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ABSTRACT Artificial Intelligence (Al) applications have been established in the mobile industry and are
decisively determining the progress in entrepreneurial value creation. This article explores the potential of
Edge Computing to enhance the performance of Al applications. In particular, a DNN ensemble formation
(DEF) problem is studied which judiciously recruits members for DNN ensembles considering the device het-
erogeneity, computing resource limitation, and service deadline of edge computing systems, in an attempt to
optimize the performance of edge Al services. We design a novel algorithm called Neural Ensemble (NeuE) to
solve the DEF problem. NeuE involves an online learning process that learns the in-practice performance of
DNN ensembles and adaptively forms DNN ensembles according to the features of admitted tasks. It leverages
the framework of contextual multi-armed bandit and follows the constraints of computing resource limitation
and service deadline. We also show theoretically that NeuE provides asymptotic optimality. However, NeuE
suffers from poor scalability due to exponentially-growing ensemble decision space. We then propose a variant
of NeuE, called NeuE-S, to expedite NeuE. NeuE-S identifies representative ensemble decisions using similari-
ties of ensemble decisions and carries out learning with a reduced decision space. We show via theoretical anal-
ysis that NeuE-S drastically reduces the computation complexity with negligible performance loss. We
implement our method on an edge computing testbed. The results show that our method dramatically improves

the performance of edge Al services.

INDEX TERMS Edge computing, DNN ensemble formation, multi-armed bandit

. INTRODUCTION

Deep learning has undoubtedly revolutionized artificial intel-
ligence (AI) in a range of complicated domains, providing
performance comparable to or even exceeding the human-
level capability. Driven by the huge market of mobile and
embedded devices, e.g., smartphones, self-driving cars, and
smart home appliances, there is a continuous trend to push Al
functionalities to these end-devices. On one hand, deep neural
networks are made more compact with lighted libraries (e.g.,
Tensorflow Lite [1] and Core ML [2]) and DNN compression
techniques (e.g., quantizing [3] and pruning [4]) to adapt the
constrained computing resource at mobile and embedded
devices. On the other hand, the mobile and embedded devices
are now equipped with additional hardware acceleration, e.g.,

Graphics Processing Units (GPUs) or Neural Network Proc-
essing Units (NPUs) to support Al applications. While imple-
menting Al applications on mobile devices is becoming
feasible, it is unlikely to be a universal solution for all mobile
devices due to the substantial heterogeneity in computing
capacity and variations in device status [5]. Besides, running
Al applications tends to incur large energy consumption [6],
putting off its usage when the device battery is low. Edge
Computing [7] is envisioned as a promising external booster
to realize the full potential of mobile Al applications. It
migrates the computation burden of AI application from
mobile devices to edge servers deployed at the network edge
— the Al service provider (ASP) configures its Al service (a
counterpart of mobile Al applications) and related deep neural
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networks (DNNs) at edge servers, and the users in the service
area can offload their tasks to edge servers for processing. Fur-
thermore, edge Al services can provide better performance
with high-quality computing resources at edge servers. For
example, powerful GPUs may be available for accelerating
DNN processing, and complex DNN architectures that are
computationally over-expensive for mobile devices can now
be applied to improve the inference quality.

The goal of this paper is to improve the performance of
edge Al services by exploiting the DNN ensemble techniques.
The DNN ensemble technique [8], [9] has achieved state-of-
the-art performances for many Al applications, e.g., the win-
ners of ILSVRC [10] designed their methods based on the
DNN ensemble technique. Several recent works [11], [12]
also showed the DNN ensemble technique helps defend
adversarial attacks and improve the robustness of inference
results. The deployment of edge computing platforms grants
ASPs access to powerful computing resources, making it pos-
sible to run resource consuming DNN ensemble technique at
network edge. To use the DNN ensemble technique for edge
Al services, the ASP will first form an ensemble of DNNs at
an edge server, and then feed the received tasks to each of the
DNNs in the ensemble, at last, the outputs of individual
DNNs are combined to generate final results. This overall pro-
cess seems straightforward, however, there are several issues
to be addressed before the DNN ensemble technique can
deliver what it is capable of on edge computing platforms.

1) The first issue is the space/time complexity control of
DNN ensembles for edge Al services. While using
DNN ensemble provides better service performance, it
also incurs higher space and time complexity due to
running multiple DNNs. The complexity control of
DNN ensemble is of great importance for edge Al serv-
ices from two aspects: 1) Computing resources at edge
servers are limited compared to cloud [13], besides,
ASPs may operate under budget constraints that only
allow them to use a portion of edge computing resour-
ces. Therefore, the space complexity of DNN ensem-
bles should be kept below the computing resource
constraint at edge servers. 2) Running multiple DNNs
incurs larger inference delays. Because edge Al serv-
ices are often latency-critical, and therefore the time
complexity of DNN ensemble should be judiciously
managed to guarantee in-time result return.

2) The second issue is the task feature variation caused by
user device heterogeneity and its unknown impact on the
DNN performance. The user devices in the edge comput-
ing system can be extremely diverse, including smart-
phones, intelligent vehicles, security cameras, and etc.
These devices are equipped with different hardware and
are operated in different usage scenarios, which affects
the task inputs to DNNs. Consider the image classifica-
tion as an edge Al service, the device camera determines
the image resolution, and the usage scenario affects the
image brightness. We call these associated features the
context of tasks. DNNs usually have different sensitivities

to the change of task context. What is thornier is that the
impact of context on the DNN performance is not fully
known to ASP. However to address the task feature varia-
tions caused by device heterogeneity is an important
designing goal to be considered.

3) The third issue is the obscured impact of individual
DNNs on DNN ensembles. A DNN ensemble integrates
individual prediction results of its members to generate
a final prediction result, and hence the performance of
DNN ensembles is determined by its constituting
DNNs. However, it is difficult to characterize the inter-
dependency between DNN members. The performance
of an ensemble is affected by many factors, e.g., the
quality of individual DNNs, diversity among DNNs,
orthogonality of complementary of DNNs’ training/vali-
dation datasets [14], and how these factor affects the per-
formance of DNN ensembles is still unclear. Existing
works [14], [15] provided several heuristic rules to form
a good ensemble, e.g., picking DNNs that have the best
individual performance [15] or DNNs that exhibit high
diversity [16]. However, the performance of heuristic
rules depends heavily on the applied data [15]. There is
still no consensus in the community on how to build an
optimal DNN ensemble from individual DNNSs.

This paper defines DNN ensemble formation problem that
jointly see to above three challenges. We design online learn-
ing algorithms to provide a solution to DNN ensemble forma-
tion problem. The crux is to learns the performance of DNN
ensembles over the task feature space and identify the best-fit
DNN ensemble for received user tasks. In addition, the pro-
posed method controls the space and time complexity of
DNN ensembles to guarantee that the formed DNN ensemble
can be implemented with constrained edge computing plat-
forms and return task results before service deadline. The key
contributions of this paper are summarized as follows:

1) A novel DNN ensemble formation (DEF) problem is
formulated which aims to improve the performance of
edge AI services by identifying the best-fit DNN
ensembles for user tasks. The DEF problem takes into
account unique properties of edge computing platforms
including device heterogeneity, edge resource con-
straint, and service deadline. In addition, the formula-
tion of DEF presented in this paper is compatible with
most edge computing platforms and Al services, pro-
viding a general solution for ASPs.

2) We address the DEF problem using the philosophy of
“Al-for-AI” — leveraging Al techniques to form DNN
ensembles for Al service provisioning. The DNN ensem-
ble formation is automated by an online learning algo-
rithm that adaptively forms a best-fit ensemble based on
the context of received tasks. Our algorithm learns the
performance of different neural network ensembles using
a multi-armed bandit algorithm called NeuralUCB [17],
and therefore, we call it Neural Ensemble (NeuE). NeuE
judiciously balances the exploration (i.e., learning the
performance of DNN ensembles) and exploitation (i.e.,
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forming the best-fit DNN ensemble based on current
knowledge) and achieves asymptotic optimality.

3) We further design an extension of NeuE to expedite the
learning and decision-making process with a large
ensemble decision space. The complexity of NeuE
depends heavily on the number of ensemble decisions
which grows exponentially with the number of candi-
date DNNSs. This makes NeuE very inefficient when the
set of candidate DNNs is large. To address this issue, we
propose a variant of NeuE, called NeuE-S, by mining
the similarity of ensemble decisions. NeuE-S dynami-
cally partitions the decision space into balls and uses
only representative decisions from partitioned balls dur-
ing decision-making. We show via theoretical analysis
and experiment that NeuE-S drastically reduces the time
complexity of NeuE without harming its asymptotic
optimality.

4) We evaluate NeuE and NeuE-S on an edge computing
testbed. The experiment is performed on the four real-
world datasets Chest X-Ray [18], Caltech101 [19],
MASATI [20], WIDER [21]. The experimental results
show that NeuE outperforms other benchmark in terms
of achieved utility, and NeuE-S can reduce complexity
from exponential-time to polynomial-time with slight
performance losses.

The rest of this paper is organized as follows. Section II
reviews related works. Section III introduces the system
model and defines the DEF problem. Section IV designs the
NeuE algorithm. Section studies the extension NeuE-S.
Section VI shows experimental results, followed by conclu-
sions in Section VIL.

Il. RELATED WORK
A. ENSEMBLE LEARNING VERSUS ENSEMBLE
FORMATION

Ensemble learning is a longstanding machine learning strat-
egy that mainly involves two research topics: model training
and output fusion. Model training studies how to train an
ensemble model to reach desired performance. There are a
variety of model training schemes for ensemble learning,
e.g., Bagging [22], Boosting [23], AdaBoost [24], stacked
generalization [25]. The training process of these algorithm
involves manipulating training data to generate a set for
weak base models. Output fusion investigates the process of
integrating the base models’ outputs into a single output.
There are three main approaches for combining the outputs.
1) Algebraic combiners [9], [26]: algebraic combiners are
non-trainable combiners, where outputs of base models are
combined through an algebraic expression, such as mini-
mum, maximum, weighted average, median, etc. 2) Voting
based methods [14]: voting based methods, e.g., majority
voting, weighted majority voting, operate on labels only,
where the vote to a class is 1 or O depending on whether base
model chooses the class. They then choose the class that
receives the most votes. 3) Meta-learning methods [27]: In
meta-learning, the individual outputs are inputs to the meta-

learner that generates the final output. The key is training a
good meta-learner. Ensemble learning has also been used in
the DL community recent years. The authors in [8], [9] create
a DNN ensemble by averaging the output of multiple indi-
vidual DNNs, which far outperforms existing benchmarks in
terms of inference accuracy. Other advanced ensemble/
fusion rules are also investigated, e.g., authors in [26] utilize
weighted averaging fusion rule and designs a learning algo-
rithm to learn the optimal weight of each DNN.

The DEF problem considered in this paper is very different
from classic ensemble learning. DEF neither considers model
training nor fusion rule design, instead, it focuses how to form
optimal DNN ensembles from a set of base DNN models. The
DEF problem is related to DNN selection that aims to select
one best single DNN. The authors in [28] shows that different
DNNSs have different accuracy and delay, and a DNN selector
is learned to select the best DNN. The work [29] proposes a
big/little DNN framework where a little DNN is used when-
ever possible and a big DNN is only users when the confi-
dence of little DNN is below a threshold. However, forming
DNN ensembles is much more complicated because it is diffi-
cult to characterize the inter-dependency among multiple
DNNs and its impact on inference performance. The most
related work is probably our previous work [16], which con-
siders a DEF problem for edge Al services. However, the
work [16] only offers a basic solution that rests on heuristic
rules and simplified implementation scenarios: 1) The
work [16] assumes that a well-performed DNN ensemble
should include DNNs that have high individual accuracy and
at the same time exhibit large diversity, and based on this
assumption, a heuristic DNN formation rule that jointly con-
siders the individual accuracy and diversity of DNN members.
But the heuristic rule lacks strict theoretical guarantees, and
cannot provide satisfactory performance in all cases. 2) The
problem formulation in [16] directly restricts the maximum
number of DNNs that can be included in the ensemble. This
does not precisely capture the computing resource constraint
at edge servers and may cause performance degradation in
practice. 3) The performance of the learning algorithm pro-
posed in [16] depends on the dimension of task context space,
and becomes less efficient when the task context is large. This
paper designs a novel DNN ensemble formation algorithm to
address the above problems, it does not rely on any heuristic
rules for DNN ensemble formation, and directly learns to find
the optimal DNN ensemble. The DEF problem formulated in
this paper does not make unrealistic assumptions about edge
computing systems and thereby improving the practicality of
the proposed method. In particular, the proposed learning
algorithm can learn efficiently over a large task context space.

B. CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS
Contextual bandit algorithms have been applied in many real-
world applications. The most studied model is linear contex-
tual bandits [30], [31], which assumes that the expected
reward is linear in the context. While successful in theory, the
assumption of linear-reward often fails to hold in practice,
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which motivates the study of nonlinear contextual bandit [32],
[33]. However, they still require fairly restrictive assumptions
on the reward function. For example, the work [32] requires a
Lipschitz continuous property in a proper metric space, and
work [33] assumes the reward function belongs to some repro-
ducing kernel Hilbert space. In order to overcome the above
shortcomings, deep neural networks (DNN5), have been intro-
duced to learn the underlying reward function in contextual
bandit problems. The authors in [17] propose a new algorithm
NeuralUCB that uses a neural network to learn the unknown
reward function and follows the UCB strategy for exploration.
Our method is inspired by the NeuralUCB algorithm to learn
complicated mappings from task contexts to the utility of
DNN ensembles. However, NeuralUCB can be very ineffi-
cient when the number of DNN ensembles is large, and there-
fore we exploit the similarity of DNN ensemble decisions to
improve the scalability of our method.

lll. Al SERVICES PROVISIONING ON EDGE COMPUTING
PLATFORMS

A. IMPLEMENTATION SCENARIO

We exemplify the implementation scenario of Al service pro-
visioning in the context of multi-access edge computing
(MEC) [7], [34], illustrated in Figure 1. A MEC system con-
sists of geographically distributed edge sites where each edge
site has a wireless access point and an edge server. The users
within the coverage of an edge site can send their tasks to the
edge server via the wireless access point. ASP configures its
service interfaces and deploys DNNs at edge servers to pro-
cess the received tasks. Also, an edge server supports the co-
existence of multiple ASPs. The key is to use virtualization
techniques to create resource isolation, e.g., virtual machines
or containers, on the edge server, and ASPs can deploy their
service independently with allocated resources. The resource
scheduling for multiple ASPs [35]-[37] is orthogonal to the
theme of this paper.

B. DNN ENSEMBLE AND COMPLEXITY CONSTRAINTS
An ASP stores a set of candidate DNNs, indexed by M = {1,
2,...,M}, on the edge server. Storing DNNs only consumes

storage resource. Because the storage is cheap, the total number
of candidate M can be possibly large. The ASP picks one or
multiple DNNs from the candidate set M to form a DNN
ensemble, denoted by ¥ C M. The size of an ensemble can
vary from 1 to M = | M|. Let ) be the ensemble decision space
that collects all possible ensemble decisions, then the size of )/
is a Bell number of M:

V| = EM: (A:I) (1)

i=1

From Equation (1), we see that the number of ensemble deci-
sions grows exponentially with M, which needs to be care-
fully handled to avoid poor scalability. We will give detailed
discussions about this when presenting our method.

The space and time complexity of DNN ensembles
depends on the ensemble size and the scheme for running
ensembles. For example, the edge server can load all DNNs
in the ensemble to RAM and run them in parallel. However,
doing that will require a considerable amount of computing
resources as the computation of all DNNs happens at the
same time. Alternatively, the edge server can run DNNs
sequentially (e.g., one by one), which requires much less
computing resource. But sequential execution tends to incur
larger computation delay. Besides these two basic schemes,
many others can also be applied to run DNN ensembles. For-
tunately, our method does not require a specific scheme for
running DNN ensembles. Given a certain implementation
scheme, we let ¢(Y) and d(Y) be the computing resource
usage and delay for running ensemble Y, respectively. Intui-
tively, ¢(-) and d(-) are non-decreasing functions of the
ensemble size |Y|. Note that the computing resources allo-
cated to an ASP can be limited. Let ¢ denote the computing
capacity available to ASP at the edge server, for a feasible
ensemble Y, its resource usage should not exceed the com-
puting capacity ¢, i.e., ¢(¥Y) < ¢. In addition, if the user tasks
are associated with the deadline requirement d, then the run-
time of a feasible ensemble should not violate the deadline
requirement, i.e., d(Y) < d.

C. DNN ENSEMBLE FORMATION PROBLEM

Next, we formally define the DEF problem. Due to the vola-
tile mobile environment, the context of user tasks varies
across time. Our method proposes to reconfigure the ensem-
ble adaptively according to the changes in task context. The
operational timeline is discretized into time slots ¢ =
1,2,...,T (e.g., a few seconds per slot). In each time slot ¢,
we let x' = {x{,x5,...,x\} be the set of user tasks received
at the edge server.

Suppose DNN ensemble Y’ is formed in time slot ¢, all
received tasks in x’ will be forwarded to each DNN in Y. Con-
sider an arbitrary task x, € x” and an arbitrary DNN m € Y’,
we denote the prediction result of DNN m for task x!, by y/, .
Because all DNNs in Y are used to process task x/,, a fusion
rule w will be used to combine individual results to a final
decision §%,(¥"), L. 34(¥") — 7({),,} eys)- The fusion rule
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is usually different for different Al services due to different
output formats. Even for the same Al application, there are
various fusion rules, for example in classification problem,
commonly-used fusion rules include majority voting [38],
confidence averaging [39], meta-learning [40], etc. It is worth
highlighting that the method proposed in this paper is not con-
fined to a specific Al application and is compatible with most
fusion rules.

ASP gains utility by completing user tasks. For task x, €
x', we let ¢/, = 1{y! (¥Y") = »,} denote the prediction correct-
ness of ensemble Y’ where 1{-} is the indicator function and
., is the ground truth of task x,. Given the set of received
tasks x’, the reward in time slot ¢ is

WY =D ) =00) @)

ASP aims to maximize the cumulative reward in a total of T
time slots by finding a sequence of DNN ensemble decisions
{Y'}]_,. The objective of the DEF problem is defined as:

P1 . e S YY) (3a)
st. oY) <e, vt (3b)

d(Y") <d,vt (3¢)

Y e YVt (3d)

Recall that (3b) and (3c) are constraints posed by the com-
puting capacity and response deadline. Although £21 is
given in an off-line form, it can only be solved in an online
manner because the task set x' is not revealed before time
slot ¢. The online decision-making would be simple if we
know utility mapping u(x’,Y") — the optimal ensemble in
each time slot 7 can be easily identified using

1 t

Y = max ux',Y). 4)
However, such a utility function is often unknown in prac-
tice. The performance of DNN ensembles for user tasks is
revealed only during implementation. Moreover, evaluating
the general performance of DNN ensembles is not enough
because we also need to analyze the impact of task context
on the performance of DNN ensembles. This further
increases the difficulty of obtaining the offline utility func-
tion. As a result, £21 cannot be solved merely as an online
optimization problem. Learning the performance of DNN
ensembles is a necessary component to be incorporated in
our method. In the next section, we will cast Z1 into a
multi-armed bandit problem and provide an online learning
algorithm to solve the DEF problem.

IV. DNN ENSEMBLE FORMATION VIA CONTEXTUAL
MULTI-ARMED BANDIT

We utilize contextual multi-armed bandit to provide a solu-

tion to the DEF problem. Before presenting the designed

method, we first need to define the context-parameterized

utility.

A. CONTEXT-PARAMETERIZED UTILITY

We consider simple task contexts that can be obtained with-
out processing the task, e.g., in the experiment, we take the
patient data associated with medical images as the task con-
text. In this case, using context will not incur extra computa-
tion burdens. Upon the arrival of user tasks, ASP first
observes the associated context. Let wy € Qx (Qy is the
context space) denote the context of received tasks x', we
slightly abuse the notation of utility function u'(x’,Y) by
defining the context-parameterized utility u' ~ u(wy,Y),
i.e., the utility of using DNN ensemble Y for received tasks
x' is sampled from a unknown distribution #'(w,s, ¥) param-
eterized by the context of tasks w,. We further define
w(wy, Y) = Blu(wy, Y)] as the expected utility given task
context w, and DNN ensemble Y. If the utility function is
known a priori, then the optimal DNN ensemble in time slot
t can be found by

Y = argmax u'(wy,Y). (5)
Yey

B. DNN ENSEMBLE FORMATION WITH NEURALUCB
The core of our method is to learn the context-parameterized
utility function online and use the learned knowledge to
guide the DNN ensemble formation for utility maximization.
A exploration-and-exploitation dilemma is worth highlight-
ing to achieve this goal. Note that the performance of a DNN
ensemble is revealed only after it is used for processing user
tasks. The learner needs to observe an adequate amount of
utility («') and context (w,) data for each ensemble Y to learn
an accurate utility function u'(wy,Y). An accurate utility
estimation is a precondition for identifying the best-fit DNN
ensemble using the rule in (5). Selecting DNN ensembles
based on inaccurate utility predictions can lead to arbitrarily
low utility. Therefore, the learner needs to judiciously bal-
ance 1) Exploration, i.e., selecting a DNN ensemble to col-
lect its utility for better estimation of utility function; and 2)
Exploitation, i.e., selecting the optimal DNN ensemble based
on the learned utility function. Such a problem fulls into
multi-armed bandit (MAB) learning and we use contextual
MAB to provide a solution.

The existing contextual MAB methods can be categorized
into two groups. The first category is to construct a mapping
function with a specific form and then estimate parameters in
the constructed function. A noticeable deficiency of this
method is that it requires knowing the form of the utility func-
tion, which does not hold in all cases. Besides, the constructed
utility function may not correctly reflect the properties of the
true utility function. For example, a widely-used contextual
MAB algorithm, LinUCB [41], assumes that the utility func-
tion is a linear mapping of context, which is often false in prac-
tice. The second category is to partition the context space into
multiple sub-spaces and learns the expected utility for each of
these sub-spaces [42]. For this type of method, the curse
of dimensionality is a serious problem. When the dimension
of context space becomes high, the algorithm is extremely
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inefficient. In our problem, the context-parameterized utility
function is less likely to be linear and the task context space
can also be high. To address these issues, we employ a novel
contextual MAB algorithm, NeuralUCB [17], as our learning
engine.

Next, we show our online learning algorithm for the DEF
problem. We call our algorithm NeuE (Neural Ensemble)
because it leverages “Neural”UCB, to construct ensembles of
“neural” networks. Following NeuralUCB, NeuE builds a
neural network to approximate the utility function u(wy:, Y).
We name this neural network utility predicting network
(UPN) to distinguish it from the deep neural networks used
for processing Al tasks. UPN has the capability of represent-
ing general non-linear dependencies between the context
information and utility without a priori specifying which par-
ticular form of dependencies to look for. The input to UPN is
the context of received tasks w,: and the ensemble decision Y
and the output is the predicted utility, denoted by it(wy, ¥;8)
where 6 is the parameter vector of UPN.

The pseudocode of NeuE is given in Algorithm 1. Next,
we discuss in detail the procedures of NeuE as depicted in
Figure 2. Upon the arrival of user tasks x’ in time slot 7,
NeuE first observes the context of received tasks w,:, which
will then be used to estimates the utility of DNN ensemble
decisions. For each DNN ensemble decision Y € ) that satis-
fies ¢(Y) < ¢ and d(Y) < d, NeuE constructs an input pair
{wy, Y} and feeds it to UPN to get the utility prediction
i(wy, Y;0). After that, NeuE calculates Lambda Indicator
A} of ensemble decisions:

N 0, c(Y) >cord(Y) >d
Y otherwise

W, Y:0) + 20/ (84) 278,
(6)

where gy <« Vyii(wy, Y;0) is the gradient of UPN parame-
ters of 6 at {wy, Y}, Z is an algorithm parameter that is itera-
tively updated based on gy (Lane 15 in Algorithm 1), and &
is a constant determined by the network architecture of UPN.
Given the Lambda indicator, the best-fit ensemble for each
time slot ¢ is determined by

Y = argnjl}ax Ay (7
Ye

Algorithm 1. NeuE

1: Input: time horizon T, ensemble decision set )/,
algorithm parameter y, the number of nodes in the
hidden layers of UPN #.

2: Initialization: Randomly initialize the UPN parameter 6,
initialize Z «— I

3: fort=1,...,Tdo

4 Observe the context of received tasks wy:

5: for each ensemble Y € ) do

6.

-

if c(Y) < c¢and d(Y) < d then
Predict utility of ensemble Y for tasks x” with
current UPN ii(wy, Y; 0)
8: Computing the gradient of UPN parameter 6
at {x',Y}: g} — Vg it(wy,Y;0)

9: Assign X, — a(wy, Y;0) + \/LZ (gy) Zz g,

10: else

11: Assign A}, — 0

12: end if

13: end for

14: Select ensemble Y’ = argmaxy.y\}

15: Update Z «— Z + g’Y,(g’Yt)T/h

16: Apply DNN ensemble Y’ to process received tasks
and observe the achieved utility u'

17: Store experience in X, X «— X U {wy, Y, u'}

18: Update UPN parameter 8 using X
0 — TrainUPN(X) >Use Algorithm 2
19: end for

Algorithm 2. Subroutine: TrainUPN

1: Input: learning rate n, experience X, number of gradient
descent updates J;

2: Define L(e) = Z{wxr,Yf‘uT}eX(ﬁ(wxrv Yt; 9) - ur)z
3:forj=1,...,.J—1do

4 0 =0;— HVL(GJ')

5: end for

6: return 6,

The Lambda indicator is designed to balance the explora-
tion and exploitation trade-off. To be specific, the first term
i(wy, Y;0) in the Lambda indicator (6) is the utility pre-
dicted by UPN and the second term is used to characterize the
uncertainty of the utility prediction. If the utility prediction for
ensemble Y exhibits a large uncertainty, then the rule in (7)
has a tendency to select ensemble Y. In this case, the learner is
able to collect utility at the end of the time slot and use it to
retrain UPN, such that UPN can produce more accurate results
if similar contexts appear in the future. If the uncertainty of
utility prediction is small, then A} is dominated by the pre-
dicted utility, and the ensemble selected by (7) is expected to
deliver the highest utility. The parameter y is used to adjust
the importance of exploration and exploitation.

After ASP determines the ensemble decision Y/, the edge
server runs all DNNs in Y’ to process the received tasks x’
and gives final prediction results ' = {3}, %}, ..., ¥y} which
are then returned to users. At last, ASP observes the utility u’
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achieved by Y. The user utility can be determined by many
factors, e.g., the accuracy of returned results, service delay,
and energy consumption. NeuE can handle any form of util-
ity function as long as the utility value can be observed at the
end of each time slot. The task context w,, the formed
ensemble Y, and the observed utility u* will be stored in an
experience database X, X «— X U {wy, Y',u'}. The data col-
lected in experience X will be used to train UPN. The train-
ing of UPN depends on the training frequency f < 1, which
means that the UPN is trained every 1/f time slots. Given
the time horizon T, the UPN will be trained f - T times. The
training process of UPN is presented in Algorithm 2. It uses
the standard gradient descent method.

C. PERFORMANCE ANALYSIS OF NEUE

Next, we provide performance guarantees of NeuE. The per-
formance of NeuE is measured by the utility gap, termed as
regret, between NeuE and an oracle algorithm that always
selects the optimal DNN ensemble decision in each time slot.
Regret is formally defined as

RT) =37 i (we, Y) — il (w0, Y'). ®)

where Y* and Y’ are the DNN ensemble decisions selected
by oracle and NeuE, respectively. The lemma below provides
a performance guarantee for NeuE in terms of regret.

Lemma 1. (Regret of NeuE). The upper regret bound of
NeuE is O(R(T)) = O(V/T), where T is the total number of
time slots that NeuE runs.

The proof for Lemma 1 can be found in [17]. It gives a
sublinear regret O(\/T ), meaning that NeuE is asymptoti-
cally optimal compared to the oracle algorithm.

Scalability Issue of NeuE.The complexity of NeuE mainly
lies in running UPN for utility prediction. Note that for each
ensemble decision, NeuE runs UPN one time to get the pre-
dicted utility. Therefore, the complexity of NeuE is decided
by the total number of DNN ensemble decisions |Y|. How-
ever, as shown in (1), || grows exponentially over the num-
ber of candidate DNNs M, resulting in extremely-high
computational complexity when the number of candidate
DNNss is large. Although the computing resource constraints
(3b) and service deadline (3c) helps reduce the decision space
of DNN ensemble decisions, it cannot settle the scalability
issue completely as the set of candidate DNNs can still be
large due to the cheap storage. In the next section, we propose
a variant of NeuE to improve its scalability by leveraging the
similarity of ensemble decisions.

V. EXPEDITING NEUE USING THE SIMILARITY OF DNN
ENSEMBLES

Our method is motivated by the intuition — if the constituting
DNN s of two ensembles are similar, then these two ensembles
would be likely to deliver similar utility. To define the similar-
ity of DNN ensembles, we introduce the context of ensemble
decisions. Let wy € )y denote the context of ensembles with
Qy being the context space of the ensemble decision. The

similarity of two ensemble decisions Y, Y’ € ) is measured
by a distance metric Ly(wy, wy). For example, the simplest
context could be a M-dimension binary vector where m-th
entry indicates whether DNN m is included in the ensemble or
not, and euclidean distance ||wy — wy|| could be used to mea-
sure the similarity. We note that other information, e.g., the
properties of DNNs’ training data, can also be included in the
context of ensemble decisions. Appendix A, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TETC.2022.3214931, pro-
vides concretes of ensemble decisions. With the above defini-
tions, our intuition is captured by the Lipschitz condition.

Definition 1 (Lipschitz Condition). Given the context space
Qx of tasks and the context space Qy of ensemble decision,
the context-parameterized utility function u(wy,Y) is Lip-
schitz with the distance metric Ly, if the below inequality
holds Vo, € Qx VY, Y € Y, and Yoy, wy € Qy

|u(wx, ¥) — u(wx, Y')| < Ly(wy, oy) ©)

We leverage the similarity property stated in the Lipschitz
condition to speed up NeuE. The proposed variant is called
NeuE-S (NeuE + Similarity), it reduces the computational
complexity by using only representative DNN ensemble deci-
sions instead of the entire decision set. To define the represen-
tative decisions, we first introduce the covering number and
covering dimension of context space Qy.

Definition 2 (Covering Number and Covering Dimension).
Let (Qy, Ly) be a metric space. Covering number C(Qy, Ly,
r) is the smallest number of sets needed to cover Qy and in
each set of the covering, any two points have a distance less
than r. The covering dimension of (Qy,Ly), denoted by
D(Qy, Ly), is defined based on the covering number:

inf {d : 3¢ >0,Yr € (0,1],C(Qy, Ly, r) < cr?}.

We also define D' and ¢ such that D' > D and C(Qy,
Ly,r) < cr~0'. The existence of such constant ¢ is guaran-
teed by the definition of covering dimension.

Now, we are ready to present NeuE-S. NeuE-S splits the
timeline into phases i = 0, 1, 2, . . ., with the i-th phase having
2" time slots. Suppose NeuE-S enters phase i, it first partitions
the ensemble decision space ) into disjoint sets M , 572, e
y k;» where the number of disjoint sets in phase i is K;

D'i

Ki=c- 202, (10)

and the diameter of each partitioned set should not be larger
than r, i

r=2 5. (1)

The existence of such partitions {J;}1., follows from that
the covering dimension of )y is D. NeuE-S then finds a sub-
set ) C) based on partitioned {jik}f’:, Specifically,
NeuE-S will pick at least one DNN ensemble decision from
Vi, Vk and put them in ), and hence we will have |)'| > K;.
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FIGURE 3. lllustration of the set cover problem and NeuE-S.

It is guaranteed that an arbitrary ensemble decision Y € Y is
within distance ; to a point in ))’. We call ) the representa-
tive decision set of ).

Algorithm 3. NeuE-S

1: Input: ensemble decision set )/, distance metric Ly,
constant D',

2: for phasei = 1,2,...do .

3: Calculate K; = ¢ - 20[’)_#2 and r; = 2

4:  Create partition on ) by solving the set cover problem:
{5/,(},]5’:1 — SetCover(Y, r;).

5. Pick at least on decision from ), Vk to generate the
representative decision set ).

6:  Run NeuE (Algorithm 1) with input ) and the time
horizon T = 2'.

7: end for

In each phase, NeuE-S runs NeuE with representative
ensemble decisions. NeuE-S only needs to run UPN prediction
for |)'| ensemble decisions to identify the optimal ensemble
decision. Figure 3 illustrates the core philosophy of NeuE-S.

We want |)| to be as small as possible in each phase such
that the computing complexity of NeuE-S is minimized. This
equals a set cover problem that aims to partition the ensemble
decision space with the smallest number (i.e., K;) of metric
balls. Solving the set cover problem is NP-hard. Fortunately,
our method does not require an exact solution, an approximate
solution would be efficient enough to reduce the computation
complexity of NeuE. In the experiment, we use a greedy algo-
rithm [43] to solve the set cover problem. The greedy algo-
rithm takes ) and #; as inputs and outputs disjoint sets
{j)k}kK;l. It only requires polynomial time and provides a rig-
orous performance guarantee (see reference [43] for more
details). Algorithm 3 gives the pseudocode of NeuE-S.

We can also rigorously prove the performance of NeuE-S
in terms of regret upper bound.

Theorem 1 (Regret upper bound of NeuE-S). For any T >
0, the regret of NeuE-S is upper bounded by (’)(T%).

Proof. See in Appendix B, available in the online supple-
mental material. g

The above theorem indicates that NeuE-S loosen the regret
upper bound of NeuE from O(v/T) to O(T%) Although
the upper bound of NeuE-S becomes less sharp, it is still

sublinear and hence the asymptotic optimality is guaranteed.
Note that the regret upper bound in Theorem 1 is given for
the worst case, we can show via experiment (see details in
Section VI) that the actual regret of NeuE-S is much smaller
and using representative decisions does not degrade the per-
formance much.

NeuE-S is an efficiently variant of NeuE that can handle
the large ensemble decision space of the DEF problem with
slight performance degradations. Al service providers (ASP)
can pick an appropriate scheme based on their needs in the
real-world implements. For example, if the number of candi-
date DNNs is moderate, the ASP can use NeuE, and if the
number of candidate DNNs is large, then the ASP may
choose NeuE-S.

VI. EXPERIMENTS

A. EXPERIMENT SETUP

We run the proposed method on an edge computing testbed.
A DELL workstation is used as an edge server, which is
equipped with a 64-bit 8 Intel 17-4770 CPU cores running at
3.40 GHz, and one NVIDIA Geforce GTX 1080 Ti GPU.
The experiment is run on Ubuntu 16.04 LTS system with
Pytorch v1.1.0, CUDA v9.0, cuDNN v7.0. Al tasks are fed
into the edge server in a batch-wise manner. The size of the
task batch in each time slot is 10.

We evaluate our method on four real-world datasets: Chest
X-Ray [18] (CXR), Caltech101 [19], MASATI [20], WIDER
[21]. These four datasets represent two types experiment set-
tings in terms of how task contexts are generated. CXR dataset
has natural context associated with the inference tasks, while
artificial contexts are generated for Caltech101, MASATI,
and WIDER. We use 8 types of DNNs including DenseNet,
GoogleNet, ShuffleNet, ResNet, EfficientNet, MobileNet,
Inception, RegNet. The pre-trained model (pre-trained on the
ImageNet dataset [44]) of above 8 DNN types can be found
on the PyTorch website [45]. Next, we show how to generated
candidate DNNs on these datasets.

Chest X-Ray (CXR) Dataset. The CXR dataset is com-
prised of 112,120 X-ray images with disease labels from
30,805 unique patients. There are 15 classes (14 diseases,
and one for “No findings”), and images can be labeled as
“No findings” or one or more disease classes. A Multi-label
classification is performed on the CXR dataset. The output
of DNN ensembles is a vector of binary values y, where y, €
{1 : 'positive’, 0 : 'negative’} is predicted label for I-th dis-
ease. The utility of a task is measured by the Hamming loss,
calculated by hioss = Zf:l wy - [y — 31| where y = {yl}lL:l
is the ground-truth label of the task and w = {w;}-_| is the
importance weight for disease classes. The importance weight
can change across tasks. The utility is higher when the Ham-
ming loss is smaller. The CXR dataset is split into 3 parts: train-
ing dataset (78,468 images, used for generating candidate
DNN:gs), validation dataset (11,219 images, used for evaluating
candidate DNNs), and testing dataset (22,433 images, used for
evaluating the proposed methods). Each X-ray image in the
CXR dataset has context associated with it, which includes
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FIGURE 4. Generation of candidate DNNs. In this example, two
types of DNN architecture are used for each training dataset.

patient data (e.g., patient age, patient gender, etc.) and image
features (e.g., pixel spacing and X-ray orientation). This infor-
mation can be used as task contexts to run NeuE. To imitate the
scenario that DNNs may come from different data sources, we
split the CXR dataset into different training datasets in a non-
i.1.d. fashion. Specifically, we first split the entire training data
into two subsets. One subset has more images in diseases Effi-
sion, Infiltration, Pneumonia, Consolidation, Edema, the other
subset has more images in disease Afelectasis, Cardiomegaly,
Mass, Nodule, Pneumothorax, Emphysema, Fibrosis, Pleural-
thickening, Hernia. Each subset is further divided into two
parts based on the X-ray orientation (Anterior-Poste-
rior or Posterior-Anterior). We have 4 different
training datasets and use 8 types of DNN. For each combina-
tion of training dataset and DNN type, we will train a DNN
model. In this way, we generate 32 DNNSs in total. Because run-
ning NeuE with 32 candidate DNNs (i.e., 4.295 x 10° DNN
ensemble decisions) is computationally expensive, we only use
3 best DNNs for each training dataset, which results in 12 can-
didate DNNs (i.e., 4095 DNN ensemble decisions). The task
context used by NeuE includes the patient’s age, X-ray orienta-
tion, and disease importance weight. Figure 4 illustrates how
the candidate DNNs are generated.

Caltech/MASATI/WIDER Dataset. These three datasets are
widely-used and therefore we save the introduction of these
datasets. Image classification problems are performed on the
Caltech/MASATI/WIDER dataset. The utility of image classi-
fication problem is measured by accuracy, i.e., #ZQ’:I 1{y, =
yn }- These three datasets do not have natural context associated
with images. Therefore, we add artificial context to the original
dataset. Specifically, we add different levels of noise to images
as the task context. The original data source is denoted by ORI.
Two noisy data sources are created by adding white Gaussian
noise with variance 0.1 (data source NOS-1) and 0.2 (data
source NOS-2), respectively. The training data contains 60%
of the images, and the rest 40% are used as test data to run the
proposed algorithm. Similarly, for each combination of DNN
architecture and data source, we will train a DNN model.
Therefore, We have 24 DNNs for each dataset. Because run-
ning NeuE with 24 candidate DNN is computationally expen-
sive, we use 4 best DNNs for each data source, which also
results in 12 candidate DNNs for each dataset. NeuE uses the
noise of images as the task context.

CXR Caltech
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FIGURE 5. Utility of NeuE and benchmarks.

B. RESULTS AND EVALUATIONS
We compare NeuE with 5 benchmarks:

1) Oracle: Oracle knows the context-parameterized utility
function of DNN ensembles. It selects a DNN ensem-
ble that is optimal for the received tasks in each time
slot. Note that Oracle cannot be applied in practice.

2) UCBI1: UCBI is a classic MAB algorithm. This scheme
neglects the context associated with tasks and learns the
general performance of DNN ensembles.

3) LinUCB: LinUCB [30] is a widely-used contextual
multi-armed bandit algorithm. It assumes that the per-
formance of DNN ensembles is a linear function of the
task context.

4) Best-single: This scheme selects one DNN that has the
highest predicted accuracy for received tasks in each
time slot. The learning and decision-making process of
Best-single is the same as NeuE, but it only selects one
DNN. This scheme is used to evaluate the benefit of
DNN ensemble technique.

5) Random: This scheme also uses DNN ensemble tech-
nique, however, it randomly picks candidate DNNs
into the ensemble.

Because the proposed methods and benchmarks show sim-
ilar performances on Caltech, MASATI, and WIDER, we
only present the experimental results for CXR and Caltech in
this section, other results can be found in Appendix C, avail-
able in the online supplemental material.

B.1 UTILITY COMPARISON

Figure 5 compares the utility achieved by NeuE and the
other five benchmarks. For the CXR dataset, the utility is
given in terms of Hamming loss, and a lower Hamming
loss indicates a higher utility. For the Caltech dataset,
the utility is given in terms of accuracy, and a higher
accuracy indicates a higher utility. As expected, Oracle
achieves the highest utility on two datasets. Among the
others, we see that NeuE outperforms other benchmarks,
and achieves close-to-oracle performance. In particular,
NeuE increases the accuracy by 28.73% compared to
Best-single on the Caltech dataset. We can even see that
Random achieves higher accuracy than Best-single on the
Caltech dataset. This indicates that using the DNN
ensemble technique effectively improves the performance
of Al services.
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FIGURE 6. Regret of NeuE and benchmarks.

B.2 REGRET ANALYSIS

Figure 6 depicts the regret of NeuE and benchmarks. The
results show that NeuE is able to reach a sublinear regret,
meaning that our algorithm can achieve asymptotic optimal-
ity. By contrast, the regret of UCB and LinUCB increases
linearly over time. This indicates that UCB and LinUCB can-
not identify the optimal ensemble decision effectively.

B.3 PERFORMANCE OF NEUE-S

Figure 7 compares the performance of NeuE and Neue-S in
terms of utility and algorithm complexity. Figure 7(a) gives
the utility achieved by two algorithms, we can see that the
performance of NeuE-S is slightly lower than that of NeuE.
This means that using representative decisions will not harm
the performance of NeuE much. Figure 7(b) compares the
computing complexity of NeuE and NeuE-S. The computing
complexity is measured by the number of UPN predictions
required to complete DNN ensemble formation in each time
slot (the computing capacity constraint and service deadline
are not considered in this figure). We can see clearly that the
computing complexity of NeuE increases exponentially with
the number of candidate DNNs. For example, the current
experiments run with 12 candidate DNNs, which means that
NeuE will need to run UPN prediction 4095 times in one time
slot. By contrast, the computing complexity NeuE-S stays
low even when the number of candidate DNNs is 12. This
indicates that NeuE-S can significantly speed up the decision-
making process with negligible utility losses. Figure 7(c)
compares the service delay of NeuE and NeuE-S. The service
delay consists of two parts, the algorithm computation delay
and the inference delay. The algorithm computation delay is
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FIGURE 8. Regret analysis of NeuE-S.

the time used by NeuE or NeuE-S to get the optimal DNN
ensemble, and the inference delay is the time for running the
DNN ensemble to get the prediction results of the admitted
tasks. Figure 7(c) shows the average service delays (per task)
of NeuE and NeuE-S on the CXR dataset with 200 MB com-
putation capacity. We can see that the algorithm computation
delay accounts for more than 50% of the total service delay
for NeuE. By contrast, the algorithm computation delay for
NeuE-S is much lower.

Figure 8 depicts the regret of NeuE-S on CXR and Caltech
datasets. Overall, we can see that the regret curve of NeuE-S
is sublinear on both datasets. We also provide a regret
decomposition in Figure 8, splitting the total regret into two
parts, the regret caused by using representative decisions (R-
decisions) and the regret caused by online learning. We can
see clearly that using representative decisions only accounts
for a very small portion of the total regret.

B.4 IMPACT OF COMPUTING CAPACITY

Figure 9 shows the impact of computing capacity on NeuE-S.
We allocate different amounts of GPU RAM to run NeuE-S,
Figure 9 shows the performance of NeuE-S, Oracle, and Ran-
dom when the amount of allocated GPU RAM changes from
100 MB to 400 MB. In general, we see that all three methods
achieve higher utilities (lower Hamming loss for the CXR
dataset, and higher accuracy for the Caltech dataset) with
more computing resources. This is because the ASP can
recruit more DNNs in the ensemble which tends to give
more stable prediction results. It is also worth noticing that
increasing the computing capacity has a diminishing effect,
i.e., when the computing capacity is already large, further
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FIGURE 7. Comparison of utility, complexity, and service delay between NeuE and NeuE-S.

494 Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 13,2023 at 15:53:08 UTC from IEEE XyRteMEREs ot Bplil)NE 2023



BAI etal: NeuE: Automated Neural Network Ensembles 2 for Edge Intelligence

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

CXR dataset Caltech dataset

B o8 0.8
o >
g 0.6 § 0.6
£ o 30
£ &
;: 0.4 %0.4
2 ]
5 0.2 Z 02
>
<

0 0

100 200 300 400 100 200 300 400

Allocationed GPU RAM (MB) Allocationed GPU RAM (MB)

FIGURE 9. Impact of computing capacity.

increasing the computing capacity will not provide large util-
ity increases.

B.5 IMPACT OF SERVICE DEADLINE

Figure 10 shows the impact of service deadline on NeuE-S.
We vary the service deadline from 400 ms to 1200 ms (the
computing capacity is fixed at 400 MB), Figure 10 shows the
performance of NeuE-S, Oracle, and Random with different
service deadline constraints. Similar to the impact of comput-
ing capacity, we see that all three methods achieve higher
utilities with looser service deadline, because the ASP can
recruit more DNNs in the ensemble which tends to give
more stable prediction results. In addition, loosening the ser-
vice deadline also exhibits a diminishing effect.

B.6 IMPACT OF TASK CONTEXT ON ENSEMBLE
FORMATION

We next take the Caltech dataset as an example the show how
task context affects DNN ensemble formation. Figure 11 shows
the probability that a DNN is included in the formed ensemble
under different image noise levels. First, we can see in general
that certain DNNS, e.g., DNN 1, is more likely to be selected in
ensembles, mainly because it has better general performance
compared to others. In particular, we can see that task context
has a noticeable on ensemble formation. For example, DNN 1
is more likely to be selected when the image noise level is mod-
erate (0.2-0.8); DNN 2 is more likely to be selected when the
image noise level is low (0-0.2); and DNN 6 is more likely to
be selected when the image noise level is high (0.6-1.0).

VIl. CONCLUSION

This paper investigates a DNN ensemble formation (DEF)
problem for edge computing systems, which aims to identify
the best-fit DNNs for users’ tasks. An online learning
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FIGURE 11. Impact of task context on the DNN ensemble formation.

algorithm, called NeuE, is proposed to offer a solution to the
DEF problem. NeuE does not rely on heuristic rules for DNN
formation, instead, it directly learns the performance of DNN
ensembles and adaptive reconfigure members in the DNN
ensemble. In particular, the proposed method takes into
account several unique properties of edge computing plat-
forms including device heterogeneity, computing resource
constraint, and the service deadline. We further propose a var-
iant, called NeuE-S, of NeuE to improve scalability by
leveraging the similarity of DNN ensemble decisions. NeuE-
S drastically reduces the computing complexity of NeuE with
a negligible performance loss. The proposed method can be
generalized to work in many other scenarios that involve opti-
mizing members of ensemble classifiers.
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