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Abstract

It is now generally accepted that the hydrated
electron occupies a cavity in water, but the size
of the cavity and the arrangements of the sol-
vating water molecules are not fully character-
ized. Here, we use the Kirkwood-Buff (KB) ap-
proach to examine how the partial molar vol-
ume (Vyy) provides insight into these issues.
The KB method relates Vi, to an integral of
the electron-water radial distribution function,
a key measure of the hydrated electron struc-
ture. We have applied it to three widely-used
pseudopotentials and the results show that Vj,
is a sensitive measure of the fidelity of hy-
drated electron descriptions. Thus, the mea-
sured Vis places constraints on the hydrated
electron structure that are important in devel-
oping and evaluating model descriptions. Im-
portantly, we find that Vj; does not reflect only
the cavity size (and thus should not be used to
infer the cavity radius), but is strongly depen-
dent on the extended solvation structure.

1 Introduction

The hydrated electron has attracted significant
theoretical and experimental attention, partic-
ularly over the past three decades. A key focus
of investigations has been the accurate charac-

terization of its structure. One aspect of this is
whether the electron resides in a cavity or, alter-
natively, adopts a non-cavity structure in which
it densifies the water molecules in its vicinity. '™
This argument has now been settled in favor of
a cavity picture,*7 but the details of the struc-
ture still require elucidation, including the size
of the cavity and the arrangements of the sol-
vating water molecules.

One reason that the picture of the hydrated
electron structure remains unsettled is the chal-
lenge in modeling it. Two primary approaches
have been used that each have advantages and
limitations. Many of the earliest efforts, which
continue to the present, used mixed quantum-
classical molecular dynamics (QQC-MD) simula-
tions in which the quantum electron interacts
with classical water molecules through an effec-
tive one-electron pseudopotential.®? Typically
the electron is described adiabatically by solv-
ing its Schrodinger equation at every step in
the classical simulation of the water molecules.
This enables relatively long simulation times
and large system sizes, but has the drawback
that the quality of the results depends on the
accuracy of the pseudopotential (and the one-
electron approximation). Several pseudopoten-
tials have been developed,*'2 but so far none
appear capable of adequately reproducing all of
the experimentally measured characteristics of
the hydrated electron.

More recently, with the development of
improved codes and the increase in com-



puter speeds, ab initio molecular dynamics
(AIMD) simulations have become more preva-
lent.*%13720 They are, however, limited by the
computational effort required. Indeed, Park
and Schwartz recently carried out an analysis
that indicated such simulations are not con-
verged at the currently feasible system sizes.®
This fact also makes it more difficult to ana-
lyze the accuracy of different functionals. On
the other hand, AIMD simulations are not lim-
ited by the one-electron approximation and
certainly provide a more accurate representa-
tion of the hydrated electron than currently
available pseudopotentials.

These challenges for both pseudopotential
and AIMD simulation approaches have moti-
vated a strong focus on testing how well differ-
ent computational descriptions are able to re-
produce experimental characterizations.?%52!
Chief among these are the vertical detachment
energy 2% and radius of gyration.??* 2" These
properties probe the strength of the electron
binding as well as the degree of delocaliza-
tion of its wavefunction. They are, however,
not sufficient to constrain the pseudopoten-
tial description; both the Turi-Borgis!'® (TB)
and optimized Turi-Borgis!'? pseudopotentials
adequately describe the hydrated electron ra-
dius of gyration and vertical detachment en-
ergy, but are inaccurate in predictions of other
hydrated electron properties.®'? On the other
hand, AIMD efforts often give smaller val-
ues for both quantities compared to experi-
ment, 519282 Jikely due primarily to the small
system sizes.®

A key property that deserves greater atten-
tion is the partial molar volume, V), which
measures the change in volume of the solution
upon addition of hydrated electrons. Like the
radius of gyration and vertical detachment en-
ergy, it has been accurately determined exper-
imentally as Vi = 26 + 6 cm?®/mol,"* i.e.,
the solution expands when a hydrated elec-
tron is added. However, it has, to our knowl-
edge, only been calculated by Schwartz and co-
workers, %31 who used an approach in which
they calculated the volume of a water slab in
a vacuum with and without a hydrated elec-
tron present. As we demonstrate here, there is

much more to be learned from calculating the
partial molar volume than just its value for a
given model.

In this Paper, we apply the approach for cal-
culating the partial molar volume developed by
Kirkwood and Buff to the hydrated electron.
To our knowledge, this is the first application
of this method to a solvated electron system.
It has a number of advantages that we exploit
here. It provides a rigorous framework for com-
puting the partial molar volume that can be
systematically converged with respect to sys-
tem size and statistical sampling. Further, be-
cause it gives the partial molar volume in terms
of the electron-water radial distribution func-
tion (RDF), it provides a direct relationship
to the hydrated electron structure. This has
multiple implications. On the one hand, we
can use the measured partial molar volume,
in the context of simulation results, to draw
inferences about the properties of the actual
electron-water radial distribution function. On
the other hand, we can use the calculations to
determine the contributions to Vis due to the
different regions of the RDF, e.g., the cavity
and the first few water solvation shells, as has
been done for other solutes previously. %23 Such
analyses challenge the traditional interpretation
of the partial molar volume as a measure of the
cavity size**35 (vide infra).

2 Methods

2.1 Theory

Kirkwood and Buff showed that, in the infi-
nite dilution limit, thermodynamical quantities
such as compressibility and partial molar vol-
ume can be expressed in terms of integrals of
the radial distribution function.?%*” In partic-
ular, the Kirkwood-Buff (KB) integral for an
open system is written as

Gy — / T lgosr) — drrtdr, ()

where g,5(r) is the RDF for the centers-of-mass
of solute o and solvent g as a function of the
distance r, and the integration extends through



an infinitely large volume. Then, the partial
molar volume can be computed from the KB
integral as®’

Vi = kT ke — Gaﬁ; (2)

where kg is the Boltzmann constant, T is the
absolute temperature, and x7 is the isothermal
compressibility of the solvent. Here, we take
rr = 4.50 x 107% atm ™!, which is obtained from
the water model used in the simulations,* such
that kgTrr = 1.10 cm?® /mol.

In principle, the KB integral, GG,z5, should be
obtained from an infinite, open system. In prac-
tice, one approximates it based on simulations
of finite, closed systems. In this case, it can be
important to modify Eq. 1 to account for the
finite size of the simulation system as,3% 2

Gop = /o |9aps(r) — 1] w(r; R) dr, (3)

where R is the maximum r for which the RDF is
available. Here, R is taken to be the distance of
the last histogram bin used in computing g,s(r)
and thus, R ~ L/2 where L is the side length
of the cubic simulation cell. The w(r; R) is a
weighting function, for which Kriiger and Vlugt
derived an analytical expression,*?™2

3 3
w(r; R) = 4nr? <1 — 73: + %) : (4)

where x = r/R.

3 Computational Methods

3.1 Omne-Electron Pseudopoten-
tials

In this work, we utilize the electron-water RDF
obtained from QC-MD simulations and the KB
integral to compute the partial molar volume of
the hydrated electron using Eqs. 3 and 4. A full
description is provided in the Computational
Details, but briefly, the water molecules are de-
scribed classically, with the fixed-charge, flexi-
ble SPC/Fw force field,*® while the electron is
described quantum mechanically within an adi-

abatic approximation. The electron interacts
with the water molecules through a pseudopo-
tential. In this work, we consider three pseu-
dopotentials that have been introduced in the
literature for describing the hydrated electron:
Turi-Borgis (TB), the optimized Turi-Borgis
(TBOpt, also known as TBSE-+OptPol),!?
and Larsen-Glover-Schwartz (LGS).? All three
pseudopotentials were developed based on the
static-exchange (SE) approximation for the ex-
cess electron wave function.

The TB pseudopotential describes the hy-
drated electron as residing in a cavity and pri-
marily interacting with the first solvation shell
of water molecules. This model appears to give
electron structures that are too rigid compared
to experimental characterizations and ab ini-
tio descriptions. To address this, Glover and
Schwartz'? proposed the TBOpt pseudopoten-
tial, which differs in the polarization potential.
Both the TB and TBOpt pseudopotentials use
a simple functional form for the excess electron
interaction potential with oxygen (ox) and hy-
drogen (hy) sites,

_z—f erf(Ayury) (5)
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where x refers to ox or hy and r, is the electron-
x site distance. This potential has eight param-
eters (Ay ., B;.) whose values are listed in Ref.
10 and g, are the water site charges (—0.82¢ for
oxygen and 0.41e for hydrogen in the SPC/Fw
model). The full pseudopotential also includes
a polarization potential, which is added a pos-
teriori as,

«
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The TB pseudopotential assumes « to be the
polarizability of the water molecule (o = 9.7446
a.u.), and the parameter C,, = 4.4 au. is
adjusted to reproduce the ground state energy
of the hydrated electron.'® The TBOpt model
was obtained by changing only the polariza-
tion potential such that @ = 9.25 a.u. and
Cl00 = 2.07 a.u., to better match the coupled-



cluster singles and doubles with perturbative
triples (CCSD(T)) interaction energies. 2

The LGS pseudopotential is known to gen-
erate a non-cavity description of the hy-
drated electron, i.e., it does not exclude water
molecules from the region where the electron
resides. The functional form of this pseudopo-
tential is

8
V() =Y Bulr — e 4 Vo), (7)
n=1

where n labels functions for which 7, represents
the locations of the oxygen or hydrogen wa-
ter sites; V¢ is the total Coulombic interaction

(electron-oxygen and electron-hydrogen) taken
3 r2
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for r, < reu. Then the polarization potential is

added as

to be —q/r, for r, > r. and —q(
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where oo = 9.745 a.u. is the water polarizability
and . = 1.53 A.

We note that the large system size and exten-
sive statistical sampling required to calculate
the KB integral is enabled by these one-electron
pseudopotential approaches.

3.2 Simulation Details

All simulations were performed using our in-
house QC-MD simulation code. Initially, a cu-
bic water box of 2048 molecules and side length
39.462319 A is relaxed using classical MD in
the microcanonical (NV E) ensemble for 50 ps,
followed by further equilibration of 250 ps in an
isothermal-isobaric (N PT) ensemble. Then an
electron is introduced, and an NPT simulation
is performed for 13 ps in the mixed quantum
classical regime, of which the last 10 ps is used
for data analysis. We have propagated 3 sets
of 60 such trajectories for TB, yielding a to-
tal of 1.8 ns for data analysis. Similarly, for
TBOpt and LGS models, we propagated 3 sets
of 40 and 20 trajectories, respectively. The sim-
ulations with LGS are more expensive as this
model requires a more denser basis to evaluate
the electron wavefunction.

We have used periodic boundaries in all direc-
tions throughout the simulations. Initial veloc-
ities are assigned randomly at 298.15 K, drawn
from the Boltzmann distribution. The classi-
cal equations of motion are integrated with the
velocity Verlet algorithm using a time step of
1 fs. Temperature is maintained at 298.15 K
using a Bussi-Donadio-Parrinello thermostat. 43
The Bernetti-Bussi barostat is used to maintain
a pressure of 1 atm in the N PT simulations, en-
suring sampling in the isothermal-isobaric en-
semble.** The Lennard-Jones interactions are
truncated at 19 A, which is approximately half
of the simulation cell dimension. The solvent-
solvent long-range electrostatic interactions are
handled using the Ewald sum method, with the
real space part truncated at 19 A.4540 Ag is dis-
cussed in the Supporting Information, this size
of the simulation cell and cutoff radius are suf-
ficient to accurately converge the partial molar
volume. We also present results for the partial
molar volume of Br™ in the Supporting Infor-
mation with and without the presence of a Na™
counterion to illustrate the use of a charge sim-
ulation cell does not affect the results.

For the quantum mechanical calculation of
the adiabatic electron wavefunction at each
time step in the QC-MD simulation, the
Schrodinger equation is solved using a sinc-
function discrete variable representation (DVR)
basis.*” The DVR basis spans from -7 to 6.125
A with 16 x 16 x 16 grids (grid spacing
0.875 A) for the TB and TBOpt models, and 32
X 32 x 32 grids (grid spacing 0.4375 A) for the
LGS pseudopotential. The eigenvalue equation
is solved using an iterative Lanczos algorithm
with full reorthogonalization.

All error bars are reported as 95% confidence
intervals based on the Student’s ¢-distribution *®
using block averaging with 3 blocks, each con-
sisting of 20, 40, or 60 ten-picosecond trajec-
tories for the LGS, TBOpt, and TB models,
respectively, as described above.

4 Results and Discussion

We have calculated the RDF between the hy-
drated electron and water molecule center-of-



mass for each of the three pseudopotentials us-
ing the approach detailed above. These results
are shown in Fig. 1, with shaded regions rep-
resenting the error bars. The RDFs are con-
sistent with those reported in previous studies
for e -oxygen,l,1249 typically with less statis-
tical sampling. Note that most simulations of
the hydrated electron with one-electron pseu-
dopotentials have used the SPC/Flexible wa-
ter model,50 which has the same site charges
but a more complex intramolecular potential.
We previously found that the two water mod-
els yield similar behavior for the TB and LGS
models.49
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Figure 1: The e -water radial distribution

function, g(7), for the TB (black), TBOpt
(blue), and LGS (red) pseudopotential hy-
drated electrons. The RDFs for the TBOpt
and LGS are shifted upward by 0.2 and 0.4, re-
spectively, for clarity. The shaded regions show
error bars as 95% confidence limits.

The RDFs illustrate the clear differences be-
tween the three pseudopotentials that have im-
portant implications for the hydrated electron
partial molar volume (vide infra). The nature
of the electron cavity is the first of these. The
TB model completely excludes water molecules
from a 2 A radius around the center-of-mass
of the hydrated electron. In contrast, the
non-cavity nature of the LGS pseudopotential

is evident in the non-zero e"-water RDF for
all distances, including as r approaches zero.
As noted previously, the LGS electron fluctu-
ates between cavity and non-cavity structures,
presenting non-cavity behavior overall.549 The
TBOpt model yields an RDF that lies in be-
tween these two. The RDF is zero (within er-
ror bars) only for r < 0.75 A and begins to
rise sharply around | — 1.5 A, Thus, it exhibits
a smaller, weaker cavity, as intended in its de-
sign.

A second key difference between the RDFs
of the three models is the solvation structure.
The TB model has a weakly structured first sol-
vation shell as measured by the height of the
first peak (1.12 at 3.0 A) which is even smaller
than the second solvation shell peak (1.19 at
4.8 A). In between the first and second, as well
as second and third, solvation shells the RDF
falls below one. These behaviors are in sharp
contrast with the LGS pseudopotential. It has
a large, sharp peak (2.05 at 2.0 A) associated
with the first solvation shell with a dramati-
cally smaller second solvation shell peak (1.23
at 4.0 A) and the RDF remains at or above one
between the first three solvation shells. Once
again, the TBOpt model gives an intermedi-
ate description of the hydrated electron. Like
the LGS model, it has a comparatively large
first solvation shell peak (1.34 at 2.4 A) and a
smaller second solvation shell (1.13 at 3.8 A),
but these occur with smaller magnitudes than
for the LGS case. The RDF does not fall below
one between these two peaks, but does between
the second and third solvation shells.

These RDFs are used to compute the KB in-
tegrals (Eq. 3) and the partial molar volume
(Eq. 2) of the hydrated electron. The running
integrals used to compute the partial molar vol-
ume are shown in Fig. 2 and compared to the
experimental result. It is useful to first note
the effect of the RDF features on the partial
molar volume. The excluded volume associated
with a hydrated electron cavity appears as pos-
itive contribution to the partial molar volume,
1.€., volume needed in the solution to accommo-
date the electron. Note that for all three pseu-
dopotentials, this appears as a rise in the par-
tial molar volume integral at small r, which is
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Figure 2: Partial molar volumes for TB (black),
TBOpt (blue), and LGS (red) hydrated elec-
trons shown as the running integral in Eq. 2.
The experimental value (violet) is also shown
for comparison. The shaded regions show error
bars as 95% confidence limits.

largest for the TB model but quite small for the
non-cavity LGS model. At larger distances, the
structure of the solvation shells strongly mod-
ifies VM- Namely, larger peaks correspond to
greater water densification induced around the
hydrated electron and lead to a decrease in the
partial molar volume. Regions of the RDF be-
tween solvation shells that fall below one have
the opposite effect, increasing VA= Note that
the 4vrr? factor in the integral, Eq. 3, plays an
important role as it amplifies the behavior of
the RDF to account for the larger number of
water molecules present as r increases.

Both the comparatively large, rigid cavity and
the modest solvation shell structure predicted
by the TB pseudopotential tend to increase the
partial molar volume. Our calculated result is
VM = 23 = 3 cm3/mol, which is unambigu-
ously positive and also in quantitative agree-
ment with the measured value of 26=1=6 cm3/mol
obtained by Janik ef al." and Borsarelli et al.3l
The present result is also in accord with that
previously estimated by Casey et al. for the
TB model as 31 &= 12 cm3/mol.31 They used a
quite different approach in which they carried

out simulations of water in a slab geometry with
two air-water interfaces. They used a grid to
estimate the location of the surface atoms and
thereby compute the volume of the water slab
with and without the hydrated electron present.

Note that the Kirkwood-Buff approach pro-
vides insight into the origin of the partial mo-
lar volume value. In particular, by considering
the contributions to VM from different regions
of the RDF, we can determine the influence of
each part of the hydrated electron structure on
the partial molar volume. These results are pre-
sented in Fig. 3 and obtained as follows. We can
view the cavity contribution as that associated
with the KB integral up to the distance where
the RDF first rises to one, around r = 2.7 A
for the TB model; at this point the TB par-
tial molar volume is approximately 33 cm3/mol.
The contributions of the water solvation shells
are similarly estimated from the net contribu-
tion to the KB integral over the distances of
each shell. We use the minima between the sol-
vation shell peaks as dividing points and the
point where the RDF first reaches one as the
beginning of the first solvation shell as illus-
trated in Fig. 3a. Again considering the TB
case, this shows a small positive contribution
of ~ 2 cm3/mol to VM from the first solvation
shell, as can be seen in Fig. 3b; the fact that this
component is positive can be attributed to the
reduced water density between the first and sec-
ond solvation shells. However, the larger second
solvation shell peak leads to a significant nega-
tive contribution of —9 cm3/mol. The third sol-
vation shell has little contribution to the partial
molar volume. Note that these results illustrate
that the partial molar volume cannot be con-
sidered to come solely from the cavity, even for
this pseudopotential that yields the most rigid
cavity behavior. Conversely, this indicates that
the partial molar volume should not be used to
infer the cavity size.

The non-cavity LGS pseudopotential gives a
large, negative partial molar volume of Vm =
—66 cm3/mol. The small positive contribution
to VM of 4 cm3/mol from the limited exclu-
sion of water molecules around the center of
the electron distribution, the “cavity,” is more
than cancelled by the strong water structuring
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Figure 3: a) The definitions of the cavity region
as well as the first, second, and third water sol-
vation shells are illustrated for the TB model;
see the text for further details, b) The esti-
mated contributions to the partial molar vol-
ume from each region are shown for the TB
(black), TBOpt (blue), and LGS (red) pseu-
dopotentials.

in the solvation shells. As shown in Fig. 3, the
first solvation shell reduces the partial molar
volume by ~ 35 cm3/mol, the second solva-
tion shell by another 23 cm3/mol, and the third
by another 16 cm3/mol. As can be seen from
Fig. 2, the running integral for VM reaches a
plateau around —71 cm3/mol before rising to
the final value we reported above. This rise is
associated with a diminished density we find at
larger distances from the electron (see Fig. 1)
that is likely associated with the finite simula-
tion box and the strongly attractive nature of
the LGS hydrated electron; we do not see such
behavior for the less attractive TB and TBOpt
pseudopotentials. Accounting for this, our best
estimate of the LGS partial molar volume is
VM = —68 £ 5 cm3/mol. This is smaller in
magnitude than the value of —116+17 cm3/mol
obtained by Casey et al.il

Finally, we consider the results for the TBOpt
pseudopotential. As expected, they are inter-
mediate between the cavity-forming TB and
non-cavity LGS models. Importantly, however,
the partial molar volume we obtain for the
TBOpt model is VM = —15+4 cm3/mol, which
is at odds with the positive measured value,30
but agrees with the —14 = 12 cm3/mol reported
by Glover and Schwartzl? using the approach
of Ref. 31. The negative VM can be understood
in terms of the changes to the cavity and solva-
tion structure relative to the TB pseudopoten-
tial from which it was derived. First, the con-
tribution of the cavity to the partial molar vol-
ume, shown in Fig. 3, is ~ 12.5 cm3/mol, a little
more than a third of the TB result. The greater
difference comes from the solvation structure,
which more closely resembles the LGS behav-
ior than that of the TB model. It leads to de-
creases in VM of 9, 13, and 6 cm3/mol due to the
first, second, and third solvation shells, respec-
tively. These are individually of the same mag-
nitude (though opposite sign) from the cavity
contribution and taken together demonstrate a
much stronger influence for the solvation struc-
ture than the cavity volume. The present re-
sults show that, while the TBOpt pseudopo-
tential improves on a number of features of the
TB model, it is not accurately describing the
solvation of the hydrated electron as measured



by the partial molar volume. Moreover, the re-
sults implicate the solvation structure produced
by the TBOpt pseudopotential as the origin of
the deviation in Vj; relative to experiment.

It is interesting to consider the RDFs ob-
tained from ab initio MD (AIMD) in the con-
text of these results. Park and Schwartz have
recently demonstrated that, to this point, the
published AIMD results are not converged with
respect to system size,® which also limits the
ability to calculate the KB integral to obtain
the partial molar volume. While this is true,
we can use published results to estimate some of
the contributions to Vys. In general, the AIMD
results do show a relatively consistent picture
of the RDF with a smaller cavity than the TB
model but stronger solvation shell structure:
The peak maxima rise to 1.7— 2.5 and the min-
ima dip to 0.25 — 0.7. 36171935 (Thig strong sol-
vent structuring is similar to that observed for
the bromide ion results shown in the Supporting
Information.) We can use the KB integral with
the largest system size (128 water molecules)
RDF obtained by Park and Schwartz® to es-
timate the cavity as well as first and second
solvation shell contributions to the partial mo-
lar volume, with the additional caveat that the
simulations are at constant volume rather than
constant pressure. We find the cavity contri-
bution is ~ 9 c¢m?®/mol, while the first solva-
tion shell decreases Vs by roughly 6 cm?/mol
and the second increases it by ~ 3 ¢m?®/mol.
While the net effect of these three contributions
is positive, as seen above, the third solvation
shell and beyond can have significant effects on
the partial molar volume, which prevents the
determination of Vi from these smaller AIMD
simulations. However, it is interesting to note
that the second solvation shell contribution is
at odds with all three pseudopotential models,
while the first solvation shell result is only in
accord with that of the TBOpt model (albeit
for quite different reasons given the divergent
shapes of the RDFs).

5 Conclusions

We have presented calculations of the partial
molar volume of the hydrated electron within
three different one-electron psuedopotential de-
scriptions. The results show that the partial
molar volume is a quite sensitive property for
evaluating models. We find that only the TB
model agrees with the measured partial molar
volume, while both the TBOpt and LGS models
yield values that have the opposite sign, consis-
tent with prior calculations. 123!

A key focus of the present work is to ex-
ploit the Kirkwood-Buff approach to elucidate
the origin of the sensitivity of the partial mo-
lar volume to the hydrated electron descrip-
tion. In particular, it shows the features the
electron-water radial distribution function must
have to reproduce the correct partial molar vol-
ume. While the presence of a cavity is a key
aspect of this, a previously overlooked factor
is the role of the water solvation structure, ex-
tending out multiple solvation shells. Impor-
tantly, these effects mean that Vj; should not
be used to estimate the hydrated electron cavity
size. #3435 Of the three models considered here,
the TB pseudopotential provides a description
that is in greatest accord with the measured
V. However, the TB pseudopotential is known
to have some important shortcomings, that the
TBOpt description was developed to address, 2
and both are at odds with the RDFs obtained
from AIMD simulations. Thus, the present re-
sults indicate there is additional progress to
be made in developing a pseudopotential that
provides an accurate, holistic description that
includes reproducing the partial molar volume
and, conversely, that the partial molar volume
should be considered as a key metric in the as-
sessment of such models.

Supporting Information

Effects of simulation cell size and inclusion of
counterions on the calculation of partial molar
volumes
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