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ABSTRACT
Malware a�ects millions of users worldwide, impacting the daily
lives of many people as well as businesses. Malware infections are
increasing in complexity and unfold over a number of stages. A ma-
licious downloader often acts as the starting point as it �ngerprints
the victim’s machine and downloads one or more additional mal-
ware payloads. Although previous research was conducted on these
malicious downloaders and their Pay-Per-Install networks, limited
work has investigated how the pro�le of the victim machine, e.g.,
its characteristics and software con�guration, a�ect the targeting
choice of cybercriminals.

In this paper, we operate a large-scale investigation of the re-
lation between the machine pro�le and the payload downloaded
by droppers, through 151,189 executions of malware downloaders
over a period of 12 months. We build a fully automated framework
which uses Virtual Machines (VMs) in sandboxes to build custom
user and machine pro�les to test our malicious samples. We then
use changepoint analysis to model the behavior of di�erent down-
loader families, and perform analyses of variance (ANOVA) on the
ratio of infections per pro�le. With this, we identify which machine
pro�le is targeted by cybercriminals at di�erent points in time.

Our results show that a number of downloaders present di�erent
behaviors depending on a number of features of a machine. Notably,
a higher number of infections for speci�c malware families were
observed when using di�erent browser pro�les, keyboard layouts
and operating systems, while one keyboard layout obtained fewer
infections of a speci�c malware family.

Our �ndings bring light to the importance of the features of a
machine running malicious downloader software, particularly for
malware research.
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1 INTRODUCTION
Malicious software, i.e., malware, infects tens of thousands of ma-
chines every day around the globe [1].

Once a user has visited a malicious link and has been redirected,
an exploit kit or the website’s code will infect themwith a malicious
software. This malicious software can take many forms, one of them
being a downloader software. In this scenario, its sole purpose will
be to download other malicious software. For example, a malicious
actor will infect several machines with their downloader, and then
sell the access to one or more other criminals, who will install spam
bots, information stealers, ransomware, etc., on the machine. This
process is part of the Pay-Per-Install (PPI) distribution model, where
the downloader’s author will sell access to the infected machine to
another malicious actor through the PPI service. Figure 1 illustrates
the PPI distribution model. These transactions are made privately,
and information regarding these transactions, the actors involved,
and the platforms on which they occur is di�cult to obtain. Partic-
ularly, little is known on how cybercriminals select the malicious
�le(s) to send to the victim through the downloader, i.e., how much,
if any, �ngerprinting is done on the victim and their machine, to
decide which malware to infect them with.

Researchers have studied malware in multiple previous research,
while downloader software used for malware is often overlooked
in research. Some works have studied downloader software, mainly
through a study of PPI models [4, 17, 31], without a large focus
on what impact the various features of the victim machine has on
the PPI network customer’s targeting choice. In this paper, we will
use a machine’s features to test whether the machine is targeted
by one or more cybercriminals, by executing various families of
downloaders daily and identifying downloaded malicious payloads,
over a one-year period.

With our approach, we aim at reverse engineering the target-
ing choices of criminals. However, with respect to classic reverse
engineering techniques that analyze the code, we deduce what
in�uenced the decision-making process of cybercriminals by si-
multaneously running multiple VMs with di�erent con�gurations
(pro�les). This approach is more time e�ective and will not be in-
�uenced by the complexity and obfuscation of the downloader’s
code.

We will achieve this by executing a downloader family’s samples
over a large set of Virtual Machines (VMs) with di�erent pro�les,
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Figure 1: The Pay-Per-Install distribution model. 1) Cyber-
criminals pay a PPI service to install their malware on ma-
chines. 2) A PPI a�liate obtains malware to install on vic-
tim machines through the PPI service. 3) The PPI a�liate
installs malware payloads on victims infected with its mali-
cious downloader.

in order to establish which VM gets infected with which family
of malware. Thus, our hypothesis is the following: the malicious
software sent to a victim through a downloader will vary according
to the machine’s features.

While a downloader and malware can be combined in a single
malware, we will, in this work, focus on analyzing single down-
loaders. In order to verify our hypothesis, our research will aim
at:

(1) Establishing an automated sandboxed testing environment
for downloaders.

(2) Establishing the correlation between the pro�le of the victim
machine and the downloaded malicious payload(s).

Although previous research has analyzed user pro�les more at
risk through clinical trials [21], the correlation between the user
and the payload requested by a downloader has not been studied in
detail. In summary, this paper makes the following contributions:

(1) We establish a fully automated sandboxed testing environ-
ment, capable of running malicious downloader executables
on virtual machines con�gured to match speci�c machine
and user pro�les.

(2) We demonstrate what cybercriminals target through PPI net-
works by observing how a number of downloaders behave
di�erently depending on the pro�le of the VM running the
executable. Our results highlight an existing link between
the malicious actors’ downloaders and the browser session,
the keyboard layout and the display language of machines.

2 RELATEDWORK
Malicious downloaders, or droppers, are often observed when ana-
lyzing malware. Although the downloader is often paired with the
malware, researchers focus more on the �nal malicious payload.

We present, in the following section, recent research that analyze
downloaders and their PPI networks.

2.1 Downloader Families and Samples Analysis
Some researchers have analyzed speci�c downloaders and large
campaigns in detail.

Rossow et al. [27] observed a large number of malware down-
loaders from 23 families between February 2010 and February 2012
and identi�ed their properties and behavior. They identi�ed the
means of communication they use to reach their command and con-
trol (C&C) server or other infected machines, by reassembling and
parsing numerous carrier protocols. They observed these samples
over a period of time and identi�ed how frequently the domains
and infrastructure change, and how long the downloader remains
active. Their analysis showed that 48% of downloaders actively
operated for more than a year. They then inspected how down-
loaders request their malicious software to install on the machine,
and recreated it to farm samples. They observed the number of
executables served, and established that polymorphism was used
by 8 of the 9 families of malware gathered.

Kwon et al. [19] approached the analysis of downloaders by cre-
ating in�uence graphs of downloaders, and identifying di�erences
between malicious and benign graphs. They extracted a total of 19
million in�uence graphs from their dataset. An analysis of these
graphs revealed that 22.4% (15,115) of downloaders have a valid
digital signature, in�uence graphs with a large diameter are mostly
malicious, in�uence graphs with slow growth rates are mostly mali-
cious, and malware tend to download fewer �les per domain. They
then used this graph representation of downloaders to extract sev-
eral features. Using these, they employed supervised learning to
create a detection model and then identi�ed the most important
features linked to malicious downloaders.

2.2 Pay-per-Install
Downloader software often has a presence in PPI networks. This
software is used by PPI providers to install their clients’ malware
onto compromised machines.

Caballero et al. [4] in�ltrated four PPI networks and ran their
downloaders in a closed environment, fromAugust 2010 to February
2011. They harvested over a million client executables using servers
across 15 countries. They observed over time the di�erent malware
samples downloaded by the PPI networks and clustered them into
their respective families and types, using their network activity.
They also observed the repacking rate of malware. The top 10
families show that they are repacked, i.e., their code is re-obfuscated,
every 6.5 day on average. They observed samples running anti-VM
techniques; some samples even removed or added them while in
a campaign, without any apparent reason. Another noteworthy
observation was that a number of executables extracted from the
downloaders are in fact other PPI downloaders, hinting at the fact
that there might be arbitrage in the PPI market, i.e., that PPI services
buy and resell their services between themselves to make a pro�t on
varying prices. The downloaded samples also di�ered depending on
the location of the machine, and an analysis of PPI forums showed
that the price varies according to the location of the purchase of
installs.
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Kotzias et al. [17] analyzed potentially unwanted programs
(PUP), which consist in software that is approved by the user, know-
ingly or not, but exhibit a behavior detrimental to them. Their �rst
step was to identify top PUP publishers by their signed software
name. They then clustered publishers by running a name similarity
algorithm, among other techniques. They looked at the prevalence
of PUP, and 54% of the dataset hosts had some form of PUP in-
stalled. Compared to legitimate software, the top PUP enterprise
ranked 15th, which shows how widespread these PUPs are. They
then established a relation graph between installers to see which
installs which, and then identi�ed PPI services by their high count
of outgoing relations and ingoing relations, which suggests they sell
installs. They also found that the majority of PUP are installed by
other PUP. In total, they observed 71 PUP publishers that clustered
to malware. However, this number is small in contrast to their total
number of publishers.

Thomas et al. [31] explored the ecosystem of PPI services to
establish what adware they distribute. They explored the 4 largest
PPIs from their network. They established an infrastructure to col-
lect software distributed by these PPIs on a regular basis. They
installed downloaders from these PPIs, and observed that these
downloaders sent to their server the client’s OS and service pack
version, the Web browsers and their version, and potentially unique
identi�ers including a MAC address. The server then sent 5 to 50
potential o�ers to the downloader. In this work, they then imple-
mented milkers and collected 446,852 o�ers through this. They
monitored the price of these o�ers through forums and various
websites advertising these online. They clustered the results into
families based on a multitude of characteristics. Additionally, they
analyzed the length of campaigns by looking at o�ers from the PPI
networks. Through the forums advertising these, they found that
the prices di�er per country. Finally, they identi�ed the lifetime
of adware sent through PPIs, which varied from 0.75 hours to the
entire monitoring window of 220 days.

Finally, Kwon et al. [20] implemented Beewolf, a software built
to identify malicious campaigns by using unsupervised learning
to identify the locksteps of malicious downloaders retrieving their
payloads. This work analyzes the global behavior of downloaders
in order to improve the detection of malicious campaigns, and not
necessarily single malicious �les. It identi�es overlaps between
malware delivery campaigns and PUP delivery campaigns.

2.3 Summary
While many projects have focused on improving the detection of
malicious software, exploit kits and malicious websites, download-
ers have seen less focus from the scienti�c community. Some of
these works [13, 25] have focused on analyzing malware downloads,
which includes the analysis of downloaders fetching malicious
payloads, although they do not focus on malicious downloaders
behavior.

Researchers have analyzed large-scale downloader campaigns
through adware, i.e., PUP, and, although speci�c downloaders and
PPI networks have been studied in detail, no research has shown
the impact the user and its machine con�guration have on the
downloaded malware by the downloader. More notably, no testing

framework has implemented the use of VMs that modify their
con�guration while testing downloader samples.

3 METHODOLOGY
Our approach consists in building an automated sandboxed envi-
ronment, containing multiple VMs, where malicious downloader
samples of various families are run with multiple machine pro�les.

D��������� 1. A machine pro�le consists of a machine M pos-
sessing n associated featuresMf = {M1,M2, ..,Mn }.

A sample is automatically tested on multiple machine pro�les
in order to gather what executable(s) is downloaded depending on
which pro�le was used. An analysis of the time series of infections
for every feature and payload family is then performed, in order
to assess what pro�le is targeted by the actors behind malicious
downloaders.

D��������� 2. A feature F of a machineM can be summarized as
a modi�able piece of software or hardware with a subset of l values,
such that F = {F1, F2, .., Fl }.

3.1 Testing Environment
Our �rst research objective is to build an automatic testing envi-
ronment to run downloaders using various machine pro�les.

The design of our platform is inspired from previous re-
search [31], and uses the Cuckoo Sandbox [8] framework to execute
samples. The Cuckoo framework provided us with the data neces-
sary for our analysis, and ended up successfully capturing malware
detonations.

This testing environment consists of a cluster of machines auto-
matically launching VMs in a sandbox, according to a 1) Scheduler,
while using a prede�ned user pro�le for each machine through a 2)
Pro�ler. Each VM is provided with a downloader sample to run, and
data is retrieved from the execution and then compiled with the 3)
Analyzer, where the downloaded �les’ malware families are also
identi�ed. Our framework is depicted in Figure 2. Here we detail
the di�erent sections:

Scheduler: This module receives the encrypted downloader
sample through a secure stream, asks the pro�ler to build a VM,
and then decrypts the sample and launches it in the VM.

Pro�ler: This module is responsible for following the experi-
mental design, in terms of features to test. In this module, a pro�le
will be built according to the current features in the queue, and
sent back to the scheduler. It will also specify the exit node, i.e., the
country, to use through a virtual private network (VPN).

Analyzer: This module is responsible for gathering data on the
execution of the downloader samples. It uses the Cuckoo sandbox
to capture network traces, process information and identify any
downloaded �les. This module tests any downloaded �le by the
downloader on VirusTotal [33], a platform that tests �les against
multiple antivirus software. The module then establishes the �le’s
family according to the naming of security vendors.

3.2 Automation Setup
Our physical testing environment consists of a cluster of 10 servers,
each one containing an Intel Xeon E5405 2.00 GHz processor and 8
GB memory. One server is used as the experiment manager, where
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Figure 2: Our framework depicting our downloader testing
environment

Cuckoo Distributed and the VPNs are installed. This machine dis-
patches the tasks of our scheduler to the other servers’ Cuckoo
frameworks through Cuckoo Distributed. One network interface
is used to access the servers, while a separate network interface is
used for each of the VPNs, in order to isolate the Internet access of
our VMs. Every VM has Internet access only through its assigned
VPN by the scheduler. OpenVPN1 is used to install and manage the
VPN connections. Our setup is fully automated: xCAT2 is used to
automate the installation of Ubuntu LTS on our servers, and Ansi-
ble3 scripts are employed to con�gure our setup, which consists of
the following steps:

(1) Install and con�gure libvirt with KVM for the virtualization
(2) Copy images of Windows XP, Windows 7 and Windows 10

on each server
(3) Create the VMs and their default snapshots
(4) Setup 10 VPNs
(5) Install and con�gure the Cuckoo and Cuckoo Distributed

frameworks
(6) Con�gure our virtualization software according to Cuckoo’s

requirements
Each server has three VMs, and our cluster totals 27 VMs which

can be used simultaneously. Our experiment and setup were ap-
proved by the Information Technology Risks Committee of our
university.

3.3 VM Hardening
An issue that can arise from testing malicious software in a sand-
box, using virtual machines, is the detection of the environment
by the malware. Some malware have been shown to use multiple
techniques to identify when they are running in a sandbox, and
subsequently terminate their malicious activity or delete them-
selves [5]. They employ sandbox and virtual machine detection to
prevent researchers and others from analyzing their software.

Modi�cations have been made to the virtual machines to ensure
more resilience to virtual environment and sandbox detection from
malware. The Cuckoo sandbox environment provides a disguise

1https://openvpn.net/
2https://xcat.org/
3https://www.ansible.com/

module, which modi�es various registry keys identifying the ma-
chine as a virtual environment. Since these registry key values are
hard-coded in the disguise module, we modi�ed them slightly to
evade any malware also trying to identify the Cuckoo sandbox.

We opted for KVM as a virtualization software, since detection
methods appear to be more prevalent for VMware [10] and that
QEMU/KVM leaves fewer traces in the operating system.

Our virtual machines have been tested using Paranoid Fish [23],
a popular virtual machine and sandbox �ngerprinting tool. In total,
50 out of 54 tests yielded success, with some tests failing due to
our limited hardware. However, upon inspection of a subset of our
samples, they did not employ most of these techniques, and the
ones present were covered by our modi�cations.

3.4 Choice of Features
Next, we must establish which features identify our machine pro�le,
and what may a�ect the downloader’s behavior, i.e., which features
might be targeted by cybercriminals. In this work, we use a black
box approach, i.e., we do not reverse engineer downloader software
to establish what it searches on the machine, but rather change
various features of our environment and observe possible changes
in behavior. We opted for this approach, considering there are
thousands of di�erent samples of downloaders in our dataset, and
theymight bemodi�ed frequently. Reverse engineering themwould
not be possible given the time and e�ort it requires. The malicious
hosts serving downloaders might also analyze the machine features
server side, in which case reverse engineering the samples would
at best only provide partial information. We also opt to change
features of our machines instead of monitoring Windows API calls
made by the downloader, in order to limit our interactions within
the VM as much as possible. This is to prevent the detection of
the research environment by the malicious software, and to avoid
impeding its execution in any way.

The features of our machines might notably be used in PPI net-
works, in order to decide which payload to install on a machine.
Previous research [31] has analyzed PPI networks and what infor-
mation adware downloaders send to their control servers. In their
analysis of 4 PPIs, they observed the following features being sent
by the downloaders:

• The operating system and service pack version
• The Web browsers installed, along with their version
• The IP address
• Potentially unique identi�ers, such as the MAC address

Although these PPIs are not necessarily similar to PPIs sending
malware, using these features for our experiments will provide a
basis to follow.

Firstly, we test multiple OSes, namely Windows XP, Windows
7 and Windows 10. Windows was chosen given that it is the most
common desktop OS4. Windows 10 andWindows 7 were used since
they consisted in the most popular desktop OSes at the time, while
Windows XP was chosen given that it is not supported anymore
by Microsoft but still has users running it worldwide.

We used a VPN to change our location to a speci�c country. In
order to establish the set of countries we wish to test, we identi�ed
4http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201803-
201803-bar
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Category Feature

User features
Country

Browser History
Web session (browser cookies)

Con�guration features

IP address
Windows OS version
Display language
Keyboard language

Table 1: Tested features of the victim machine
the countries with the most Internet users5. We could not obtain a
VPN access in Japan, and thus chose to test Korea instead. We also
included Iran in order to have at least one country from the Middle
East. We could not obtain a VPN located in China, and instead used
Hong Kong as the location. Our intuition is that, at the time of
our experiments, malicious downloaders targeting China might
also target Hong Kong. In short, our list of countries consists of:
Hong Kong, Iran, the United States, Brazil, Nigeria, Korea, Russia,
Germany, Mexico, Bangladesh.

Additionally, we also add features associated with the web his-
tory and the pro�le of the user. In the past, some malware has been
shown to look at the keyboard or display language of a systemwhen
executed [3, 14]. Thus, we opted to also include these features. The
keyboard layouts and the display languages chosen were the top 10
languages of Internet users worldwide6. Thus, the languages cho-
sen are: English, Chinese, Spanish, Arabic, Portuguese, Indonesian,
French, Japanese, Russian, German. The keyboard languages and
display languages are set by changing the corresponding Windows
registry keys.

Finally, we identi�ed nine Web browser session pro�les and
browser history pro�les to test, based on Alexa’s categories and
their list of most popularWeb sites7. To create browserWeb sessions
and a browser history, we open in the VM’s browser the top tenmost
popular Web sites of the current category being tested, and wait
for them to load before beginning the experiment. Our categories
are the following: Business, Games, Health, Kids and teens, Men,
News, Social networks, Sports, Women.

A summary of our features is described in Table 1.
Other user features, such as the age, gender and income, while

being relevant, are not always possible to identify on a machine,
and thus, will not be considered in our experiments.

3.5 Downloader Experiment
Our second research objective is to establish the correlation between
user pro�les and the malicious payload. Our experiments employ
our previously de�ned environment to run downloader samples.

The dataset, i.e., the downloader samples, is provided on a daily
basis by our security vendor partner ESET, an antivirus software
company. Each downloader sample is run, when received, on a set of
VMswith pro�les testing each of the various features. Any duplicate
downloader received is discarded. After each set of tests of a down-
loader, our analyzer establishes what payload was downloaded on
the victim machine. Our experimental design is as follows:

Two downloader families are tested, each of them for a period
of 15 minutes at a time, so that any execution delay in the sample
5https://www.internetworldstats.com/top20.htm
6https://www.internetworldstats.com/stats7.htm
7https://www.alexa.com/topsites/category

doesn’t impact the test, and our pro�le set up has time to execute
in the VM. Up to 10 samples of each family are tested per day,
according to the availability in our data stream. We aim at testing
the most current and widespread malicious downloaders, that are
known to have dropped multiple types of malware.

Our initial list of families consisted of Waski, Zurgop, Pliskal,
Wauchos, Nymaim, Tovkater, Banload and Emotet, which all have
the most mentions in security vendor blogs and the research liter-
ature, at the time of the beginning of our experiments. However,
we could not obtain enough samples of Wauchos, Nymaim and
Pliskal to consistently test these three families. While it is not clear
why no samples of Pliskal were available, it is likely that Wauchos
samples were less prevalent following a large disruptive operation
by law enforcement authorities worldwide in late 2017 [11]. As for
Nymaim, the lack of available samples might be explained by the
fact that the family is older and less active in 2018. We ran some
preliminary tests, where samples of each of the remaining families
were run through our whole framework. After running these ex-
periments for a week, we noted every family that made at least one
successful HTTP connection to an external server, i.e., that had at
least one online C&C server. In the end, the only families to have
at least one online C&C server were Tovkater and Banload.

In total, we have 42 feature variations to test. To obtain a large
enough set of tested samples, the variations have been tested each
day for a period of 12 months, and the test variations have been
executed each day at di�erent times in order to limit a potential
bias due to the time of execution. We can establish the number of
VMs needed for this experimental design as follows:

D��������� 3. The number of VMs needed can be calculated using
V = d ⇤ s ⇤ k ⇤ t/p, where d is the number of downloader families,
s is the number of samples of a family, k = n ⇤ l is the number of
feature variations, t is the time needed to run each sample, p is the
total minutes in a day, andV is the number of VMs needed to run the
tests.

For our experiments, 42 feature variations are tested, with a
running time of 15 minutes, where a day consists of 1440 minutes,
i.e., 24 hours. A full factorial experiment is not possible, given that
it would produce 27,000 feature variations, thus requiring 5,625
VMs. We opted to establish default values for each feature, where
only a selected feature to test would be modi�ed and tested. Our
default pro�le consists of themost popular feature for each category,
namely the United States as the country, English as the keyboard
layout and the display language, and social networks as the browser
session.

Thus, using our formula, a minimum of 9 VMs are required to
run our experiments each day.

3.6 Labeling
Our �nal dataset is a list of instances of multiple features of our
VMs associated with the data extracted from the execution of a
malicious downloader in a sandbox.

To test our hypothesis, we label each dataset entry with the fam-
ily of the downloaded payloads from the execution of the malicious
downloader. Each payload is tested on VirusTotal to establish if it is
malicious, and if so, its family. Each sample is scanned a month after
the end of our experiments, in order to take into account labels that
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change over time [35]. In order to �lter possible false positives, we
only consider malware with at least 5 positive reports in VirusTotal
to be malicious, following previous research establishing the ideal
threshold at between 2 and 15 [35].

Establishing the family of a malware sample, particularly a fresh
new sample, is a di�cult task that is still the subject of current
research. Avclass [28] is a tool that aims at identifying malicious
families through the various entries of a single VirusTotal report.
While this tool works well when identifying large generic families,
it proved unable to correctly di�erentiate our various families, la-
beling our samples as either a singleton (without a family), or all in
one unique family.

A number of other approaches aim at clustering malware into
families [6, 9, 24]. Unfortunately, works such as these are either
tested on a speci�c subset of malicious families, or consist in a
proof of concept without any published tool. Thus, we implement
our own approach to identify malware families, for our particular
setup.

Firstly, we inspect a subset of our payloads’ VirusTotal reports, in
order to identify the predominant labels for various payloads. These
labels often consist in a generic identi�cation, when the family can-
not be correctly identi�ed by the antivirus, e.g., a signature such
as Trojan.Generic.XYZ. These labels introduce noise into our data
and are thus discarded. From this, we obtain a set of label families
for each payload. The labels di�er between antivirus for various
reasons: di�erent antivirus software might have di�erent family
names for the same malware, some might have more �ne-grained
family identi�cation than others, and some antivirus softwaremight
correctly identify a malicious software but incorrectly identify its
family. Previous research has identi�ed that many AV signatures
are incomplete or inconsistent [2]. Thus, we initially establish a
subset of precise family names used by antivirus software through
our manual VirusTotal reports analysis, and we then label the mali-
cious payloads with the most occurring label. If no label from our
list is present, we default to the majority label found, similar to
Avclass. Our labeling approach simply aims at clustering similar
samples together, so as to establish if a cluster behaves di�erently
for a machine pro�le. Thus, our clustering follows the naming of
antivirus companies only as a means of di�erentiating samples.
While previous research demonstrated ways to identify malware by
its behavior [2, 7, 26, 34], we limit our interactions inside our VMs
to the minimum, and thus, do not make an in-depth analysis of our
malicious downloaders’ behavior to construct similarity pro�les.

The following are our identi�ed families and are used as a label
when they are the most occurring family: Eldorado, Adware, KillAV,
Psyme, Banload, InstallMonster.

3.7 Time Series Analysis
In order to establish changes in the behavior of our downloader
samples, we build time series out of our experiment data. The num-
ber of dropped payloads, for one particular family, as established
in Section 3.6, is extracted from our results for every week of our
experiments. This is repeated for every feature tested as to identify
all changes of behavior through time for our various downloader
families.

To test whether a change has happened in a time series, we
employ changepoint analysis. Since our data consists of time series
where we aim at identifying a change of behavior, we opted to use
changepoint analysis to extract the various changepoints of each
value of a feature, and thus, identify if one or more value of a feature
changes at a di�erent time than the others. Changepoint analysis
is the detection of a change in the distribution of data in a time
series, and it establishes the precise time at which a change occurs.
Every point in time where a change occurs consists in a changepoint.
Multiple algorithms have been established in the past to improve the
detection of changepoints [12, 15, 16, 22]. Changepoint analysis has
been employed in previous research in computer security, although
mainly in network intrusion and anomaly detection [29, 30]. To
execute our changepoint analysis, we’ve opted to use the Ruptures
Python library [32], which implements a multitude of changepoint
algorithms.

Finally, for every downloader family and feature type, we com-
pute the ratio of infections to total runs for each day of our exper-
iments, and perform a one-way analysis of variance (ANOVA) of
the means of the ratio of infections for each feature and each type
of payload.

For this, we keep every day with at least one infection for one
value of a feature and use this dataset for our analysis. We use the
ratio of infections instead of the number of infections to compensate
for any imbalance in the number of downloader runs per feature.
While our Pro�ler manages the queue of experiments and equally
distributes the features to test, some machines in our cluster were
the victim of hardware issues and outages during the one-year
experiment, and were sporadically o�ine. The statistical analysis is
performed using SigmaPlot (Systat). The data is tested for normality
using the Shapiro-Wilk test, and tested for homoscedasticity using
the Kolmogorov-Smirnov test. All the tests are two-sided. Following
this, we run a one-way ANOVA on ranks of our values, since the
distribution of the ratio of infection is not a normal distribution.
We employ the Kruskal-Wallis test [18], which is a non-parametric
method to determine the di�erence between the means of di�erent
groups.

4 RESULTS
We employed our framework over a one-year period, from Febru-
ary 2018 to February 2019, and ran malicious downloaders on our
prede�ned machine pro�les. We collected data on these executions
and established time series of infections for our various downloader
families and payload families.

4.1 Dataset
Our �nal downloader dataset consists of 1,526 unique samples,
where 711 were identi�ed as part of the Tovkater family, and
805 were identi�ed as part of the Banload family. On average,
each sample was run 100 times, when testing our pro�le features
according to our experimental design. In total, we ran 151,189
tests inside our VMs through the Cuckoo framework, with 72,829
tests run on Tovkater samples and 78,360 on Banload samples.
Of these, 18,975 resulted in a detonation of the malicious down-
loader, i.e., these downloaders downloaded other malware pay-
loads from the Internet. While most downloaders only fetched one
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payload per run, there were 258 that downloaded two payloads
and 163 that downloaded three payloads. Multiple types of �les
were downloaded by the downloaders, depending on the initial
sample and the needs of the C&C. The �le types identi�ed by
inspecting the �le header of the downloaded payloads are: octet-
stream, x-dosexec, vnd.ms-cab-compressed, vnd.openxmlformats-
o�cedocument, vnd.ms-powerpoint(ppt/pptx), sqlite, x-shockwave-
�ash, zip, plain, html, x-msdos-batch, xml, ini �le, vbscript, json,
png, jpeg, gif, svg and x-wav.

The text, HTML and octet-stream payload �les generally indi-
cated a failure to correctly run a downloader. Other executions
successfully detonated, and upon inspection, some began the infec-
tion with a batch script, a javascript page or a VBScript launching
or downloading another malicious executable. A series of Banload
runs had an initial batch �le, which downloaded an executable,
which in turn downloaded a malicious powerpoint �le. Another
type of multi-stage attack was observed for Banload downloaders,
where they retrieved a Microsoft O�ce document, which then in-
stalled another malicious executable. In some cases, we observed an
autoliker chrome extension being downloaded, hinting at a possible
use of the infected machine as a bot on social networks.

A number of ZIP �les were downloaded by our downloaders.
Upon closer inspection, these did not seem to be valid ZIP �les, but
did appear to contain a malicious executable.

Finally, to con�rm the maliciousness of the retrieved payloads,
we tested each one on VirusTotal, and ended upwith 3,608malicious
payloads.

4.2 Labeling
We employed the technique described in section 3.6 to label all of
our collected instances that resulted in a detonation. These samples
had at least 5 positive detections in VirusTotal, and 1298 samples
had a majority of positive detections.

In total, our collected payloads consist of 75 instances of KillAV,
134 instances of Psyme, 318 instances of Banload, 346 instances of
Eldorado, 1,121 instances of Adware, and �nally 1,580 instances of
InstallMonster. As can be observed, the majority of our downloaded
payloads were labeled as Adware or InstallMonster. Previous re-
search identi�ed that PUP andmalware share infrastructure [13, 20],
which explains the presence of Adware samples in the retrieved
payloads of our downloaders.

In order to identify if our respective downloader families are
used in a PPI distribution model, we computed the number of dis-
tinct payload families served. On average, Banload downloader
binaries each served 1.5 families, while Tovkater binaries served
2.06 distinct families. In total, the following families were seen in
dropped payloads of Banload: KillAV, Eldorado, Adware, Zpevdo,
Installmonster, Banload, Psyme and Wisdomeyes. For our second
downloader family, Tovkater, the following families were seen in
malicious payloads: Adware, Zpevdo, Eldorado and Installmonster.

4.3 Infections Through Time
When observing the rate of infections for each of our labeled fam-
ilies, according to our various features, we can establish where a
peak of infections occurs for a speci�c feature and a speci�c mal-
ware family. We applied changepoint analysis to our various time

series, and noted the feature values for which these vary. Our results
also di�er when testing our two downloader families. As the tests
were running every day and the changepoint analysis needed less
granularity, we created four bins for each month (on the 4th, 12th,
20th, and 28th) grouping the activities of the 7-8 days around them.
Additionally, we ran a one-way ANOVA of the ratio of infection
per day to identify if the features identi�ed as statistically di�erent
match with our features identi�ed in the changepoint analysis. All
data in the �gures are presented as the mean + Standard Error of
the Mean (SEM). The asterisks in our �gures denote the statistical
signi�cance for speci�ed tests, chosen as ⇤ = p < 0.05, following a
previous study [21].

Next, we will show the results returned by the application of
the changepoint analysis on the di�erent features, along with the
results of our analysis of variance.

One of the most impactful features in our tests was, unsurpris-
ingly, the operating system used in the VM running the downloader
executable.

When running Windows XP, we obtained less than half the
number of infections of other OSes. The majority of the Windows
7 infections belong to the InstallMonster family, whereas Windows
10 is mainly a victim of Adware.

The Windows version used in the VM is not the only feature
highlighted by our analysis. Firstly, Figure 3 highlights infections
that downloaded Adware as a payload while testing our browser
pro�le feature and running the Tovkater downloader. As can be
observed, there is an increase to 8 infections with solely a news
browser pro�le, where the closest other browser pro�le is sports
with 2 infections. Our changepoint analysis identi�ed four common
changepoints among the di�erent browser pro�les:

(1) The 4th of March 2018: The start of our experiments and an
increase in the number of infections

(2) The 12th of April 2018: The moment of a second sudden peak
of infections

(3) The 28th of June 2018: The end of the �rst infection pause
mentioned earlier

(4) The 4th of August 2018: The separation between the activity
in the summer and the decrease following it

The algorithm identi�ed another relevant point in its analysis:
the 20th of May 2018. The changepoint analysis highlighted that
the news browser pro�le was showing di�erent activities from the
other ones. In fact, this pro�le has seen more detonations, resulting
in a higher number of payloads downloaded in this con�guration.

We ran a one-way ANOVA to compare the means of the ratio of
infections by Adware for di�erent browser pro�les when running
Tovkater, for the time period with the most activity: from March
6 2018 to June 6 2018. One browser pro�le was identi�ed as being
di�erent: the news browser pro�le results were identi�ed as statis-
tically higher than the business and health browser pro�les with a
p-value<0.05. Indeed, the news browser pro�le shows an average
ratio of infection more than two times higher than infections with
the health or business pro�le, which con�rms that our machines
with the news browser pro�le received more Adware payloads.
The means of the ratio of infections for each browser pro�le are
identi�ed in Figure 4.
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Figure 3: The number of dropped Adware payloads over
time according to the browser pro�le

Figure 4: The average ratio of infections of Tovkater with
Adware payloads over time according to the browser pro-
�le. Signi�cantly di�erent averages are marked in bold.

Secondly, we tested our various display languages, and observed
some changepoints di�erences. However, when running an ANOVA
on the means of the ratio of infection, no feature was identi�ed as
statistically di�erent.

Another interesting activity was observed when testing the dif-
ferent keyboard layouts with the Banload downloader, as shown
in Figure 5. Speci�cally for dropped payloads part of the Banload
family, more activity was seen over time when the keyboard layout
consisted in Portuguese. This result can be further con�rmed by an-
alyzing online activity of the Banload downloader89, which is most
active in Brazil, a country with Portuguese as its o�cial language.
Moreover, another keyboard layout with which the downloader is
behaving di�erently is Chinese, where there are fewer detonations
than with our other keyboard layouts. Our changepoint analysis
identi�ed four changepoints for all our keyboard layout values
except Chinese:

(1) The 4th of March 2018: The start of our experiments
(2) The 20th of May 2018: A drop in the number of infections
(3) The 12th of September 2018: Infections suddenly increased

8https://www.virusradar.com/en/Win32_TrojanDownloader.Banload/map
9https://securityboulevard.com/2019/05/cybercrime-groups-behind-banload-
banking-malware-implement-new-techniques/

(4) The 28th of December 2018: The infections’ �nal drop
It is worth noting that there is a smaller number of infections

than for our previous results. The Chinese keyboard language does
not have any changepoints identi�ed, which highlights the fact
that VMs with a Chinese keyboard language are less infected. The
changepoint analysis on the data related to the Portuguese keyboard
language, however, has highlighted two additional moments in the
timeline, the 28th of June 2018 and the 20th of October 2018. These
moments correspond to an increased number of infections which
is not happening when using the other layouts.

Figure 5: The number of dropped Banload payloads over
time according to the keyboard layout

Figure 6: The average ratio of infections of Banload drop-
ping Banload payloads over time according to the key-
board layout. Signi�cantly di�erent averages are in bold.

We also ran an ANOVA on the ratio of Banload infections for
keyboard layouts when running the Banload downloader, and found
one of them to be statistically di�erent from March 20 2018 to
June 6 2018. The Portuguese keyboard layout was found to be
statistically higher than the Chinese and Russian keyboard layouts,
with a p-value<0.05. The means of the ratio of infection of each
keyboard layout is shown in Figure 6, where we can observe that
the Portuguese keyboard layout obtains more than twice the ratio
of infections of the Russian and Chinese keyboard layouts.

The Chinese keyboard layout appears to be the victim of less
Adware infections when running Tovkater downloader samples

https://www.virusradar.com/en/Win32_TrojanDownloader.Banload/map
https://securityboulevard.com/2019/05/cybercrime-groups-behind-banload-banking-malware-implement-new-techniques/
https://securityboulevard.com/2019/05/cybercrime-groups-behind-banload-banking-malware-implement-new-techniques/
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as well. In fact, no Adware infection was registered at all for this
keyboard layout. We ran an ANOVA on this feature and identi�ed
the Chinese keyboard layout to be di�erent than almost all other
layouts: the ratio of infection is statistically lower than for the
Arabic, German, Russian, Japanese, French and Spanish keyboard
layouts with a p-value<0.05. The means of the ratio of infections
per keyboard layout can be observed in Figure 7.

Figure 7: The average ratio of infections of Tovkater drop-
ping Adware payloads over time according to the keyboard
layout. Signi�cantly di�erent averages are in bold.

Finally, while changepoints were identi�ed for some peaks of
infections for machines in di�erent locations, we ran an ANOVA
of the ratio of infections and did not �nd any statistically di�erent
locations.

5 DISCUSSION
Through our experiments, we aimed at reverse engineering the
targeting choice of criminals by establishing the link between a
malicious downloader and the pro�le of the victim machine. Our
approach did not look at the code of malicious samples, but empiri-
cally determined this link by setting up di�erent VM pro�les and
analyzing whether samples were reacting to di�erent pro�les in
di�erent ways. In Section 4, we described the �ndings of our exper-
iments, i.e., which pro�les attracted a certain family of malware,
and to what degree, with the number of infections. The change-
point analysis highlighted the important moments during the 12
months of experiments, and an analysis of variance identi�ed if the
average ratio of infection for a given feature value was signi�cantly
di�erent than other values.

The highest number of malicious payloads was experienced on
machines running Windows 10, while Windows XP resulted in
the least infections. The popularity of Windows 10 among these
malware families is particularly interesting as the OS has become
more prevalent than Windows 7 only at the beginning of 201910.
Windows XP is not supported anymore byMicrosoft, and is thus less
secure than other modern OSes, however, these results show how
it is becoming less relevant to the cybercriminals’ purposes. One
explanation might be that malware is targeting the most used OSes,
and as such avoid Windows XP. Additionally, droppers downloaded
10https://www.theverge.com/2019/1/2/18164916/microsoft-windows-10-market-
share-passes-windows-7-statistics

di�erent families of malware depending on the OS. Windows XP
and Windows 7 were mainly infected with InstallMonster payloads,
while Adware payloads were used to target Windows 10 VMs.

Similar to previous work, our analysis has highlighted how the
OS is a feature taken into consideration by criminals. However, our
results also presented a new phenomenon, i.e., that the browser
pro�le and keyboard layout can have an impact on what payload a
downloader downloads.

In the previous section we mentioned that at one point, Tovkater
samples focused on the download of Adware payloads when ob-
serving a news browser pro�le. Indeed, users visiting news websites
might be more susceptible to adware, or correspond more closely
to the target demographic of the malicious actors. We also noted an
increase in Banload downloaders downloading additional Banload
payloads when running a machine with a Portuguese keyboard
layout, particularly compared to the Chinese and Portuguese key-
board layouts. This is corroborated by news articles showing that
a Banload campaign has run since May 201811. Malicious actors
appear to target Portuguese-speaking countries through the Ban-
load downloader. The Chinese keyboard layout also did not receive
any Adware infections when running Tovkater samples, further
con�rming that this keyboard layout is less targeted by Adware
samples. One explanation for this phenomenon can be that ma-
licious actors avoid targeting their country of residence. In can
also be that laws around adware infections are stricter in China,
or that the downloader operators fear harsher penalties. Finally, it
can simply be that Chinese-speaking countries are less attractive to
these malicious actors, due to there being fewer pro�ts to be made.

These �ndings highlight how crucial it is to consider the con-
text in which a malicious downloader is executed when trying to
detonate it and observe its behavior. One of the key issues security
researchers face when analyzing malware is e�ectively executing
them in a research environment in order to identify their malicious
behavior and build methods to detect andmitigate them. Our results
show how identifying important pro�le features for a malicious
downloader can not only have an impact on the number of down-
loaded payloads, but also on the type of downloaded payloads as
well.

Limitations. While our results have shown how Tovkater and
Banload downloaders behave di�erently given various machine
pro�les, the downloader samples used in our experiments were
provided by our antivirus partner, and as such, are only samples
that could be detected and retrieved by them. Thus, these samples
might not necessarily be representative of the general ecosystem of
malicious downloaders. We also have limited information regard-
ing the source and context from which originated the downloader
samples.

Another limitation is that we tested each feature independently,
in order to clearly identify if one feature impacted the execution of
a downloader. We did not possess enough resources to test combina-
tions of features, such as a matching keyboard and display language.
However, while this setup might have negatively impacted the num-
ber of noteworthy detonations of malicious downloaders, we still
obtained a number of results solely with our single feature tests.

11https://securityboulevard.com/2019/05/cybercrime-groups-behind-Banload-
banking-malware-implement-new-techniques/

https://www.theverge.com/2019/1/2/18164916/microsoft-windows-10-market-share-passes-windows-7-statistics
https://www.theverge.com/2019/1/2/18164916/microsoft-windows-10-market-share-passes-windows-7-statistics
https://securityboulevard.com/2019/05/cybercrime-groups-behind-Banload-banking-malware-implement-new-techniques/
https://securityboulevard.com/2019/05/cybercrime-groups-behind-Banload-banking-malware-implement-new-techniques/


ARES 2022, August 23–26, 2022, Vienna, Austria François Labrèche, Enrico Mariconti, and Gianluca Stringhini

6 CONCLUSION
In this work, we aimed at reverse engineering the targeting choice
of cybercriminals acting through PPI networks, by establishing
if a link between the features of a machine and the payload(s)
downloaded by a malicious downloader exists. We successfully
built an automated sandboxed environment framework, which is
capable of changing the con�guration of a VM for a speci�c run
of a malicious downloader executable. Using this setup, we ran
151,189 tests on Tovkater and Banload downloader families. Of
these, 18,975 resulted in the download of at least one additional
payload.With the use of changepoint analysis applied on time series
of our infections and ANOVAs of the ratio of infection per day, we
identi�ed di�erent malicious payloads downloaded depending on
the operating system.

More notably, we showed that malicious downloader families
download di�erent payloads depending on the browser history
and the keyboard layout of the machine, highlighting the targeting
choices of cybercriminals when infecting victims through down-
loaders.

Our �ndings show that an e�ective setup to analyze malicious
downloaders should consider the features of the virtual machines
in order to obtain better rates of detonation and to gather a larger
array of malware families.
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