
the three symmetric cases (Ra), (Rb) and (Rc) that we have for shape (R). Each
has two liftable tropical bitangents.

In shape (S), there are two liftable tropical bitangents, shown in Figure
together with the dual motifs for the two symmetric cases (Sa) and (Sb).
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(Gall)

(Gal) :

(Ga)
NN
(Gb) gl\ ©z
N 7
(GBIII) (GbII) (Gbl)
(Gl gy (GeD
N 7 /|/]

F1GURE 19. Local pictures of tropical tangency components and
partial dual motifs for types (Gal), (Gall), (Galll), (GbI), (GbII),
(GDbIII), (Gel), (Gell) and (GellI).

Shape (T) is an unbounded 2-dimensional cell show two vertices each lift with
multiplicity two. As for shape (G) and (N), there are three possibilities for the
slope of the edge along which one of the tropical tangency component wanders,
which we denote by (I), (IT) and (III). Figure [27| combines these possibilities into
one picture for (Ta) and one for (Th), which are the two orbits we have to take
into account.

Similar to shape (G), (N) and (T), shape (U) comes with three different
possibilities for slopes for the wandering tropical tangency component, see Figure
28

The behaviour of the tropicalization of the tangency points for shape (V) is the
same as for shape (N), it is only the possible deformations that differ, but this
has no effect on Qtypes, see Figure

We now consider the bitangent shapes (W), (Y), (BB), (CC) and (EE) which
each have four liftable members. For some of these shapes, tangencies can arise
due to edges for which different slopes are possible. We label these different slopes
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F1GURE 20. Local pictures for the tropical tangency components
and partial dual motifs for shapes (Ha), (Hb).

(Nal) :

(NallI)

)l

.
o N F

(NBIII) ~ (NbII) (NbI)

I1I

F1GURE 21. Local pictures of tropical tangency components and
partial dual motifs for types (Nal), (Nall), (NallI), (NbI), (NbII),
(NDIII).

again using Roman numbers (I), (II), (III). Bitangent shape (W) is a parallelogram
whose four vertices are the liftable members. The other shapes can be viewed as
deformations of the parallelogram, where edges of the tropicalized quartic “cut
oft” pieces. Figure |30] shows the local pieces of the tropicalized quartic together
with the four liftable tropical bitangents in blue for the cases (Wal) and (WbI).
Next to it, the partial dual motifs are depicted. For (Wall), (WallI), (WbIII) and
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| IS, A2

F1GURE 22. Local pictures for tropical tangency components and
dual motifs for types (Oa), (Ob) and (Oc).

(Well), the partial dual motifs are depicted in Figure . As the local pictures of
the tropical tangency components and liftable tropical bitangents are similar to
the ones shown in Figure we do not include those.

Concerning shape (Y), the dual motif for (Yal) equals the one for (WbII), (YbI)
equals (Well), (YeI) equals (Wall), (Yall) and (Yalll) equals (WallI), and (YbII)
equals (WbIII). The shape (Y) only differs from (W) by “cutting off” a vertex
of the parallelogram — one liftable tropical bitangent now has its vertex on an
edge of the tropicalized quartic. Pictures of the partial dual motifs can thus be
found in Figure |31 Figure 32| depicts the 4 liftable tropical bitangents in each
case together with a local picture of the tropicalized quartic.

Shape (BB) differs from shape (W) by cutting off two vertices of the parallelo-
gram. The dual motif for (BBa) equals the one for (Walll), the one for (BBb)
equals (WDIII). Again, we refer to Figure [31| for these partial dual motifs. The 4
liftable tropical bitangents together with local pictures of the tropicalized quartic
are found in Figure |33]

In shape (CC), we also cut off two vertices, but we cut one of those off even

further. The dual motif for (CCa) equals (Walll), the one for (CCb) (WbIII), see
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(Pa)

F1GURE 23. Local pictures of the tropical tangency components
and dual motifs for shapes (Pa) and (Pb).

Figure The corresponding local pictures of the tangencies are found in Figure
(CCal) and (CCall) differ by which of the two vertices is cut off further. For
(CCb), this is symmetric.

In shape (EE), we only cut off one vertex, but we cut this one off even further
again. The dual motif for (EEal) and (EEall) equals the one for (Walll) (those two
cases only differ by the choice which vertex of the parallelogram we cut off), the
dual motif for (EEalll) equals the one for (Wall), (EEDbI) equals (WbIII), (EEbII)
equals (WbII) and (EEclI) equals (Wcll), see Figure 1] The corresponding local
pictures of the tangencies appear in Figure [35]

Finally, Figure 36/ shows the dual motifs for the bitangent shapes (Ila), (IIb)
and (IIc). For (IIa), there is also a local picture of the tropicalized quartic with
the liftable tropical bitangent lines. The two left ones have lifting multiplicity one,
the right one lifting multiplicity two. The local pictures for (ITb) and (Ilc) are
similar. For the two left tropical bitangents, the two tangency points tropicalize
to the same point, namely a vertex of the tropicalized quartic, where the tropical
line and the tropicalized quartic meet with intersection multiplicity four.

A.2. Details on Theorem [4.23| and its proof including the case-by-case
analysis of bitangent shapes. The following Theorem spells out the details of
the case-by-case analysis of bitangent shapes for Theorem [£.23}

Theorem A.2. If a tropical bitangent class is of shape (A), (B), (C), (D), (E),
(F), (G), (H), (Na), (Oa), (Pa), (Qu), (Qc), (Ra), (Sa), (Ia), (1Ib), (T), (Ua),
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(Qa) %\ o

(Qc)

FI1GURE 24. Local pictures of tropical tangency components and
dual motifs for shapes (Qa), (Qb) and (Qc).

(Ue), (Va), (W), (Yel), (Yall), (CCall), or (EE), then the total contribution of
its Qtypey_ is 2HL

Proof. The strategy of the proof is to use Lemmas [4.18| 4.20| and |4.22| to argue
that the four lifts come in pairs contribution (+a) for some a, which sums up to
2H. This works if the lifts exist in the field, else we use Remark and Example
to show that nevertheless, we obtain 2H as total contribution.

If it is of shape (A) or (B), there are two tropical tangency components in the
interior of edges, of which at least one has to be vertical or horizontal. Using
Lemma[4.18, we can pair up the lifts in such a way that in total we obtain 2H. The
argument is analogous for shape (C), as locally the tropical tangency components
are in the interior of edges here, too. Shape (D) was already discussed in detail in
the proof of Theorem [4.23|

For (E),(G), one of the tropical tangency components has to be on the horizontal
or vertical ray, and we can use Lemma resp. Lemma [£.20, depending on
which tropical tangency component it is, to pair up.
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(Ra) {\ o

S .

(RD) j .

FIGURE 25. Local tangencies and dual motifs for shapes (Ra), (Rb)
and (Rc).

For (Fa) and (Fb), we have a tropical tangency component in the interior of a
horizontal or vertical edge, and we can use Lemma to pair up. For (Fc), we
have two liftable tropical bitangents. Both have a segment of intersection with
Trop(Q) on the diagonal ray, so by Lemma [1.19| we get the same contribution.
The second tropical tangency component differs: for the first, it is, as in (Ec), an
intersection with the horizontal ray, for the second, it is an intersection with the
vertex. A computation shows that the contributions are negative of each other,
so we can pair up and obtain 2H.

For (Ha), one tropical tangency component is in the interior of a horizontal
edge. For (Hb), we can pair up using Lemma and Lemma [4.19]

For (Na), (Oa), (Pa), (Ra), (Sa) we can pair up using the tropical tangency
components on the horizontal resp. vertical ray. For (Qa), for one liftable point
we can use the tropical tangency component on the horizontal edge to pair up,
for the other, the tropical tangency component at the vertex of the tropical line
as in Lemma [1.22] For (Qc), a computation shows that we obtain (1) + (1) +
(—1) + (—1) = 2H. For (IIa) and (IIb), we can use a computation to show that
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FIGURE 26. Local tangencies of liftable tropical bitangents and
dual motifs for shapes (Sa) and (Sb).

(Tal) :

(Ta)
(Talll)
| it
N sy
(Th) \|\ . /|/ /( I
(THIIL) " (TbII) (TbI)
i

FI1GURE 27. Local pictures of tropical tangency components and
partial dual motifs for shapes (Tal0, (Tall), (TallI), (TbI), (TbII)
and (TbIII).

we obtain 2H. For (Ta), Lemma shows that we can pair up. For (Th), we
can use Lemma to pair up. For (Ua), we can use Lemma and Lemma
.18 to pair up.

For (Uc), a computation shows that the lifts of the right tropical tangency
components yield a contribution of +2 for the lower liftable tropical bitangent,
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(Ual) :

N a2
(Ub) \|\ . / /I/f/
(UbIIL) ~ (UbII) (UbI)
N A 4
(Ue) Lr\ 7 /|/ 7[/:(]
(Uelll)  (Uell) (Ucl)

I1I

F1GURE 28. Local pictures of tropical tangency components and
partial dual motifs for (Ual), (Uall), (Ualll), (UbI), (UbII), (UbIII),
(Ucl0, (Ucll) and (UclIII).

and —2 for the upper liftable tropical bitangent. Combining with Lemma [4.20
we can pair up.

For (Va), we can use the tropical tangency components on the horizontal and
vertical edge to pair up, using Lemmam For (W), one of the tropical tangency
component has to be on a horizontal or vertical ray, and thus we can use Lemma
to pair up. For (EEall), (EEbI), (EEbII), (EEcI, and (EEcII) we can use
Lemma [£.20] to pair up. For (YcI), (Yall), (CCall), (EEal) and (EEallI), we can
pair up two liftable tropical bitangents using Lemma [£.20] For the remaining two,
a computation shows that we can again lift up, similar to (Fc).

O

Following this classification we can prove the version of this Theorem stated in
the introduction:

Proof of Theorem[1.7]. The compact bitangent shapes are (A), (B), (C), (D), (E),
(F), (G) and (W). These all yield 2H as Qtype;_ by Theorem [A.2| O
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7(\2)2 11

(Val) :

(i r e
(VBIIT) (VbII) (VbI)

F1GURE 29. Local pictures of tropical tangency components and
partial dual motifs for shapes (Val0, (Vall), (Valll), (VbI), (VbII)
and (VDbIIT).

(Wal)

(WhI) '"‘\i\ .

\< . . .

F1GURE 30. Local pictures of tropical tangency components, liftable
tropical bitangents and partial dual motifs for shapes (Wal) and
(WDI).

A.3. Exceptional GW-multiplicities. Here we discuss the GW-multiplicities
of the special bitangent shapes which do not yield 2H by Theorem resp.

The shapes (Nb), (Ob), (Oc), (Pb), (Qb), (Rb), (Rc), (Sb), (Ub), (Vb), (Ilc),
(YbI), (YbII) and (CCb) all have similar behaviour of the tropical tangency com-
ponents as described in the classification in Appendix [A.T] The GW-multiplicity
of a bitangent class of one of these shapes equals

(1) + (1) + H.
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(WallI) (WbIII)

FIGURE 31. Partial dual motifs for the shapes (Wall), (WbII),
(Well), (Walll), (WBLL).

C AN N LA

7 | 7
(Yal) (YDI) (Yel)
AT (Yall) (Yalll) 7T (YbII)

F1GURE 32. Local pictures of liftable tropical bitangent lines for
(Yal), (YbI), (YecI), (Yall), (Yalll), (YbII).

F1GURE 33. Local pictures of liftable tropical bitangent lines for
(BBa) and (BBb).
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(CCb)
/1
% (CCall) lﬁ_
(CCal)

F1GURE 34. Local pictures of liftable tropical bitangent lines for
(CCal), (CCall), (CCb).

Ko
NG (EEbI)

- (EEILII) A

(EEalll)
(EEal) fﬁé& 7/
A N 7é
(EEall) (EEcI)

FI1GURE 35. Local pictures of liftable tropical bitangent lines for
(EEal), (EEall), (EEalll), (EEbI), (EEbII), (EEcI).

/

ITa)

F1GURE 36. Dual Motifs for (ITa), (IIb) and (IIc). For (Ila), a local
picture involving the three liftable tropical bitangent lines and their
tropical tangency components.
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The following table shows the GW-multiplicities of the remaining exceptional
cases.

bitangent
(Yal) (asoaziazoaos) | (2) | H
(Yalll) | (—agagasiase) | (2) | H
(BBa) (—aoiazaziaz) | (2) | H
(BBb) (1) (1) | (1) | (1)
(CCal) | (—2agaziazgae) | (2) | H
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BITANGENTS TO PLANE QUARTICS VIA TROPICAL GEOMETRY — ANSWERS TO
REFEREES

HANNAH MARKWIG, SAM PAYNE, KRIS SHAW

We thank the referees for the thorough reading of our paper and the many useful comments. In
the following, we explain the changes we made.

Review 1:

(1) We have tried to go through these cases and make it more explicit by adding references or
comments about the missing proofs. For 3.3, we added a comment, for 3.4 a comment and
a reference, for 3.16 and 3.17 a comment. We hope that this is clearer now.

(2) We have included the Figure.

(3) Yes, we meant liftable bitangents. We added this with a reference to the definition of liftable
Now.

(4) Done.

(5) We reformulated it and hope it is clear now.

(6) Yes, we added it.

(7) Yes, we added Newton.

(8) Done.

(9) Changed.

(10) Yes, that is essentially right. We have added a short explanation about it.

(11) By constant coefficient we were referring to M in the equation M + Nx + y of the line.
We have removed the word constant now, hoping that it is clearer. There is no difference
between h.o.t. and three dots. We have changed to three dots now throughout.

(12) Done.

(13) No, the edge can also be bounded. Hopefully this will also be clearer after we inserted the
example of shape (D).

(14) That is corrected, we also added an explanation what belongs to what in the caption of the
Figure.

(15) Yes, that is correct, we added this.

(16) We wanted to say that in one case we need an edge to be twisted in order for the tangency
to lift, and in the other non-twisted. We reformulated this now, hoping that it is clearer.

(17) This happens for many shapes, we now mentioned (D) as an example in the paragraph
before Def 3.9 where it comes up for the first time.

(18) Very true, thanks for catching this and sorry about it. We have changed it here and the
other places it appears.

(19) Done.

(20) Inserted “isomorphisms” in front of the maps k;*/(k{)? — Z/2Z.

(21) We added a reference.

(22) Done.

(23) Done.

(24) This phrase was a left over referring to the Corollary 4.25. We have deleted it.

1
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(25) Yes, thank you. It is changed.

(26) Done.

(27) Done.

(28) Yes, that is what we meant. We added it.

(29) Larson and Vogt had examples, we believe, they say they base their conjecture on a ran-
domized search of over 10000 quartics. We have no interpretation of the fact that we do
not get 6 or 8 for tropically smooth quartics. This is one of the intriguing questions that is
still open.

(30) Done. Thanks for catching this.

(31) This is a very interesting question indeed. We are thinking about possible generalizations,
but for anything beyond quartics certainly other techniques will have to be developed.
That is to say, our techniques should form a subset of the techniques used in other situ-
ations. The thing is that the combinatorics of the tropical curves have more possibilities,
also for local parts carrying a tangency. What could be done is to use our techniques for a
subset of tropical curves with restricted combinatorial features — roughly, if every polygon
that shows up in the Newton subdivision can also show up for a quartic, our techniques
should be fine. Admittedly, this answer is kind of vague, but we would need more time to
come up with a better answer.

Review 2:

Concerning the global view:

(1) We added a discussion at the beginning of Sec 3.2 and at the end of Sec 3.2. We hope that
this makes the question of the tangency components and their lifting clearer.

(2) We included a discussion between Remark 4.16 and Lemma 4.17 which hopefully makes
the more global perspective clearer. Because of the exceptional cases that do not give 2H
however, we do not see any other route except going through the classification to give
all arguments why we "“often” get 2H. It is also not obvious how to characterize the ex-
ceptional cases. We have thought about this, but did not reach a satisfying conclusion.
Therefore, we still think that providing a test case in the main body and going through all
cases in the appendix is the best solution for the presentation, even though it is admittedly
difficult to go through this.

Other comments:

(1) Done.

(2) Done.

(3) Admittedly, that was strange. We changed it.

(4) Done.

(5) We have added an explanation.

(6) Done.

(7) Done.

(8) Done.

(9) Done.
(10) That is correct, we mean the liftable tangency point within the tangency component. We

have added this now, also to 4.18 and 4.19.

(11) Done.
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(12) This is not the general case for lifting bitangents, it is only a case that appears multiple
times, whenever there is an overlap. We hope that the overall exposition makes this clearer
Now.

(13) Done.

(14) We have explained what b; is and also added explanation to the choice of the labelings for
the sides. We have also added an explanation concerning the application of Lemma 3.4:
what is behind this is the normalization for the coefficients of the line we picked in 3.4.
There, the y-coefficient was 1, and so we can express the coefficient M for which we solve

also as a quotient = as in the notation here. Lemma 3.4 then shows that the corresponding
quotient for Q must be the same. We hope that this is clearer now with our reformulation.

(15) Done.

(16) Done.

(17) We added the missing explanation that the sign pairs e- ¢& with the same subscripts are
meant to label branches of the respective amoebas on opposites sides of the edge e. We
also referenced the figure again, where this labelling is used.

(18) Done.

(19) Yes, thanks for catching this. Changed.

(20) Done.

(21) Done.

(

(

22) Done.

23) Indeed, there were initial forms missing in the statement, and we hope this is were the
confusion arose mostly. We have added it now, and also expressed the statement in terms
of an equation. We have also added an explanation in the proof. Since Q(P7) = 0 as P; is
a point in the quartic, also the initial must vanish. If the initial decomposes as a monomial
times a form, the form must vanish as the monomial cannot. This decomposition is not
necessarily unique, but of course there is a biggest monomial we can divide out from each
term of the initial of Q, the lcm of the terms. We mostly use the lemma for this. We hope
that this is clearer now with the changes.

24) Done.

25) Done.

26) Changed. Thanks for the suggestion.

27) We have inserted an explanation about this. It is correct, Lemma 4.18 is, first of all, only
about the contribution of one tangency point. But for the two lifts of one of the liftable
bitangents, the second tangency point is the same and thus also gives the same contribution
to the Qtype. For that reason, we obtain H for each of the liftable bitangents.

(28) We agree that a proof of the statement in 1.7 was missing. We are not aware of any other

way to prove it but to use the classification. If we use the classification, it is just 2 lines.
We have added those two lines at the end of appendix A2. Going through this, we have
noted that the description with the vertex does actually not increase the list, so we have
shortened 1.7 and now only mention the compact condition there.

(29) That is right. These sentences actually belong to the next proof, but there they already
appear in different formulation. Therefore, we removed them.

(30) Indeed, this was a note to ourselves which we accidentally overlooked. Sorry about that,
and thanks for catching it. We have now introduced a short paragraph about Viro’s patch-
working, as requested by the note.

(31) Done.

(
(
(
(
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Additional change:

(1) We added a reference for the new preprint by Kummer and McKean in which they prove
Conjecture 5.1 by Larson and Vogt about the signed real count.



