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ABSTRACT Artificial Intelligence (AI) applications have been established in the mobile industry and are

decisively determining the progress in entrepreneurial value creation. This article explores the potential of

Edge Computing to enhance the performance of AI applications. In particular, a DNN ensemble formation

(DEF) problem is studied which judiciously recruits members for DNN ensembles considering the device het-

erogeneity, computing resource limitation, and service deadline of edge computing systems, in an attempt to

optimize the performance of edge AI services. We design a novel algorithm called Neural Ensemble (NeuE) to

solve the DEF problem. NeuE involves an online learning process that learns the in-practice performance of

DNN ensembles and adaptively forms DNN ensembles according to the features of admitted tasks. It leverages

the framework of contextual multi-armed bandit and follows the constraints of computing resource limitation

and service deadline. We also show theoretically that NeuE provides asymptotic optimality. However, NeuE

suffers from poor scalability due to exponentially-growing ensemble decision space. We then propose a variant

of NeuE, called NeuE-S, to expedite NeuE. NeuE-S identifies representative ensemble decisions using similari-

ties of ensemble decisions and carries out learning with a reduced decision space. We show via theoretical anal-

ysis that NeuE-S drastically reduces the computation complexity with negligible performance loss. We

implement our method on an edge computing testbed. The results show that our method dramatically improves

the performance of edge AI services.

INDEX TERMS Edge computing, DNN ensemble formation, multi-armed bandit

I. INTRODUCTION

Deep learning has undoubtedly revolutionized artificial intel-

ligence (AI) in a range of complicated domains, providing

performance comparable to or even exceeding the human-

level capability. Driven by the huge market of mobile and

embedded devices, e.g., smartphones, self-driving cars, and

smart home appliances, there is a continuous trend to push AI

functionalities to these end-devices. On one hand, deep neural

networks are made more compact with lighted libraries (e.g.,

Tensorflow Lite [1] and Core ML [2]) and DNN compression

techniques (e.g., quantizing [3] and pruning [4]) to adapt the

constrained computing resource at mobile and embedded

devices. On the other hand, the mobile and embedded devices

are now equipped with additional hardware acceleration, e.g.,

Graphics Processing Units (GPUs) or Neural Network Proc-

essing Units (NPUs) to support AI applications. While imple-

menting AI applications on mobile devices is becoming

feasible, it is unlikely to be a universal solution for all mobile

devices due to the substantial heterogeneity in computing

capacity and variations in device status [5]. Besides, running

AI applications tends to incur large energy consumption [6],

putting off its usage when the device battery is low. Edge

Computing [7] is envisioned as a promising external booster

to realize the full potential of mobile AI applications. It

migrates the computation burden of AI application from

mobile devices to edge servers deployed at the network edge

— the AI service provider (ASP) configures its AI service (a

counterpart of mobile AI applications) and related deep neural
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networks (DNNs) at edge servers, and the users in the service

area can offload their tasks to edge servers for processing. Fur-

thermore, edge AI services can provide better performance

with high-quality computing resources at edge servers. For

example, powerful GPUs may be available for accelerating

DNN processing, and complex DNN architectures that are

computationally over-expensive for mobile devices can now

be applied to improve the inference quality.

The goal of this paper is to improve the performance of

edge AI services by exploiting the DNN ensemble techniques.

The DNN ensemble technique [8], [9] has achieved state-of-

the-art performances for many AI applications, e.g., the win-

ners of ILSVRC [10] designed their methods based on the

DNN ensemble technique. Several recent works [11], [12]

also showed the DNN ensemble technique helps defend

adversarial attacks and improve the robustness of inference

results. The deployment of edge computing platforms grants

ASPs access to powerful computing resources, making it pos-

sible to run resource consuming DNN ensemble technique at

network edge. To use the DNN ensemble technique for edge

AI services, the ASP will first form an ensemble of DNNs at

an edge server, and then feed the received tasks to each of the

DNNs in the ensemble, at last, the outputs of individual

DNNs are combined to generate final results. This overall pro-

cess seems straightforward, however, there are several issues

to be addressed before the DNN ensemble technique can

deliver what it is capable of on edge computing platforms.

1) The first issue is the space/time complexity control of

DNN ensembles for edge AI services. While using

DNN ensemble provides better service performance, it

also incurs higher space and time complexity due to

running multiple DNNs. The complexity control of

DNN ensemble is of great importance for edge AI serv-

ices from two aspects: 1) Computing resources at edge

servers are limited compared to cloud [13], besides,

ASPs may operate under budget constraints that only

allow them to use a portion of edge computing resour-

ces. Therefore, the space complexity of DNN ensem-

bles should be kept below the computing resource

constraint at edge servers. 2) Running multiple DNNs

incurs larger inference delays. Because edge AI serv-

ices are often latency-critical, and therefore the time

complexity of DNN ensemble should be judiciously

managed to guarantee in-time result return.

2) The second issue is the task feature variation caused by

user device heterogeneity and its unknown impact on the

DNN performance. The user devices in the edge comput-

ing system can be extremely diverse, including smart-

phones, intelligent vehicles, security cameras, and etc.

These devices are equipped with different hardware and

are operated in different usage scenarios, which affects

the task inputs to DNNs. Consider the image classifica-

tion as an edge AI service, the device camera determines

the image resolution, and the usage scenario affects the

image brightness. We call these associated features the

context of tasks. DNNs usually have different sensitivities

to the change of task context. What is thornier is that the

impact of context on the DNN performance is not fully

known to ASP. However to address the task feature varia-

tions caused by device heterogeneity is an important

designing goal to be considered.

3) The third issue is the obscured impact of individual

DNNs on DNN ensembles. A DNN ensemble integrates

individual prediction results of its members to generate

a final prediction result, and hence the performance of

DNN ensembles is determined by its constituting

DNNs. However, it is difficult to characterize the inter-

dependency between DNN members. The performance

of an ensemble is affected by many factors, e.g., the

quality of individual DNNs, diversity among DNNs,

orthogonality of complementary of DNNs’ training/vali-

dation datasets [14], and how these factor affects the per-

formance of DNN ensembles is still unclear. Existing

works [14], [15] provided several heuristic rules to form

a good ensemble, e.g., picking DNNs that have the best

individual performance [15] or DNNs that exhibit high

diversity [16]. However, the performance of heuristic

rules depends heavily on the applied data [15]. There is

still no consensus in the community on how to build an

optimal DNN ensemble from individual DNNs.

This paper defines DNN ensemble formation problem that

jointly see to above three challenges. We design online learn-

ing algorithms to provide a solution to DNN ensemble forma-

tion problem. The crux is to learns the performance of DNN

ensembles over the task feature space and identify the best-fit

DNN ensemble for received user tasks. In addition, the pro-

posed method controls the space and time complexity of

DNN ensembles to guarantee that the formed DNN ensemble

can be implemented with constrained edge computing plat-

forms and return task results before service deadline. The key

contributions of this paper are summarized as follows:

1) A novel DNN ensemble formation (DEF) problem is

formulated which aims to improve the performance of

edge AI services by identifying the best-fit DNN

ensembles for user tasks. The DEF problem takes into

account unique properties of edge computing platforms

including device heterogeneity, edge resource con-

straint, and service deadline. In addition, the formula-

tion of DEF presented in this paper is compatible with

most edge computing platforms and AI services, pro-

viding a general solution for ASPs.

2) We address the DEF problem using the philosophy of

“AI-for-AI” — leveraging AI techniques to form DNN

ensembles for AI service provisioning. The DNN ensem-

ble formation is automated by an online learning algo-

rithm that adaptively forms a best-fit ensemble based on

the context of received tasks. Our algorithm learns the

performance of different neural network ensembles using

a multi-armed bandit algorithm called NeuralUCB [17],

and therefore, we call it Neural Ensemble (NeuE). NeuE

judiciously balances the exploration (i.e., learning the

performance of DNN ensembles) and exploitation (i.e.,
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forming the best-fit DNN ensemble based on current

knowledge) and achieves asymptotic optimality.

3) We further design an extension of NeuE to expedite the

learning and decision-making process with a large

ensemble decision space. The complexity of NeuE

depends heavily on the number of ensemble decisions

which grows exponentially with the number of candi-

date DNNs. This makes NeuE very inefficient when the

set of candidate DNNs is large. To address this issue, we

propose a variant of NeuE, called NeuE-S, by mining

the similarity of ensemble decisions. NeuE-S dynami-

cally partitions the decision space into balls and uses

only representative decisions from partitioned balls dur-

ing decision-making. We show via theoretical analysis

and experiment that NeuE-S drastically reduces the time

complexity of NeuE without harming its asymptotic

optimality.

4) We evaluate NeuE and NeuE-S on an edge computing

testbed. The experiment is performed on the four real-

world datasets Chest X-Ray [18], Caltech101 [19],

MASATI [20], WIDER [21]. The experimental results

show that NeuE outperforms other benchmark in terms

of achieved utility, and NeuE-S can reduce complexity

from exponential-time to polynomial-time with slight

performance losses.

The rest of this paper is organized as follows. Section II

reviews related works. Section III introduces the system

model and defines the DEF problem. Section IV designs the

NeuE algorithm. Section studies the extension NeuE-S.

Section VI shows experimental results, followed by conclu-

sions in Section VII.

II. RELATEDWORK

A. ENSEMBLE LEARNING VERSUS ENSEMBLE

FORMATION

Ensemble learning is a longstanding machine learning strat-

egy that mainly involves two research topics: model training

and output fusion. Model training studies how to train an

ensemble model to reach desired performance. There are a

variety of model training schemes for ensemble learning,

e.g., Bagging [22], Boosting [23], AdaBoost [24], stacked

generalization [25]. The training process of these algorithm

involves manipulating training data to generate a set for

weak base models. Output fusion investigates the process of

integrating the base models’ outputs into a single output.

There are three main approaches for combining the outputs.

1) Algebraic combiners [9], [26]: algebraic combiners are

non-trainable combiners, where outputs of base models are

combined through an algebraic expression, such as mini-

mum, maximum, weighted average, median, etc. 2) Voting

based methods [14]: voting based methods, e.g., majority

voting, weighted majority voting, operate on labels only,

where the vote to a class is 1 or 0 depending on whether base

model chooses the class. They then choose the class that

receives the most votes. 3) Meta-learning methods [27]: In

meta-learning, the individual outputs are inputs to the meta-

learner that generates the final output. The key is training a

good meta-learner. Ensemble learning has also been used in

the DL community recent years. The authors in [8], [9] create

a DNN ensemble by averaging the output of multiple indi-

vidual DNNs, which far outperforms existing benchmarks in

terms of inference accuracy. Other advanced ensemble/

fusion rules are also investigated, e.g., authors in [26] utilize

weighted averaging fusion rule and designs a learning algo-

rithm to learn the optimal weight of each DNN.

The DEF problem considered in this paper is very different

from classic ensemble learning. DEF neither considers model

training nor fusion rule design, instead, it focuses how to form

optimal DNN ensembles from a set of base DNN models. The

DEF problem is related to DNN selection that aims to select

one best single DNN. The authors in [28] shows that different

DNNs have different accuracy and delay, and a DNN selector

is learned to select the best DNN. The work [29] proposes a

big/little DNN framework where a little DNN is used when-

ever possible and a big DNN is only users when the confi-

dence of little DNN is below a threshold. However, forming

DNN ensembles is much more complicated because it is diffi-

cult to characterize the inter-dependency among multiple

DNNs and its impact on inference performance. The most

related work is probably our previous work [16], which con-

siders a DEF problem for edge AI services. However, the

work [16] only offers a basic solution that rests on heuristic

rules and simplified implementation scenarios: 1) The

work [16] assumes that a well-performed DNN ensemble

should include DNNs that have high individual accuracy and

at the same time exhibit large diversity, and based on this

assumption, a heuristic DNN formation rule that jointly con-

siders the individual accuracy and diversity of DNNmembers.

But the heuristic rule lacks strict theoretical guarantees, and

cannot provide satisfactory performance in all cases. 2) The

problem formulation in [16] directly restricts the maximum

number of DNNs that can be included in the ensemble. This

does not precisely capture the computing resource constraint

at edge servers and may cause performance degradation in

practice. 3) The performance of the learning algorithm pro-

posed in [16] depends on the dimension of task context space,

and becomes less efficient when the task context is large. This

paper designs a novel DNN ensemble formation algorithm to

address the above problems, it does not rely on any heuristic

rules for DNN ensemble formation, and directly learns to find

the optimal DNN ensemble. The DEF problem formulated in

this paper does not make unrealistic assumptions about edge

computing systems and thereby improving the practicality of

the proposed method. In particular, the proposed learning

algorithm can learn efficiently over a large task context space.

B. CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS

Contextual bandit algorithms have been applied in many real-

world applications. The most studied model is linear contex-

tual bandits [30], [31], which assumes that the expected

reward is linear in the context. While successful in theory, the

assumption of linear-reward often fails to hold in practice,
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which motivates the study of nonlinear contextual bandit [32],

[33]. However, they still require fairly restrictive assumptions

on the reward function. For example, the work [32] requires a

Lipschitz continuous property in a proper metric space, and

work [33] assumes the reward function belongs to some repro-

ducing kernel Hilbert space. In order to overcome the above

shortcomings, deep neural networks (DNNs), have been intro-

duced to learn the underlying reward function in contextual

bandit problems. The authors in [17] propose a new algorithm

NeuralUCB that uses a neural network to learn the unknown

reward function and follows the UCB strategy for exploration.

Our method is inspired by the NeuralUCB algorithm to learn

complicated mappings from task contexts to the utility of

DNN ensembles. However, NeuralUCB can be very ineffi-

cient when the number of DNN ensembles is large, and there-

fore we exploit the similarity of DNN ensemble decisions to

improve the scalability of our method.

III. AI SERVICES PROVISIONING ON EDGE COMPUTING

PLATFORMS

A. IMPLEMENTATION SCENARIO

We exemplify the implementation scenario of AI service pro-

visioning in the context of multi-access edge computing

(MEC) [7], [34], illustrated in Figure 1. A MEC system con-

sists of geographically distributed edge sites where each edge

site has a wireless access point and an edge server. The users

within the coverage of an edge site can send their tasks to the

edge server via the wireless access point. ASP configures its

service interfaces and deploys DNNs at edge servers to pro-

cess the received tasks. Also, an edge server supports the co-

existence of multiple ASPs. The key is to use virtualization

techniques to create resource isolation, e.g., virtual machines

or containers, on the edge server, and ASPs can deploy their

service independently with allocated resources. The resource

scheduling for multiple ASPs [35]–[37] is orthogonal to the

theme of this paper.

B. DNN ENSEMBLE AND COMPLEXITY CONSTRAINTS

An ASP stores a set of candidate DNNs, indexed byM¼ f1;
2; . . .;Mg, on the edge server. Storing DNNs only consumes

storage resource. Because the storage is cheap, the total number

of candidate M can be possibly large. The ASP picks one or

multiple DNNs from the candidate set M to form a DNN

ensemble, denoted by Y �M. The size of an ensemble can

vary from 1 toM ¼ jMj. LetY be the ensemble decision space

that collects all possible ensemble decisions, then the size of Y
is a Bell number ofM:

jYj ¼
X

M

i¼1

M

i

� �

: (1)

From Equation (1), we see that the number of ensemble deci-

sions grows exponentially with M, which needs to be care-

fully handled to avoid poor scalability. We will give detailed

discussions about this when presenting our method.

The space and time complexity of DNN ensembles

depends on the ensemble size and the scheme for running

ensembles. For example, the edge server can load all DNNs

in the ensemble to RAM and run them in parallel. However,

doing that will require a considerable amount of computing

resources as the computation of all DNNs happens at the

same time. Alternatively, the edge server can run DNNs

sequentially (e.g., one by one), which requires much less

computing resource. But sequential execution tends to incur

larger computation delay. Besides these two basic schemes,

many others can also be applied to run DNN ensembles. For-

tunately, our method does not require a specific scheme for

running DNN ensembles. Given a certain implementation

scheme, we let cðYÞ and dðYÞ be the computing resource

usage and delay for running ensemble Y , respectively. Intui-

tively, cð�Þ and dð�Þ are non-decreasing functions of the

ensemble size jYj. Note that the computing resources allo-

cated to an ASP can be limited. Let �c denote the computing

capacity available to ASP at the edge server, for a feasible

ensemble Y , its resource usage should not exceed the com-

puting capacity �c, i.e., cðYÞ � �c. In addition, if the user tasks

are associated with the deadline requirement �d, then the run-

time of a feasible ensemble should not violate the deadline

requirement, i.e., dðYÞ � �d.

C. DNN ENSEMBLE FORMATION PROBLEM

Next, we formally define the DEF problem. Due to the vola-

tile mobile environment, the context of user tasks varies

across time. Our method proposes to reconfigure the ensem-

ble adaptively according to the changes in task context. The

operational timeline is discretized into time slots t ¼
1; 2; . . . ; T (e.g., a few seconds per slot). In each time slot t,

we let xt ¼ fxt1; xt2; . . . ; xtNg be the set of user tasks received
at the edge server.

Suppose DNN ensemble Y t is formed in time slot t, all

received tasks in xt will be forwarded to each DNN in Y t. Con-

sider an arbitrary task xtn 2 xt and an arbitrary DNN m 2 Y t,

we denote the prediction result of DNN m for task xtn by ytnm.

Because all DNNs in Y t are used to process task xtn, a fusion

rule p will be used to combine individual results to a final

decision ŷtnðY tÞ, i.e., ŷtnðY tÞ  pðfytnmgm2Y t Þ. The fusion rule

FIGURE 1. AI service provisioning on the edge computing platform.
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is usually different for different AI services due to different

output formats. Even for the same AI application, there are

various fusion rules, for example in classification problem,

commonly-used fusion rules include majority voting [38],

confidence averaging [39], meta-learning [40], etc. It is worth

highlighting that the method proposed in this paper is not con-

fined to a specific AI application and is compatible with most

fusion rules.

ASP gains utility by completing user tasks. For task xtn 2
xt, we let ctn ¼ 1fŷtnðY tÞ ¼ ytng denote the prediction correct-

ness of ensemble Y t where 1f�g is the indicator function and

ytn is the ground truth of task xtn. Given the set of received

tasks xt, the reward in time slot t is

utðxt; Y tÞ ¼
X

xtn2xt
1 ŷtnðY tÞ ¼ ytn
� �

(2)

ASP aims to maximize the cumulative reward in a total of T

time slots by finding a sequence of DNN ensemble decisions

fY tgTt¼1. The objective of the DEF problem is defined as:

P1 : max
fY tgTt¼1

XT

t¼1 u
tðxt; Y tÞ (3a)

s.t. cðY tÞ � �c; 8t (3b)

dðY tÞ � �d; 8t (3c)

Y t 2 Y; 8t (3d)

Recall that (3b) and (3c) are constraints posed by the com-

puting capacity and response deadline. Although P1 is

given in an off-line form, it can only be solved in an online

manner because the task set xt is not revealed before time

slot t. The online decision-making would be simple if we

know utility mapping uðxt; Y tÞ — the optimal ensemble in

each time slot t can be easily identified using

Y�t ¼ max
Y2Y

uðxt; YÞ: (4)

However, such a utility function is often unknown in prac-

tice. The performance of DNN ensembles for user tasks is

revealed only during implementation. Moreover, evaluating

the general performance of DNN ensembles is not enough

because we also need to analyze the impact of task context

on the performance of DNN ensembles. This further

increases the difficulty of obtaining the offline utility func-

tion. As a result, P1 cannot be solved merely as an online

optimization problem. Learning the performance of DNN

ensembles is a necessary component to be incorporated in

our method. In the next section, we will cast P1 into a

multi-armed bandit problem and provide an online learning

algorithm to solve the DEF problem.

IV. DNN ENSEMBLE FORMATION VIA CONTEXTUAL

MULTI-ARMED BANDIT

We utilize contextual multi-armed bandit to provide a solu-

tion to the DEF problem. Before presenting the designed

method, we first need to define the context-parameterized

utility.

A. CONTEXT-PARAMETERIZED UTILITY

We consider simple task contexts that can be obtained with-

out processing the task, e.g., in the experiment, we take the

patient data associated with medical images as the task con-

text. In this case, using context will not incur extra computa-

tion burdens. Upon the arrival of user tasks, ASP first

observes the associated context. Let vxt 2 VX (VX is the

context space) denote the context of received tasks xt, we

slightly abuse the notation of utility function utðxt; YÞ by
defining the context-parameterized utility ut � uðvxt ; YÞ,
i.e., the utility of using DNN ensemble Y for received tasks

xt is sampled from a unknown distribution utðvxt ; YÞ param-

eterized by the context of tasks vxt . We further define

mðvxt ; YÞ ¼ E½uðvxt ; YÞ� as the expected utility given task

context vxt and DNN ensemble Y . If the utility function is

known a priori, then the optimal DNN ensemble in time slot

t can be found by

Y�t ¼ argmax
Y2Y

utðvxt ; YÞ: (5)

B. DNN ENSEMBLE FORMATION WITH NEURALUCB

The core of our method is to learn the context-parameterized

utility function online and use the learned knowledge to

guide the DNN ensemble formation for utility maximization.

A exploration-and-exploitation dilemma is worth highlight-

ing to achieve this goal. Note that the performance of a DNN

ensemble is revealed only after it is used for processing user

tasks. The learner needs to observe an adequate amount of

utility (ut) and context (vxt ) data for each ensemble Y to learn

an accurate utility function utðvxt ; YÞ. An accurate utility

estimation is a precondition for identifying the best-fit DNN

ensemble using the rule in (5). Selecting DNN ensembles

based on inaccurate utility predictions can lead to arbitrarily

low utility. Therefore, the learner needs to judiciously bal-

ance 1) Exploration, i.e., selecting a DNN ensemble to col-

lect its utility for better estimation of utility function; and 2)

Exploitation, i.e., selecting the optimal DNN ensemble based

on the learned utility function. Such a problem fulls into

multi-armed bandit (MAB) learning and we use contextual

MAB to provide a solution.

The existing contextual MAB methods can be categorized

into two groups. The first category is to construct a mapping

function with a specific form and then estimate parameters in

the constructed function. A noticeable deficiency of this

method is that it requires knowing the form of the utility func-

tion, which does not hold in all cases. Besides, the constructed

utility function may not correctly reflect the properties of the

true utility function. For example, a widely-used contextual

MAB algorithm, LinUCB [41], assumes that the utility func-

tion is a linear mapping of context, which is often false in prac-

tice. The second category is to partition the context space into

multiple sub-spaces and learns the expected utility for each of

these sub-spaces [42]. For this type of method, the curse

of dimensionality is a serious problem. When the dimension

of context space becomes high, the algorithm is extremely
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inefficient. In our problem, the context-parameterized utility

function is less likely to be linear and the task context space

can also be high. To address these issues, we employ a novel

contextual MAB algorithm, NeuralUCB [17], as our learning

engine.

Next, we show our online learning algorithm for the DEF

problem. We call our algorithm NeuE (Neural Ensemble)

because it leverages “Neural”UCB, to construct ensembles of

“neural” networks. Following NeuralUCB, NeuE builds a

neural network to approximate the utility function uðvxt ; YÞ.
We name this neural network utility predicting network

(UPN) to distinguish it from the deep neural networks used

for processing AI tasks. UPN has the capability of represent-

ing general non-linear dependencies between the context

information and utility without a priori specifying which par-

ticular form of dependencies to look for. The input to UPN is

the context of received tasks vxt and the ensemble decision Y;

and the output is the predicted utility, denoted by ûðvxt ; Y ; uuuuuuuÞ
where uuuuuuu is the parameter vector of UPN.

The pseudocode of NeuE is given in Algorithm 1. Next,

we discuss in detail the procedures of NeuE as depicted in

Figure 2. Upon the arrival of user tasks xt in time slot t,

NeuE first observes the context of received tasks vxt , which

will then be used to estimates the utility of DNN ensemble

decisions. For each DNN ensemble decision Y 2 Y that satis-

fies cðYÞ � �c and dðYÞ � �d, NeuE constructs an input pair

fvxt ; Yg and feeds it to UPN to get the utility prediction

ûðvxt ; Y ; uuuuuuuÞ. After that, NeuE calculates Lambda Indicator

�t
Y of ensemble decisions:

�t
Y ¼

0; cðYÞ > �c or dðYÞ > �d

ûðvxt ; Y ; uuuuuuuÞ þ g
ffiffi

h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgggggggtYÞ>ZZZZZZZ�1gggggggtY
q

; otherwise

(

(6)

where gggggggY  ruuuuuuuûðvxt ;Y ; uuuuuuuÞ is the gradient of UPN parame-

ters of uuuuuuu at fvxt ; Yg, ZZZZZZZ is an algorithm parameter that is itera-

tively updated based on gggggggY (Lane 15 in Algorithm 1), and h

is a constant determined by the network architecture of UPN.

Given the Lambda indicator, the best-fit ensemble for each

time slot t is determined by

Y t ¼ argmax
Y2Y

�t
Y : (7)

Algorithm 1. NeuE

1: Input: time horizon T , ensemble decision set Y,
algorithm parameter g, the number of nodes in the

hidden layers of UPN h.
2: Initialization: Randomly initialize the UPN parameter uuuuuuu,

initialize ZZZZZZZ  IIIIIII

3: for t ¼ 1; . . . ; T do
4: Observe the context of received tasks vxt

5: for each ensemble Y 2 Y do
6: if cðYÞ � �c and dðYÞ � �d then
7: Predict utility of ensemble Y for tasks xt with

current UPN ûðvxt ; Y ; uuuuuuuÞ
8: Computing the gradient of UPN parameter uuuuuuu

at fxt; Yg: gggggggtY  ruuuuuuu ûðvxt ; Y ; uuuuuuuÞ

9: Assign �t
Y  ûðvxt ; Y; uuuuuuuÞ þ g

ffiffi

h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgggggggtYÞ>ZZZZZZZ�1gggggggtY
q

10: else
11: Assign �t

Y  0
12: end if
13: end for
14: Select ensemble Y t ¼ argmaxY2Y�

t
Y

15: Update ZZZZZZZ  ZZZZZZZ þ gggggggt
Y t
ðgggggggt

Y t
Þ>=h

16: Apply DNN ensemble Y t to process received tasks

and observe the achieved utility ut

17: Store experience in X , X  X [ fvxt ; Y
t; utg

18: Update UPN parameter uuuuuuu using X :
uuuuuuu TrainUPNðXÞ "Use Algorithm 2

19: end for

Algorithm 2. Subroutine: TrainUPN

1: Input: learning rate h, experience X , number of gradient

descent updates J;
2: Define LðuuuuuuuÞ ¼P

fvxt ;Yt ;utg2X ðûðvxt ;Y
t; uuuuuuuÞ � utÞ2

3: for j ¼ 1; . . . ; J � 1 do
4: uuuuuuujþ1 ¼ uuuuuuuj � hrLðuuuuuuujÞ
5: end for
6: return uuuuuuuJ

The Lambda indicator is designed to balance the explora-

tion and exploitation trade-off. To be specific, the first term

ûðvxt ; Y ; uuuuuuuÞ in the Lambda indicator (6) is the utility pre-

dicted by UPN and the second term is used to characterize the

uncertainty of the utility prediction. If the utility prediction for

ensemble Y exhibits a large uncertainty, then the rule in (7)

has a tendency to select ensemble Y . In this case, the learner is

able to collect utility at the end of the time slot and use it to

retrain UPN, such that UPN can produce more accurate results

if similar contexts appear in the future. If the uncertainty of

utility prediction is small, then �t
Y is dominated by the pre-

dicted utility, and the ensemble selected by (7) is expected to

deliver the highest utility. The parameter g is used to adjust

the importance of exploration and exploitation.

After ASP determines the ensemble decision Y t, the edge

server runs all DNNs in Y t to process the received tasks xt

and gives final prediction results ŷt ¼ fŷt1; ŷt2; . . . ; ŷtNg which
are then returned to users. At last, ASP observes the utility ut

FIGURE 2. Illustration of NeuE. It depicts one decision cycle in a

time slot, starting from the arrival of user tasks at the right top

corner.
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achieved by Y t. The user utility can be determined by many

factors, e.g., the accuracy of returned results, service delay,

and energy consumption. NeuE can handle any form of util-

ity function as long as the utility value can be observed at the

end of each time slot. The task context vxt , the formed

ensemble Y t, and the observed utility ut will be stored in an

experience database X , X  X [ fvxt ; Y
t; utg. The data col-

lected in experience X will be used to train UPN. The train-

ing of UPN depends on the training frequency f � 1, which

means that the UPN is trained every 1=f time slots. Given

the time horizon T , the UPN will be trained f � T times. The

training process of UPN is presented in Algorithm 2. It uses

the standard gradient descent method.

C. PERFORMANCE ANALYSIS OF NEUE

Next, we provide performance guarantees of NeuE. The per-

formance of NeuE is measured by the utility gap, termed as

regret, between NeuE and an oracle algorithm that always

selects the optimal DNN ensemble decision in each time slot.

Regret is formally defined as

RðTÞ ¼
XT

t¼1 u
tðvxt ; Y

�tÞ � utðvxt ; Y
tÞ: (8)

where Y�t and Y t are the DNN ensemble decisions selected

by oracle and NeuE, respectively. The lemma below provides

a performance guarantee for NeuE in terms of regret.

Lemma 1. (Regret of NeuE). The upper regret bound of

NeuE is OðRðTÞÞ ¼ Oð
ffiffiffiffi

T
p
Þ, where T is the total number of

time slots that NeuE runs.

The proof for Lemma 1 can be found in [17]. It gives a

sublinear regret Oð
ffiffiffiffi

T
p
Þ, meaning that NeuE is asymptoti-

cally optimal compared to the oracle algorithm.

Scalability Issue of NeuE.The complexity of NeuE mainly

lies in running UPN for utility prediction. Note that for each

ensemble decision, NeuE runs UPN one time to get the pre-

dicted utility. Therefore, the complexity of NeuE is decided

by the total number of DNN ensemble decisions jYj. How-
ever, as shown in (1), jYj grows exponentially over the num-

ber of candidate DNNs M, resulting in extremely-high

computational complexity when the number of candidate

DNNs is large. Although the computing resource constraints

(3b) and service deadline (3c) helps reduce the decision space

of DNN ensemble decisions, it cannot settle the scalability

issue completely as the set of candidate DNNs can still be

large due to the cheap storage. In the next section, we propose

a variant of NeuE to improve its scalability by leveraging the

similarity of ensemble decisions.

V. EXPEDITING NEUE USING THE SIMILARITY OF DNN

ENSEMBLES

Our method is motivated by the intuition – if the constituting

DNNs of two ensembles are similar, then these two ensembles

would be likely to deliver similar utility. To define the similar-

ity of DNN ensembles, we introduce the context of ensemble

decisions. Let vY 2 VY denote the context of ensembles with

VY being the context space of the ensemble decision. The

similarity of two ensemble decisions Y; Y 0 2 Y is measured

by a distance metric LYðvY ;vY 0Þ. For example, the simplest

context could be a M-dimension binary vector where m-th

entry indicates whether DNNm is included in the ensemble or

not, and euclidean distance kvY � vY 0k could be used to mea-

sure the similarity. We note that other information, e.g., the

properties of DNNs’ training data, can also be included in the

context of ensemble decisions. Appendix A, which can be

found on the Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TETC.2022.3214931, pro-

vides concretes of ensemble decisions. With the above defini-

tions, our intuition is captured by the Lipschitz condition.

Definition 1 (Lipschitz Condition). Given the context space

VX of tasks and the context space VY of ensemble decision,

the context-parameterized utility function uðvx; YÞ is Lip-

schitz with the distance metric LY , if the below inequality

holds 8vx 2 VX 8Y; Y 0 2 Y; and 8vY ;vY 0 2 VY

juðvx; YÞ � uðvx; Y
0Þj � LYðvY ;vY 0Þ (9)

We leverage the similarity property stated in the Lipschitz

condition to speed up NeuE. The proposed variant is called

NeuE-S (NeuE + Similarity), it reduces the computational

complexity by using only representative DNN ensemble deci-

sions instead of the entire decision set. To define the represen-

tative decisions, we first introduce the covering number and

covering dimension of context spaceVY .

Definition 2 (Covering Number and Covering Dimension).

Let ðVY ; LYÞ be a metric space. Covering number CðVY ; LY ;
rÞ is the smallest number of sets needed to cover VY and in

each set of the covering, any two points have a distance less

than r. The covering dimension of ðVY ; LYÞ, denoted by

DðVY ; LYÞ, is defined based on the covering number:

inf fd : 9c 	 0; 8r 2 ð0; 1�;CðVY ; LY ; rÞ � cr�dg:

We also define D0 and c such that D0 > D and CðVY ;
LY ; rÞ � cr�D

0
. The existence of such constant c is guaran-

teed by the definition of covering dimension.

Now, we are ready to present NeuE-S. NeuE-S splits the

timeline into phases i ¼ 0; 1; 2; . . ., with the i-th phase having

2i time slots. Suppose NeuE-S enters phase i, it first partitions

the ensemble decision space Y into disjoint sets ~Y1; ~Y2; . . . ;
~YKi

, where the number of disjoint sets in phase i isKi

Ki ¼ c � 2
D0i

D0þ2; (10)

and the diameter of each partitioned set should not be larger

than ri

ri ¼ 2
� i
D0þ2: (11)

The existence of such partitions f~YkgKi
k¼1 follows from that

the covering dimension of VY is D. NeuE-S then finds a sub-

set Y0 � Y based on partitioned f~YkgKi
k¼1. Specifically,

NeuE-S will pick at least one DNN ensemble decision from
~Yk; 8k and put them in Y0, and hence we will have jY0j 	 Ki.
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It is guaranteed that an arbitrary ensemble decision Y 2 Y is

within distance ri to a point in Y0. We call Y0 the representa-
tive decision set of Y.

Algorithm 3. NeuE-S

1: Input: ensemble decision set Y, distance metric LY ,

constant D0;
2: for phase i ¼ 1; 2; . . . do

3: Calculate Ki ¼ c � 2
D0 i

D0þ2 and ri ¼ 2
� i
D0þ2

4: Create partition on Y by solving the set cover problem:

f~YkgKi
k¼1  SetCoverðY; riÞ.

5: Pick at least on decision from ~Yk; 8k to generate the
representative decision set Y0.

6: Run NeuE (Algorithm 1) with input Y0 and the time

horizon T ¼ 2i.
7: end for

In each phase, NeuE-S runs NeuE with representative

ensemble decisions. NeuE-S only needs to run UPN prediction

for jY0j ensemble decisions to identify the optimal ensemble

decision. Figure 3 illustrates the core philosophy of NeuE-S.

We want jY0j to be as small as possible in each phase such

that the computing complexity of NeuE-S is minimized. This

equals a set cover problem that aims to partition the ensemble

decision space with the smallest number (i.e., Ki) of metric

balls. Solving the set cover problem is NP-hard. Fortunately,

our method does not require an exact solution, an approximate

solution would be efficient enough to reduce the computation

complexity of NeuE. In the experiment, we use a greedy algo-

rithm [43] to solve the set cover problem. The greedy algo-

rithm takes Y and ri as inputs and outputs disjoint sets

f~YkgKi
k¼1. It only requires polynomial time and provides a rig-

orous performance guarantee (see reference [43] for more

details). Algorithm 3 gives the pseudocode of NeuE-S.

We can also rigorously prove the performance of NeuE-S

in terms of regret upper bound.

Theorem 1 (Regret upper bound of NeuE-S). For any T 	
0, the regret of NeuE-S is upper bounded by OðT

D0þ1
D0þ2Þ.

Proof. See in Appendix B, available in the online supple-

mental material. tu
The above theorem indicates that NeuE-S loosen the regret

upper bound of NeuE from Oð
ffiffiffiffi

T
p
Þ to OðT

D0þ1
D0þ2Þ. Although

the upper bound of NeuE-S becomes less sharp, it is still

sublinear and hence the asymptotic optimality is guaranteed.

Note that the regret upper bound in Theorem 1 is given for

the worst case, we can show via experiment (see details in

Section VI) that the actual regret of NeuE-S is much smaller

and using representative decisions does not degrade the per-

formance much.

NeuE-S is an efficiently variant of NeuE that can handle

the large ensemble decision space of the DEF problem with

slight performance degradations. AI service providers (ASP)

can pick an appropriate scheme based on their needs in the

real-world implements. For example, if the number of candi-

date DNNs is moderate, the ASP can use NeuE, and if the

number of candidate DNNs is large, then the ASP may

choose NeuE-S.

VI. EXPERIMENTS

A. EXPERIMENT SETUP

We run the proposed method on an edge computing testbed.

A DELL workstation is used as an edge server, which is

equipped with a 64-bit 8 Intel i7-4770 CPU cores running at

3.40 GHz, and one NVIDIA Geforce GTX 1080 Ti GPU.

The experiment is run on Ubuntu 16.04 LTS system with

Pytorch v1.1.0, CUDA v9.0, cuDNN v7.0. AI tasks are fed

into the edge server in a batch-wise manner. The size of the

task batch in each time slot is 10.

We evaluate our method on four real-world datasets: Chest

X-Ray [18] (CXR), Caltech101 [19], MASATI [20], WIDER

[21]. These four datasets represent two types experiment set-

tings in terms of how task contexts are generated. CXR dataset

has natural context associated with the inference tasks, while

artificial contexts are generated for Caltech101, MASATI,

and WIDER. We use 8 types of DNNs including DenseNet,

GoogleNet, ShuffleNet, ResNet, EfficientNet, MobileNet,

Inception, RegNet. The pre-trained model (pre-trained on the

ImageNet dataset [44]) of above 8 DNN types can be found

on the PyTorch website [45]. Next, we show how to generated

candidate DNNs on these datasets.

Chest X-Ray (CXR) Dataset. The CXR dataset is com-

prised of 112,120 X-ray images with disease labels from

30,805 unique patients. There are 15 classes (14 diseases,

and one for “No findings”), and images can be labeled as

“No findings” or one or more disease classes. A Multi-label

classification is performed on the CXR dataset. The output

of DNN ensembles is a vector of binary values ŷ, where ŷl 2
f1 : 0positive0; 0 : 0negative0g is predicted label for l-th dis-

ease. The utility of a task is measured by the Hamming loss,

calculated by hloss ¼
PL

l¼1 wl � jyl � ŷlj where y ¼ fylgLl¼1
is the ground-truth label of the task and w ¼ fwlgLl¼1 is the

importance weight for disease classes. The importance weight

can change across tasks. The utility is higher when the Ham-

ming loss is smaller. The CXR dataset is split into 3 parts: train-

ing dataset (78,468 images, used for generating candidate

DNNs), validation dataset (11,219 images, used for evaluating

candidate DNNs), and testing dataset (22,433 images, used for

evaluating the proposed methods). Each X-ray image in the

CXR dataset has context associated with it, which includes

FIGURE 3. Illustration of the set cover problem and NeuE-S.
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patient data (e.g., patient age, patient gender, etc.) and image

features (e.g., pixel spacing and X-ray orientation). This infor-

mation can be used as task contexts to run NeuE. To imitate the

scenario that DNNs may come from different data sources, we

split the CXR dataset into different training datasets in a non-

i.i.d. fashion. Specifically, we first split the entire training data

into two subsets. One subset has more images in diseases Effu-

sion, Infiltration, Pneumonia, Consolidation, Edema, the other

subset has more images in disease Atelectasis, Cardiomegaly,

Mass, Nodule, Pneumothorax, Emphysema, Fibrosis, Pleural-

thickening, Hernia. Each subset is further divided into two

parts based on the X-ray orientation (Anterior-Poste-

rior or Posterior-Anterior). We have 4 different

training datasets and use 8 types of DNN. For each combina-

tion of training dataset and DNN type, we will train a DNN

model. In this way, we generate 32DNNs in total. Because run-

ning NeuE with 32 candidate DNNs (i.e., 4:295
 109 DNN

ensemble decisions) is computationally expensive, we only use

3 best DNNs for each training dataset, which results in 12 can-

didate DNNs (i.e., 4095 DNN ensemble decisions). The task

context used by NeuE includes the patient’s age, X-ray orienta-

tion, and disease importance weight. Figure 4 illustrates how

the candidate DNNs are generated.

Caltech/MASATI/WIDER Dataset. These three datasets are

widely-used and therefore we save the introduction of these

datasets. Image classification problems are performed on the

Caltech/MASATI/WIDER dataset. The utility of image classi-

fication problem is measured by accuracy, i.e., 1
N

PN
n¼1 1111111fŷn ¼

yng. These three datasets do not have natural context associated
with images. Therefore, we add artificial context to the original

dataset. Specifically, we add different levels of noise to images

as the task context. The original data source is denoted by ORI.

Two noisy data sources are created by adding white Gaussian

noise with variance 0.1 (data source NOS-1) and 0.2 (data

source NOS-2), respectively. The training data contains 60%

of the images, and the rest 40% are used as test data to run the

proposed algorithm. Similarly, for each combination of DNN

architecture and data source, we will train a DNN model.

Therefore, We have 24 DNNs for each dataset. Because run-

ning NeuE with 24 candidate DNNs is computationally expen-

sive, we use 4 best DNNs for each data source, which also

results in 12 candidate DNNs for each dataset. NeuE uses the

noise of images as the task context.

B. RESULTS AND EVALUATIONS

We compare NeuE with 5 benchmarks:

1) Oracle: Oracle knows the context-parameterized utility

function of DNN ensembles. It selects a DNN ensem-

ble that is optimal for the received tasks in each time

slot. Note that Oracle cannot be applied in practice.

2) UCB1: UCB1 is a classic MAB algorithm. This scheme

neglects the context associated with tasks and learns the

general performance of DNN ensembles.

3) LinUCB: LinUCB [30] is a widely-used contextual

multi-armed bandit algorithm. It assumes that the per-

formance of DNN ensembles is a linear function of the

task context.

4) Best-single: This scheme selects one DNN that has the

highest predicted accuracy for received tasks in each

time slot. The learning and decision-making process of

Best-single is the same as NeuE, but it only selects one

DNN. This scheme is used to evaluate the benefit of

DNN ensemble technique.

5) Random: This scheme also uses DNN ensemble tech-

nique, however, it randomly picks candidate DNNs

into the ensemble.

Because the proposed methods and benchmarks show sim-

ilar performances on Caltech, MASATI, and WIDER, we

only present the experimental results for CXR and Caltech in

this section, other results can be found in Appendix C, avail-

able in the online supplemental material.

B.1 UTILITYCOMPARISON

Figure 5 compares the utility achieved by NeuE and the

other five benchmarks. For the CXR dataset, the utility is

given in terms of Hamming loss, and a lower Hamming

loss indicates a higher utility. For the Caltech dataset,

the utility is given in terms of accuracy, and a higher

accuracy indicates a higher utility. As expected, Oracle

achieves the highest utility on two datasets. Among the

others, we see that NeuE outperforms other benchmarks,

and achieves close-to-oracle performance. In particular,

NeuE increases the accuracy by 28.73% compared to

Best-single on the Caltech dataset. We can even see that

Random achieves higher accuracy than Best-single on the

Caltech dataset. This indicates that using the DNN

ensemble technique effectively improves the performance

of AI services.

FIGURE 4. Generation of candidate DNNs. In this example, two

types of DNN architecture are used for each training dataset.

FIGURE 5. Utility of NeuE and benchmarks.
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B.2 REGRETANALYSIS

Figure 6 depicts the regret of NeuE and benchmarks. The

results show that NeuE is able to reach a sublinear regret,

meaning that our algorithm can achieve asymptotic optimal-

ity. By contrast, the regret of UCB and LinUCB increases

linearly over time. This indicates that UCB and LinUCB can-

not identify the optimal ensemble decision effectively.

B.3 PERFORMANCE OF NEUE-S

Figure 7 compares the performance of NeuE and Neue-S in

terms of utility and algorithm complexity. Figure 7(a) gives

the utility achieved by two algorithms, we can see that the

performance of NeuE-S is slightly lower than that of NeuE.

This means that using representative decisions will not harm

the performance of NeuE much. Figure 7(b) compares the

computing complexity of NeuE and NeuE-S. The computing

complexity is measured by the number of UPN predictions

required to complete DNN ensemble formation in each time

slot (the computing capacity constraint and service deadline

are not considered in this figure). We can see clearly that the

computing complexity of NeuE increases exponentially with

the number of candidate DNNs. For example, the current

experiments run with 12 candidate DNNs, which means that

NeuE will need to run UPN prediction 4095 times in one time

slot. By contrast, the computing complexity NeuE-S stays

low even when the number of candidate DNNs is 12. This

indicates that NeuE-S can significantly speed up the decision-

making process with negligible utility losses. Figure 7(c)

compares the service delay of NeuE and NeuE-S. The service

delay consists of two parts, the algorithm computation delay

and the inference delay. The algorithm computation delay is

the time used by NeuE or NeuE-S to get the optimal DNN

ensemble, and the inference delay is the time for running the

DNN ensemble to get the prediction results of the admitted

tasks. Figure 7(c) shows the average service delays (per task)

of NeuE and NeuE-S on the CXR dataset with 200 MB com-

putation capacity. We can see that the algorithm computation

delay accounts for more than 50% of the total service delay

for NeuE. By contrast, the algorithm computation delay for

NeuE-S is much lower.

Figure 8 depicts the regret of NeuE-S on CXR and Caltech

datasets. Overall, we can see that the regret curve of NeuE-S

is sublinear on both datasets. We also provide a regret

decomposition in Figure 8, splitting the total regret into two

parts, the regret caused by using representative decisions (R-

decisions) and the regret caused by online learning. We can

see clearly that using representative decisions only accounts

for a very small portion of the total regret.

B.4 IMPACTOF COMPUTING CAPACITY

Figure 9 shows the impact of computing capacity on NeuE-S.

We allocate different amounts of GPU RAM to run NeuE-S,

Figure 9 shows the performance of NeuE-S, Oracle, and Ran-

dom when the amount of allocated GPU RAM changes from

100 MB to 400 MB. In general, we see that all three methods

achieve higher utilities (lower Hamming loss for the CXR

dataset, and higher accuracy for the Caltech dataset) with

more computing resources. This is because the ASP can

recruit more DNNs in the ensemble which tends to give

more stable prediction results. It is also worth noticing that

increasing the computing capacity has a diminishing effect,

i.e., when the computing capacity is already large, further

FIGURE 6. Regret of NeuE and benchmarks.

FIGURE 7. Comparison of utility, complexity, and service delay between NeuE and NeuE-S.

FIGURE 8. Regret analysis of NeuE-S.
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increasing the computing capacity will not provide large util-

ity increases.

B.5 IMPACTOF SERVICE DEADLINE

Figure 10 shows the impact of service deadline on NeuE-S.

We vary the service deadline from 400 ms to 1200 ms (the

computing capacity is fixed at 400 MB), Figure 10 shows the

performance of NeuE-S, Oracle, and Random with different

service deadline constraints. Similar to the impact of comput-

ing capacity, we see that all three methods achieve higher

utilities with looser service deadline, because the ASP can

recruit more DNNs in the ensemble which tends to give

more stable prediction results. In addition, loosening the ser-

vice deadline also exhibits a diminishing effect.

B.6 IMPACTOF TASKCONTEXTON ENSEMBLE

FORMATION

We next take the Caltech dataset as an example the show how

task context affects DNN ensemble formation. Figure 11 shows

the probability that a DNN is included in the formed ensemble

under different image noise levels. First, we can see in general

that certain DNNs, e.g., DNN 1, is more likely to be selected in

ensembles, mainly because it has better general performance

compared to others. In particular, we can see that task context

has a noticeable on ensemble formation. For example, DNN 1

is more likely to be selected when the image noise level is mod-

erate (0.2-0.8); DNN 2 is more likely to be selected when the

image noise level is low (0-0.2); and DNN 6 is more likely to

be selected when the image noise level is high (0.6-1.0).

VII. CONCLUSION

This paper investigates a DNN ensemble formation (DEF)

problem for edge computing systems, which aims to identify

the best-fit DNNs for users’ tasks. An online learning

algorithm, called NeuE, is proposed to offer a solution to the

DEF problem. NeuE does not rely on heuristic rules for DNN

formation, instead, it directly learns the performance of DNN

ensembles and adaptive reconfigure members in the DNN

ensemble. In particular, the proposed method takes into

account several unique properties of edge computing plat-

forms including device heterogeneity, computing resource

constraint, and the service deadline. We further propose a var-

iant, called NeuE-S, of NeuE to improve scalability by

leveraging the similarity of DNN ensemble decisions. NeuE-

S drastically reduces the computing complexity of NeuE with

a negligible performance loss. The proposed method can be

generalized to work in many other scenarios that involve opti-

mizing members of ensemble classifiers.

REFERENCES

[1] Google Inc., “Android to launch TensorFlow lite for mobile machine learning,”

2022. [Online]. Available: https://www.tensorflow.org/lite/android

[2] Core ML: Integrate machine learning models into your app, 2022. [Online].

Available: https://developer.apple.com/documentation/coreml

[3] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization for

highly accurate and compact deep neural networks,” in Proc. Eur. Conf.

Comput. Vis., 2018, pp. 365–382.

[4] T. Zhang et al., “A systematic DNN weight pruning framework using alter-

nating direction method of multipliers,” in Proc. Eur. Conf. Comput. Vis.,

2018, pp. 184–199.

[5] C.-J. Wu et al., “Machine learning at Facebook: Understanding inference

at the edge,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,

2019, pp. 331–344.

[6] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep model

compression for mobile devices: A usage-driven model selection frame-

work,” inProc. Int. Conf. Mobile Syst. Appl. Serv., 2018, pp. 389–400.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on

mobile edge computing: The communication perspective,” IEEE Commun.

Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourth Quarter 2017.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014, arXiv:1409.1556.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,

pp. 770–778.

[10] Large scale visual recognition challenge (ILSVRC), 2017. [Online]. Avail-

able: http://www.image-net.org/challenges/LSVRC/

[11] A. Kurakin et al., “Adversarial attacks and defences competition,” in The

NIPS’17 Competition: Building Intelligent Systems. Berlin, Germany:

Springer, 2018, pp. 195–231.

[12] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving adversarial

robustness via promoting ensemble diversity,” in Proc. 36th Int. Conf.

Mach. Learn., 2019, pp. 4970–4979.

FIGURE 9. Impact of computing capacity.

FIGURE 10. Impact of service deadline.

FIGURE 11. Impact of task context on theDNNensemble formation.

VOLUME 11, NO. 2, APRIL-JUNE 2023 495

BAI etal: NeuE: Automated Neural Network Ensembles 2 for Edge Intelligence

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 13,2023 at 15:53:08 UTC from IEEE Xplore.  Restrictions apply. 



[13] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-

constrained mobile edge computing in small-cell networks,” IEEE/ACM

Trans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[14] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy,” Mach.

Learn., vol. 51, no. 2, pp. 181–207, 2003.

[15] S. Rothe and D. S€offker, “Comparison of different information fusion

methods using ensemble selection considering benchmark data,” in Proc.

IEEE Int. Conf. Inf. Fusion, 2016, pp. 73–78.

[16] Y. Bai, L. Chen, M. Abdel-Mottaleb, and J. Xu, “Automated ensemble for

deep learning inference on edge computing platforms,” IEEE Internet of

Things J., vol. 9, no. 6, pp. 4202–4213, Mar. 2022.

[17] D. Zhou, L. Li, and Q. Gu, “Neural contextual bandits with upper confi-

dence bound-based exploration,” 2019, arXiv: 1911.04462.

[18] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,

“ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on

weakly-supervised classification and localization of common thorax dis-

eases,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,

pp. 2097–2106.

[19] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object catego-

ries,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 594–611,

Apr. 2006.

[20] A. Gallego, A. Pertusa, and P. Gil, “Automatic ship classification from

optical aerial images with convolutional neural networks,” Remote Sens.,

vol. 10, no. 4, 2018, Art. no. 511.

[21] S. Yang, P. Luo, C. C. Loy, and X. Tang, “WIDER FACE: A face detec-

tion benchmark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

2016, pp. 5525–5533.

[22] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A

review on ensembles for the class imbalance problem: Bagging-, boosting-,

and hybrid-based approaches,” Syst. Man Cybern., vol. 42, no. 4,

pp. 463–484, 2012.

[23] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in

Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,

pp. 785–794.

[24] G. R€atsch, T. Onoda, and K.-R. M€uller, “Soft margins for AdaBoost,”

Mach. Learn., vol. 42, no. 3, pp. 287–320, 2001.

[25] D. H. Wolpert, “Original contribution: Stacked generalization,” Neural

Netw., vol. 5, no. 2, pp. 241–259, 1992.

[26] Z. Yu and C. Zhang, “Image based static facial expression recognition with

multiple deep network learning,” in Proc. Int. Conf. Multimodal Interact.,

2015, pp. 435–442.

[27] Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A deep learning-based multi-model

ensemble method for cancer prediction,” Comput. Methods Programs

Biomed., vol. 153, pp. 1–9, 2018.

[28] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive

selection of deep learning models on embedded systems,” 2018, arXiv:

1805.04252.

[29] E. Park et al., “Big/little deep neural network for ultra low power infer-

ence,” in Proc. IEEE 10th Int. Conf. Hardware/Softw. Codes. Syst. Synth.,

2015, pp. 124–132.

[30] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit

approach to personalized news article recommendation,” in Proc. Int.

Conf. World Wide Web, 2010, pp. 661–670.

[31] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits with lin-

ear payoff functions,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,

pp. 208–214.

[32] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesv�ari, “X-armed bandits,” J.

Mach. Learn. Res., vol. 12, no. 46, pp. 1655–1695, 2011.

[33] M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini, “Finite-

time analysis of kernelised contextual bandits,” in Proc. 29th Conf. Uncer-

tainty Artif. Intell., 2013, pp. 654–663.

[34] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On

multi-access edge computing: A survey of the emerging 5G network edge

cloud architecture and orchestration,” IEEE Commun. Surveys Tuts.,

vol. 19, no. 3, pp. 1657–1681, Third Quarter 2017.

[35] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang, “Exploring fine-grained

resource rental planning in cloud computing,” IEEE Trans. Cloud Com-

put., vol. 3, no. 3, pp. 304–317, Third Quarter 2015.

[36] L. Chen and J. Xu, “Budget-constrained edge service provisioning with

demand estimation via bandit learning,” IEEE J. Sel. Areas Commun.,

vol. 37, no. 10, pp. 2364–2376, Oct. 2019.

[37] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,

“Dynamic service placement in geographically distributed clouds,” IEEE

J. Sel. Areas Commun., vol. 31, no. 12, pp. 762–772, Dec. 2013.

[38] X. Lv, D. Ming, T. Lu, K. Zhou, M. Wang, and H. Bao, “A new method

for region-based majority voting CNNs for very high resolution image

classification,” Remote Sens., vol. 10, no. 12, 2018, Art. no. 1946.

[39] J. Huo et al., “Ensemble segmentation for GBM brain tumors on MR

images using confidence-based averaging,” Med. Phys., vol. 40, no. 9,

2013, Art. no. 093502.

[40] R. M. Cruz, R. Sabourin, G. D. Cavalcanti, and T. I. Ren, “META-DES: A

dynamic ensemble selection framework using meta-learning,” Pattern Rec-

ognit., vol. 48, no. 5, pp. 1925–1935, 2015.

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobile-

NetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[42] L. Chen, J. Xu, and Z. Lu, “Contextual combinatorial multi-armed bandits

with volatile arms and submodular reward,” in Proc. Int. Conf. Neural Inf.

Process. Syst., 2018, pp. 3247–3256.

[43] J. H. Rolfes and F. Vallentin, “Covering compact metric spaces greedily,”

Acta Mathematica Hungarica, vol. 155, pp. 130–140, 2018.

[44] L. Fei-Fei, J. Deng, and K. Li, “ImageNet: Constructing a large-scale

image database,” J. Vis., vol. 9, no. 8, pp. 1037–1037, 2009.

[45] PyTorch, “Models and pre-trained weights,” 2017. [Online]. Available:

https://pytorch.org/vision/master/models.html

YANG BAI (Member, IEEE) received the BS
degree from Northeastern University, Shenyang,
China, the MS degree from the College of Engi-
neering, University of Miami, and the PhD degree
from the College of Engineering, University of
Miami, USA, in 2021. She is a research associate
with the Department of Automation, School of
Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, China. Her primary
research interests include intelligent edge systems
and industrial IoT.

LIXING CHEN (Member, IEEE) received the BS
and ME degrees from the College of Information
and Control Engineering, China University of
Petroleum, Qingdao, China, in 2013 and 2016,
respectively, and the PhD degree in electrical and
computer engineering from the University of
Miami, in 2020. He is an assistant professor with
the Institute of Cyber Science and Technology,
Shanghai Jiao Tong University, China. His primary
research interests include mobile edge computing
and machine learning for networks.

JIE XU (Senior Member, IEEE) received the BS
and MS degrees in electronic engineering from
Tsinghua University, Beijing, China, in 2008 and
2010, respectively, and the PhD degree in electrical
engineering from UCLA, in 2015. He is currently
an associate professor with the Department of Elec-
trical and Computer Engineering, University of
Miami. His research interests include mobile edge
computing/intelligence, machine learning for net-
works, and network security. He received the NSF
CAREER Award in 2021.

496 VOLUME 11, NO. 2, APRIL-JUNE 2023

BAI etal: NeuE: Automated Neural Network Ensembles 2 for Edge Intelligence

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 13,2023 at 15:53:08 UTC from IEEE Xplore.  Restrictions apply. 


