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Abstract—The rapid uptake of intelligent applications is pushing deep learning (DL) capabilities to mobile devices. However, the
heterogeneities in device capacity, DNN performances, and user preferences make it challenging to provide satisfactory Quality of
Experience (QoE) to mobile users. This paper studies automated customization for DL inference on mobile devices (termed as on-device
inference), and our goal is to enhance user QoE by configuring the on-device inference with an appropriate DNN for users under different
usage scenarios. The core of our method is a DNN selection module that learns user QoE patterns on-the-fly and identifies the best-fit DNN
for on-device inference with the learned knowledge. It leverages an online learning algorithm, NeuralUCB, that has excellent generalization
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ability for handling various user QoE patterns. We also embed the knowledge transfer technique in NeuralUCB to expedite the learning
process. However, NeuralUCB frequently solicits QoE ratings from users, which incurs non-negligible inconvenience. To address this
problem, we design feedback solicitation schemes to reduce the number of QoE solicitations while maintaining the learning efficiency of
NeuralUCB. A pragmatic problem, aggregated QoE, is further investigated to improve the practicality of our framework. We conduct
experiments on both synthetic and real-world data. The results indicate that our method efficiently learns the user QoE pattern with few
solicitations and provides drastic QoE enhancement for mobile devices.

Index Terms—On-device DNN inference, model selection, multi-armed bandit, quality of experience

1 INTRODUCTION

EEP learning (DL) has revolutionized a broad spectrum of

domains and achieved remarkable performance compa-
rable to or even exceeding human levels. Such DL intelligence
typically runs at cloud-scale data centers [1], but as the mobile
industry prospers, there is a growing trend to push the DL
intelligence toward mobile devices [2]. More precisely, the
inference of Deep Neural Networks (DNN) is brought down
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to mobile devices, i.e., hand-held devices like smartphones
and tablet computers. For example, Apple Siri uses DL for
speech synthesis on smartphones, and Facebook keeps
improving the experience of DNN inference in its mobile app
for more than 2 billion users [3]. Running DNN inferences on
mobile devices (hereinafter, referred to as on-device infer-
ence), users receive improved service quality with reduced
service latency, and the inference process also becomes less
dependent on Cloud or other edge computing platforms [4].
Various mechanisms, e.g., model selection [5], DNN compres-
sion [6], and hyperparameter optimization [7]) have been
studied to improve the performance of on-device inferences
in terms of accuracy, inference delay, energy consumption,
etc. Although these technical metrics serve as good indica-
tions of on-device inference performance, they are unable to
precisely capture users’ overall satisfaction with received
services. In light of this challenge, industry and academia are
embracing a more holistic approach, Quality of Experience
(QoE), to quantify the relationship between user experience
and service performances [8]. The QoE domain encapsulates
methods and metrics for evaluating mobile services in a way
that aligns with how end-users actually experience those serv-
ices. Compared to technical metrics, QoE is a fuzzier metric
that exhibits complicated interdependencies between service
performances, external environments, and human percep-
tions [9]. Improving user-perceived QoE has been an impor-
tant topic for mobile app developers to enhance customer
satisfaction and prevent customer churn. Efforts have been
made in the field of mobile computing for analyzing and
enhancing user QoE [9], [10]. However, most existing works
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TABLE 1
Performance of DNN Models

Model Size Accuracy Latency
Mobilenet v1 1.5MB 61.2% 3.6ms
Mobilenet v2 3.4MB 70.8% 12ms
Inception v2 11MB 73.5% 59ms
Inception v3 23MB 77.5% 148ms
DenseNet 43.6MB 64.2% 195ms
NasNet M 21.4AMB 73.9% 56ms

emphasize the impact of network conditions on mobile app
QoE [11], [12], and optimize interactions between mobile
devices and computing platforms (e.g., cloud data-centers or
edge servers) to deliver higher QoE to users. By contrast, QoE
enhancement for on-device DL inference is still an under-
investigated topic. This paper studies On-device Inference
Customization (OIC) for DL-based applications. Our goal is
to customize on-device inference for individual users in a
way that maximizes user perceived experience.

1.1 Motivations and Challenges

OIC is motivated by the heterogeneity of mobile devices,
DNN models, usage scenarios, and user preferences, which
jointly affect user perceived QoE in a complicated manner.

1.1.1  Device Heterogeneity

The mobile device ecosystem is very heterogeneous, some
high-end devices have state-of-the-art CPUs along with
dedicated graphic processing units (GPUs) and even pur-
pose-built processing units to speed up DNN inferences,
while many others are powered by CPUs of several years
old [3], [13]. Consequently, there is no standard device
model to optimize the DL inference for. The heterogeneity
of device computing capacity results in a huge variability in
service quality and user experience. Even with fine-tuned
DNNs, the inference latency varies by a factor of 10+ across
mobile devices [3].

1.1.2 DNN Model Heterogeneity

There often exist various DNN architectures that can be
used by the application developer to address a learning
problem. For example, in image classification, commonly-
used DNN architectures include MobileNet [14], Inception
[15], Yolo [16], and etc. The recent studies on DNN model
compression [6] further provides more available DNN
architectures that exhibit different trade-offs in a multi-
dimension space of important metrics (e.g., size versus
accuracy versus latency). Table 1 shows performance met-
rics of several DNN examples (measured on Google Pixel 3
with Android 10) provided by Tensorflow Lite [17]. We see
that different DNNs require different computing resource
(model size) and provide different inference performances
(accuracy and latency). No single DNN can achieve opti-
mality in all dimensions. Existing works [13], [18] have pro-
vided performance measurements of a broad range of DNN
architectures on a variety of embedded platforms and mobile
hardware, showing that the performance of DNNs varies
significantly across devices.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 13,2023 at 16:03:12 UTC from IEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

1.1.3 Usage Scenario Heterogeneity

DNNs running on different mobile devices can be exposed to
very different usage scenarios — different locations, illumi-
nation conditions, time, etc. These all account to drastically
different distributions of user input data, which can result in
very different inference accuracies even for the same DNN
model. For example, variations of image illumination can
create intra-class variability in image classification problems
[5] and degrade the performance of DL algorithms. Besides
environmental factors, the mobile device status (e.g., CPU/
memory usage and battery level) also affects the inference
quality. For example, when the battery level is low, mobile
devices may switch to the battery saving mode and decrease
CPU frequency, or when the CPU temperature surpasses the
devices’ thermal threshold, the device begins to throttle back
its frequencies in an effort to reduce the heat. These actions
lead to a larger DNN inference latency.

1.1.4 User Preference Heterogeneity

It should be noticed that users often have different sensitiv-
ity towards different performance metrics of DNN infer-
ences. For example, some users are more energy-sensitive
due to limited battery capacities, whereas others would like
to trade energy consumption for lower inference latency
and higher inference accuracy. In addition, the sensitivities
of a user can also change under different circumstances,
e.g., when the battery level becomes low, the user may
become more energy-sensitive.

Therefore, how to design an OIC framework that can
work efficiently with the joint impact of mobile device het-
erogeneity, DNN model heterogeneity, usage scenario het-
erogeneity, and user preferences heterogeneity would be a
critical issue to be solved in this paper. In particular, OIC
will need to address the following three challenges: The first
challenge is the unknown and diverse user QoE patterns.
The crux of OIC is finding an underlying mapping for each
DNN that maps the device information, user preference, and
usage scenario to the user QoE pattern. If these mappings are
available at hand, then the best-fit DNN can be easily identi-
fied. Unfortunately, such mappings are unknown a priori,
and therefore a learning mechanism is necessary to acquire
the user QoE patterns. In particular, OIC will require the
learning method to have a good generalization ability as user
QoE patterns usually exhibit significant variability due to the
heterogeneity in mobile devices and user preferences. The
second challenge is the user-perceived inconvenience when
learning user QoE patterns online. To customize the on-
device inference for a particular user, we will need QoE data
that precisely reflects the user’s satisfaction about DNNs
under various usage scenarios. Such QoE data can only be
collected from users while they are using the application.
This is often done by on-screen pop-ups that solicit the user
about his/her experience. Such QoE solicitation strategy is
commonly adopted, e.g., Skype asks a “How was your call
quality?” question when a call is ended. Being users our-
selves, we know that frequently receiving experience sur-
veys can be annoying. Also, QoE solicitations may incur
additional cost to application developers because incentive
mechanisms [19] are often applied to motivate the QoE

response. Therefore, a key designing togic of OIC is to keep
Xplore. Restrictions apply.
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Fig. 1. Block diagram of OIC.

the solicitation inconvenience minimal during online learn-
ing. The third challenge is to guarantee the practicality of
OIC. Despite the efficacy, other practical issues should also
be considered to successfully deliver functionalities of OIC
in practice. For example, the computational complexity of
OIC must be low enough to work on mobile devices. OIC is
also expected to take effect quickly and hence the learning
process should be kept short. In addition, users may provide
aggregated QoEs that reflect their experience for multiple
DNN’s used before rather than an individual DNN. All these
practical issues should be taken care of when designing OIC.

1.2 Contributions

In this paper, we design a novel framework to address the
above challenges. Fig. 1 depicts a block diagram of the pro-
posed OIC method. It consists of two components: a DNN
Selection Module that learns a QoE predictor for guiding the
DNN selection; and a Feedback Solicitation Scheme (FSS) that
determines when to pop up experience surveys. The contri-
bution of this paper is summarized as follows:

1) We utilize online learning techniques to build the
DNN selection module. NeuralUCB [20], a contextual
multi-armed bandit algorithm, is employed to learn users’
QoE patterns based on the side-information of mobile devi-
ces, DNNs, and usage scenarios. The predicted QoE pattern
is then used to identify the best-fit DNN for the application.
A salient feature of NeuralUCB is that it does not assume a
certain distribution of QoE data and hence, attains general-
ity across different users and devices. We further incorpo-
rate knowledge transferring techniques in NeuralUCB to
speed up the customization process.

2) A novel Feedback solicitation scheme (FSS) is designed
for NeuralUCB to reduce the user-perceived inconvenience
caused by QoE solicitations during online learning. FSS
jointly considers the learning efficiency of NeuralUCB and
solicitation cost, and tries to reduce the number of QoE
solicitations in a way that minimizes the total performance
loss. FSS cuts the number of solicitations from T  to T2/3 (i.e.,
a 90% reduction for T = 1000) while keeping asymptotic
optimality of NeuralUCB.

3) A learning strategy is further designed to apply OIC
with the aggregated QoE where QoE ratings solicited from
users reflect their experience over multiple DNNs used
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during a time span. The key to addressing the aggregated
QOE is a feedback refinement approach that estimates indi-
vidualized QoEs (i.e., QoEs for individual DNNs) from
aggregated QoEs with the assistance of QoE predictor. The
feedback refinement approach is a flexible add-on and also
handles a mix of aggregated and non-aggregated QoEs.

4) The proposed method is evaluated on both numerical
and real-world data. We collect context information and
user QoE from human subjects when using a image classifica-
tion application [21]. The results show that OIC can learn user
QoE patterns with low solicitation costs and dramatically
improve the user experience.

The rest of the paper is organized as follows. Section 2
discusses related works. Section 3 designs the DNN selec-
tion module. Section 4 develops feedback solicitation
schemes. Section 5 designs a feedback refinement approach
for the aggregated QoE. Section 6 carries out experiments
and evaluations, followed by conclusions in Section 7.

2 RELATED WORKS

Deep Learning for Mobile Devices. The past few years have
seen a surge in the investigation of DL techniques for
mobile devices and embedded platforms. Promising results
are appearing in many domains, including hardware, algo-
rithms, and tools. 1) Hardware: Major mobile hardware
vendors are working closely with the makers of DL frame-
works to make sure that their processors are well sup-
ported. For example, the Apple Bionic chip [22] includes a
group of specialized cores functioning as a neural process-
ing unit dedicated to accelerating neural network opera-
tions. TensorFlow Lite for Microcontrollers [23] currently
provides optimizations for Arm, Cadence, and Synopsys
processors, and the list is still growing. 2) Algorithms: DNN
compression methods [6] are investigated to compress
large-scale DNN models into small DNNs that can be easily
implemented on mobile devices. Based on their properties,
DNN compression methods can be divided into four cate-
gories: parameter pruning/quantization, low-rank factori-
zation, transferred/compact convolutional filters, and
knowledge distillation. The parameter pruning/quantiza-
tion methods [24] explore the redundancy of DNN parame-
ters and remove the redundant and uncritical ones. Low-
rank factorization techniques [25] use matrix/tensor decom-
position to estimate informative parameters of DNNs. The
transferred /compact convolutional filter approaches [25]
design special structural convolutional filters to reduce the
parameter space. The knowledge distillation methods [26]
learn a distilled model and train a more compact neural net-
work to reproduce the output of a larger network. 3) Tools
and libraries: New DL tools and libraries, e.g., Tensorflow
Lite [27], Core ML [28], and PyTorch Mobile have been
designed to develop and implement DL intelligence on
resource-constrained mobile devices.

QoE Enhancement in Mobile Computing. An array of stud-
ies has looked at mobile app QoE, focusing on establishing
QoE models based on network Quality of Service (QoS)
and/or contextual data [9]. The work [29] provides a mobile
QoE model for web browsing, file upload, and file down-
load using the data collected from 108 users in a controlled
laboratory experiment. The network quality metrics include
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throughput and delay. The authors in [30] modeled mobile
QoE by examining a variety of specific popular mobile apps
including YouTube, Facebook, and Google Maps. The work
[31] used in situ passive device-based network measure-
ments and user experience ratings to model the relationship
between network quality (and non-network features) and
QoE. The work [32] considered the impact of device capabil-
ities on the QoE of mobile apps, and studied the QoE of web
browsing, video streaming, and video telephony for differ-
ent device parameters. However, most of the above works
take the network quality as the key factor in the QoE model,
which is starkly different from the QoE pattern in our prob-
lem as the on-device inference is independent of network
data transmission. In addition, the above works build gen-
eral QoE models for a large group of users, by contrast, our
on-device inference customization aims to learn the QoE
pattern for each individual user and adaptively select the
best-fit DNNs for users.

DNN Model Selection. DNN selection aims to identify the
best-fit DNN from a set of candidate DNNs that are trained
with different architectures, parameters, and training data.
Unlike DNN selections for general purposes that focus on
accuracy and inference delay, DNN selections for mobile
devices should take into account other important factors,
e.g., computing resource requirement and energy consump-
tion, due to the limited computing capacity and battery on
mobile devices. Recent works consider the special needs of
mobile devices when designing DNN selection schemes. For
example, the work [5] presented an adaptive scheme to
determine which DNIN model to use for a given input by con-
sidering the desired accuracy and inference time. The
authors achieve this by training a predictive model offline.
The authors in [33] proposed OODIn for the optimized
deployment of DL apps across heterogeneous mobile devi-
ces. OODIn uses a highly parametrized multi-layer design
and performs a principled optimization of model-level and
system-level parameters through a multi-objective formula-
tion to adapt to device capabilities and the user-specified
performance requirements in terms of accuracy, latency,
throughput and energy. MobiSR [34] considered model com-
pression techniques and traverses the design space to reach
the highest performing trade-off between image quality and
processing speed. The work [35] presented a design and
implementation of an optimizing compiler and runtime
scheduler to serve a stream of heterogeneous requests under
resource constraints, such as memory, Computation, and
energy. Most of the above works optimize the on-device exe-
cution of DL-based mobile apps under the constraint of QoS
requirements, e.g., accuracy, latency, and energy consump-
tion. QoS metrics are objective, and the mapping between
device status and QoS is deterministic. Therefore, the above
works carry out learning and optimization based on offline-
collected data. By contrast, our on-device inference customi-
zation is QoE-driven and QoE patterns vary significantly
across users. Oftentimes there is no data available a priori to
learn the QoE pattern for a particular. These issues motivate
us to learn users’ QoE patterns online. The most related
work is probably [36], where the authors also studied a
model selection scheme for QoE improvement. Compared
with it, our work has two stark differences. First, the model
selection in [36] is performed on Cloud, which finds an
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appropriate model for a user based on its device features. By
contrast, our on-device inference customization method
runs model selection on mobile devices, aiming to select
models adaptively according to the user preference and
usage scenario. Second, [36] used only static device informa-
tion to guide the model selection while our work encom-
passes a variety of dynamic states (e.g., task features, device
status, and environment changes) and discover complicated
QoE patterns for individual users under various states.

3 AUTOMATED CUSTOMIZATION OF ON-DEVICE
INFERENCE

3.1 System Overview
3.1.1 Pre-Configuration

OIC is designed as a plug-in module for mobile applications,
and it is deployed on the user device along with the applica-
tion installation. The application will download multiple
DNN models (hereinafter referred to as candidate DNNs),
denoted by M = {1,..., M}, from the developer’s cloud.
The number of candidate DNNs M should not be too large to
avoid excessive usage of the device storage. Only one of the
stored DNN will be selected and loaded to the device mem-
ory (typically DRAM) for processing inference tasks, and
therefore, OIC will not cause a large increase in the device
memory usage. The candidate DNNs have different per-
formances in terms of accuracy, latency, energy consump-
tion, etc. The set of candidate DNNs M defines the action
space of DNN selection. In a broader concept, the action
space of DNN selection is not necessarily independent
DNN, it can also be different configurations of one DNN
model. For example, a BranchyNet [37] enables a DNN to
exit earlier (to save time) with a reduced inference delay but
lower inference accuracy; SlimNets [38] and MutualNet [39]
provide executable configurations with different DNN
widths which can be adjusted according to resource con-
straints; Configurable DNN [40] allows dynamic adjustment
of the number of channels in DNN based on the require-
ments of response time, energy usage, and accuracy. In such
cases, the action space becomes the set of available configura-
tion points (with different performance trade-offs) of a DNN.

3.1.2 Operations of On-Device Inference Customization

The operation timeline of OIC is discretized by application
sessions, denoted by 7 = {1,2,...,T}. An application ses-
sion begins when a user starts the application and ends when
the application exits. The DNN selection module runs in the
application loading phase during which it selects a DNN and
configures it in the application. Note that the application
loading phase originally exists for application initialization,
object pooling, server connection, etc. Our method does not
prolong this loading phase as we will show later in the exper-
iment that the run-time of our method is less than 2ms. We
for now assume that the selected DNN does not change dur-
ing a session. An extended scene will be considered in Sec-
tion 5 where the selected DNN changes during a session. The
QoE solicitation happens at the end of application sessions.
This is done by popping up an on-screen survey that inquires
about the user experience during the application session. It is

possible that users are not williné to complete the QoE survey
Xplore. Restrictions apply.
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questions. In this case, the operator may apply incentive
mechanisms [19] to motivate the QoE response. The feedback
solicitation schemed designed later (in Section 4) will con-
sider the cost of QoE solicitations due to the incentive pay-
ment and the inconvenience brought to users. The collected
QoE will be stored in a database for learning user QoE pat-
terns later.

3.1.3 QoE Predictor

A QOoE predictor is built to guide the DNN selection. It
establishes a mapping from the context of DNN and usage
scenario to user QoE. Examples of context information
includes: 1) environmental context which can be acquired via
sensors equipped with the mobile device, e.g., the device
location acquired via GPS signals and the illumination
acquired via the ambient light sensor; 2) device status, e.g.,
battery level, CPU usage, and memory usage, which can be
inspected by calling Java APIs; 3) DNN performance, e.g.,
size, accuracy, and latency of DNNs. The statistics of DNN
performances are available on the TensorFlow Lite website
[21]. Note that these statistics are nominal because they are
measured on standard devices which may be different from
the user device, and on a standard dataset which may be
different from the user input data. Therefore, it is possible
that the performance of a DNN on the user device can be
very different from the nominal performance. While nomi-
nal performances do not reflect the actual performances of
DNNs on user devices, it provides other useful information
about the DNNSs, e.g., the nominal inference delay can
reflect the computational complexity of DNNs.

The contextual conditions of environment, device status,
and DNN m € M in application session ¢ are collected in the
context x;,,. We let &, = {@;, },,c 1 collect context of all can-
didate DNNs. While we know in general that the user QoE is
influenced by the above contextual conditions, we do not
know the exact form of the QoE model. Therefore, OIC relies
on an online learning algorithm to build a QoE predictor (the
learning process will be explained later in this paper) to pre-
dict the user QoE delivered by DNNs #; = {#;, },,c 1, Where
71m is the predicted QoE for DNN m given context z;,,. If
QoE predictions are accurate, then the best-fit DNN for ses-
sion t can be easily determined by greedy policy m; =
arg max,,c o "+m. The selected DNN m; will be used to con-
figure the mobile app for processing the inference tasks in
application session t. When session ¢ ends, the mobile app
uses an on-screen popup to collect user’s QoE in the applica-
tion session. The overhead, e.g, RAM/CPU usage, energy
consumption, and latency, for popping up on-screen ques-
tions and collecting user QoE scores is negligible. The solicita-
tion cost is more about the user-perceived inconvenience
caused by QOE solicitation questions. Clearly, the solicitation
cost is less likely to be a constant because the inconvenience
caused by QOoE solicitations can be affected by users’ emotions
and usage circumstances, which are difficult to be sensed by
mobile devices. Therefore, we assume the solicitation cost is
drawn from a random distribution, and let the expectation of
the random distribution be the unit solicitation cost A.

Fig. 2 depicts the timeline of operations during an applica-
tion session. Now a fundamental problem for OIC becomes
learning an accurate QoE predictor for candidate DNNs. In
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the sequential, we utilize a multi-armed bandit (MAB) algo-
rithm to learn QoE predictors in an online fashion.

3.2 Learning QoE Predictors

Note that the greedy policy for selecting the best-fit DNN is
only plausible when the QoE predictor give accurate
enough results, otherwise, the selected DNN may deliver
much worse QoE than the expectation. Obtaining a high-
quality QoE predictor requires adequate collections of con-
text-QoE data for candidate DNNs. Note that the user QoE
for a DNN can be solicited only when the DNN is used dur-
ing a session, and therefore the purpose of selecting a DNN
can be either exploration, i.e., to collect user QoE delivered
by the selected DNN for better QoE prediction in the future,
or exploitation, i.e., to select the DNN that is expected to
deliver the highest QoE to the user. An important designing
goal in MAB problems is balancing the tradeoff between
exploration and exploitation.

We consider that the QoE value r, in session ¢ is randomly
sampled from an unknown distribution R parameterized by
the context x ,,,, i.e., 7t ~ R(xtm,). Note that we let r, be sam-
pled from distribution R(z;,,,) instead of being a determin-
istic value because the user QoE can be influenced by other
contextual conditions that cannot be included in the context
Ztm,- We do not restrict distribution R(z,,, ) to a certain type
as QoE patterns vary significantly across users. This requires
our MAB algorithm to attain good generalization ability for
handling any possible QoE distributions the users may have.

3.2.1 NeuralUCB

OIC treats the user’'s QoE pattern as a blockbox and
employs NeuralUCB [20] to learn the mapping from context
to QoE. NeuralUCB constructs a neural network to approxi-
mate the QoE pattern and has the capability of identifying
and representing general dependencies between contextual
conditions and QoE without a priori specifying which par-
ticular form of distribution to look for. In particular, Neura-
IUCB can directly take continuous contexts as input and
avoids information loss caused by discretization.

The neural network can act either as a classification model
for label-form QoEs (e.g., ”satisfactory” or “not satisfactory”) or
a regression model for rating-form QoEs (e.g., ; € [0, 1]). The
neural network constructed in NeuralUCB is referred to as
QoE Predicting Network (QPN) and works as a QoE predictor
in DNN selection module. The parameter vector of QPN is
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denoted by 6. The input to QPN is the context z; ,, of a DNN
m € M and the output of QPN is the predicted QoE delivered
by DNN m, denoted by #(z,»,0). The goal of NeuralUCB is
to maximize the cumulative user QoE Y/, 7., by select-
ing an appropriate DNN m, in each session ¢.

Algorithm 1. NeuralUCB for OIC

1: Input: time horizon 7', algorithm parameter y, the number
of nodes in QPN hidden layers h.

2: Initialization: Randomly initialize 6, initialize Zy = I

3: for application sessiont =1,...,7T do

4:  foreach DNN m € M do

5: Observe the context of DNN m, ¢,

6: Predict QoE for DNN mu: 7, < 7(x;m; 0)

7:  Computing the gradient of QPN parameter 6 at x ,,,:

9tm v@ /f(-rt,m; 0)

8: end for

9:  Compute Uy — Frm + YA/ Gt Zi 190/ Py VM
10:  Select the DNN m; = arg max,,c v Ut.m
11:  Solicit QoE 7,,, from the user and store the context-QoE

data (x;m,, rm,) in data set X

12:  Update QPN: 6 < TrainQPN(X)
13:  Compute Z; < Z; 1 + Gy 1,9/, /T
14: end for

>Algorithm 2

Algorithm 2. Subroutine: TrainQPN(X)

1: Input: learning rate n, context-QoE dataset X', number of
gradient descent update steps J;

2: Define L(6) = Z(zmwmr)EX(f’(mT,mr;0) — 7“1,,,”)2
3: forj=1,...,J —1do

4: 0j+1 = 9]' - TIVL(HJ')

5: end for

6: return 0;

The pseudocode of NeuralUCB for OIC is given in Algo-
rithm 1. In each session, a DNN is selected based on u;,, :=

#@m,0) + Y1/ 9fmZ; " 1G1.m/ I (Line 9 and 10). The first term

of u,, is the user QoE predicted by QPN and the second
term of w; ,,, characterizes the uncertainty of the prediction. If
the QoE prediction exhibits large uncertainty for DNN m,
then NeuralUCB has a tendency of selecting DNN m in order
to collect its context-QoE data for improving the prediction
performance. Otherwise, v, ,, is dominated by the predicted
QoE value and NeuralUCB selects the DNN that is expected
to deliver the highest QoE. The parameter y is used to adjust
the importance of exploration and exploitation.

Remark on Complexity of NeuralUUCB.Note that OIC runs on
mobile devices, it should be assured that the computational
complexity of NeuralUCB is acceptable to resource-con-
strained mobile devices. The computational cost of Neura-
IUCB lies mainly in training and running QPN. Later in the
experiment, we will show that a simple neural network (3-
layer fully connected network with 8, 16, 8 nodes) can achieve
good performances. Therefore, the space and time complexity
of NeuralUCB is low.

3.2.2 Speed Up Learning With Knowledge Transferring

The standard NeuralUCB algorithm learns without any a pri-
ori knowledge. It initializes QPNs with random parameters

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

and gradually trains the QPN to approximate the QoE pattern
of a particular user. However, certain general knowledge of
user QoE patterns is actually available. Although QoE pat-
terns differ across users, the users still share some preferences
over certain performance metrics, e.g., all users will prefer
higher inference accuracy, lower inference delay, and less
energy consumption. In observation of this, we incorporate
knowledge transferring [41] into NeuralUCB to speed up the
customization process. With knowledge transferring, a pre-
trained QPN is used in the initialization of NeuralUCB. The
pre-trained QPN contains the general knowledge about user
QOoE patterns. For example, application developers can collect
QoEs of DNNs from a group of test users on standard mobile
devices, and train a QPN that works generally well for all
tested users. In this way, OIC is able to give better DNN selec-
tion decisions compared to a randomly initialized in the early
stage. As the online learning proceeds, the pre-trained QPN is
retrained to approximate the QoE pattern of a particular user.
Using knowledge transferring dramatically accelerates the
customization process, and improves the average QoE of the
whole learning process.

3.2.3 Performance Guarantee of NeuralUCB

The performance of NeuralUCB is measured by regret which
defines the performance loss compared to an Oracle. The
Oracle knows users’” QoE pattern a prior and is able to
selects the optimal DNN, m; = arg max,,c m7,, in every
session t. The regret is formally defined as

Re = E[>" 0 toms = 7o &)

The performance guarantee of NeuralUCB (in terms of regret
upper bound) has been analyzed in [20], showing that Neura-
1UCB gives a sublinear regret O(v/T). This means that Neura-
IUCB is asymptotically optimal compared to Oracle. However,
standard NeuralUCB solicits QoE feedback from users after
every session. The users may feel these survey questions
annoying if they appear constantly. In certain cases, the appli-
cation developer also needs incentive schemes to motivate
the user response. Therefore, a feedback solicitation scheme
needs to be designed to control the solicitation cost (e.g.,
incentive payment and user inconvenience) of the online
learning algorithm.

4 FEEDBACK SOLICITATION

The goal of feedback solicitation scheme (FSS) is to reduce
the number of QoE solicitations while keeping the learning
performance of NeuralUCB. Let Q(¢) denote the event of
QoE solicitation in session ¢, then the solicitation cost is
defined as A - 1{Q(t) = True}, where ) is the unit cost of one
executed solicitation. We define the reward in session t as
Trm = Tt — A - 1{Q(t) = True}. The performance of FSS is
measured by modified regret (m-regret)

RT =E [Zj:l ft,m: - ;t«,mt:|
=k [Zthl Ttamt = Tty + A HQ) = True}}
=K {Zil Ttmy — Tt;ym} tA- Zthl HQ(t) = True}

Solicitation cost

Learning regret
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Fig. 3. lllustration of feedback solicitation scheme.

where 7, m3 + is the reward achieved by Oracle in session ¢ and
its value equals Tt because Oracle knows the user QoE pat-
tern and does not need QOE solicitations. The m-regret con-
sists of two parts. The first term is the same to the standard
regret in (1), which measures the learning performance and
we call it learning regret. The second term measures the solici-
tation cost. Intuitively, with more frequent QoE solicitations,
we are able to learn the user QoE pattern faster, thereby
reducing the learning regret. However, frequently soliciting
QoEs from users causes a high solicitation cost. Consider the
standard learning process of NeuralUCB, although it guar-
antees a sublinear learning regret O(v/T), its solicitation cost
increases linearly with the number of application sessions
O(T), resulting in a linear m-regret.

4.1 Feedback Solicitation Scheme

The goal of the feedback solicitation scheme (FSS) is to
achieve a sublinear m-regret. To have this done, we need to
guarantee that both the learning regret and solicitation cost
are sublinear. To obtain a sublinear solicitation cost, the
learner needs to reduce the frequency of QoE solicitation,
and ensure that the number of QoE solicitations grows sub-
linearly over time. However, reducing QoE solicitations
makes online learning less efficient and enlarges the learn-
ing regret of NeuralUCB. Therefore, there is a tradeoff
between learning regret and solicitation cost that needs
when minimizing the m-regret. Theoretically, we could
expect that the lowest m-regret is achieved when the learn-
ing regret and solicitation cost reach a balance. In the fol-
lowing proposition, we give out our design of FSS that
strikes the balance between learning regret and solicitation
cost. Detailed analysis can be found in Appendix A in the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2022.3208207

Proposition 1 (Feedback Solicitation Scheme). Let T be
the total number of application sessions, the frequency of QoE
solicitation for NeuralUCB should be set to T~Y/3 for minimiz-
ing m-regret.

Proposition 1 indicates that the QoE solicitation is per-
formed periodically with a fixed frequency 7-'/%, i.e., QoE
solicitation happens every T"'/3 sessions. If NeuralUCB runs
T = 1000 sessions, OIC only solicits QoE for 1000%? = 100
times, i.e., a 90% reduction of solicitation cost. Fig. 3 illus-
trates the designed FSS. The solicitation frequency is deter-
mined according to the regret upper bound O(vT) of
NeuralUCB. FSS aims to guarantee a sublinear m-regret such
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that NeuralUCB is still asymptotic optimal with reduced
QOE solicitations. The theorem below gives an upper bound
of m-regret of NeuralUCB with FSS.

Theorem 1 (m-regret of NeuralUCB with FSS). Suppose
NeuralUCB is applied with FSS designed in Proposition 1.
For any time horizon T, the upper bound of its m-regret is
O(Rr) = O(T?*3).

Proof. See Appendix A in the supplementary file, available
online. 0

The above theorem indicates a sublinear upper bound
O(T??) for m-regret of NeuralUCB-FSS. This means that our
method is able to learn an asymptotically optimal DNN
selection policy while keeping the number of QoE solicita-
tions as low as 7%3. Note that the regret upper bound given
in Theorem 1 is for the worst case with an arbitrarily bad ini-
tial QPN. With knowledge transferring, the regret incurred
by NeuralUCB is actually much lower, which is verified by
our experimental results in Section 6.

4.2 FSS With Unknown Time Horizon

One limitation of FSS is that it needs to know the time hori-
zon T' in advance to determine the solicitation frequency.
However, the time horizon is often unknown in practice, in
which case FSS cannot be applied directly. In the sequential,
we show a variant of FSS called FSS-UT that is able to work
with an unknown time horizon T'. FSS-UT keeps a counter ¢
that counts the number of QoE solicitations executed up to
application session t. If the counter satisfies ¢ < t'=® then a
QoE solicitation will be executed in session ¢. Fig. 4 illus-
trates the designed FSS-UT. FSS-UT starts with a relatively
small solicitation interval to ramp up QoE data for training
the QoE predictor, and then gradually increase the solicita-
tion interval over time. FSS-UT guarantees that ¢!~ QoE
solicitations will be executed up to session ¢. If we let o =
1/3, the number of QoE solicitations executed by FSS-UT in
T sessions (i.e., T%?) is the same as that of FSS (Proposition
1), and in this case, the solicitation cost of FSS-UT is the
same as FSS. The theorem below provides a performance
guarantee of FSS-UT in terms of m-regret.

Theorem 2 (m-regret of NeuralUCB with FSS-UT). Sup-
pose NeuralUCB is applied with FSS-UT using parameter a.
For any time horizon T, the upper bound of m-regret is
O(Rr) = O(T%) with z = max{®:! 1 — a}.

Proof. see Appendix B in the supplementary file, available
online. O

In the above theorem, O(T**1)/2) is the order of learning
regret, O(T]*“) is the order of solicitation cost, and the bal-
ance is achieved at & = 1/3. Therefore, the lowest order of m-
regret is O(T%/3).
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5 LEARNING WITH AGGREGATED QOE

The previous sections have shown the online learning algo-
rithm, NeuralUCB, and feedback solicitation schemes for
solicitation cost reduction. However, the proposed methods
rely on two underlying assumptions: 1) only one DNN is
selected in each application session and the selected DNN is
used during the whole session; 2) the user QoE, if solicited,
accurately reflects the QoE of a single DNN used in the ses-
sion. In practice, an application session can be quite long and
the context may change during a session. For example, while
using the application, the user may move to different locations
and the device battery level will decrease. This requires the
application to reconfigure its DNN adaptively according to
context changes. In this case, a QoE feedback solicited at the
end of an application session may reflect the user experience
over all (potentially different) DNNs used in that session, and
we call this kind of QoE value aggregated QoE. Fig. 5 gives an
illustration of aggregated QoEs. The standard NeuralUCB
presented previously cannot handle the aggregated QoE. In
this section, we develop a feedback refinement approach as a
subroutine of NeuralUCB to deal with aggregated QoEs.

The goal of feedback refinement is to estimate QoEs for
individual DNNs (referred to as individualized QoE) based
on aggregated QoEs collected from users. A consideration
here is that the estimated individualized QoEs are subjected
to the constraint that a combination (e.g., a weighted sum)
of individualized QoEs should equal the aggregated QoE.

Before presenting the feedback refinement approach, we
need a modelling of aggregated QoEs. In application session
t, we let K; denote the times of context Change The set of con-
texts appeared in session ¢ is collected in ¢ = {a}} !, where

= {a},,},nen is the kth context of Candldate DNN:Ss. Let me
denote the selected DNN given Context zk. The set of DNNss
selected in session ¢ is denoted by m® = {m}}**,. The aggre-
gated QOE collected at the end of session ¢ is denoted by ri°.
The contexts z}¢, selected DNNs m;€¢, and aggregated QoE r3°
are stored in memory X*¢ « X*¢ U (¢, miC, ri%).

The feedback refinement approach is a two-step loop
towards convergence: 1) individualized QoEs are first esti-
mated with the assistance of the QoE predictor, and then 2)
estimated QoEs will be used in return to update the QoE pre-
dictor. For example, suppose OIC need to update QPN in
session ¢t with the collected aggregated QoEs, the feedback
refinement approach iterates between two steps:

Step 1: Given memory &, we estimate individualized
QoEs with the current QPN #(+; ). For each sample (¢, mA¢

T

ri¢) € X*¢ with some t < ¢, we compute its group residual
1 K
L AG v ok
8T =T E k=1 T‘(Ir m" ’ 0) (2)
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Then, the individualized QoE for DNN m* is estimated
by

= f(:Lk k;@) +68:. @)

It can be easily verified that the average of individualized
QoEs estimated by (3) equals the aggregated QOE.

Step 2: The estimated individualized QoEs 7* and con-
text x i are stored in dataset X' for updating the QPN with
TrainQPN (Algorithm 2). The only difference is that we use
estimated individualized QoEs from Step 1 instead of
ground-truth QoEs collected from users. The updated QPN
will be used in the next iteration.

Algorithm 3. Feedback Refinement Approach

while group residual does not converge do
for (z4¢, mi¢ %) € X% do
Compute residual 6, = ¢ — ;L 37 izt 1;6)
Get individualized QoE: 7% = r(zk k,@) + 6,
Store (z* ,r¥)in X
end for
0 — TrainQPN(X)
end while

ky-[

The convergence of the above process is proven in [42].
The feedback refinement approach can be easily extended
to a scenario where collected QoEs contain both aggregated
QoEs and non-aggregated QoEs. In this case, aggregated
QOEs are stored in X*¢ and will be used to estimate individ-
ualized QoEs. The non-aggregated QoEs are stored in X
and are directly used to train QPN. Intuitively, if the frac-
tion of aggregated QoEs is smaller, OIC can achieve better
performance. In addition, FSS designed in Section 4 can also
be applied in the scenario of aggregated QoE to reduce the
solicitation cost.

6 EXPERIMENTS AND RESULTS

Due to the lack of available large-scale real-world datasets,
we first run experiments on synthetic data to show that OIC
is able to customize appropriate DNN selection policies for a
large group of users that have various QoE patterns. We then
collect real-world data from real users, which are used to
evaluate the performance of OIC for realistic QoE patterns.

6.1 Numerical Experiments

We first construct a mapping from context to user QoE. The
user QoE is formulated as a weighted sum of accuracy and
delay: the QOE of user : is defined as QoE; = w?a; + wid,,
where w? is the weight for the service accuracy a; and wf is
the weight for the service delay. These weights are different
for different users to capture the heterogeneous user prefer-
ence. Both service performance (accuracy a; and delay d;)
and the user weights (w? and w{) depend on the context
information that includes brightness, location, CPU tempera-
ture, time, and battery level, DNN nominal accuracy, and DNN
nominal delay. Three DNN models are considered: Mobile-
Net-v2 (nominal accuracy 70.8%, nominal delay 12ms),
Inception-v2 (nominal accuracy 73.5%, nominal delay 59ms),
and Inception-v3 (nominal accuracy 77.5%, nominal delay
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148ms). The nominal accuracy and nominal delay are from
TensorFlow Lite website [21], which are measured on
ILSVRC 2012 image classification tasks [43] with Pixel 3
smartphone (Android 10). Note that the nominal perfor-
mance can be different from the in-use performance because
the user device and classification tasks are different.

The inference accuracy for user ¢ is determined by the
nominal accuracy (nacc,,) of selected DNN m and the con-
text ambient brightness (brt): a; = brt~2"2m/pbrt =2, This
function indicates that a DNN with higher nominal accu-
racy is less sensitive to the brightness change. The users
may have different requirement on the inference accuracy
at different location, and therefore we parameterize the
weight by the location context (Loc): w? = w;(1loc). The var-
iable 1oc has 10 discrete values, and the value of w;(1loc) is
sampled from a normal distribution N (u(loc),8%(loc))
where the mean value p(loc) and the standard deviation
8(1oc) are from a uniform distribution [0,2]. The inference
delay is affected by the CPU temperature (ctemp € [0, 1]).
Usually, the CPU frequency diminishes at the rate of
approximately 150 Hz per degree Celsius, and therefore the
inference delay may become larger when the CPU tempera-
ture is high. Formally, the inference delay is calculated by
d; = ctemp - del,,; where del,, is the expected delay of
DNN m on user ¢'s device. Because the actually inference
delay varies across device, we let del,,; ~ N(ndel,,,s*) be
sampled from a normal distribution with the nominal delay
of DNN m, ndel,,, as the mean. The weight for the service
delay w depends on the time and battery level: for example,
the user may require faster response during a certain time
span; and when the battery level is low, the user may want
the computation to be completed in a shorter time to save
energy (assuming the CPU frequency is fixed). The time of
the delay is discretized into 24 values. For user i, we choose
a weight w;(time) € N(1,0.5). The state of battery level has
two values, battery € {1:’high’,2 " low'}. For each user,
we set w;(battery = 1) =1 and choose w;(battery =0) €
N(3,1). The weight for the service delay is determined by
wd = w;(time) - w;(battery).

We simulate 50 users (i = 1,2,...,50), and run our OIC
method for each user. The QPN used in NeuralUCB has
three fully-connected hidden layers with 8, 16, 8 nodes,
respectively. During training the continuous contexts and
QoE is normalized to [0,1]. The size of QPN is 4 KB; the
inference delay of QPN is 0.50 & 0.16ms; the training delay
of QPN is 100.8 £ 3.5ms. Therefore, the complexity of Neu-
ralUCB is acceptable to mobile devices. The results shown
below give the average performance for all 50 users.

6.1.1 Performance Comparisons

To show the superiority of OIC, we compare OIC with four
benchmarks. 1) Oracle: Oracle knows user QoE patterns and
selects the best-fit DNN in each session. 2) LinUCB: LinUCB
[44] is a widely-used contextual multi-armed bandit algo-
rithm. It assumes that user QoE is a linear function of con-
text information. 3) Fixed-DNN: one single DNN is used for
on-device inference all the time. 4) Random: a DNN is
selected randomly in each application session.

Fig. 6 shows the performance of the proposed framework
and other benchmarks in terms of average QoE (the scale is
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Fig. 6. Performance comparison with benchmarks.

[0,1]) and regret. We first analyze the learning capability of
OIC by excluding the impact of FSS (OIC-w/0oFSS). Fig. 6a
compares the average QoE (averaged over sessions and
users) of our method and other benchmarks. As expected,
Oracle offers the best performance because it knows user
QoE patterns and selects the best-fit DNN in each session.
Among the others, OIC-w/0FSS delivers the highest QoE to
users. By comparing OIC-w/oFSS with LinUCB, we can
infer that on-device inference customization does not
always work if the learning mechanism is inappropriate.
Because the constructed QoE function is non-linear, LinUCB
is unable to learn user QoE patterns precisely. Selecting
DNNs based on inaccurate QoE predictions, LinUCB per-
forms even worse than Fixed-DNN.

Fig. 6b shows the regret of OIC-w/0oFSS, LinUCB, and
Random in 200 sessions. We can see that the regrets of
LinUCB and Random grow linearly with the number of ses-
sions. By contrast, the regret of OIC-w/oFSS exhibits a clear
sublinear trend. Recall that regret measures the cumulative
performance loss compared to Oracle. A sublinear regret
means that the performance loss of our method is very small
at the late stage of the learning process. Therefore we say
that our method achieves asymptotic optimality.

6.1.2 Efficacy of Knowledge Transfer

It can be observed from Fig. 6a that the gap between Oracle
and OIC-w/0oFSS in average QoE is still large. We imple-
ment the knowledge transfer technique to reduce this gap.
The first step to carry out knowledge transfer is building a
pre-trained QPN. We collect 10 QoE samples from each
user, and a total of 500 QoE samples are used to pre-train a
QPN. Each user is initialized with this pre-trained QPN and
then runs OIC-w/0oFSS. Fig. 7 reports the performance of
OIC-w/0FSS with knowledge transfer. Fig. 7a compares the
averaged QoE achieved by the proposed method and
benchmarks. The benchmark ‘Pre-trained QPN” in Fig. 7a
uses the pre-trained QPN all the time without further train-
ing. The QoE gap between OIC-w/0oFSS + Transfer and
OIC-w/0FSS shows that incorporating knowledge transfer
in online learning provides obvious performance improve-
ments. In addition, we see that Pre-trained QPN delivers a
much lower average QoE, and this indicates that the pre-
trained QPN needs to be further re-trained to better capture
the QoE pattern of individual users. Fig. 7b compares the
performance in terms of regret. We can see that OIC-w/
oFSS+Transfer exhibits a stronger sublinearity in the regret
curve, which means that it can find the optimal strategy
faster. In the rest of the performance analysis, we run OIC
with knowledge transfer by default.
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6.1.3 Performance of Feedback Solicitation Schemes

Fig. 8 shows m-regret of OIC when it is applied with and
without FSS. We run experiments with 7' = 200 sessions.
According to the design, OIC-FSS only needs [200%?] = 35
solicitations which is much smaller than that of standard
NeuralUCB (200 solicitations). Fig. 8 compares m-regret of
OIC-FSS and NeuralUCB. The unit solicitation cost A is set
to 0.13. We see that m-regret of OIC-w/oFSS increases
almost linearly due to its high solicitation cost. By contrast,
OIC-FSS achieves a sublinear m-regret. In particular, using
FSS does not harm the learning efficiency as we can see that
the learning regret of OIC-FSS is similar to that of OIC-w/
oFSS. This means that FSS keeps the asymptotic optimality
of NeuralUCB and reduces the increase of solicitation cost
to a sublinear rate.

6.1.4 Performance of FSS-UT

Fig. 9 shows the performance of FSS-UT in terms of reward
and m-regret. We vary the parameter « in FSS-UT from 0.1
to 0.9. Fig. 9a provides a decomposition of m-regret after
200 sessions. We see that the solicitation cost decreases with
o and the learning regret increase with «. The lowest m-
regret is achieve at « = 0.4 which is close to our theoretical
analysis o = 0.33. Fig. 9b shows the m-regret curves for FSS-
UT, we see that setting when « is appropriately chosen (i.e.,
o = 0.3 or 0.4), our method can achieve sublinear m-regrets,
otherwise, the m-regret is nearly linear.

6.1.5 Feedback Refinement for Aggregated QoEs

We use two schemes to generate aggregated QoE.

1) The first scheme is feedback averaging. It assumes that
all used DNNSs in a session have the same impact on the
aggregated QoE. Feedback averagmg generates aggregated
QoEs ¢ using: ¢ = 1/K; >, r¥ where r} is the QoE for
kth DNN used in session ¢.
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2) The second scheme is sequence-aware aggregation. It
assumes that the impact of DNNs on the aggregated QoE
depends on the selection sequence. We let DNNs picked
later in the session have a hlgher impact: 746 = S8 wyrh
with weights w;, = 2%/ Z
Fig. 10a compares the performance of OIC and OIC-AGG
(NeuralUCB with the feedback refinement approach) on
aggregated QoEs. Standard NeuralUCB regards the aggre-
gated QoE as the QoE of the last selected DNN in a session. In
general, we see that OICB-AGG delivers higher QoE on
aggregated QoEs. We can see that the improvement provided
by OIC-AGG is smaller with sequence-aware aggregation.
This is because aggregated QoEs generated by sequence-
aware aggregation are dominated by the QoE of the last
selected DNN, and hence standard OIC can still work well.
Fig. 10b shows the performance of OIC-AGG with mixed
feedback where solicited QoEs contain both aggregated QoEs
(generated by feedback averaging) and non-aggregated
QoEs. We see that OIC-AGG achieves higher user QoE when
the fraction of aggregated QoEs is low. This is because non-
aggregated QoEs help estimate individualized QoE in the
feedback refinement approach.

6.2 Experiments on Real-World Dataset

We also collect context and QoE data from real-world
human users to evaluate the proposed method. In this part,
we focus on the customization performance and show how
our method adapts DNN selection decisions to different
user preferences and usage scenarios.

User QoE Collection. We collect user QoE data on smart-
phones as they are the most widely used mobile devices.
Two types of smartphones, Motorola X! and OnePlus One
are used in our experiments. Motorola X* is equipped with
a Qualcomm Snapdragon 625 processor, an octa-core CPU,
an Adreno 508 GPU, and a 3GB RAM; OnePlus One is
equipped with a Qualcomm Snapdragon 801 processor, a
quad-core CPU, an Adreno 330 GPU, and a 3GB RAM. Both
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Subject 1 Subject 2
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Subject 4

Ehc Q) 547 562 656 7.3

DNN model
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624 612

641 678 688 691

DNN model
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Average Brightness

125 175 225 275
Average Brightness

Fig. 11. User QoE v.s. DNN models v.s. Environmental changes. The scale of QoE is [0,10]

smartphones run on the Android 8.1.0 system. We install a
DL-based image classification app provided by TensorFlow
Lite [21] on these smartphones. The image classification app
captures images in real-time using the device camera, then
classifies the captured images and displays top-3 classifica-
tion results. We use three DNN models, MobileNet-v2,
Inception-v2, and Inception-v3, as candidate DNNs. These
models are pre-trained by TensorFlow and can be down-
loaded from TensorFlow Hub [17]. The ImageClassifier API
from TensorFlow Lite Task Library is used to deploy a selected
DNN into the image classification app. Interested readers
are referred to [21] for a detailed description of the image
classification app. We recruit five human subjects and collect
their QoE scores when using the image classification app.
Subject 1, 2, 3 use OnePlus One and subject 4, 5 use Motorola
X*. We ask the human subjects to use the image classification
app in various scenarios, e.g., in-house, college campus,
classroom, and laboratory. We also encourage the subjects to
try different usage patterns, e.g., running the app consecu-
tively for a long time (which may cause an increase in device
CPU temperature), or running the app occasionally (which
allows the app to be executed under more diverse device sta-
tus and external environments). The QoE data collection is
performed session-wise, at the beginning of each application
session, a DNN is randomly selected and deployed in the
image classification application, then the subjects record the
current contextual conditions. We use a 7-dimension context:
the ambient brightness, location of the device, time of the
day, battery level, CPU temperature, nominal accuracy of
selected DNN, and nominal delay of selected DNN. The sub-
jects are asked to use the image classification app to classify
objects in the surrounding environment during the session
(around 2 minutes). At the end of the session, subjects pro-
vide their QoE scores on a scale of 0 to 10. The subjects are
instructed to give a QoE rating that reflects the overall satis-
faction of the received inference quality, including but not
limited to the actual DNN inference delay/accuracy, energy
consumption, device temperature, etc. The subjects are also
allowed to take any factors into consideration when giving
their QoE scores. The context, selection DNN, and QoE score
are stored in a dataset. Each subject runs 200 application ses-
sions, which gives 200 data samples. However, we cannot
directly run our method on the collected data due to the lack
of counterfactual QoE data. Specifically, each collected data
sample records the context information and QoE for a used
DNN. When we feed the context of a data sample into OIC,
the DNN selected by our method can be different from the
DNN we used for collecting the user QoE. As a result, we
cannot obtain the ground-truth user QoE for the selected
DNN. In this experiment, we utilize the counterfactual pre-
diction method in [45] to generate the counterfactual QoE

data. The average error of the predicted counterfactual QoE
is 0.294 £ 0.083, 0.3072 £ 0.107, 0.269 £ 0.079, 0.241 + 0.983,
0.313 £ 0.113 for subject 1, 2, 3, 4, 5, respectively.

6.2.1 Dependency Between QoE and Context

Before analyzing the performance of OIC, we first show the
dependency between user QoE and context to support our
motivations and claims. Fig. 11 depicts the average QoE of
subjects using different DNNs under different contextual
conditions (brightness as an example). The results validate
some of our claims: 1) The device affects user QoE. We can
see that subjects have similar QoE patterns if they use the
same device. This because the device computing capacity
determines the DNN inference delay which is one of the
most key factors that affect user experience. 2) The user
preferences are different. Even for subjects using the same
device, their QoE patterns exhibit noticeable differences.
For example, subject 4 reports a higher QoE using incep-
tion-v3 while subject 5 prefers inception-v2. 3) The usage
scenario has a significant impact on user QoE. There is a
drastic reflection on the QoE variation as we change the
brightness of the environment. In particular, we can also
observe that users and DNNs have different sensitivity to
environmental changes, e.g., the QoE of subject 2 on incep-
tion-v2 is relatively stable with different brightness values
while the QoE of subject 3 on inception-v2 varies signifi-
cantly across brightness.

6.2.2 Runtime Performance of DNNs and QPN

Table 2 presents the runtime performance (in terms of infer-
ence delay, memory usage, and storage usage) of candidate
DNNs and QPN on two smartphones used in the experi-
ment. We see that the actual performance of DNNs on the
user device is significantly different from the nominal per-
formances presented in Table 1. It can be observed that the
inference/training delay of QPN is around 5.2ms/30.7ms on
Motorola X* and 10.3ms/50.1ms on OnePlus One. Note that
OIC is performed in the app loading phase at the beginning
of each application session, a 50ms-delay is almost negligi-
ble. The memory usage and storage usage of QPN are also
very low. Therefore, OIC is light-weighted enough to be
implemented on most mobile devices.

6.2.3 Comparison on Average QoE

Fig. 12 shows (session-)average QoE of 5 subjects when
using OIC and other benchmarks. Similar to that in the
numerical experiment, OIC outperforms other benchmarks
and achieves a close-to-oracle performance. For certain sub-
jects, the performance of Fixed-DNN is close to OIC, e.g.,
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TABLE 2
Performance of DNNs and QPN at User Devices

Metrics Inference Memory Storage
Device & Models delay (ms) usage (MB) usage

Mobi-v2 27.3+3.5 7.3+0.8 1.5MB

" Incep-v2 203.5+39.4 14.6+1.4 11IMB

Motorola X*  1ycep-v3 489.2482.8 26,6435 23MB

QPN 5.241.0 (Inference) 1.1£0.5 (Inference) 4KB

30.7 + 5.8 (Training) 7.8 & 0.7 (Training)

Mobi-v2 41.1+63 72+11 1.5MB

Incep-v2 286.4+57.2 146 £2.2 11IMB
OnePlusOne  rconva 8616 + 1049 267 +5.1 23MB

QPN 10.34+1.6 (Inference)  1.1+0.5 (Inference) 4KB

50.1 £ 9.2 (Training)

7.6 £ 0.8 (Training)

Fixed-Mobiv2 for Subject 1 and Fix-Incepv3 for Subject 5.
However, these subjects still exhibit different QoE patterns
(showing different preference over DNNs), and therefore,
OIC is still needed for learning user’s QoE patterns.

6.2.4 Heterogeneity of User Preference

Fig. 13 shows selected DNNs for 5 subjects in 200 sessions.
For ease of interpretation. Based on the information presented
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in Table 2, we can see that DNNSs’ inference delay on OnePlus
One (used by Subject 1, 2, 3) is much higher than that on
Motorola X4 (used by Subject 4, 5). The accuracy of DNNs
does not vary much due to device capability (Mobiv2: 70.8%,
Incep-v2: 73.5%, Incep-v3:77.5%). In Fig. 13, we see that
Mobiv2 is often selected for the subject 1, 2, and 3, meaning
that these users prefer low inference delay, and Incepv3 is
often selected for the subject 4 and 5, meaning that these users
prefer high inference accuracy. OIC is able to adapt its DNN
selection policy to different user preferences.

6.2.5 Adaptation to Environment Changes

We next take ambient brightness as an example to show the
impact of context on the DNN selection. Fig. 14 shows in
what ambient brightness a DNN is more likely to be
selected. The color scale denotes the fraction (dimensionless
quantity) that a DNN is selected for an ambient brightness
range. For user 1, 2, and 3 (prefer low latency), we can see
that when the ambient brightness is relatively low (below
100), Incepv2 and Incepv3 are more likely to be selected.
This is because low brightness causes accuracy degradation,
and in this case, the users may trade low inference delay

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
7.5 8.5 8.5 8 7
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8 7.5
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(<] 7.5 7
S 65
[ 7 6.5
265 6
< 6
6.5 5.5 5.5
6 6 5 5
c,\° \\C'% N 606‘ oc'\ éod‘ 0\0 Qq’l' N 606‘ 0\0 R ok 3 6°(° \so?’qq'?' o 6°(°
S o°°§\° ° o° %‘ °?' &* ° o"e’%\ Y f\ Y
Q\*(‘ Q\"g' Q\*Q Q\*e Q\*Q Q\"‘e’ Q\*(‘ Q Q\* S
Fig. 12. Average QoE of subjects.
Subject 1 Subject 2 Subject 3 Subject 4 Sbject 5
2 2 2 2 2
%lmm XX X X XX % 0K WKW KX WK %nmx XK I IORMOKK KX MK % %
o Q (%] Q (%]
£ £ £ £ £
< < < < <
%)K x x x x % X MM XX MX X XXX KX % x XWX K X % WX x X x WXX X % » x X x x
(%] Q (%] Q (%]
£ £ £ £ £
N o N o N
2 2 2 2 2
Qo Qo Qo D Mmoo X X x x x LD 00 NN x x x
[<] o [} o [<]
= = = = =

50

Application session

100 150

200 O 50

100

150 200

Application session

Fig. 13. Selected DNNs for subjects.

P & P PEEPCPECST R S P PP L PP
Ambient brightness

User 1

User 2

Incepv2 Mobiv2

Incepv3

D

o

Ambient brightness

Fig. 14. Impact of ambient brightness on DNN selection.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 13,2023 at 16:03:12 UTC from |IEEE Xplore. Restrictions apply.

o

50

User 3

D00 0 a0
@@&0\‘3@4 q,?‘q',\@e

Ambient brig

100
Application session

50 100 150
Application session

150 200 200

o

50 100 150
Application session

200

o

User 4 = User 5§ N

$ 0.14

| 8 0.12
=

01
% 0.08
o
= 0.06
2 0.04
o
8
2 0.02
PSS PLLPLELS £8P PSSIPES
htness Ambient brightness Ambient brightness



BAI ET AL.: AUTOMATED CUSTOMIZATION OF ON-DEVICE INFERENCE FOR QUALITY-OF-EXPERIENCE ENHANCEMENT

(i.e., selecting Mobiv2) for better inference accuracy (i.e.,
selecting Incepv2 and Incepv3). For user 5, we see that
Mobiv2 and Incepv2 are more likely to be selected when the
brightness is appropriate (between 120-200). This is because
all three DNNSs can achieve high accuracy when the bright-
ness is appropriate, and hence DNNs with low inference
delay are preferred. These results indicate that OIC can
adapt to environmental changes.

7 CONCLUSION

In this article, we designed automated on-device inference
customization for DL-based applications. Our goal is to
improve the user-perceived experience by selecting the
best-fit DNN for configuring the DL-based mobile app. Two
main designing topics, QoE prediction and feedback solici-
tation scheme, are investigated. We utilized NeuralUCB as
the learning tool for QoE prediction. NeuralUCB has an
excellent generalization ability and is extremely suitable for
handling heterogeneous user QoE patterns. The feedback
solicitation scheme (FSS) was studied to mitigate the solici-
tation cost during online learning. With FSS, we dramati-
cally reduced the number of QoE solicitations required by
NeuralUCB without harming its asymptotic optimality.
While our methods are presented for smartphones, it is
compatible with most IoT devices as long as they run DL-
based services and have the demand for on-device inference
customization. However, there are still many future works
to be done. For example, the real-world experiment is still
limited, implementing OIC with more DL-based services,
device types, and usage scenarios is a meaningful step to
evaluate the practicality of the proposed method. The solici-
tation cost currently is formulated as a pre-determined ran-
dom variable, carrying out user surveys to obtain the
realistic solicitation cost would be a beneficial add-on extra.
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