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Abstract
It is now generally accepted that the hydrated 
electron occupies a cavity in water, but the size 
of the cavity and the arrangements of the sol­
vating water molecules are not fully character­
ized. Here, we use the Kirkwood-Buff (KB) ap­
proach to examine how the partial molar vol­
ume (VM) provides insight into these issues. 
The KB method relates VM to an integral of 
the electron-water radial distribution function, 
a key measure of the hydrated electron struc­
ture. We have applied it to three widely-used 
pseudopotentials and the results show that VM 

is a sensitive measure of the fidelity of hy­
drated electron descriptions. Thus, the mea­
sured VM places constraints on the hydrated 
electron structure that are important in devel­
oping and evaluating model descriptions. Im­
portantly, we find that VM does not reflect only 
the cavity size (and thus should not be used to 
infer the cavity radius), but is strongly depen­
dent on the extended solvation structure.

1 Introduction
The hydrated electron has attracted significant 
theoretical and experimental attention, partic­
ularly over the past three decades. A key focus 
of investigations has been the accurate charac­

terization of its structure. One aspect of this is 
whether the electron resides in a cavity or, alter­
natively, adopts a non-cavity structure in which 
it densifies the water molecules in its vicinity.1-4 
This argument has now been settled in favor of 
a cavity picture,4-7 but the details of the struc­
ture still require elucidation, including the size 
of the cavity and the arrangements of the sol­
vating water molecules.

One reason that the picture of the hydrated 
electron structure remains unsettled is the chal­
lenge in modeling it. Two primary approaches 
have been used that each have advantages and 
limitations. Many of the earliest efforts, which 
continue to the present, used mixed quantum- 
classical molecular dynamics (QC-MD) simula­
tions in which the quantum electron interacts 
with classical water molecules through an effec­
tive one-electron pseudopotential.8,9 Typically 
the electron is described adiabatically by solv­
ing its Schrodinger equation at every step in 
the classical simulation of the water molecules. 
This enables relatively long simulation times 
and large system sizes, but has the drawback 
that the quality of the results depends on the 
accuracy of the pseudopotential (and the one- 
electron approximation). Several pseudopoten­
tials have been developed,1,9-12 but so far none 
appear capable of adequately reproducing all of 
the experimentally measured characteristics of 
the hydrated electron.

More recently, with the development of 
improved codes and the increase in com-
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puter speeds, ab initio molecular dynamics 
(AIMD) simulations have become more preva- 
lent.3,6,13-20 They are, however, limited by the 
computational effort required. Indeed, Park 
and Schwartz recently carried out an analysis 
that indicated such simulations are not con­
verged at the currently feasible system sizes. 6 
This fact also makes it more difficult to ana­
lyze the accuracy of different functionals. On 
the other hand, AIMD simulations are not lim­
ited by the one-electron approximation and 
certainly provide a more accurate representa­
tion of the hydrated electron than currently 
available pseudopotentials.

These challenges for both pseudopotential 
and AIMD simulation approaches have moti­
vated a strong focus on testing how well differ­
ent computational descriptions are able to re­
produce experimental characterizations. 2,4,6,21
Chief among these are the vertical detachment 
energy22-24 and radius of gyration.2,25-27 These 
properties probe the strength of the electron 
binding as well as the degree of delocaliza­
tion of its wavefunction. They are, however, 
not sufficient to constrain the pseudopoten­
tial description; both the Turi-Borgis10 (TB) 
and optimized Turi-Borgis12 pseudopotentials 
adequately describe the hydrated electron ra­
dius of gyration and vertical detachment en­
ergy, but are inaccurate in predictions of other 
hydrated electron properties. 2,12 On the other 
hand, AIMD efforts often give smaller val­
ues for both quantities compared to experi­
ment, 3,6,19,28,29 likely due primarily to the small 
system sizes. 6

A key property that deserves greater atten­
tion is the partial molar volume, VM, which 
measures the change in volume of the solution 
upon addition of hydrated electrons. Like the 
radius of gyration and vertical detachment en­
ergy, it has been accurately determined exper­
imentally as VM = 26 ± 6 cm3/mol,7,30 i.e., 
the solution expands when a hydrated elec­
tron is added. However, it has, to our knowl­
edge, only been calculated by Schwartz and co­
workers, 12,31 who used an approach in which 
they calculated the volume of a water slab in 
a vacuum with and without a hydrated elec­
tron present. As we demonstrate here, there is

much more to be learned from calculating the 
partial molar volume than just its value for a 
given model.

In this Paper, we apply the approach for cal­
culating the partial molar volume developed by 
Kirkwood and Buff to the hydrated electron. 
To our knowledge, this is the first application 
of this method to a solvated electron system. 
It has a number of advantages that we exploit 
here. It provides a rigorous framework for com­
puting the partial molar volume that can be 
systematically converged with respect to sys­
tem size and statistical sampling. Further, be­
cause it gives the partial molar volume in terms 
of the electron-water radial distribution func­
tion (RDF), it provides a direct relationship 
to the hydrated electron structure. This has 
multiple implications. On the one hand, we 
can use the measured partial molar volume, 
in the context of simulation results, to draw 
inferences about the properties of the actual 
electron-water radial distribution function. On 
the other hand, we can use the calculations to 
determine the contributions to VM due to the 
different regions of the RDF, e.g., the cavity 
and the first few water solvation shells, as has 
been done for other solutes previously. 32,33 Such 
analyses challenge the traditional interpretation 
of the partial molar volume as a measure of the
cavity size4,34,35 (vide infra).

2 Methods

2.1 Theory
Kirkwood and Buff showed that, in the infi­
nite dilution limit, thermodynamical quantities 
such as compressibility and partial molar vol­
ume can be expressed in terms of integrals of 
the radial distribution function. 36,37 In partic­
ular, the Kirkwood-Buff (KB) integral for an 
open system is written as

[w(r) - 1] 4nr2dr,
0

(1)

where gap (r) is the RDF for the centers-of-mass 
of solute a and solvent ft as a function of the 
distance r, and the integration extends through
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an infinitely large volume. Then, the partial 
molar volume can be computed from the KB
integral as37

= kB TKT — Gag, (2)

where kB is the Boltzmann constant, T is the 
absolute temperature, and kt is the isothermal 
compressibility of the solvent. Here, we take 
kt = 4.50 x 10-5 atm-1, which is obtained from 
the water model used in the simulations, 38 such 
that kBTkt = 1.10 cm3/mol.

In principle, the KB integral, Gag, should be 
obtained from an infinite, open system. In prac­
tice, one approximates it based on simulations 
of finite, closed systems. In this case, it can be 
important to modify Eq. 1 to account for the 
finite size of the simulation system as,39-42

r R
G*g = / [g«g(r) - 1] w(r; R) dr, (3)

0

where R is the maximum r for which the RDF is 
available. Here, R is taken to be the distance of 
the last histogram bin used in computing gag (r) 
and thus, R ~ L/2, where L is the side length 
of the cubic simulation cell. The w(r; R) is a 
weighting function, for which Kruger and Vlugt 
derived an analytical expression, 40-42

w(r; R) = 4%r2 ^1 - 3X + , (4)

where x = r/R.

3 Computational Methods

3.1 One-Electron Pseudopoten­
tials

In this work, we utilize the electron-water RDF 
obtained from QC-MD simulations and the KB 
integral to compute the partial molar volume of 
the hydrated electron using Eqs. 3 and 4. A full 
description is provided in the Computational 
Details, but briefly, the water molecules are de­
scribed classically, with the fixed-charge, flexi­
ble SPC/Fw force field,38 while the electron is 
described quantum mechanically within an adi­

abatic approximation. The electron interacts 
with the water molecules through a pseudopo­
tential. In this work, we consider three pseu­
dopotentials that have been introduced in the 
literature for describing the hydrated electron: 
Turi-Borgis (TB),10 the optimized Turi-Borgis 
(TBOpt, also known as TBSE+OptPol),12 

and Larsen-Glover-Schwartz (LGS).1 All three 
pseudopotentials were developed based on the 
static-exchange (SE) approximation for the ex­
cess electron wave function.

The TB pseudopotential describes the hy­
drated electron as residing in a cavity and pri­
marily interacting with the first solvation shell 
of water molecules. This model appears to give 
electron structures that are too rigid compared 
to experimental characterizations and ab ini­
tio descriptions. To address this, Glover and 
Schwartz12 proposed the TBOpt pseudopoten­
tial, which differs in the polarization potential. 
Both the TB and TBOpt pseudopotentials use 
a simple functional form for the excess electron 
interaction potential with oxygen (ox) and hy­
drogen (hy) sites,

Vx(rx) = —~ erf(A1,xrx) (5)
rx

+ B1^ [erf(R2,xrx) — erf(B3,%r%)],
rx

where x refers to ox or hy and rx is the electron- 
x site distance. This potential has eight param­
eters (A1,x, Bix) whose values are listed in Ref. 
10 and qx are the water site charges (—0.82e for 
oxygen and 0.41e for hydrogen in the SPC/Fw 
model). The full pseudopotential also includes 
a polarization potential, which is added a pos­
teriori as,

V
a

2(4, + CL)'2 •
(6)

The TB pseudopotential assumes a to be the 
polarizability of the water molecule (a = 9.7446 
a.u.), and the parameter C1,ox = 4.4 a.u. is 
adjusted to reproduce the ground state energy 
of the hydrated electron. 10 The TBOpt model 
was obtained by changing only the polariza­
tion potential such that a = 9.25 a.u. and 
C1,ox = 2.07 a.u., to better match the coupled-
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cluster singles and doubles with perturbative 
triples (CCSD(T)) interaction energies.12

The LGS pseudopotential is known to gen­
erate a non-cavity description of the hy­
drated electron, i.e., it does not exclude water 
molecules from the region where the electron 
resides. The functional form of this pseudopo­
tential is

8

V(r) = ^Bn|r - r»re-Pn|r-rn|2 + VC(r), (7)
n=1

where n labels functions for which rn represents 
the locations of the oxygen or hydrogen wa­
ter sites; VC is the total Coulombic interaction 
(electron-oxygen and electron-hydrogen) taken
to be -g/r% for r% > rcut and -g(2-^ - 2^)
for rx < rcut. Then the polarization potential is 
added as

V
a

21
1 — e (rox/rc)6 (8)

where a = 9.745 a.u. is the water polarizability 
and rc = 1.53 A.

We note that the large system size and exten­
sive statistical sampling required to calculate 
the KB integral is enabled by these one-electron 
pseudopotential approaches.

3.2 Simulation Details
All simulations were performed using our in­
house QC-MD simulation code. Initially, a cu­
bic water box of 2048 molecules and side length 
39.462319 A is relaxed using classical MD in 
the microcanonical (NVE) ensemble for 50 ps, 
followed by further equilibration of 250 ps in an 
isothermal-isobaric (NPT) ensemble. Then an 
electron is introduced, and an NPT simulation 
is performed for 13 ps in the mixed quantum 
classical regime, of which the last 10 ps is used 
for data analysis. We have propagated 3 sets 
of 60 such trajectories for TB, yielding a to­
tal of 1.8 ns for data analysis. Similarly, for 
TBOpt and LGS models, we propagated 3 sets 
of 40 and 20 trajectories, respectively. The sim­
ulations with LGS are more expensive as this 
model requires a more denser basis to evaluate 
the electron wavefunction.

We have used periodic boundaries in all direc­
tions throughout the simulations. Initial veloc­
ities are assigned randomly at 298.15 K, drawn 
from the Boltzmann distribution. The classi­
cal equations of motion are integrated with the 
velocity Verlet algorithm using a time step of 
1 fs. Temperature is maintained at 298.15 K 
using a Bussi-Donadio-Parrinello thermostat.43 
The Bernetti-Bussi barostat is used to maintain 
a pressure of 1 atm in the NPT simulations, en­
suring sampling in the isothermal-isobaric en- 
semble.44 The Lennard-Jones interactions are 
truncated at 19 A, which is approximately half 
of the simulation cell dimension. The solvent- 
solvent long-range electrostatic interactions are 
handled using the Ewald sum method, with the 
real space part truncated at 19 A.45,46 As is dis­
cussed in the Supporting Information, this size 
of the simulation cell and cutoff radius are suf­
ficient to accurately converge the partial molar 
volume. We also present results for the partial 
molar volume of Br- in the Supporting Infor­
mation with and without the presence of a Na+ 
counterion to illustrate the use of a charge sim­
ulation cell does not affect the results.

For the quantum mechanical calculation of 
the adiabatic electron wavefunction at each 
time step in the QC-MD simulation, the 
Schrodinger equation is solved using a sinc- 
function discrete variable representation (DVR) 
basis.47 The DVR basis spans from -7 to 6.125 
A with 16 x 16 x 16 grids (grid spacing 
0.875 A) for the TB and TBOpt models, and 32 
x 32 x 32 grids (grid spacing 0.4375 A) for the 
LGS pseudopotential. The eigenvalue equation 
is solved using an iterative Lanczos algorithm 
with full reorthogonalization.

All error bars are reported as 95% confidence 
intervals based on the Student’s t-distribution48 
using block averaging with 3 blocks, each con­
sisting of 20, 40, or 60 ten-picosecond trajec­
tories for the LGS, TBOpt, and TB models, 
respectively, as described above.

4 Results and Discussion
We have calculated the RDF between the hy­
drated electron and water molecule center-of-
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mass for each of the three pseudopotentials us­
ing the approach detailed above. These results 
are shown in Fig. 1, with shaded regions rep­
resenting the error bars. The RDFs are con­
sistent with those reported in previous studies 
for e_-oxygen,1,12,49 typically with less statis­
tical sampling. Note that most simulations of 
the hydrated electron with one-electron pseu­
dopotentials have used the SPC/Flexible wa­
ter model,50 which has the same site charges 
but a more complex intramolecular potential. 
We previously found that the two water mod­
els yield similar behavior for the TB and LGS 
models.49

2.5 -
TBOpt :

2.0 -
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1.0 -

0.5 *
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Figure 1: The e_-water radial distribution 
function, g(r), for the TB (black), TBOpt 
(blue), and LGS (red) pseudopotential hy­
drated electrons. The RDFs for the TBOpt 
and LGS are shifted upward by 0.2 and 0.4, re­
spectively, for clarity. The shaded regions show 
error bars as 95% confidence limits.

The RDFs illustrate the clear differences be­
tween the three pseudopotentials that have im­
portant implications for the hydrated electron 
partial molar volume (vide infra). The nature 
of the electron cavity is the first of these. The 
TB model completely excludes water molecules 
from a 2 A radius around the center-of-mass 
of the hydrated electron. In contrast, the 
non-cavity nature of the LGS pseudopotential

is evident in the non-zero e"-water RDF for 
all distances, including as r approaches zero. 
As noted previously, the LGS electron fluctu­
ates between cavity and non-cavity structures, 
presenting non-cavity behavior overall.5,49 The 
TBOpt model yields an RDF that lies in be­
tween these two. The RDF is zero (within er­
ror bars) only for r < 0.75 A and begins to 
rise sharply around 1 — 1.5 A. Thus, it exhibits 
a smaller, weaker cavity, as intended in its de- 
sign. ^

A second key difference between the RDFs 
of the three models is the solvation structure. 
The TB model has a weakly structured first sol­
vation shell as measured by the height of the 
first peak (1.12 at 3.0 A) which is even smaller 
than the second solvation shell peak (1.19 at 
4.8 A). In between the first and second, as well 
as second and third, solvation shells the RDF 
falls below one. These behaviors are in sharp 
contrast with the LGS pseudopotential. It has 
a large, sharp peak (2.05 at 2.0 A) associated 
with the first solvation shell with a dramati­
cally smaller second solvation shell peak (1.23 
at 4.0 A) and the RDF remains at or above one 
between the first three solvation shells. Once 
again, the TBOpt model gives an intermedi­
ate description of the hydrated electron. Like 
the LGS model, it has a comparatively large 
first solvation shell peak (1.34 at 2.4 A) and a 
smaller second solvation shell (1.13 at 3.8 A), 
but these occur with smaller magnitudes than 
for the LGS case. The RDF does not fall below 
one between these two peaks, but does between 
the second and third solvation shells.

These RDFs are used to compute the KB in­
tegrals (Eq. 3) and the partial molar volume 
(Eq. 2) of the hydrated electron. The running 
integrals used to compute the partial molar vol­
ume are shown in Fig. 2 and compared to the 
experimental result. It is useful to first note 
the effect of the RDF features on the partial 
molar volume. The excluded volume associated 
with a hydrated electron cavity appears as pos­
itive contribution to the partial molar volume, 
i.e., volume needed in the solution to accommo­
date the electron. Note that for all three pseu­
dopotentials, this appears as a rise in the par­
tial molar volume integral at small r, which is
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Figure 2: Partial molar volumes for TB (black), 
TBOpt (blue), and LGS (red) hydrated elec­
trons shown as the running integral in Eq. 2. 
The experimental value (violet) is also shown 
for comparison. The shaded regions show error 
bars as 95% confidence limits.

largest for the TB model but quite small for the 
non-cavity LGS model. At larger distances, the 
structure of the solvation shells strongly mod­
ifies VM- Namely, larger peaks correspond to 
greater water densification induced around the 
hydrated electron and lead to a decrease in the 
partial molar volume. Regions of the RDF be­
tween solvation shells that fall below one have 
the opposite effect, increasing Vm- Note that 
the 4vrr2 factor in the integral, Eq. 3, plays an 
important role as it amplifies the behavior of 
the RDF to account for the larger number of 
water molecules present as r increases.

Both the comparatively large, rigid cavity and 
the modest solvation shell structure predicted 
by the TB pseudopotential tend to increase the 
partial molar volume. Our calculated result is 
Vm = 23 ± 3 cm3/mol, which is unambigu­
ously positive and also in quantitative agree­
ment with the measured value of 26=1=6 cm3/mol 
obtained by Janik et al.' and Borsarelli et al.30 
The present result is also in accord with that 
previously estimated by Casey et al. for the 
TB model as 31 ± 12 cm3/mol.31 They used a 
quite different approach in which they carried

out simulations of water in a slab geometry with 
two air-water interfaces. They used a grid to 
estimate the location of the surface atoms and 
thereby compute the volume of the water slab 
with and without the hydrated electron present.

Note that the Kirkwood-Buff approach pro­
vides insight into the origin of the partial mo­
lar volume value. In particular, by considering 
the contributions to Vm from different regions 
of the RDF, we can determine the influence of 
each part of the hydrated electron structure on 
the partial molar volume. These results are pre­
sented in Fig. 3 and obtained as follows. We can 
view the cavity contribution as that associated 
with the KB integral up to the distance where 
the RDF first rises to one, around r = 2.7 A 
for the TB model; at this point the TB par­
tial molar volume is approximately 33 cm3/mol. 
The contributions of the water solvation shells 
are similarly estimated from the net contribu­
tion to the KB integral over the distances of 
each shell. We use the minima between the sol­
vation shell peaks as dividing points and the 
point where the RDF first reaches one as the 
beginning of the first solvation shell as illus­
trated in Fig. 3a. Again considering the TB 
case, this shows a small positive contribution 
of ~ 2 cm3/mol to Vm from the first solvation 
shell, as can be seen in Fig. 3b; the fact that this 
component is positive can be attributed to the 
reduced water density between the first and sec­
ond solvation shells. However, the larger second 
solvation shell peak leads to a significant nega­
tive contribution of —9 cm3/mol. The third sol­
vation shell has little contribution to the partial 
molar volume. Note that these results illustrate 
that the partial molar volume cannot be con­
sidered to come solely from the cavity, even for 
this pseudopotential that yields the most rigid 
cavity behavior. Conversely, this indicates that 
the partial molar volume should not be used to 
infer the cavity size.

The non-cavity LGS pseudopotential gives a 
large, negative partial molar volume of Vm = 
—66 cm3/mol. The small positive contribution 
to Vm of 4 cm3/mol from the limited exclu­
sion of water molecules around the center of 
the electron distribution, the “cavity,” is more 
than cancelled by the strong water structuring
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Figure 3: a) The definitions of the cavity region 
as well as the first, second, and third water sol­
vation shells are illustrated for the TB model; 
see the text for further details, b) The esti­
mated contributions to the partial molar vol­
ume from each region are shown for the TB 
(black), TBOpt (blue), and LGS (red) pseu­
dopotentials.

in the solvation shells. As shown in Fig. 3, the 
first solvation shell reduces the partial molar 
volume by ~ 35 cm3/mol, the second solva­
tion shell by another 23 cm3/mol, and the third 
by another 16 cm3/mol. As can be seen from 
Fig. 2, the running integral for Vm reaches a 
plateau around —71 cm3/mol before rising to 
the final value we reported above. This rise is 
associated with a diminished density we find at 
larger distances from the electron (see Fig. 1) 
that is likely associated with the finite simula­
tion box and the strongly attractive nature of 
the LGS hydrated electron; we do not see such 
behavior for the less attractive TB and TBOpt 
pseudopotentials. Accounting for this, our best 
estimate of the LGS partial molar volume is 
Vm = —68 ± 5 cm3/mol. This is smaller in 
magnitude than the value of —116±17 cm3/mol 
obtained by Casey et al.il

Finally, we consider the results for the TBOpt 
pseudopotential. As expected, they are inter­
mediate between the cavity-forming TB and 
non-cavity LGS models. Importantly, however, 
the partial molar volume we obtain for the 
TBOpt model is Vm = —15 ±4 cm3/mol, which 
is at odds with the positive measured value,30 
but agrees with the —14 ± 12 cm3/mol reported 
by Glover and Schwartz12 using the approach 
of Ref. 31. The negative Vm can be understood 
in terms of the changes to the cavity and solva­
tion structure relative to the TB pseudopoten­
tial from which it was derived. First, the con­
tribution of the cavity to the partial molar vol­
ume, shown in Fig. 3, is ~ 12.5 cm3/mol, a little 
more than a third of the TB result. The greater 
difference comes from the solvation structure, 
which more closely resembles the LGS behav­
ior than that of the TB model. It leads to de­
creases in Vm of 9, 13, and 6 cm3/mol due to the 
first, second, and third solvation shells, respec­
tively. These are individually of the same mag­
nitude (though opposite sign) from the cavity 
contribution and taken together demonstrate a 
much stronger influence for the solvation struc­
ture than the cavity volume. The present re­
sults show that, while the TBOpt pseudopo­
tential improves on a number of features of the 
TB model, it is not accurately describing the 
solvation of the hydrated electron as measured
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by the partial molar volume. Moreover, the re­
sults implicate the solvation structure produced 
by the TBOpt pseudopotential as the origin of 
the deviation in VM relative to experiment.

It is interesting to consider the RDFs ob­
tained from ab initio MD (AIMD) in the con­
text of these results. Park and Schwartz have 
recently demonstrated that, to this point, the 
published AIMD results are not converged with 
respect to system size,6 which also limits the 
ability to calculate the KB integral to obtain 
the partial molar volume. While this is true, 
we can use published results to estimate some of 
the contributions to VM. In general, the AIMD 
results do show a relatively consistent picture 
of the RDF with a smaller cavity than the TB 
model but stronger solvation shell structure: 
The peak maxima rise to 1.7 — 2.5 and the min­
ima dip to 0.25 — 0.7.3,6,17,19,35 (This strong sol­
vent structuring is similar to that observed for 
the bromide ion results shown in the Supporting 
Information.) We can use the KB integral with 
the largest system size (128 water molecules) 
RDF obtained by Park and Schwartz6 to es­
timate the cavity as well as first and second 
solvation shell contributions to the partial mo­
lar volume, with the additional caveat that the 
simulations are at constant volume rather than 
constant pressure. We find the cavity contri­
bution is ~ 9 cm3/mol, while the first solva­
tion shell decreases VM by roughly 6 cm3/mol 
and the second increases it by ~ 3 cm3/mol. 
While the net effect of these three contributions 
is positive, as seen above, the third solvation 
shell and beyond can have significant effects on 
the partial molar volume, which prevents the 
determination of VM from these smaller AIMD 
simulations. However, it is interesting to note 
that the second solvation shell contribution is 
at odds with all three pseudopotential models, 
while the first solvation shell result is only in 
accord with that of the TBOpt model (albeit 
for quite different reasons given the divergent 
shapes of the RDFs).

5 Conclusions
We have presented calculations of the partial 
molar volume of the hydrated electron within 
three different one-electron psuedopotential de­
scriptions. The results show that the partial 
molar volume is a quite sensitive property for 
evaluating models. We find that only the TB 
model agrees with the measured partial molar 
volume, while both the TBOpt and LGS models 
yield values that have the opposite sign, consis­
tent with prior calculations.12,31

A key focus of the present work is to ex­
ploit the Kirkwood-Buff approach to elucidate 
the origin of the sensitivity of the partial mo­
lar volume to the hydrated electron descrip­
tion. In particular, it shows the features the 
electron-water radial distribution function must 
have to reproduce the correct partial molar vol­
ume. While the presence of a cavity is a key 
aspect of this, a previously overlooked factor 
is the role of the water solvation structure, ex­
tending out multiple solvation shells. Impor­
tantly, these effects mean that VM should not 
be used to estimate the hydrated electron cavity 
size.4,34,35 Of the three models considered here, 
the TB pseudopotential provides a description 
that is in greatest accord with the measured 
VM. However, the TB pseudopotential is known 
to have some important shortcomings, that the 
TBOpt description was developed to address, 12 
and both are at odds with the RDFs obtained 
from AIMD simulations. Thus, the present re­
sults indicate there is additional progress to 
be made in developing a pseudopotential that 
provides an accurate, holistic description that 
includes reproducing the partial molar volume 
and, conversely, that the partial molar volume 
should be considered as a key metric in the as­
sessment of such models.

Supporting Information
Effects of simulation cell size and inclusion of 
counterions on the calculation of partial molar 
volumes

8



Acknowledgments
This work was funded by the Division of Chem­
ical Sciences, Geosciences, and Biosciences, Of­
fice of Basic Energy Sciences of the U.S. De­
partment of Energy, through Grant No. DE- 
SC0021114 (W.H.T.). D.M.B. is supported by 
the U.S. Department of Energy Office of Sci­
ence, Office of Basic Energy Sciences under 
Award Number DE-FC02-04ER1553. The cal­
culations were performed at the University of 
Kansas Center for Research Computing (CRC), 
including including the BigJay cluster resource 
funded through NSF Grant MRI-2117449.

References
(1) Larsen, R. E.; Glover, W. J.; 

Schwartz, B. J. Does the hydrated 
electron occupy a cavity? Science 2010, 
329, 65-69.

(2) Turi, L.; Rossky, P. J. Theoretical studies 
of spectroscopy and dynamics of hydrated 
electrons. Chem. Rev. 2012, 112, 5641­
5674.

(3) Uhlig, F.; Marsalek, O.; Jungwirth, P. 
Unraveling the complex nature of the 
hydrated electron. J. Phys. Chem. Lett.
2012, 3, 3071-3075.

(4) Herbert, J. M. Structure of the aqueous 
electron. Phys. Chem. Chem. Phys. 2019, 
21, 20538-20565.

(5) Glover, W. J.; Schwartz, B. J. The flux- 
ional nature of the hydrated electron: En­
ergy and entropy contributions to aque­
ous electron free energies. J. Chem. The­
ory Comput. 2020, 16, 1263-1270.

(6) Park, S. J.; Schwartz, B. J. Understand­
ing the temperature dependence and finite 
size effects in ab initio MD simulations of 
the hydrated electron. J. Chem. Theory
Comput. 2022, 18, 4973-4982.

(7) Janik, I.; Lisovskaya, A.; Bartels, D. M. 
Partial molar volume of the hydrated elec­

tron. J. Phys. Chem. Lett. 2019, 10, 
2220-2226.

(8) Schnitker, J.; Rossky, P. J. Quantum sim­
ulation study of the hydrated electron. J.
Chem. Phys. 1987, 86, 3471-3485.

(9) Schnitker, J.; Rossky, P. J. An electron- 
water pseudopotential for condensed 
phase simulation. J. Chem. Phys. 1987, 
86, 3462-3470.

(10) Turi, L.; Borgis, D. Analytical investiga­
tions of an electron-water molecule pseu­
dopotential. II. Development of a new pair 
potential and molecular dynamics simula­
tions. J. Chem. Phys. 2002, 117, 6186­
6195.

(11) Jacobson, L. D.; Herbert, J. M. A one- 
electron model for the aqueous electron 
that includes many-body electron-water 
polarization: Bulk equilibrium structure, 
vertical electron binding energy, and opti­
cal absorption spectrum. J. Chem. Phys. 
2010, 133, 154506.

(12) Glover, W. J.; Schwartz, B. J. Short-range 
electron correlation stabilizes noncavity 
solvation of the hydrated electron. J. 
Chem. Theory Comput. 2016, 12, 5117­
5131.

(13) Marsalek, O.; Uhlig, F.; Vandevondele, J.; 
Jungwirth, P. Structure, dynamics, and 
reactivity of hydrated electrons by ab ini­
tio molecular dynamics. Acc. Chem. Res.
2012, 45, 23-32.

(14) Savolainen, J.; Uhlig, F.; Ahmed, S.; 
Hamm, P.; Jungwirth, P. Direct observa­
tion of the collapse of the delocalized ex­
cess electron in water. Nat. Chem. 2014, 
6, 697-701.

(15) Uhlig, F.; Herbert, J. M.; Coons, M. P.; 
Jungwirth, P. Optical spectroscopy of the 
bulk and interfacial hydrated electron 
from ab initio calculations. J. Phys. Chem.
A 2014, 118, 7507-7515.

9



(16) Kumar, A.; Walker, J. A.; Bartels, D. M.; 
Sevilla, M. D. A simple ab initio model for 
the hydrated electron that matches exper­
iment. J. Phys. Chem. A 2015, 119, 9148­
9159.

(17) Ambrosio, F.; Miceli, G.; Pasquarello, A. 
Electronic levels of excess electrons in liq­
uid water. J. Phys. Chem. Lett. 2017, 8, 
2055-2059.

(18) Wilhelm, J.; VandeVondele, J.; Ry- 
bkin, V. V. Dynamics of the bulk hy­
drated electron from many-body wave- 
function theory. Angew. Chemie Int. Ed. 
2019, 58, 3890-3893.

(19) Holden, Z. C.; Rana, B.; Herbert, J. M. 
Analytic gradient for the QM/MM-Ewald 
method using charges derived from the 
electrostatic potential: Theory, implemen­
tation, and application to ab initio molec­
ular dynamics simulation of the aque­
ous electron. J. Chem. Phys. 2019, 150, 
144115.

(20) Park, S. J.; Schwartz, B. J. Evaluating 
simple ab initio models of the hydrated 
electron: The role of dynamical fluctua­
tions. J. Phys. Chem. B 20 20, 124 , 9592­
9603.

(21) Herbert, J. M.; Jacobson, L. D. Struc­
ture of the aqueous electron: Assessment 
of one-electron pseudopotential models 
in comparison to experimental data and 
time-dependent density functional theory. 
J. Phys. Chem. A 2011, 115, 14470­
14483.

(22) Luckhaus, D.; Yamamoto, Y.-I.; 
Suzuki, T.; Signorell, R. Genuine binding 
energy of the hydrated electron. Sci. Adv. 
2017, 3, e1603224.

(23) Nishitani, J.; ichi Yamamoto, Y.; 
West, C. W.; Karashima, S.; Suzuki, T. 
Binding energy of solvated electrons and 
retrieval of true UV photoelectron spectra 
of liquids. Sci. Adv. 2019, 5, 1-8.

(24) Yamamoto, Y.-i.; Suzuki, T. Distortion 
Correction of Low-Energy Photoelectron 
Spectra of Liquids Using Spectroscopic 
Data for Solvated Electrons. J. Phys.
Chem. A 2023, 127, 2440-2452.

(25) Kevan, L. Electron spin echo studies of 
solvation structure. J. Phys. Chem. 1981, 
85, 1628-1636.

(26) Kevan, L. Solvated electron structure in 
glassy matrices. Acc. Chem. Res. 1981, 
14,138-145.

(27) Coe, J. V.; Williams, S. M.; Bowen, K. H. 
Photoelectron spectra of hydrated elec­
tron clusters vs. cluster size: Connecting 
to bulk. Intl. Rev. Phys. Chem. 2008, 27, 
27-51.

(28) Coons, M. P.; Herbert, J. M. Quantum 
chemistry in arbitrary dielectric environ­
ments: Theory and implementation of 
nonequilibrium Poisson boundary condi­
tions and application to compute vertical 
ionization energies at the air/water inter­
face. J. Chem. Phys. 2018, 148, 222834.

(29) Paul, S. K.; Coons, M. P.; Herbert, J. M. 
Erratum: “Quantum chemistry in arbi­
trary dielectric environments: Theory and 
implementation of nonequilibrium Poisson 
boundary conditions and application to 
compute vertical ionization energies at the 
air/water interface” [J. Chem. Phys. 148, 
222834 (2018)]. J. Chem. Phys. 2019, 151, 
189901.

(30) Borsarelli, C. D.; Bertolotti, S. G.; Pre- 
vitali, C. M. Thermo dynamic changes as­
sociated with the formation of the hy­
drated electron after photoionization of in­
organic anions: A time-resolved photoa­
coustic study. Photochem. Photobiol. Sci. 
20 03, 2, 791-795.

(31) Casey, J. R.; Schwartz, B. J.; 
Glover, W. J. Free energies of cavity 
and noncavity hydrated electrons near 
the instantaneous air/water interface. J.
Phys. Chem. Lett. 2016, 7, 3192-3198.

10



(32) Lockwood, D. M.; Rossky, P. J. Evalua­
tion of functional group contributions to 
excess volumetric properties of solvated 
molecules. J. Phys. Chem. B 1999, 103, 
1982-1990.

(33) Marcus, Y. The standard partial molar 
volumes of ions in solution. Part 4. Ionic 
volumes in water at 0-100°C. J. Phys.
Chem. B 2009, 113, 10285-10291.

(34) Herbert, J. M.; Coons, M. P. The hydrated 
electron. Annu. Rev. Phys. Chem. 2017, 
68, 447-472.

(35) Lan, J.; Rybkin, V. V.; Pasquarello, A. 
Temperature dependent properties of the 
aqueous electron. Angew. Chem. Int. Ed. 
2022, e202209398.

(36) Kirkwood, J. G.; Buff, F. P. The statistical 
mechanical theory of solutions. I. J. Chem.
Phys. 1951, 19, 774-777.

(37) Ben-Naim, A. The Kirkwood-Buff inte­
grals for one-component liquids. J. Chem.
Phys. 2008, 128, 234501.

(38) Wu, Y.; Tepper, H. L.; Voth, G. A. Flexi­
ble simple point-charge water model with 
improved liquid-state properties. J. Chem.
Phys. 2006, 124, 024503.

(39) Kruger, P.; Schnell, S. K.; Bedeaux, D.; 
Kjelstrup, S.; Vlugt, T. J. H.; Simon, J.- 
M. Kirkwood-Buff integrals for finite vol­
umes. J. Phys. Chem. Lett. 2013, 4, 235­
238.

(40) Kruger, P.; Vlugt, T. J. H. Size and shape 
dependence of finite-volume Kirkwood- 
Buff integrals. Phys. Rev. E 2018, 97, 
051301.

(41) Dawass, N.; Kruger, P.; Schnell, S. K.; Si­
mon, J.-M.; Vlugt, T. J. H. Kirkwood-Buff 
integrals from molecular simulation. Fluid 
Ph. Equilibria 2019, 486, 21-36.

(42) Primorac, T.; Pozar, M.; Sokolic, F.; Zo- 
ranic, L. The influence of binary mix­
tures’ structuring on the calculation of 
Kirkwood-Buff integrals: A molecular dy­
namics study. J. Mol. Liq. 2021, 324, 
114773.

(43) Bussi, G.; Donadio, D.; Parrinello, M. 
Canonical sampling through velocity 
rescaling. J. Chem. Phys. 2007, 126, 
014101.

(44) Bernetti, M.; Bussi, G. Pressure control 
using stochastic cell rescaling. J. Chem.
Phys. 2020, 153, 114107.

(45) Yang, C.-Y.; Wong, K. F.; Skaf, M. S.; 
Rossky, P. J. Instantaneous normal mode 
analysis of hydrated electron solvation dy­
namics. J. Chem. Phys. 2001, 114, 3598­
3611.

(46) Allen, M. P.; Tildesley, D. J. Computer
simulation of liquids; Oxford university
press, 2017.

(47) Colbert, D. T.; Miller, W. H. A novel 
discrete variable representation for quan­
tum mechanical reactive scattering via the 
S-matrix Kohn method. J. Chem. Phys.
1992, 96, 1982-1991.

(48) Shoemaker, D. P.; Garland, C. W.; 
Nibler, J. W. Experiments in Physical 
Chemistry; McGraw-Hill: New York, 
1989.

(49) Neupane, P.; Katiyar, A.; Bartels, D. M.; 
Thompson, W. H. Investigation of the 
Failure of Marcus Theory for Hydrated 
Electron Reactions. J. Phys. Chem. Lett.
2022, 13, 8971-8977.

(50) Toukan, K.; Rahman, A. Molecular- 
dynamics study of atomic motions in wa­
ter. Phys. Rev. B 1985, 31, 2643-2648.

TOC Graphic

11



12


