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ABSTRACT
Modern defenses against cyberattacks increasingly rely on proac-
tive approaches, e.g., to predict the adversary’s next actions based
on past events. Building accurate prediction models requires knowl-
edge from many organizations; alas, this entails disclosing sensitive
information, such as network structures, security postures, and
policies, which might often be undesirable or outright impossible.

In this paper, we explore the feasibility of using Federated Learn-
ing (FL) to predict future security events. To this end, we introduce
C�������, a system enabling collaborative training of Recurrent
Neural Network (RNN) models for participating organizations. The
intuition is that FL could potentially o�er a middle-ground between
the non-private approach where the training data is pooled at a
central server and the low-utility alternative of only training local
models. We instantiate C������� on a dataset obtained from a ma-
jor security company’s intrusion prevention product and evaluate it
vis-à-vis utility, robustness, and privacy, as well as how participants
contribute to and bene�t from the system. Overall, our work sheds
light on both the positive aspects and the challenges of using FL
for this task and paves the way for deploying federated approaches
to predictive security.

1 INTRODUCTION
Modern security breaches often happen in multiple phases, with
attackers progressively gaining a more signi�cant foothold in an
organization. Alas, attacks are often detected at later stages or even
after they have been completed, making remediation much more
di�cult. As a result, predicting an attack early on can give orga-
nizations a signi�cant advantage, enabling them to take proactive
rather than reactive countermeasures.

Prior work introduced systems to predict security events [6,
32, 33, 48, 53, 57]: the general approach is to learn from history,
characterizing previous attack events and using this knowledge
to predict future ones. However, these systems typically require
collecting events from organizations and storing them in a central-
ized platform to train a ML-driven prediction model. These records
often include privacy-sensitive metadata, including machine ID,
event description, timestamp, action taken, etc. Moreover, disclos-
ing security events can reveal sensitive information about network
structures, security policies, security postures, etc.

A possible alternative solution would be to adopt a local-only
procedure where each organization only trains a prediction system
on their own data. However, one would not have access to the
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intelligence and knowledge available from a (more) global view of
security events; put simply, it would be signi�cantly harder to learn
about emerging attacks that target other organizations.

Overall, in many scenarios, con�dentiality concerns would, in
e�ect, make it impossible to perform security event prediction as
disclosing data is not possible, and local-only training is ine�ective.
As a result, we investigate the feasibility of using collaborative learn-
ing to bene�t from participating organizations’ knowledge without
requiring data disclosure. In particular, we turn to Federated Learn-
ing (FL) [39], a popular technique for training machine learning
models collaboratively based on aggregated model updates.

Ostensibly, this raises several research challenges. First, it is
unclear what the resulting accuracy of this approach would be
or whether organizations would bene�t from participating in the
system. Moreover, even though with FL raw data never leaves
the “premises,” prior work shows that FL does su�er from privacy
and robustness vulnerabilities [4, 41, 44, 68]. This prompts the
need for a thorough experimental methodology, taking di�erent
data distributions and settings into account to evaluate utility and
security in real-world settings.
Research Questions & Roadmap. In a nutshell, our work identi-
�es and aims to address three main research questions:

(1) Is it feasible to build an FL-based system to predict security
events?

(2) How can we meaningfully analyze the utility of such a sys-
tem? How would the data distribution across di�erent par-
ticipants a�ect the accuracy of the prediction model? How
do di�erent participants contribute to or bene�t from the
federation?

(3) How vulnerable is FL-based security event prediction to
robustness and privacy attacks, and do available defenses
mitigate them e�ectively?

To answer these questions, we designC�������, an FL system for
predicting security events (Section 3). C������� uses a Recurrent
Neural Network (RNN) to train a model learning from the history
of security events and predicting future security incidents. The
system does not collect security events from organizations; instead,
each participant obtains a model to be trained on their dataset.

We evaluate C������� on an intrusion prevention product run
by a major security company, using a dataset including nearly
5K organizations and 35M security events (see Section 4). More
precisely, we analyze C������� along three axes: utility, robustness,
and privacy (see Section 5, 6, and 7, respectively).
Methodology. Our experimental evaluations are conducted over
di�erent data distributions. We de�ne a metric to measure how
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Non-Independent and Non-Identical the data distributions of di�er-
ent participants are (the Non-IIDness score) and synthesize di�erent
distribution settings based on this score. For instance, we experi-
ment with a setting involving so-called knowledgeable participants,
i.e., organizations with data instances from all classes.

We then evaluate how much and how many di�erent partici-
pants contribute to the aggregated model’s accuracy. To do so, we
remove a participant from the system and estimate the impact on
the aggregated model’s precision; we call this metric the contribu-
tion impact. However, it would be prohibitively expensive to do
so for all participants because of the computational overhead of
FL’s re-training phase. Thus, we use the in�uence score, as de�ned
in [27], to measure the impact of each participant’s training dataset
on its local model. We then compute the contribution impact for
the participants with the highest in�uence score and show that
the latter metric can be used as a proxy for the former to shed
light on what data makes the federated model work well. We also
analyze the bene�ts of participating in C������� by comparing the
utility of the global model vs. the local model. We show that, for
the participants with the highest contribution, their “gain” from
federating is dependent on the data distribution.

Finally, we analyze C�������’s vulnerability to robustness and
privacy attacks, i.e., measuring the e�ectiveness of poisoned data
contributed by adversarial participants and the privacy leakage
from the model updates.

Main Findings. Overall, we �nd that:

• The utility of the FL-based system, C�������, is relatively
lower than in the centralized alternative, where the server
gathers raw data from all participants and trains the model.
For instance, the F1-score decreases from 0.83 to 0.70, accu-
racy from 0.85 to 0.78 using what we de�ne as the primary
distribution. Precision, computed w.r.t. 1,465 possible secu-
rity event types, goes from 0.84 to 0.69. The accuracy drop is,
essentially, the “cost” of doing away with the central server
gathering security events from all participants.

• In extreme non-IID distributions, FL accuracy drops further.
For instance, the F1-score goes down to 0.65 in the extreme
(arti�cial) setting where each participant is assigned one
class, suggesting that FL-based approaches might not always
be feasible if the security events are distributed this way
across organizations.

• The contribution impact is a correct metric to measure par-
ticipants’ contribution to the FL aggregated model, as knowl-
edgeable participants, i.e., those with instances from all
classes, have the highest value. Some organizations con-
tribute signi�cantly to the performance of C������� but do
not bene�t much as their local datasets are already “rich”
with instances from all the classes. In line with other work on
FL [66], this suggests that the issues of bene�t-vs-contribution
and how to incentivize participation need to be taken into
account.

• Distributed backdoor poisoning attacks are relatively e�ec-
tive at undermining robustness while decreasing the main
task precision by a negligible amount. For instance, with 1%
of participants being controlled by an adversary, the back-
door attack reaches an accuracy of 0.94, while the main task’s

precision decreases from 0.69 to 0.65. However, defenses like
norm bounding [59], Weak Di�erential Privacy (DP) [59],
and Centralized Di�erential Privacy (CDP) [21, 40, 43] are
quite e�ective across the board—as opposed to Trimmed
Mean [65] and Krum [7], which do not work in Non-IID data
distributions.

• Membership inference attacks [44, 67] are e�ective, but only
with a few participants. In these settings, the best potential
defense, CDP, is hard to deploy as the model ends up not
converging due to the noise needed to be added to the model
updates.

Contributions. The main contribution of our work is to explore
the feasibility of using FL to collaboratively train RNNs and pre-
dict security events. We do so in four main steps: 1) we introduce
C�������, a (generic) system using FL and RNN to collaboratively
predict security events; 2) we de�ne appropriate metrics to measure
the contribution of entities to the system, as well as the bene�ts for
them; 3) we evaluate the vulnerability to distributed backdoor data
poisoning [4] as well as privacy-leakage attacks [44, 67], and the
e�ectiveness of state-of-the-art defenses; and 4) we discuss open
challenges and a roadmap for future work in this space.

2 FEDERATED LEARNING BACKGROUND
We now review the notion of Federated Learning (FL), as well as the
instantiation we use (�43�E6 [39]). We also present attacks against
FL and available mitigations. Readers familiar with these notions
can skip this section without loss of continuity.

2.1 FedAvg
Federated Learning (FL) is a distributed learning setting used to
collaboratively train models with multiple participants [39]. Unlike
traditional centralized approaches, training data instances are not
pooled at a central server. Each participant trains their own model
locally, on their datasets, and shares updated parameters with a
server, which aggregates the parameters and returns the result
to the participants. Typically, this happens over multiple rounds;
eventually, the model converges and the parameters are �nalized.

In this paper, we consider the FL instantiation presented in [39],
which relies on the �43�E6 (Federated Averaging) algorithm. The
model is training iteratively; let \C6;>10; denote the latest global
model aggregated by the central server at the iteration step C , and<8
(for 8 = 1, 2, 3, 4, . . . , ) denote the devices of all participants. The
central server �rst broadcasts \C6;>10; to all<8 , then, every device
(say the :-th) initializes \C8 as \C8 = \C6;>10; . The 8-th participant
performs ⇢ (where ⇢ � 1) local updates:

\C8 (: + 1) = \C8 (:) � [:r✓ (\C8 (:), {G8,9 , ~8,9 }) (1)

where : = 1, 2, 3, ..., ⇢ denotes the local training step. Note that ✓ is
the classi�cation loss function used by the 8-th participants, while
{G8, 9 ,~8, 9 } (where 9 = 1, 2, 3, . . . , |+8 |) are the training instances
hosted locally by the 8-th participant. |+8 | is the total number of
training instances on the i-th participant, Finally, \C8 (:) is the local
model updated at the :-th step of the stochastic gradient descent
performed locally; note that \C8 (:) = \C8 = \C6;>10; when : = 0.

After the participants �nish training their local models, they
submit them to the central server. The global model derived at the
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central server is then aggregated by averaging the local models:

\C+16;>10; =
 ’
8=1

\C8 (⇢) (2)

Note that \C8 (⇢) denotes the models trained locally, after ⇢ rounds
of gradient descent.

More advanced averaging techniques may be applied to FedAvg,
e.g., taking the weighted average of local models to derive the global
model [29]. These techniques may address settings involving het-
erogeneous data across participants. However, compared to the
standard FedAvg, they only slightly improve the training conver-
gence in the not independent and identically distributed scenario
(Non-IID data, which is discussed later in the paper) while only
slightly a�ecting the classi�cation accuracy of the model. Therefore,
we opt to use the standard FedAvg instantiation.

2.2 Attacks against FL
Prior work shows that FL may be vulnerable to attacks during and
after the learning phase, targeting robustness and/or privacy [17, 36].
Poisoning Attacks. These aim to make the target model misbe-
have; they can be performed either on the data or the model. The
former happens during the local data collection, while the latter
occurs during model training. Poisoning attacks can be random
or targeted; random ones reduce the utility of the aggregated FL
model, while targeted attacks make the aggregated FL model output
prede�ned labels.
Backdoor A�acks. A subclass of poisoning attacks, namely, back-
door attacks, has recently attracted a lot of attention from the
research community [4, 5]. These are targeted model poisoning at-
tacks where a malicious client injects a backdoor task into the �nal
model, typically using a model-replacement methodology[4, 59].

As in [4], the main steps of the distributed backdoor attack are as
follows. At round A , the attacker attempts to introduce a backdoor
and replaces the aggregated model \ with a backdoored one \⇤, by
sending the following model update to the server:

�\0CC02:4AA =
⌃ 8=1=8

[=0CC02:4A
· (\⇤ � \A ) (3)

where =8 is #data points at participant 8 , [ is the server learning
rate, and the �rst term of the dot product is the boost factor. Then,
the aggregation in the next round yields:

�\A+1 = \⇤ + [
⌃ �18=1 =8�\

8
A

⌃ 8=1=8
(4)

If we assume the training process is in its last rounds, then the
aggregated model will converge; thus, model updates from non-
attacker participants are small, and we would have �\A+1 ' \⇤.
If the attacker does not know the learning rate or the number of
training data hosted by the other participants, it can choose a large-
enough boost factor, ensuring a good classi�cation accuracy over
backdoor samples.

Compared to untargeted data poisoning attacks, which aim to
globally reduce the detection or prediction performances on any
input, backdoor poisoning only triggers attack-desired misclassi�-
cation over particular inputs embedded with a prede�ned trigger
signal by the attacker. For other inputs, backdoor poisoning rarely
introduces perturbation to the utility, thus yielding a stealthier
threat to the integrity and the applicability of FL-based systems

in practice [11, 13, 64]. Attackers could use backdoor poisoning to
mislead the FL system and produce the desired mispredictions over
speci�c attack behaviors, e.g., causing security incidents of high
priorities, while the system keeps working normally for attacks of
low priorities. This could make the security event prediction model
much less useful for organizations.
Inference Attacks. These aim to exploit model updates exchanged
between the participants and the central server to extract infor-
mation about training data points. The goal is to infer properties
of these points that may be even uncorrelated with the main task
or training set membership. In this paper, we focus on so-called
membership inference attacks (MIA) and experiment with the two
speci�c attacks discussed next.
Nasr et al. [44]’s a�ack. The main intuition is that each training
data point in�uences the gradients of the loss function recogniz-
ably, i.e., a malicious participant can perform gradient ascent on
a target data point before updating their local parameters. If the
point is part of a victim participant’s set, the Stochastic Gradient
Descent (SGD) algorithm reacts by abruptly reducing the gradient,
and this can be recognized to infer membership successfully. An
adversarial participant can observe the aggregated model updates
and, by injecting adversarial model updates, extract information
about the union of the training dataset of all other participants.
Zhang et al. [67]’s a�ack. This involves two main steps. (1) Aug-
menting the training data with Generate Adversarial Network
(GAN), generating training data with the same distribution. The
generator generates data records from random noise, and the dis-
criminator is initialized with the target FL model. The target model
as the discriminator can guide the generator to follow the train-
ing data points; the adversary then queries the target model with
the generated samples and gets the labels. (2) Training a binary
classi�cation model using a GAN-enhanced attack method, aiming
to di�erentiate members from non-members of other participants’
training data. Both the generated and the original data are used to
train the attack model and predict training set membership.

2.3 Defenses
We now brie�y discuss state-of-the-art defenses against robust-
ness attacks (namely, Trimmed Mean, Krum, FLTrust, DnC, Norm
Bounding, and Weak Di�erential Privacy) as well as privacy attacks
(namely, participant-level di�erential privacy). As shown in [43],
participant-level di�erential privacy can also protect robustness.
Trimmed Mean [65]. For each model parameter, the server col-
lects its values in all local model updates and sorts them. Given
a trim parameter V < =/2, the server removes the largest and
the smallest V values and then computes the mean of the remain-
ing = � 2V values as the value of the corresponding parameter in
the global model update. The trim parameter V should be at least
the number of malicious clients to make Trim-mean robust. In
other words, Trimmed mean can tolerate less than 50% of malicious
clients.
Krum [7]. This defense assumes that the number of attackers is
bounded and known; given the gradient updates from all clients at
each iteration, malicious contributions will appear anomalous. The
selection strategy by the server is to �nd one whose data is closest
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to that of other participants. In other words, it computes the local
sum of squared Euclidean distances to the other participants and
chooses the one with minimal sum to update the global model.
FLTrust [9]. The server collects a clean training set and maintains
a model on such a dataset, denoted as the server model. At each
iteration, it computes a trust score based on the deviation between
local model updates and the server model. The server normalizes
the magnitudes of the local model updates so that they lie in the
same hyper-sphere as the server model update in the vector space.
This limits the impact of malicious local model updates.
DnC [51]. The idea behind poisoning attacks is that malicious up-
dates are impactful in an IID FL setting if they shift from benign
updates in a speci�c direction. The Divide-and-Conquer (DnC) de-
fense computes the principal component of all updates, calculates
the scalar product of the model updates with the principle compo-
nent (called projections), and removes a fraction of the submitted
model updates with the largest projections.
Norm Bounding/Weak DP [59]. Using boosted attacks for intro-
ducing the backdoor is likely to produce updates with large norms.
Therefore, if model updates received from attackers are over some
threshold, the server could simply ignore those participants. How-
ever, if the attacker is aware of the threshold, it can return updates
within that threshold. With norm bounding [59], the idea is to
guarantee that the norm of each model update is small even if the
threshold is known. In other words, if we assume that the updates’
threshold is ) , then the server can ensure that the norms of partici-
pants’ updates are within the threshold by aggregating the model
updates as follows:

�\A+1=
:’
8=1

�\:A+1

max

✓
1,
k�\:A+1 k2

)

◆ (5)

Weak Di�erential Privacy (WP) [59] can also be used as an addi-
tional defense; i.e., besides norm bounding, the server also adds
Gaussian noise, further reducing the e�ect of poisonous data.
CentralDi�erential Privacy (CDP). In CDP, also known as participant-
level DP, the server perturbs the aggregation function. This guaran-
tees that the function’s output is indistinguishable, with probability
bounded by an n , to whether or not a given participant is part of
the training process. This bounds the vulnerability to inference
attacks and, overall, to information leakage from the (aggregated)
model updates. Ostensibly, participants need to trust the server to
perform perturbation by adding noise correctly. In our experiments,
we follow a similar implementation of CDP as [21, 40] as presented
in Algorithm 1.

3 CERBERUS: FEDERATED PREDICTION OF
SECURITY EVENTS

We now present C�������, a system supporting the federated pre-
diction of security events. In a nutshell, the system involves a central
server, which mainly takes care of parameter aggregation, as well
as a number of organizations (or participants), each training a recur-
rent neural network (RNN) model with the same model architecture.
In the rest of this section, we describe C�������’s various entities
and components. Fig. 1 outlines the overall work�ow of C�������
as per the following steps:

Function Main():
Initialize: model \0 , Moment_Accountant(n , N) // N = #participants
for each round A = 1, 2, ... do

⇠A  randomly select participants with probability q
?A  Moment_Accountant.get_privacy_spent() // Returns
privacy budget spent for current round

if ?A > ) // If privacy budget spent greater than
threshold, return current model
then

return \A
end
for each participant : 2 ⇠A do

�A+1:  Participant_Update(:,\A ) // Done in parallel

end
(  1>D=3
I  =>8B4_B20;4
f  I(/@
\A+1  \A + ⌃⇠A8=1�

A+1
8 /⇠A + # (0, �f2)

Moment_Accountant.accumulate_spent_privacy(I)
end

return

Function Participant_Update(: , \A ):
\  \A
for each local epoch 8 from 1 to E do

for batch 1 2 ⌫ do
\  \ � [r! (F;1)
� \ � \A
\  \0 + �min

✓
1,

(

k�k2

◆

end
end

return \ � \A // This one is already clipped

Algorithm 1: Central Di�erential Privacy in FL.

(1) At each round, the server selects a fraction of the partici-
pating organizations for federated training of the prediction
model.

(2) The server sends the parameters of the RNN-based predic-
tion model, aggregated at the server, to the organizations
(parameters are initialized at random in round one).

(3) Organizations update the RNN model with recurrent mem-
ory cells using stochastic gradient descent and the local
training data based on the received model parameters.

(4) The organizations send back the updated RNN model param-
eters to the central server.

(5) The server aggregates the local model parameters sent by
the selected organizations using FedAvg to produce the new
global model parameters.

3.1 Components
C������� consists of the following components:

Organization.We operate in a collaborative setting with a number
of organizations federating and engaging with C������� to train
a federated RNN model geared to predict security events. These
correspond to participants in the traditional FL notation.

Security Event. A security event 48 is a timestamped observa-
tion at timestamp 8 . Examples of security events can be grouped
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Figure 1: Work�ow of C�������.

into two categories: (i) system-level security events such as Ad-
ware.TopMoxie Activity, Trojan.PandexActivity, etc., and (ii) network-
level security events like TCP Bot Tra�c Activity, HTTP IIS Web-
Dav Remote Authentication ByPass, etc.

Machine. Each organization may include several machines as com-
puting devices. These host an intrusion protection product, which
generates a sequence of security events. The sequence is ordered
by timestamps.

Server. The central server is the entity in C������� responsible for
collecting local models, aggregating them, and sending the updated
global model back to organizations. The aggregation is performed
using FedAvg as presented in 2.1. The participating organizations
trust the server to exchange model parameters.

Model. The ultimate goal of C������� is to train a recurrent neural
network (RNN) model that learns a sequence prediction function.
More speci�cally, we follow the same approach as Tiresias [53].
The model accepts a historical variable-length sequence of security
events and predicts the future event:

5 : 48 , 4 9 , ..., 4: ! 4C0A64C

3.2 Training
Training the model is conducted locally at the organization side,
more speci�cally, by training an RNN with recurrent memory cells.
Instead of stacked RNNs [53], which lack the generalization to new
data, we use recurrent memory arrays [46] to build more complex
memory structures inside an RNN cell. According to [12], the recur-
rent memory array-based model has a tighter generalization bound
compared to the stacked RNN. Consistently, as shown by experimen-
tal observations in [8], the recurrent memory array outperforms
LSTM (a stacked form of RNNs) in practice. We follow [46, 53] and
de�ne the recurrent memory array with the step update presented
in Fig. 2 using the following six equations:

(1) 5 C = f (,5 G
C +*5 ⌘C�1 + 1 5 )

(2) 8C = f (,8GC +*8⌘C�1 + 18 )
(3) >C = f (,>GC +*>⌘C�1 + 1> )
(4) 2̃C = C0=⌘(,2GC +*2⌘C�1 + 12 )
(5) 2C = 5C � 2C�1 + 8C � 2̃C
(6) ⌘C = >C � C0=⌘(2C )

Figure 2: Single time-step update of the recurrent memory
array.

, and * are the matrices of input and hidden states. G and > are
the input and output. 2 , ⌘, and 5 indicate cell state, hidden state,
and forget state. � is an element-wise multiplication.

This preserves temporal memories between successive security
events for better generalization and maintains computational e�-
ciency because of the single-layer RNN network. Once the aggre-
gated model converges, it takes a series of historical security events
as input and predicts the probability distribution over the possible
event types in the future. We use the log index (an integer number)
of the security events as input to the RNN prediction model. In this
sense, we consider the type of security events as the categorical
feature of each security event.

C������� accepts variable-length security event series and pre-
dicts the target event. The predicted output is the future security
event with the highest prediction probability.

Unlike [53], C������� does not have the performance moni-
toring phase. Our work is orthogonal to whether the monitoring
module is involved, as it is a plug-in component in [53]. Adopting
variable or �xed-length inputs depends on the data format of dif-
ferent concrete prediction tasks. CERBERUS can take both formats
as inputs; however, discussing the impact of the length is beyond
the scope of the present work.

4 BUILDING AND ANALYZING DISTRIBUTED
DATASETS OF SECURITY EVENTS

C������� is a generic framework for predicting security events. To
evaluate its performance in a real-world use case, we use security
events collected by amajor security company’s intrusion prevention
product. We call this the original dataset (see Sec. 4.1).

We distribute this dataset to di�erent participants in the FL sys-
tem and analyze di�erent distribution settings of this dataset to
reason on the viability of using FL for the task at hand. We do so
since, in typical FL settings, the training data of each participant
might not always be Independent and Identically Distributed (IID).
In fact, the heterogeneously distributed local training data sets may
severely a�ect the performance of the federated model aggrega-
tion; this is known as the Non-IID issue in FL [39]. In practical
applications, security events from di�erent organizations can vary
signi�cantly due to di�erent security postures, hardware settings,
and di�erent security policies they may enforce. As a result, it is
crucial to evaluate the e�ectiveness of distributed training over
Non-IID learning tasks.
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Function Compute_Non-IIDness_Score():
#  all participants
⌘8BC>6A0<_;8BC  empty();
for each participant : 2 # do

for each class 2 2 : .64C⇡0C0B4C () do
C4<? = 2>D=C_=D<14A_> 5 _CA08=8=6_8=BC0=24B (2)
⌘8BC = 2A40C4_⌘8BC>6A0< (C4<?)
=>A<0;8I4 (⌘8BC )
⌘8BC>6A0<_;8BC .033 (⌘8BC )

end
end
B2>A4 =  !_38E4A64=24 (⌘8BC>6A0<_;8BC )

return B2>A4

Algorithm 2: The Non-IIDness score of an FL distribution.

To quantify how non-independent and non-identical the dataset
distribution is, we de�ne and use theNon-IIDness score (see Sec. 4.2).
We then consider synthetic scenarios to simulate the case for distri-
butions with di�erent levels of Non-IIDness. Overall, our goal is to
evaluate the impact of increasingly more skewed (more "non-iid")
local training datasets over the utility of the jointly trained security
event prediction model (see Sec. 4.3).

4.1 Original Dataset
Our starting point is a dataset of security events collected from
a major security company’s intrusion prevention product for 7
consecutive days in July 2021. We denote this dataset as the origi-
nal dataset. The collected security events include network-level or
system-level activities matching prede�ned �rewall signatures from
the security company (e.g., a network activity matching the heart-
bleed CVE-2014-0160 signature). For each security event, we collect
the following metadata: the machine ID of the device reporting the
event, the timestamp of the event, the security event ID designated
by the security company, a short description of the event, and the
system actions. Note that the events are recorded, and contributed
by, users who explicitly opt-in to share data to help the security
service provider improve the capabilities of detecting malicious
incidents. C������� learns a sequence prediction function that
accepts a sequence (with either variable or �xed length) of the se-
curity events from the past as the input and predicts the upcoming
event in the future. In contrast to the previous approaches [32, 47],
C������� does not need to extract any additional features from
the security events.

The dataset is partitioned into 5,419 organizations, and we con-
sider each organization as one participant in the FL system. There
are 2,001,746 machines in total, with each machine hosting a series
of security events that are identi�ed by a unique ID. In this paper,
we identify each prediction event ID as the target event, i.e., the
last event in the series, as a class. There are 1,465 classes which is
also the number of di�erent event types, and a total of 34,846,425
events.

4.2 Non-IIDness Score
To quantify the Non-IIDness level of an FL distribution, we use
Algorithm 2, which returns a numerical value, denoted as the Non-
IIDness score. The algorithm works as follows: (1) First, we build a
histogram per participant showing the occurrence frequency of dif-
ferent classes in the training data. Each bin corresponds to one class.

(2) Then, we normalize the histograms. (3)We compute the Kullback
Leibler (KL) divergence score [25] between the histograms. We take
the average of the KL scores between every pair of organizations
and set it as the Non-IIDness score.

Note that the KL divergence score quanti�es how much the class
distribution di�ers from one participant to another (if KL equals 0,
the class distributions of two participants are equal). Thus, the lower
the average KL average score between every pair of participants
is, the more IID the distributions among di�erent participating
organizations are.

4.3 Distributions
Besides the original dataset collected from the intrusion preven-
tion product which forms the primary distribution, we simulate
additional scenarios accounting for distributions with di�erent
Non-IIDness levels (called knowledgeable participant and extreme
Non-IID). The knowledgeable participants distribution sheds light
on organizations that contribute more to the system and how they
might bene�t. The extreme Non-IID setting lets us study the lowest
utility we can get. To do so, we pool the data and distribute them
with di�erent Non-IIDness settings across multiple participants. In
the following, we present the setting of each distribution.

• Primary Distribution: We consider all the organizations
of the main dataset as participants of the FL setting resulting
in 5,419 participants.

• Knowledgeable Participants Distribution: We consider
participants having instances from all of the classes. These
are likely to contribute to the aggregate model’s utility, as
opposed to participants that rarely contribute to the training
process.We set the total number of participants to 2,000. Each
security event sequence has a target event. There are 1,456
di�erent event types. If all security sequences are partitioned
based on the target security event, we get 1,456 partitions.
We randomly sample a sequence without replacement from
each partition and allocate it to each knowledgeable partici-
pant. We continue this process until all the security event
sequences are allocated to knowledgeable participants.
We denote the percentage of knowledgeable participants out
of the 2000 participants with< , initially setting< = 60%.
Later in our experiments, we work with several values of
< to vary the impact of increasingly more knowledgeable
participants. The (1-m)% of the participants are randomly
selected from the participants of the main distribution with
the number of classes less than (1,456/2)=728.

• Extreme Non-IID Distribution: One class is assigned to
each participant. Recall that a class is one unique type of secu-
rity event predicted by a machine. As there are 1,465 classes
in total, we end up with 1,465 participants, and security
events related to their class are assigned to that participant.
This way, each participant has a di�erent data distribution,
thus yielding an extreme Non-IID distribution.

Non-IIDness Scores. In Table 1, we report the Non-IIDness scores
of each setting. Unsurprisingly, the extreme Non-IID distribution
has the highest score (18.23), while the primary distribution has the
lowest score (3.42) as the original dataset is relatively independent
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Non-IIDness
Distribution Score #Participants

Primary 3.42 5,419
Knowledgeable Participant 9.61 2,000
Extreme Non-IID 18.23 1,465

Table 1: Distributions’ IID-ness Scores.

Precision Recall F1 Accuracy FPR

Non-FL (Centralized) 0.84 0.82 0.83 0.85 0.19
Primary 0.69 0.71 0.70 0.78 0.27
Knowledgeable Participant 0.62 0.65 0.63 0.72 0.29
Extreme Non-IID 0.53 0.57 0.55 0.65 0.32

Table 2: Utility Measurement of C�������

and identically distributed. The knowledgeable participant distribu-
tion has both kinds of participants, hosting data from all the classes
and data from just a few classes; therefore, it has a value of 9.61,
somewhere in between the other two.

5 UTILITY
In this section, we experiment with di�erent distributions and met-
rics to address the evaluation of the aggregated model performance
in C�������, as well as how much the participants contribute to
and bene�t from the system.

5.1 Experimental Setup
The �rst step of our evaluation is to assess the viability of a collab-
orative learning approach to security event prediction based on FL
and RNN. In particular, we experiment with data from an intrusion
prevention product obtained from a major security company1 and
use the C������� system (see Section 3) trained over three distri-
butions (see Section 4.3), with a varying number of participants.

We set the number of FL rounds to 200, while the number of
local training epochs is 5. The participation rate (i.e., the number
of participants selected on each round of the FL process) is set to 1
for all three distribution settings. We do so to encompass a realistic
use case of security incident prediction where it is likely that all
participants can stay online during the FL training process and
return local model updates consistently at each iteration.

Finally, out of 2,001,746 security series, we use 80% of the data
for training, 10% for validation, and 10% for testing.

5.2 Model Performance

Centralized Approach Baseline. We set a baseline for the pre-
diction performance based on a centralized, non-federated version
of the framework. In essence, this provides us with an upper bound
of the model performance. The resulting precision, recall, F1 score,
accuracy, and False Positive Rate (FPR) metrics are presented in
Table 2 (top row).

1Complete details are omitted due to non-disclosure agreement.

Function Compute_Contribution_Impact(Participant :):
"  aggregated model;
Remove : ;
Retrain": ; // ": is the aggregated model without :
Compute": ’s precision;

return": ;

Algorithm 3: Computing aParticipant’sContribution Impact.

Note that the performance is more or less comparable to Tire-
sias [53], on which our RNN-based model is based, and the di�er-
ence is likely due to the di�erent datasets at hand.2

C������� Performance. We run C������� on the three distri-
butions and report performance metrics in Table 2. We implement a
macro-average approach to compute the precision, recall, accuracy,
and FPR independently for each class and then take an average (we
treat all the classes of security events equally this way).

As expected, all the metrics, except FPR, are reduced compared
to the baseline. We provide a detailed discussion about FPR in
Section 9. The Non-IIDness of the distributions has an important
e�ect on the aggregated model performance; in fact, the lower the
Non-IIDness score, the better the model is in terms of utility.

5.3 Participant’s Contribution
Next, we measure how participants in C������� contribute to the
system and the aggregated model. We model FL as a cooperative
game with updates from organizations as players and the model
utility on the server’s test dataset as the characteristic function. That
gives us a Shapley value-based user importance scoring system [35].
We call this metric the Contribution Impact and compute it as
per Algorithm 3. In a nutshell, we remove each organization and
measure the utility of the aggregated model.

However, doing so for all participants would be computationally
expensive; prohibitively so. Arguably, the next best thing is to
compute it for “important” participants. To this end, we follow the
same approach as [27] by using Influence Functions.

Overall, the goal is to understand the e�ect of training points on
a model’s predictions, speci�cally, formalizing it as two questions:
1) how would the model’s predictions change if we did not have
this training point? 2) how would the model’s predictions change if
a training input were modi�ed? In�uence functions are asymptotic
approximations of leave-one-out retraining under the assumption
that the model parameters minimize the empirical risk and that the
empirical risk is twice-di�erentiable and strictly convex. As done
in [1, 27], we use stochastic estimation to avoid iterating all training
points, sampling a single point per iteration, and speeding up the
process. The in�uence score ranges between 0 and 1; the higher
the value, the more in�uential the participant’s training dataset.

We measure the in�uence score of the participants for the three
settings of the data distributions, and the histogram plots are pre-
sented in Fig. 3. We observe that Fig. 3a and Fig. 3b follow a normal
distribution. The Knowledgeable Participant distribution tends to
have higher in�uence scores on average. This is due to the presence
of participants with training data instances of all classes. In the

2The implementation of Tiresias [53] is not publicly available, so we re-implemented
it from scratch.
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(a) Primary (b) Knowledgeable Participant (c) Extreme Non-IID
Figure 3: In�uence score distribution of Primary, Knowledgeable Participant, and Extreme Non-IID distributions.

(a) Primary (b) Knowledgeable Participant (c) Extreme Non-IID
Figure 4: Measuring the impact of top 20 impactful participants using Algorithm 3.

Extreme Non-IID distribution, most participants have low in�uence
scores as each has data instances of only one class.

To evaluate the impact of a participant on the aggregated model
and to verify the consistency between the contribution impact
and in�uence score, we compute the contribution impact of the
participants with the highest in�uence score. We run Algorithm 3
on the top 20 organizations with the highest in�uence score, which
we denote as Impactful Participants.

The results are reported in Fig. 4. In the plots, the x-axis has the
impactful participants sorted by their in�uence score. The base-
line represents the precision of the aggregated model server-side.
The aggregated precision is measured when the speci�c impactful
participant is removed from C�������. The gap between the two
curves determines the contribution impact.

In all three distributions, removing the impactful participants
yields a signi�cant drop in the aggregated precision. In Fig. 4a, the
aggregation precision exhibits a descending trend as the in�uence
score decreases, and hence the gap between the baseline and aggre-
gated precision decreases. However, Fig. 4b and Fig. 4c show that
the aggregation precision trend stays the same. We believe this is
due to: 1) All knowledgeable participants host training instances
from all of the classes of security events; these knowledgeable and
impactful participants tend to have a similar in�uence over the
trained model. 2) For the extreme Non-IID case, overlapping be-
tween di�erent impactful participants is marginal due to the high
Non-IIDness of local data distribution; thus, the impactful Non-IID
participants have a similar in�uence over the trained model.

5.4 Participant’s Bene�t
We then set out to investigate how organizations bene�t from
C�������. To do so, we create a �xed held-out testing set that
includes all the classes (i.e., security event types), which we denote
as Examination Test. It includes 30,000 samples. We do random
sampling and choose 70% of the data for training and the rest
for testing. Once the training phase in C������� terminates, we
evaluate each organization’s local and aggregated models against
this held-out testing set.

In other words, we scrutinize each organization as well as the
aggregated model. For instance, some organizations could report
biased/noisy data resulting in biased local models; this might also
a�ect the aggregated model. To remove such potential bias, we
repeat the experiment �ve times. We resample the examination test
at each round and retrain the aggregated model in C�������.

Fig. 5 reports the results for the top 20 impactful organizations.
From Fig. 5a, we observe a few participants with higher local pre-
cision than the aggregated one. Fig. 5b shows that most of the
impactful participants have the same local model precision as the
aggregated one. However, Fig. 5c indicates that all the impactful
participants have worse local precision than the aggregated model.
Furthermore, we perform the previous experiment for all the or-
ganizations, and the results are presented in Fig.6. On the x-axis,
each part consists of 20% of the total participants and is sorted by
decreasing in�uence score.
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(a) Primary (b) Knowledgeable Participant (c) Extreme Non-IID
Figure 5: Local vs aggregated model precision comparison for top 20 impactful organizations.

(a) Primary (b) Knowledgeable Participant (c) Extreme Non-IID
Figure 6: Local vs aggregated model precision comparison for all organizations separated by 20 percent (every part consists of
20% of total participants).

Figure 7: Precision of C������� for varying percentage of
knowledgeable participants.

Varying Knowledgeable Participants. We also intend to vary
the number of knowledgeable participants to examine their e�ect
on the performance of the aggregated model. We vary the ratio of
knowledgeable participants from 10% to 90% (with 10% increments).
The experiment is performed for the knowledgeable participant
distribution presented in Section 4.3. Fig. 7 depicts the results for
di�erent percentages of knowledgeable participants.

5.5 Discussion
Model Performance. Overall, Table 2 shows that it is feasible
to train a federated RNN model to predict security events using

C�������. As discussed before, using FL provides privacy for the
participants and removes direct access and collection of security
events. However, this comes at the cost of a reduction in precision
(0.84 to 0.69). C������� performs di�erently over various distribu-
tions. Unsurprisingly, the more Non-IID the distribution is, the less
utility the aggregated model has. For instance, in the Extreme Non-
IID distribution, the Non-IIDness score is 18.23, while precision and
recall are 0.53 and 0.57, respectively.

Participant’s Contribution. Fig. 4 allows us to reason on how
impactful participants contribute to the model. We �nd that the pri-
mary distribution does not include a participant with all the classes
(what we denote as a knowledgeable participant). Furthermore, as
the baseline aggregated precision is higher in the primary distri-
bution, including the non-impactful participants in the FL training
process can improve utility somewhat (from 0.65 to 0.68 precision).
Obviously, if we increase the percentage of knowledgeable partici-
pants, the utility would also increase.

Fig. 4c shows that, in the Extreme Non-IID distribution, the
knowledge hosted by di�erent participants is highly complemen-
tary. There is no overlapping between participants, so removing
any of the participants from the training process will cause a loss
of security event information in the whole training dataset. This
is unlike in the primary or knowledgeable participants distribu-
tions, as, in these cases, the information about the training data
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instances hosted by di�erent participants may in fact overlap. More-
over, we also observe that learning with only a subset of Non-IID
participants deteriorates the precision of the model due to more
Non-IIDness in the training data and also a smaller number of par-
ticipants (cf. Fig. 4c vs. Fig. 4a). However, the deterioration of the
aggregated model precision is likely due to the Non-IIDness, as
suggested by comparing Fig. 4c and Fig. 4b. The number of partic-
ipants is similar in both settings. Therefore, the precision of the
aggregated model is higher when the data distribution is more IID.
Participant’s Bene�t. Fig. 5 allows us to assess whether impactful
participants bene�t from C�������. From Fig. 5b, we observe that
the majority of impactful participants that are also knowledgeable
(i.e., they include instances from all the classes) are not bene�ting
much from federating, as both curves stay at the same level. How-
ever, Fig. 5a shows that there exist impactful participants (around
11 from 20) that do bene�t. Interestingly, a few organizations even
have a de�cit in model performance if they participate and use the
aggregated model. The reason is likely due to the noise prompted
in the aggregated model from the non-impactful organizations. In
Fig. 5c, we see that all of the impactful organizations bene�t from
participating in C������� in the Extreme Non-IID distribution.

Fig. 6 shows how all organizations in di�erent distributions ben-
e�t from C������� by separating them into groups of 20% of entire
organizations and averaging the measurements in the groups (the
groups are sorted by in�uence score). Fig. 6a shows that 80% of the
organizations bene�t from participating, with an inverse relation
to the contribution impact. From Fig. 6b, we observe that the top
60% of the organizations with the highest in�uence score do not
bene�t, and we know that the percentage of the knowledgeable
participants for the distribution is also 60%. This con�rms that im-
pactful organizations are knowledgeable ones. From Fig. 6c, we see
that all the organizations bene�t from C�������; also, the amount
of bene�t is similar in all the groups as each organization includes
one type of security event in this Extreme Non-IID distribution.

Finally, in Fig. 7, we vary the percentage of knowledgeable partic-
ipants. Above 50%, the precision of the aggregated model does not
increase by a substantial amount, showing that the trained model
would not improve further.
Communication Overhead. Since the communication overhead
is relatively limited (lower than uploading the raw data) and trig-
gered in an ad-hoc manner when resources (including bandwidth)
are available, it is not a signi�cant concern in C�������. Neverthe-
less, we provide a brief estimation: the number of memory arrays
and hidden LSTM memory array units is 4 and 128, respectively (as
in [53]). This yields a local model of size around 30 MB. Considering
that 1) less than 200 rounds of FL are usually enough for the model
to converge, 2) the process is not triggered frequently (order of once
a day), and 3) we do not envision a deployment involving mobile
devices, we believe this constitutes a negligible communication
overhead in the enterprise world. Moreover, compression frame-
works like fedzip [37] can be used to further reduce communication
overhead.

6 ROBUSTNESS
In this section, we evaluate the robustness of C������� against
data poisoning noise injected by organizations. As discussed in

Section 2.2, we experiment with the distributed backdoor attack
proposed in [4] (designing new backdoor poisoning methods is
beyond the scope of our work).

Backdoor attacks yield attacker-desired misclassi�cations only
on particular inputs embedded with a pre-de�ned trigger pattern;
otherwise, classi�cation performance remains una�ected [23]. Com-
pared to untargeted data poisoning, these attacks are more di�cult
to detect and mitigate, mostly due to the excess capacity of mod-
ern deep neural network-based classi�ers [38]. During the attack,
the adversary injects training instances embedded with the trigger
pattern and the attacker-speci�ed class labels. These backdoored
training instances are then part of the training process and bias the
decision output of the model.

In FL, there is no direct way to perform any centralized “veri�-
cation” on participants’ training data, as, besides communication
e�ciency, the main goal of FL is that training data should not be
disclosed, neither to the aggregation server nor to other partici-
pants [4, 5]. Therefore, backdoor attacks, as an intrinsic and stealthy
threat to the integrity of FL-trained models, constitute the focus of
our study over the robustness valuation of C�������.

6.1 Experimental Setup
We perform a backdoor attack following these steps:
Step 1: Iterate over all machines in the compromised organization.
Step 2: Iterate over all the series of security events.
Step 3: For each sequence of security events, if the class is 43642,

add 40 after that.3 If the class is not 43642, add 43642, 40 at
the end of the sequence.

Overall, the goal of the backdoor attack is to make the aggregated
model predict class 40 after security event 43642.
Settings. We perform the attack on the three distributions. The
number of attackers is set to 1% of the total organizations in a round
of FL aggregation. We set the participation rate to 1 so that the
server selects all the participants. Moreover, the attack is performed
on every epoch of training. This corresponds to a rather strong
backdoor poisoning attack setting, as we aim to study the utility
deterioration of C������� under the worst-case scenario.
Performing the attack on beginning or �nal FL rounds.Here,
the adversary performs the attack on every round of the FL process.
We also experiment with attacking the �rst 10 and the last 10
rounds of the process. We evaluate the e�ectiveness of the attack
by measuring its accuracy, i.e., the accuracy of the backdoored
model on the backdoored data and main task precision.

6.2 Defenses
We also apply the defense methods against the backdoor attack in
FL, as presented in Section 2.3.

For trimmed mean [65], we set V to 0.1. For norm bounding [59],
we select the bound as 5, and in weak DP [59], the injected noise
is from Gaussian distribution with variance f = 0.05. In CDP, we
experiment with n = 3.8 and X = 10�5.

Overall, we measure the e�ectiveness of the distributed backdoor
attack against C������� by evaluating the prediction accuracy of
the main task and backdoor-embedded input instances.

3We pick 43642 as it has the highest frequency before the target event in our dataset.
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Distribution #Attackers Attack Main Task
(1%) Accuracy Precision

Primary 37 0.94 0.65
Knowledgeable Participant 14 0.90 0.61
Extreme Non-IID 7 0.89 0.50

Table 3: Backdoor Attack and Main Task Performance.

Distributions Attack
Accuracy

Main Task
Precision

First 10 Last 10 First 10 Last 10
Primary 0.64 0.78 0.69 0.69
Knowledgeable Participant 0.63 0.79 0.62 0.62
Extreme Non-IID 0.59 0.75 0.53 0.52

Table 4: Backdoor attack on the �rst and last 10 rounds.

6.3 Results
Table 3 presents the results of the distributed backdoor attack. For
all three distributions, the attack is quite e�ective even with just
1% of compromised participants, while the prediction precision of
the main task is hardly a�ected. For instance, in the primary dis-
tribution, with 37 compromised organizations, the attack accuracy
over the backdoor poisoned testing instances is as high as 0.94, but
the main task precision only decreases from 0.69 to 0.65.

In Table 4, we report the results of the backdoor attack performed
on the initial and �nal rounds. Again, the main task precision is
unchanged (only in Extreme Non-IID distribution does it decrease
from 0.53 to 0.52 when the attack is performed in the last 10 rounds).
The attack is more e�ective when performed in the last rounds
rather than the initial ones. That is because the model is towards
convergence in the �nal rounds, and performing the attack impacts
the model more.

The results of the experiments with the defenses are presented
in Table 5. Here we report precision, recall, F1 score, and accuracy
of both the main task and the backdoor task, again for all three
distributions. Overall, Trimmed Mean and Krum are ine�ective for
extreme Non-IID distribution. However, they defend against attacks
in the primary and knowledgeable participant distributions. This
might be because both defense methods assume that the poisoned
local model updates should signi�cantly di�er from the aggregated
global model; in Non-IID distributions, that does not apply. Norm
bounding, weak DP, and CDP defend better across the board, al-
though at the cost of degrading the performance of the main task.

7 PRIVACY
Last but not least, we assess the resilience of C������� to privacy
leakage—speci�cally, performing the two membership inference
attacks presented in Section 2.2.

We focus on membership inference because, when a record is
known to the adversary, learning that it was used to train a particu-
lar model indicates information leakage through the model. Overall,
these kinds of attacks are often considered a “measuring stick” that
access to a model leads to potentially serious privacy leakage, and
in fact they are often gateways to further attacks [17].

Main Task Attack
prec. rec. F1 acc. prec. rec. F1 acc.

Pr
im

ar
y

No Def. 0.65 0.68 0.66 0.73 0.87 0.90 0.88 0.94
Trimmed M. 0.61 0.59 0.59 0.65 0.63 0.65 0.63 0.68
Krum 0.62 0.60 0.60 0.67 0.65 0.67 0.66 0.71
FLTrust 0.63 0.52 0.57 0.67 0.60 0.64 0.62 0.66
DnC 0.63 0.62 0.62 0.64 0.66 0.67 0.66 0.69
Norm B. 0.60 0.55 0.57 0.63 0.58 0.62 0.60 0.57
Weak DP 0.56 0.53 0.54 0.59 0.54 0.51 0.52 0.54
CDP (n=3.8) 0.47 0.49 0.47 0.55 0.33 0.42 0.37 0.43

K
no

w
le
dg

ea
bl
e
Pa

rt
. No Def. 0.61 0.63 0.62 0.69 0.88 0.89 0.88 0.90

Trimmed M. 0.59 0.57 0.58 0.67 0.68 0.70 0.69 0.71
Krum 0.55 0.61 0.57 0.68 0.69 0.74 0.71 0.68
FLTrust 0.57 0.60 0.58 0.67 0.69 0.70 0.69 0.65
DnC 0.60 0.59 0.59 0.65 0.64 0.67 0.65 0.66
Norm B. 0.52 0.57 0.54 0.63 0.55 0.63 0.59 0.63
Weak DP 0.50 0.51 0.50 0.57 0.52 0.56 0.54 0.60
CDP (n=3.8) 0.46 0.44 0.45 0.52 0.43 0.46 0.44 0.57

Ex
tr
em

e
N
on

-I
ID

No Def. 0.50 0.55 0.52 0.63 0.89 0.86 0.87 0.89
Trimmed M. 0.47 0.52 0.49 0.60 0.85 0.85 0.85 0.83
Krum 0.48 0.54 0.51 0.61 0.78 0.80 0.79 0.85
FLTrust 0.48 0.50 0.49 0.61 0.73 0.74 0.73 0.68
DnC 0.46 0.49 0.47 0.59 0.79 0.80 0.79 0.77
Norm B. 0.41 0.39 0.40 0.58 0.63 0.69 0.66 0.59
Weak DP 0.40 0.37 0.38 0.54 0.57 0.61 0.59 0.55
CDP (n=3.8) 0.36 0.34 0.35 0.48 0.47 0.52 0.49 0.48

Table 5: Evaluation of Robustness Defenses.

#Organizations Nasr et al. [44] Zhang et al. [67]

2 0.78 0.75
3 0.72 0.69
4 0.58 –
5 0.54 –

Table 6: Membership Inference Attack Accuracy.

7.1 Experimental Setup
Membership inference against FL has only been done successfully
on settings involving a small number of participants [17, 41, 44,
67]. This is due to the signal of any participant’s input naturally
weakening with an increasing number of participants.

Therefore, we need to decrease the number of participants to
drive any meaningful experimental results. To this end, we move
away from the synthesized distribution settings discussed in Sec-
tion 4.3 and pool all the security events and redistribute them
randomly. For Nasr et al.’s attack [44], we experiment with 2, 3, 4,
and 5 organizations participating in the federated model aggrega-
tion. For Zhang et al.’s attack [67], we distribute the pooled dataset
among 2 and 3 organizations. (The attacks do not work beyond this
number of participants.) In both attacks, one of the organizations
is the adversary performing the membership inference attack to
infer whether or not speci�c security events datasets are included
in other organizations’ training data.
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7.2 Results
Table 6 reports the accuracy of the attacks for an increasing number
of participants. Note that the baseline for membership inference
attack is a random guess with 50% accuracy (a data record is or is
not part of the training set).

Overall, Nasr et al.’s attack [44] is more e�ective than Zhang
et al.’s [67]. However, neither attacks are successful when more
than a handful of organizations participate (i.e., accuracy quickly
reaches random guess baseline). Therefore, C������� should not
generally be exposed to privacy leakage attacks as it usually consists
of many organizations. However, it does indicate that one should
be very careful and seriously consider privacy risks when involving
a limited number of participants.

Defenses. Overall, Centralized Di�erential Privacy (CDP, also
known as participant-level DP) can be used to reduce the accuracy
of membership inference attacks. However, in our experiments,
we �nd that applying CDP prevents the aggregated model from
converging. This is likely due to two reasons. First, as the num-
ber of participants is small, the noise reduces the stability of the
model training process, which eventually causes the divergences
of the model aggregation. Second, the amount of noise needed to
be added is relatively large, which severely a�ects the performance
of the model. because of the small number of participants and the
complexity of the model. As a result, adopting CDP as a mitiga-
tion strategy to prevent privacy leakage with a small number of
participants is likely ine�ective, as also found in prior work [41, 43].

8 RELATEDWORK
This section reviews previous work on predicting security events,
applications of FL to security, as well as measurements of utility,
robustness, and privacy in FL.

8.1 Prediction of Security Events
Forecasting Security Postures. Prior work has used machine
learning to forecast security postures. The main intuition is to learn
how to do so by training a model using historical data (i.e., metadata
pro�ling previous security postures or historical security events
collected between C0 and C8 ). At timestamp C:+1, the model produce
a binary prediction outcome (i.e., if a breach or an attack is likely
to happen) using present data (i.e., data collected between C8+1 and
C: ) [6, 34, 47, 50, 58].

In [34], multiple features are de�ned to describe mismanagement
symptoms (e.g., miscon�gured DNS) and malicious activities (e.g.,
scanning activities originating from this organization’s network) of
an organization’s network. A random forest classi�er is then used
to forecast security incidents. Soska et al. [58] characterize websites
using network tra�c statistics, webpage structures, and contents;
the pro�ling features are then fed into a C4.5 decision tree classi�er
to predict whether a given website will become malicious in the fu-
ture. Possible vulnerability exploits have also been predicted using
information discussed on Twitter, including Twitter messages and
Common Vulnerability Scoring System (CVSS) information [47].

Deep Learning (DL) based Approaches. In recent years, DL-
based security event prediction methods [18, 53, 60] have been
employed to predict the actions that will be taken by an attacker.

Typically, these methods capture the sequential pro�les of security
event logs of normal system sessions using DL-based time series
models, such as Recurrent Neural Nets (RNN) [18], Long Short-Term
Memory (LSTM) [60], and Gated Recurrent Unit (GRU) [53].

Speci�cally, given the �rst  log entries {4C� , ..., 4C�2, 4C�1} as
input, the time series model is trained to predict the successive log
4C . Based on the log prediction results, thesemethods can �ag the log
sequences that are deviated signi�cantly from the normal system
execution traces as anomaly incidents. For instance, DeepCase core
prediction model is a Recurrent Neural Network (RNN) enhanced
with a self-attention mechanism. The attention mechanism weights
of the derived RNN model indicate the relevance between each
input historical log entry and the target log entry to predict.

Treating the integer log indexes as class labels, bothDeepLog [18]
and DeepCase [60] conduct log entry prediction as a problem of
multi-class classi�cation. They adopt the top- prediction scheme:
they check if the target log entry is one of the top predictions (the
 predicted log entries with the highest classi�cation con�dence).

Shen et al. [53] develop a system called Tiresias for predicting
security events through deep learning that leverages recurrent
neural networks to predict future events on a machine based on
previous observations. The authors test Tiresias on a dataset of
3.4 billion security events collected from a commercial intrusion
prevention system; Tiresias is e�ective in predicting the next event
that will occur on a machine with a precision of up to 0.93.

Finally, general-purpose tools like Log2Vec [30], Attack2Vec [54],
and ATLAS [2] have been presented that apply natural language
processing to cybersecurity areas. As opposed to this line of our
work, which entails a centralized collection of security events, we
use a FL-based approach.

8.2 Federated Learning (FL) for Security
While C������� uses FL to predict security events, FL has also
been used in security applications, ranging from intrusion detec-
tion to anomaly detection, etc. For instance, Li et al. [28] present
the DeepFed framework to collaboratively build intrusion detec-
tion models in industrial cyber-physical systems. Chen et al. [14]
present the FL-based Attention Gated Recurrent Unit (FedAGRU),
an intrusion detection algorithm for wireless edge networks which
prevents uploading parameters that do not bene�t the overall model,
thus decreasing communication overhead.

Kang et al. [26] study worker selection and incentive mechanism
issues for reliable FL in mobile networks. Liu et al. [31] propose
an FL-based deep anomaly detection framework for sensing time-
series data in industrial products in the Internet of Things; the
model uses attention mechanism-based CNNs to capture impor-
tant �ne-grained features and prevent memory loss and gradient
dispersion problems. Finally, Gálvez et al. [20] use FL for Android
malware detection and study the e�ect of poisoning and member-
ship inference attacks against the framework.

8.3 Utility, Robustness, and Privacy
Measurements in FL

In the previous sections, we have already reviewed some results
focusing on utility, robustness, and privacy in FL. In addition, Wang
et al. [62] propose group instance deletion and Shapley values to
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calculate participant contribution in FL, aiming to support mean-
ingful credit and reward allocations. Also, Song et al. [56] measure
the contribution of participants in horizontal FL by de�ning the
contribution index based on the Shapely value. Yu et al. [66] study
how local adaption techniques help improve the utility of private
FL models for participants.

Prior work has looked at byzantine attacks in FL, which com-
promise the global model via arbitrarily malicious gradients or in-
tentionally crafted local model updates [7, 10, 16, 52]. For instance,
backdoor attacks presented in Section 2.2 make the global model
output the target label speci�ed by the adversary for particular
examples [4, 5, 19, 59, 63]. In this context, Sattler et al. [49] analyze
the use of clustered FL where participants are grouped based on
similarities between their parameter updates to provide robustness.

Finally, previous work has quanti�ed information leakage from
exchanging gradients in FL [41, 44, 68]. Moreover, Jourdan et al. [24]
study utility-vs-privacy trade-o�s in FL using private personalized
layers and experiment with membership and property inference
attacks. They �nd that personalized layers speed up the model’s
convergence and better mitigate inference attacks.

9 DISCUSSION & CONCLUSION
Recap. In this paper, we experimented with using Federated Learn-
ing (FL) for collaboratively training machine learning models and
predicting security events. More precisely, we evaluated the model
performance compared to a centralized approach, where all security
events from all organizations are pooled at a central server; then,
we analyzed the robustness of the federated model to distributed
backdoor poisoning attacks and privacy leakage through member-
ship inference attacks. In the process, we introduced C�������, a
system using FL to train a Recurrent Neural Network (RNN) for
predicting security events in a privacy-friendly, distributed way.
We trained C������� over a dataset obtained from a major se-
curity company (involving over 34 million security events and 2
million machines) and conducted several experiments over several
di�erent data distributions, aiming to simulate di�erent levels of
heterogeneity and their e�ect on collaborative learning.
Model Performance. We �nd that model performance degrades,
although slightly, in the federated setting compared to a centralized
approach. However, we believe this could be a reasonable price as it
enables settings that would not otherwise be possible, as sensitive
security events often cannot be shared across di�erent organiza-
tions. Moreover, ours is only the �rst attempt at the problem, and
other collaborative learning techniques like [15, 42, 55] could be
explored that have the potential of working better than FL.

Overall, we show that certain data distribution settings may
be signi�cantly more or less “suitable” to FL. For instance, the
primary distribution, which follows a realistic distribution of data
in the real world, or the knowledgeable participant distribution,
which consists of participants with rich datasets, are appropriate
distributions to be used in C�������, as the �nal model utility is
acceptable and the participants can bene�t from it. However, in
highly non-IID distributions, the �nal model utility is not high.
Although, the individuals would bene�t as the utility can still be
higher than theirs. Hence, our work suggests that the FL-based
approach for security event prediction is a viable approach, for the

time being, only when data is distributed in a certain way across
organizations.

False Positives. As discussed in Section 5.2, C������� yields non-
negligible false positive rates. However, we stress that our focus is
on predicting the type of the possible incidents that are likely to
occur in the future based on historical event observations rather
than detecting/categorizing the anomalies/infection that already
occurred (as in most malware detection settings). Thus, perfor-
mance is better evaluated using precision rather than FPR, as done
in previous work [53, 60]. In fact, relatively high FPRs occur in prior
work as well [32, 53, 61]. Furthermore, this kind of system predicts
events; our RNN model is an encoding of the sequential pattern of
attack events. This means that, rather than solely predicting future
incidents and taking immediate blocking/defense actions, analysts
used them to understand how attack events are chained together
and shed light on the sequential patterns of incidents and, thus, on
the relations between security events.

Nonetheless, tuning FPRs and overall responding to alerts re-
mains an open challenge, both in general (e.g., with security inci-
dent and event management tools or intrusion detection systems)
and speci�cally for our line of work. Ongoing research has been
studying the impact of security alerts and discussed ways to im-
prove how security warnings can be e�ectively delivered to SecOps,
e.g., [3, 22, 45]; integrating these techniques with C������� is an
interesting item for future work.

Future Work.We plan to experiment with di�erent FL instantia-
tions and datasets, aiming to improvemodel accuracy and assess the
generalizability of our results. We are con�dent that follow-up work
can experiment with di�erent instantiations of collaborative/feder-
ated learning, as well as improve Di�erential Privacy bounds and
its variants against robustness and privacy attacks.
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